NO122755B - - Google Patents
Download PDFInfo
- Publication number
- NO122755B NO122755B NO65160945A NO16094565A NO122755B NO 122755 B NO122755 B NO 122755B NO 65160945 A NO65160945 A NO 65160945A NO 16094565 A NO16094565 A NO 16094565A NO 122755 B NO122755 B NO 122755B
- Authority
- NO
- Norway
- Prior art keywords
- catalyst
- zinc
- copper
- manganese
- pellets
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 claims description 54
- 238000000034 method Methods 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 13
- 229910052802 copper Inorganic materials 0.000 claims description 13
- 239000010949 copper Substances 0.000 claims description 13
- 229910052725 zinc Inorganic materials 0.000 claims description 13
- 239000011701 zinc Substances 0.000 claims description 13
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 11
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 11
- 239000007789 gas Substances 0.000 claims description 9
- 229910052739 hydrogen Inorganic materials 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 239000004411 aluminium Substances 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 239000002737 fuel gas Substances 0.000 claims description 3
- 238000003786 synthesis reaction Methods 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 231100000252 nontoxic Toxicity 0.000 claims description 2
- 230000003000 nontoxic effect Effects 0.000 claims description 2
- 230000036961 partial effect Effects 0.000 claims description 2
- 239000000969 carrier Substances 0.000 claims 1
- 239000008188 pellet Substances 0.000 description 23
- 239000000203 mixture Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 8
- 239000002002 slurry Substances 0.000 description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- 239000002244 precipitate Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- SWRLHCAIEJHDDS-UHFFFAOYSA-N [Mn].[Cu].[Zn] Chemical compound [Mn].[Cu].[Zn] SWRLHCAIEJHDDS-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 239000012065 filter cake Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005453 pelletization Methods 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- ZFYIQPIHXRFFCZ-QMMMGPOBSA-N (2s)-2-(cyclohexylamino)butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NC1CCCCC1 ZFYIQPIHXRFFCZ-QMMMGPOBSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate trihydrate Substances [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 2
- MFUVDXOKPBAHMC-UHFFFAOYSA-N magnesium;dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MFUVDXOKPBAHMC-UHFFFAOYSA-N 0.000 description 2
- YMKHJSXMVZVZNU-UHFFFAOYSA-N manganese(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YMKHJSXMVZVZNU-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 1
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- MEFBJEMVZONFCJ-UHFFFAOYSA-N molybdate Chemical compound [O-][Mo]([O-])(=O)=O MEFBJEMVZONFCJ-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002574 poison Substances 0.000 description 1
- 231100000614 poison Toxicity 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910001388 sodium aluminate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
- C01B3/16—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
Fremgangsmåte for omsetning av'karbonmonoksyd med vanndamp. Process for reacting carbon monoxide with water vapour.
Denne oppfinnelse angår omsetning av karbonmonoksydThis invention relates to the conversion of carbon monoxide
med damp over katalysatorer med høy aktivitet ved lav temperatur. Katalysatorene i foretrukne former har den fordel at de forblir aktive i lengre tid ved bruk, eller de er mindre tette uten alvorlig tap av mekanisk styrke, enn mange tidligere kjente beslektede katalysatorer. with steam over catalysts with high activity at low temperature. The catalysts in preferred forms have the advantage that they remain active for a longer time in use, or they are less dense without serious loss of mechanical strength, than many previously known related catalysts.
I henhold til oppfinnelsen tilveiebringes en fremgangs-According to the invention, a process is provided
måte for omsetning av karbonmonoksyd med vanndamp, særlig for fremstilling av ammoniakk-syntesegass eller hydrogen eller for å gjøre brennstoffgass ugiftig, ved temperaturer under 300°C over en katalysator inneholdende kobber og sink. Fremgangsmåten karakteriseres ved at det anvendes en katalysator method for reacting carbon monoxide with water vapour, in particular for the production of ammonia synthesis gas or hydrogen or for making fuel gas non-toxic, at temperatures below 300°C over a catalyst containing copper and zinc. The method is characterized by the use of a catalyst
omfattende produktet fra delvis reduksjon av de sam-felte oksyder av kobber og sink og minst ett ytterligere metall valgt fra gruppen bestående av aluminium, magnesium og mangan, hvis oksyder er anvendelige som katalysatorbærere, og eventuelt et ikke-samfelt katalysator-bæremateriale. comprising the product from the partial reduction of the combined oxides of copper and zinc and at least one additional metal selected from the group consisting of aluminium, magnesium and manganese, whose oxides are usable as catalyst supports, and optionally a non-combined catalyst support material.
Mengdeforholdet av oksydet av aluminium, magnesium eller mangan er fortrinnsvis i området 4 til 20, særlig 8 til 20 atomprosent av den totale mengde av de nevnte oksyder. The quantity ratio of the oxide of aluminium, magnesium or manganese is preferably in the range 4 to 20, in particular 8 to 20 atomic percent of the total quantity of the said oxides.
Hvis manganoksyd er tilstede, er dets valens fortrinnsvis ikke høyere enn 4 i katalysatoren slik som denne normalt håndteres, If manganese oxide is present, its valency is preferably not higher than 4 in the catalyst as it is normally handled,
dvs. før reduksjon forut for bruk eller i bruk. ie before reduction prior to use or in use.
Kobberinnholdet i katalysatoren eller komposisjonenThe copper content of the catalyst or composition
er fortrinnsvis minst 10%, for eksempel i området 10 til 70%, særlig 10 til 50%. Sinkinnholdet er fortrinnsvis minst 20%, for eksempel mellom 20 og 80%. Egnede katalysatorer inneholder således kobber, sink og det ytterligere metall eller metaller i forholdene 30:60:10, 40:40:20 og 60:30:10 og forhold mellom disse forhold. Disse prosentmengder og forhold er efter atomer. is preferably at least 10%, for example in the range 10 to 70%, especially 10 to 50%. The zinc content is preferably at least 20%, for example between 20 and 80%. Suitable catalysts thus contain copper, zinc and the additional metal or metals in the ratios 30:60:10, 40:40:20 and 60:30:10 and ratios between these ratios. These percentages and ratios are according to atoms.
Ved fremstilling av katalysatoren som anvendes i henhold til oppfinnelsen, omsettes en blanding av ikke-halogenid, svovelfri salter av metallene med et karbonat eller bikarbonat av et alkalimetall eller (mindre foretrukket) ammonium, hvorefter det resulterende bunnfall vaskes tilnærmet fritt for alkali, tørkes og kalsineres. Blandingen av oppløsningene på utfellingstrinnet utføres fortrinnsvis kontinuerlig. Temperaturen på blandingstrinnet er fortrinnsvis i området In the production of the catalyst used according to the invention, a mixture of non-halide, sulphur-free salts of the metals is reacted with a carbonate or bicarbonate of an alkali metal or (less preferred) ammonium, after which the resulting precipitate is washed approximately free of alkali, dried and calcined. The mixing of the solutions in the precipitation step is preferably carried out continuously. The temperature of the mixing step is preferably in the range
65 - 85°C, og fortrinnsvis heves den til 80 til 100°C efter 65 - 85°C, and preferably it is raised to 80 to 100°C after
blanding og holdes der inntil pH-verdien opphører å stige. Fortrinnsvis holdes en forholdsvis lav, men konstant alkali-tetsgrad (svarende til en pH-verdi ved 90°C i området opp til 9,8, særlig opp til 8,0) under og efter utfellingen. mixture and held there until the pH value stops rising. Preferably, a relatively low but constant degree of alkalinity (corresponding to a pH value at 90°C in the range up to 9.8, especially up to 8.0) is maintained during and after the precipitation.
(I "provisional specification" var den nedre grense på 7,0 angitt i betydningen "nøytralitet", selv om ved de temperaturer som her anvendes, kan nøytralitet være tilstede ved så lav pH-verdi som ca. 6,0). Vaskingen av bunnfallet, hvis det er fremstilt under anvendelse av en alkalimetallforbindelse, bør fortrinnsvis være slik at det blir tilbake mindre enn 0,5% alkali-metalloksyd (beregnet som Na20), mer foretrukket mindre enn (In the "provisional specification" the lower limit of 7.0 was stated in the sense of "neutrality", although at the temperatures used here, neutrality can be present at a pH value as low as about 6.0). The washing of the precipitate, if prepared using an alkali metal compound, should preferably be such that less than 0.5% alkali metal oxide (calculated as Na 2 O) remains, more preferably less than
0,2%. 0.2%.
Ved den ovennevnte fremgangsmåte foretrekkes at minst noe og fortrinnsvis alt innholdet av hver metalliske bestand-del som innføres ved utfelling, innføres som en forbindelse i hvilken metallet er tilstede som kationer, særlig som nitrat eller acetat. Det er imidlertid også mulig å innføre noe av en eller flere metalliske bestanddeler som anioner. Kalsine-ringen av katalysatoren foretaes fortrinnsvis.ved temperaturer opp til 350°C, for eksempel ca. 300°C. In the above-mentioned method, it is preferred that at least some and preferably all of the content of each metallic component which is introduced by precipitation is introduced as a compound in which the metal is present as cations, especially as nitrate or acetate. However, it is also possible to introduce some of one or more metallic constituents such as anions. The calcination of the catalyst is preferably carried out at temperatures up to 350°C, for example approx. 300°C.
Hvis katalysatoren skal anvendes i et statisk lag,If the catalyst is to be used in a static layer,
kan den formes, for eksempel ved granulering, pelletisering eller ekstrudering. Disse operasjoner utføres fortrinnsvis efter kålsinering av bunnfallet. Pellettettheten i komposisjonen er fortrinnsvis i området 1,0 til 2,0, særlig 1,4 til 1,8. Før den bringes til anvendelse reduseres katalysatorkomposisjonen for å gi den aktive form; og dette utføres vanligvis av brukeren av katalysatoren i den konverter hvor den skal anvendes. Reduserende gasser så som hydrogen eller karbonmonoksyd, fortrinnsvis vesentlig fortynnet med en gass som er inert overfor katalysatoren, så som nitrogen eller damp, kan anvendes for reduksjonen forutsatt at de er tilnærmet fri for svovel og andre katalysatorgifter. En egnet reduksjonstemperatur er 230°C, it can be shaped, for example by granulation, pelletisation or extrusion. These operations are preferably carried out after charcoal sintering of the precipitate. The pellet density in the composition is preferably in the range 1.0 to 2.0, especially 1.4 to 1.8. Before it is put to use, the catalyst composition is reduced to give it its active form; and this is usually carried out by the user of the catalyst in the converter where it is to be used. Reducing gases such as hydrogen or carbon monoxide, preferably substantially diluted with a gas which is inert to the catalyst, such as nitrogen or steam, may be used for the reduction provided they are substantially free of sulfur and other catalyst poisons. A suitable reduction temperature is 230°C,
og for høye temperaturer bør selvsagt unngåes.and too high temperatures should of course be avoided.
Katalysatoren inneholder fortrinnsvis en andel av katalysator-bærer-materiale i tillegg til det som er innført ved sam-utfeIling. Dette materiale er hensiktsmessig det samme som det som ble innført ved sam-utfelling, selv om dette ikke er nødvendig. Fortrinnsvis innføres hovedandelen av katalysator-bærematerialet ved samutfeiling. En særlig god katalysator inneholder 2 til 8 vektprosent tilsatt aluminiumoksyd, og dette tilsettes fortrinnsvis i form av et aluminiumoksyd-hydrat eller et hydratiserbart aluminiumoksyd til én eller flere av de oppløsninger som tar del i sam-utfellingen, slik at utfellingen finner sted i dets nærvær. Katalysatoren som anvendes i henhold til oppfinnelsen kan eventuelt inneholde en andel kromoksyd, fortrinnsvis opp til ca. 25% av den totale komposisjon, og dette innføres fortrinnsvis ved sam-utfeiling. Begge de ovennevnte prosentdeler er efter vekt av oksydene som er tilstede i katalysator-komposisjonen, regnet The catalyst preferably contains a proportion of catalyst carrier material in addition to that introduced by co-precipitation. This material is conveniently the same as that introduced by co-precipitation, although this is not necessary. Preferably, the main part of the catalyst support material is introduced by co-elution. A particularly good catalyst contains 2 to 8 percent by weight of added alumina, and this is preferably added in the form of an alumina hydrate or a hydratable alumina to one or more of the solutions that take part in the co-precipitation, so that the precipitation takes place in its presence . The catalyst used according to the invention may optionally contain a proportion of chromium oxide, preferably up to approx. 25% of the total composition, and this is preferably introduced by co-definement. Both of the above percentages are calculated by weight of the oxides present in the catalyst composition
i oksydform.in oxide form.
Ved fremgangsmåten for omsetning av karbonmonoksyd med vanndamp deaktiveres katalysatoren ved forhøyede temperaturer, og prosessen utføres derfor ved temperaturer opptil 300°C. Trykk over et stort område, for eksempel 1 til 50 atmosfærer og høyere, kan anvendes. Innløpsgassen bør være tilnærmet svovelfri, dvs. inneholde mindre enn 5, særlig mindre enn 1 del fri eller bundet svovel pr. million, og det er derfor fordelaktig å beskytte katalysatoren ved hjelp av et svovel-absorberende lag eller annet beskyttende dekke, hensiktsmessig et som virker ved innløpstemperaturen for katalysatoren. Fremgangsmåten ifølge oppfinnelsen anvendes hensiktsmessig til behandling av en gassblanding hvis C0-innhold er nedsatt (for eksempel til mindre enn 5%) over en katalysator (så som jernoksyd eller et molybdat) som er effektiv ved høyere temperaturer. Slike to-trinns karbonmonoksyd-omdannelses-systemer er tidligere velkjent. Fremgangsmåten ifølge oppfinnelsen kan anvendes i forbindelse med kjente fremgangsmåte-trinn for justering av dampkonsentrasjonen og —temperaturen og for å fjerne karbondioksyd. In the process for reacting carbon monoxide with steam, the catalyst is deactivated at elevated temperatures, and the process is therefore carried out at temperatures up to 300°C. Pressures over a wide range, for example 1 to 50 atmospheres and higher, can be used. The inlet gas should be virtually sulphur-free, i.e. contain less than 5, especially less than 1 part of free or bound sulfur per million, and it is therefore advantageous to protect the catalyst by means of a sulphur-absorbing layer or other protective cover, suitably one which acts at the inlet temperature of the catalyst. The method according to the invention is suitably used for treating a gas mixture whose C0 content is reduced (for example to less than 5%) over a catalyst (such as iron oxide or a molybdate) which is effective at higher temperatures. Such two-stage carbon monoxide conversion systems are previously well known. The method according to the invention can be used in connection with known method steps for adjusting the steam concentration and temperature and for removing carbon dioxide.
Fremgangsmåten ifølge oppfinnelsen er særlig egnetThe method according to the invention is particularly suitable
til fremstilling av ammoniakk-syntesegass eller hydrogen, eller til å fjerne karbonmonoksyd fra brennstoffgass for, for eksempel, å nedsette dens giftighet. for the production of ammonia synthesis gas or hydrogen, or to remove carbon monoxide from fuel gas to, for example, reduce its toxicity.
Oppfinnelsen illustreres ved de følgende eksempler. The invention is illustrated by the following examples.
EKSEMPEL 1EXAMPLE 1
En oppløsning (4 liter) av kobber(II)nitrat-trihydrat (0,694 kg), sinknitrat-heksahydrat (1,323 kg) og aluminium-nitrat-nonahydrat (0,853 kg) i vann ble blandet kontinuerlig ved 74°C med en oppløsning (20 liter) av natriumkarbonat (3,4 kg som Na2C0g). Strømningshastighetene under blandingen var slik at man fikk et lite overskudd av alkali, svarende til en pH for oppslemningen på 7,0 til 7,5. Hele oppslemningen ble derefter fortynnet med 10 liter vann, oppvarmet til 90°C og holdt der i 1 time. Det ble iaktatt at som et resultat av denne varmebehandlingen steg oppslemningens pH-verdi til 8,4.Bunnfallet ble oppsamlet på et filter, oppslemmet på nytt med 20 liter vann, derefter oppsamlet igjen og vasket med 30 liter A solution (4 liters) of copper(II) nitrate trihydrate (0.694 kg), zinc nitrate hexahydrate (1.323 kg) and aluminum nitrate nonahydrate (0.853 kg) in water was mixed continuously at 74°C with a solution (20 litres) of sodium carbonate (3.4 kg as Na2C0g). The flow rates during mixing were such that a small excess of alkali was obtained, corresponding to a pH for the slurry of 7.0 to 7.5. The entire slurry was then diluted with 10 liters of water, heated to 90°C and held there for 1 hour. It was observed that as a result of this heat treatment the pH value of the slurry rose to 8.4. The precipitate was collected on a filter, reslurried with 20 liters of water, then collected again and washed with 30 liters
vann. Filterkaken ble tørket ved 120°C, kalsinert ved 300°Cwater. The filter cake was dried at 120°C, calcined at 300°C
i 8 timer, og derefter finpulverisert. En prøve av denne ble pelletisert med 2% grafitt for å få 5 mm x 5 mm sylindriske pellets. Den prosentvise sammensetning av pelletene efter vekt var som følger: for 8 hours, and then finely powdered. A sample of this was pelletized with 2% graphite to obtain 5 mm x 5 mm cylindrical pellets. The percentage composition of the pellets by weight was as follows:
Dette svarer til et atomforhold på 35% kobber, 53% sink og 12% aluminium. Pelletene hadde en middels vertikal knusestyrke på 167 kg, pellet-tetthet på 1,191 og fyllingsvekt på 1,2. This corresponds to an atomic ratio of 35% copper, 53% zinc and 12% aluminium. The pellets had an average vertical crushing strength of 167 kg, pellet density of 1.191 and fill weight of 1.2.
En prøve av komposisjonen ble undersøkt som pellets ved å redusere dem med fortynnet hydrogen (1,5%H2, 98,5% N2) ved 230°C. En katalysator inneholdende bare kobber og sink (molforhold 34:66) og med en middels vertikal knusestyrke på 68 kg, en pellet-tetthet på 2,46 og en fyllingsvekt på 1,5 A sample of the composition was tested as pellets by reducing them with dilute hydrogen (1.5% H 2 , 98.5% N 2 ) at 230°C. A catalyst containing only copper and zinc (molar ratio 34:66) and with an average vertical crushing strength of 68 kg, a pellet density of 2.46 and a fill weight of 1.5
ble prøvet på samme måte. Aktiviteten av katalysatorene ved 240°C, uttrykt som hastighetskonstanter basert på nedbrytningsgraden for karbonmonoksyd, er gitt i tabellen. Verdiene i parentes er prosent av opprinnelig aktivitet. was tested in the same way. The activity of the catalysts at 240°C, expressed as rate constants based on the degree of decomposition of carbon monoxide, is given in the table. The values in parentheses are percentages of original activity.
En annen prøve av filterkaken ble pelletisert med 2% grafitt, men under anvendelse av et lavere pelletiseringstrykk. Den middels vertikale knusestyrke for disse pellets var 68 kg og deres tetthet var 1,66. Ved prøvning på samme måte som katalysatorene med høyere tetthet, fikk man de følgende aktiviteter: Another sample of the filter cake was pelletized with 2% graphite, but using a lower pelletizing pressure. The average vertical crushing strength of these pellets was 68 kg and their density was 1.66. When tested in the same way as the higher density catalysts, the following activities were obtained:
EKSEMPEL 2 EXAMPLE 2
Fremgangsmåten fra eksempel 1 ble fulgt med den unntagelse at 0,256 kg magnesiumnitrat-heksahydrat ble anvendt istedenfor aluminiumnitratet, og mindre forandringer ble gjort ved vaskingen av bunnfallet. Under de anvendte betingelser utfelles ikke magnesium fullstendig, og som et resultat av dette var magnesiuminneholdet i katalysatoren mindre enn alumi-niuminnholdet i katalysatoren i eksempel 1. Den prosentvise sammensetning av katalysatoren var The procedure from Example 1 was followed with the exception that 0.256 kg of magnesium nitrate hexahydrate was used instead of the aluminum nitrate, and minor changes were made when washing the precipitate. Under the conditions used, magnesium is not completely precipitated, and as a result the magnesium content of the catalyst was less than the aluminum content of the catalyst in Example 1. The percentage composition of the catalyst was
Dette svarer til et atomforhold på 34,9% kobber, 58,4% sink This corresponds to an atomic ratio of 34.9% copper, 58.4% zinc
og 6,7% magnesium. Pelletene hadde en middels vertikal knusestyrke på 73 kg, en pelletstetthet på 1,66 og en fyllingsvekt på 1,11. and 6.7% magnesium. The pellets had an average vertical crushing strength of 73 kg, a pellet density of 1.66 and a fill weight of 1.11.
For å undersøke denne katalysator ble pelletene knust slik at de gikk igjennom en 17 B.S.S, sikt, men ble holdt tilbake på 25 B.S.S, sikt, og derefter redusert ved hjelp av en blanding av hydrogen (1,5 volumprosent) og en nitrogen ved 230°C. Over den reduserte katalysator ble det derefter ført en blanding av vanndamp (50 %), karbonmonoksyd (25%) , og hydrogen (25%, med en tørr gass volumhastighet på 18.000 time""'". To examine this catalyst, the pellets were crushed to pass a 17 B.S.S, sieve, but retained on a 25 B.S.S, sieve, and then reduced using a mixture of hydrogen (1.5% by volume) and a nitrogen at 230 °C. A mixture of water vapor (50%), carbon monoxide (25%), and hydrogen (25%) was then passed over the reduced catalyst at a dry gas volume rate of 18,000 hours.
Aktiviteten av katalysatoren i reciproke sekundenheter ved 240°C var som angitt i tabell 3. The activity of the catalyst in reciprocal second units at 240°C was as indicated in Table 3.
EKSEMPEL 3 EXAMPLE 3
En oppløsning (4 liter) av kobber(II)nitrat-trihydrat (0,694 kg), sinknitrat-heksahydrat (1,488 kg) og mangannitrat-heksahydrat (0,143 kg) i vann ble blandet kontinuerlig ved 70°C med en oppløsning (20 liter) av natriumkarbonat (3,4 kg som Na^O^) . Strømningshastighetene under blanding var slik at man fikk et lite overskudd av alkali, svarende til en pH- A solution (4 liters) of copper (II) nitrate trihydrate (0.694 kg), zinc nitrate hexahydrate (1.488 kg) and manganese nitrate hexahydrate (0.143 kg) in water was mixed continuously at 70°C with a solution (20 liters) of sodium carbonate (3.4 kg as Na^O^) . The flow rates during mixing were such that a small excess of alkali was obtained, corresponding to a pH
verdi for oppslemningen på 7,0 til 7,5. Hele oppslemningen ble derefter fortynnet med 6 liter vann, oppvarmet til 90°C value for the slurry of 7.0 to 7.5. The entire slurry was then diluted with 6 liters of water, heated to 90°C
og holdt der i 1/2 time. Det ble iakttatt at som et resultat av denne behandling steg oppslemningens pH-verdi til 8,7. Bunnfallet ble oppsamlet på et filter, oppslemmet pånytt med and held there for 1/2 hour. It was observed that as a result of this treatment the pH of the slurry rose to 8.7. The precipitate was collected on a filter, reslurried with
20 liter vann, derefter oppsamlet igjen og vasket med 2020 liters of water, then collected again and washed with 20
liter vann. Filterkaken ble tørket ved 120°C, kalsinert ved 300°C i 8 timer, og derefter finpulverisert. En prøve av denne ble pelletisert med 2% grafitt for å gi 5 mm x 5 mm sylindriske pellets. Den prosentvise sammensetning av pelletene efter vekt var: CuO 29,0, ZnO 54,7, MnO 5,3, tap ved 900°C liters of water. The filter cake was dried at 120°C, calcined at 300°C for 8 hours, and then finely pulverized. A sample of this was pelletized with 2% graphite to give 5 mm x 5 mm cylindrical pellets. The percentage composition of the pellets by weight was: CuO 29.0, ZnO 54.7, MnO 5.3, loss at 900°C
10,5 (omfatter flyktige stoffer og grafitt). Dette svarer til et atomforhold på 32,2% kobber, 59,4% sink og 8,4% mangan. Pelletene hadde en middels vertikal knusestyrke på 52kg, en pellettetthet på 1,55 og en fyllingsvekt på 1,0. 10.5 (includes volatile substances and graphite). This corresponds to an atomic ratio of 32.2% copper, 59.4% zinc and 8.4% manganese. The pellets had an average vertical crushing strength of 52kg, a pellet density of 1.55 and a filling weight of 1.0.
En prøve av den pelletiserte komposisjon ble under— søkt efter at den var redusert med fortynnet hydrogen (1,5% A sample of the pelletized composition was examined after it had been reduced with dilute hydrogen (1.5%
H2, 98,5% N2) ved 230°C. En katalysator inneholdende bareH2, 98.5% N2) at 230°C. A catalyst containing only
kobber og sink (atomforhold 34:66) og med en middels vertikal knusestyrke på 68 kg og en pellettetthet på 2,46 ble under- copper and zinc (atomic ratio 34:66) and with an average vertical crushing strength of 68 kg and a pellet density of 2.46 was under-
søkt på samme måte.applied in the same way.
Under anvendelse av en innløpsgass-blanding beståendeWhen using an inlet gas mixture consisting of
av CO 3,3%, C0210%, H2 53,3% og H20 33,4% ved atmosfærisk of CO 3.3%, C0210%, H2 53.3% and H20 33.4% at atmospheric
trykk, ) ved en volumhast' ighet på 22,500 time -1, var omdannelsen ved 230°C 32, 5% for kobber-sink-mangan-katalysatoren, og 30% for kobber-sink-katalysatoren. Disse resultater ble oppnådd under anvendelse av den samme vekt av hver katalysator, selv om kobber-sink-katalysatoren er betraktelig tettere. Aktiviteten av katalysatorene, uttrykt som hastighetskonstanter basert på nedbrytningsgraden for karbonmonoksyd ved 240°C, var 9,6 sek.<->"<*>"for kobber-sink-mangan-katalysatoren og 12,5 sek.<->'<*>' for kobber-sink-katalysatoren. Selv om aktiviteten for kobber-sink -mangan-katalysatoren er mindre enn for kobber-sink-katalysatoren, er dette imidlertid den opprinnelige aktivitet, og efter noen få ukers anvendelse er kobber-sink-mangan-katalysatoren den mest aktive. pressure, ) at a volume rate of 22,500 hour -1, the conversion at 230°C was 32.5% for the copper-zinc-manganese catalyst, and 30% for the copper-zinc catalyst. These results were obtained using the same weight of each catalyst, although the copper-zinc catalyst is considerably denser. The activity of the catalysts, expressed as rate constants based on the degree of decomposition of carbon monoxide at 240°C, was 9.6 sec.<->"<*>"for the copper-zinc-manganese catalyst and 12.5 sec.<->'< *>' for the copper-zinc catalyst. Although the activity of the copper-zinc-manganese catalyst is less than that of the copper-zinc catalyst, this is the original activity, and after a few weeks of use the copper-zinc-manganese catalyst is the most active.
EKSEMPEL 4EXAMPLE 4
Fremgangsmåten ifølge eksempel 1 ble fulgt med den unntagelse at 0,286 kg mangannitrat-heksahydrat ble anvendt istedenfor0,143 kg og 1,323 kg sinknitrat-heksahydrat istedenfor 1,488 kg. Pelletene hadde en middels vertikal knusestyrke på 61 kg, en pellettetthet på 1,68 og en fyllingsvekt på 1,07. The procedure according to Example 1 was followed with the exception that 0.286 kg of manganese nitrate hexahydrate was used instead of 0.143 kg and 1.323 kg of zinc nitrate hexahydrate instead of 1.488 kg. The pellets had an average vertical crushing strength of 61 kg, a pellet density of 1.68 and a fill weight of 1.07.
Den prosentvise sammensetning av disse pellets efter vekt varCuO 28,7,ZnO 47,6,MnO 10,6, tap ved 900°C 12,0. Dette svarer til et atomforhold på 32,8% kobber, 53,5% sink The percentage composition of these pellets by weight was CuO 28.7, ZnO 47.6, MnO 10.6, loss at 900°C 12.0. This corresponds to an atomic ratio of 32.8% copper, 53.5% zinc
og 13,6% mangan.and 13.6% manganese.
Katalysatoren ble undersøkt som beskrevet i eksempelThe catalyst was investigated as described in Example
3 og resultatene er vist i tabell 4.3 and the results are shown in table 4.
Selv om den manganholdige katalysator er noe dårligere med hensyn til opprinnelig aktivitet, er den åpenbart den mest aktive efter langvarig bruk. Although the manganese-containing catalyst is somewhat inferior in terms of initial activity, it is obviously the most active after long-term use.
EKSEMPEL 5EXAMPLE 5
Til en oppløsning av kobbernitrat-trihydrat (1,04 kg), sinknitrat-heksahydrat (2,56 kg) og konsentrert salpetersyre (400 ml) i 3 liter vann ble satt 0,19 kg natriumaluminat i C00 ml vann. Aluminiumoksyd ble utfelt, men ble gjenoppløst ved omrøring. Derefter ble 0,075 kg findelt, fast aluminiumoksyd-trihydrat tilsatt. Den resulterende suspensjon ble blandet ved dets strømningsknutepunkt med en natriumkarbonat-opp.løsning tilstrekkelig til å gi en pH-verdi på 7,0 til 8,0 ved utfellingstemperaturen som var 70°C. Oppslemningen ble fortynnet med 6 liter vann, oppvarmet ved 90°C i 1 time (endelig pH-verdi 8,5), og derefter filtrert. Vaske-, kalsinering- og pelletiseringsprosessen var som beskrevet i eksempel 1. Pelletene (5,4 mm diameter, 3,6 mm lange) hadde en middels vertikal knusestyrke på 85 kg, en pellettetthet To a solution of copper nitrate trihydrate (1.04 kg), zinc nitrate hexahydrate (2.56 kg) and concentrated nitric acid (400 ml) in 3 liters of water was added 0.19 kg of sodium aluminate in 00 ml of water. Alumina was precipitated, but redissolved upon stirring. Then 0.075 kg of finely divided, solid alumina trihydrate was added. The resulting suspension was mixed at its flow junction with a sodium carbonate solution sufficient to give a pH of 7.0 to 8.0 at the precipitation temperature of 70°C. The slurry was diluted with 6 liters of water, heated at 90°C for 1 hour (final pH 8.5), and then filtered. The washing, calcining and pelletizing process was as described in Example 1. The pellets (5.4 mm diameter, 3.6 mm long) had an average vertical crushing strength of 85 kg, a pellet density
på 1,56 og en fyllingsvekt på 0,99. Den prosentvise sammensetning av pelletene var of 1.56 and a filling weight of 0.99. The percentage composition of the pellets was
Dette svarer til et atomforhold på 29% kobber, 60% sink, 11% aluminium. This corresponds to an atomic ratio of 29% copper, 60% zinc, 11% aluminium.
Pelletene ble knust og undersøkt som beskrevet i eksempel 2. Ved 200°C var omdannelsen 32% og ved 250°C 51%. The pellets were crushed and examined as described in example 2. At 200°C the conversion was 32% and at 250°C 51%.
Claims (2)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB428/65A GB1131631A (en) | 1965-01-05 | 1965-01-05 | Catalysts of high activity at low temperature |
GB3647865 | 1965-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO122755B true NO122755B (en) | 1971-08-09 |
Family
ID=26235915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO65160945A NO122755B (en) | 1965-01-05 | 1965-12-16 |
Country Status (9)
Country | Link |
---|---|
AT (1) | AT285524B (en) |
BE (1) | BE674365A (en) |
DE (1) | DE1542222B2 (en) |
ES (1) | ES321501A1 (en) |
FR (1) | FR1462839A (en) |
GB (1) | GB1131631A (en) |
NL (1) | NL153099B (en) |
NO (1) | NO122755B (en) |
SE (1) | SE343042B (en) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4199479A (en) | 1978-02-24 | 1980-04-22 | Chevron Research Company | Hydrogenation catalyst |
NO146046L (en) * | 1980-03-28 | |||
US4565803A (en) * | 1983-12-16 | 1986-01-21 | Shell Oil Company | Methanol synthesis catalyst |
FR2558738B1 (en) * | 1984-01-27 | 1987-11-13 | Inst Francais Du Petrole | PROCESS FOR THE MANUFACTURE OF CATALYSTS CONTAINING COPPER, ZINC AND ALUMINUM FOR USE IN THE PRODUCTION OF METHANOL FROM SYNTHESIS GAS |
FR2560531B1 (en) * | 1984-03-02 | 1988-04-08 | Inst Francais Du Petrole | PROCESS FOR THE MANUFACTURE OF CATALYSTS CONTAINING COPPER, ZINC, ALUMINUM AND AT LEAST ONE GROUP METAL FORMED BY RARE EARTHS AND ZIRCONIUM AND USE OF THE CATALYSTS OBTAINED FOR REACTIONS USING SYNTHESIS GAS |
DE3837308A1 (en) * | 1988-11-03 | 1990-05-10 | Basf Ag | COPPER-CONTAINING CATALYST FOR TEMPERATURE CONVERSION |
DK0721799T3 (en) | 1995-01-11 | 2000-05-01 | United Catalysts Inc | Activated and stabilized copper oxide and zinc oxide catalyst and process for their preparation |
US6693057B1 (en) | 2002-03-22 | 2004-02-17 | Sud-Chemie Inc. | Water gas shift catalyst |
US6903050B2 (en) | 2002-10-28 | 2005-06-07 | Engelhard Corporation | Method of preparation of non-pyrophoric copper-alumina catalysts |
KR100728124B1 (en) * | 2006-02-10 | 2007-06-13 | 삼성에스디아이 주식회사 | Water gas shift oxidation catalyst for reformer of fuel cell system, manufacturing method thereof and fuel cell system comprising same |
US9440218B2 (en) | 2013-06-13 | 2016-09-13 | Clariant Corporation | Methods and active materials for reducing halide concentration in gas streams |
WO2017072481A1 (en) | 2015-10-29 | 2017-05-04 | Johnson Matthey Public Limited Company | Water-gas shift catalyst |
GB201519133D0 (en) | 2015-10-29 | 2015-12-16 | Johnson Matthey Plc | Process |
GB201519139D0 (en) | 2015-10-29 | 2015-12-16 | Johnson Matthey Plc | Process |
US11045793B1 (en) * | 2020-07-24 | 2021-06-29 | Qatar University | Controlled on-pot design of mixed copper/zinc oxides supported aluminum oxide as an efficient catalyst for conversion of syngas to heavy liquid hydrocarbons and alcohols under ambient conditions feasible for the Fischer-Tropsch synthesis |
CN114669191B (en) * | 2022-03-31 | 2023-05-19 | 中国科学院生态环境研究中心 | A kind of manganite material and its application in removing carbon monoxide at room temperature |
-
1965
- 1965-01-05 GB GB428/65A patent/GB1131631A/en not_active Expired
- 1965-12-16 NO NO65160945A patent/NO122755B/no unknown
- 1965-12-17 DE DE1965J0029635 patent/DE1542222B2/en active Granted
- 1965-12-24 NL NL656516883A patent/NL153099B/en not_active IP Right Cessation
- 1965-12-27 BE BE674365A patent/BE674365A/xx unknown
-
1966
- 1966-01-03 SE SE54/66A patent/SE343042B/xx unknown
- 1966-01-05 ES ES0321501A patent/ES321501A1/en not_active Expired
- 1966-01-05 AT AT10966A patent/AT285524B/en not_active IP Right Cessation
- 1966-01-05 FR FR44881A patent/FR1462839A/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
ES321501A1 (en) | 1967-01-01 |
NL6516883A (en) | 1966-07-06 |
NL153099B (en) | 1977-05-16 |
GB1131631A (en) | 1968-10-23 |
AT285524B (en) | 1970-10-27 |
FR1462839A (en) | 1966-12-16 |
SE343042B (en) | 1972-02-28 |
DE1542222B2 (en) | 1976-12-16 |
DE1542222A1 (en) | 1969-12-18 |
BE674365A (en) | 1966-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO160945B (en) | THERMAL P EFFECTED ROCKET ENGINE SAFETY SYSTEM. | |
NO122755B (en) | ||
EP0042471B1 (en) | Catalyst and method for producing the catalyst | |
JP4062647B2 (en) | Catalyst for steam reforming of methanol | |
CA1228345A (en) | Modified copper- and zinc-containing catalyst and process for producing methanol using said catalyst | |
NO126254B (en) | ||
US4191664A (en) | Thermally stable nickel-alumina catalysts useful for methanation and other reactions | |
US3961037A (en) | Process for forming hydrogen and carbon dioxide using a catalyst consisting essentially of oxides of copper, zinc and aluminum or magnesium | |
CN102083745B (en) | Process for operating HTS reactor | |
US3303001A (en) | Low temperature shift reaction involving a zinc oxide-copper catalyst | |
US3546140A (en) | Low temperature shift reactions | |
US4064152A (en) | Thermally stable nickel-alumina catalysts useful for methanation | |
US3899577A (en) | Carbon monoxide conversion catalysts | |
CN107262142A (en) | The catalyst and its application process and preparation method of a kind of one-step synthesis aromatic hydrocarbons | |
JPH08229399A (en) | Stabilized copper oxide-zinc oxide catalyst containing co-catalyst and its preparation | |
JP2005537119A (en) | Cu / Zn / Al catalyst for methanol synthesis | |
US4865827A (en) | Process for removing nitrogen oxides | |
JPH05245376A (en) | Copper oxide-aluminum oxide-magnesium oxide catalyst for conversion of carbon monoxide | |
US2274639A (en) | Process for the production of hydrocarbons | |
US1746781A (en) | Catalyst and catalytic process | |
JPH06122501A (en) | Method for producing hydrogen and catalyst used therefor | |
GB2025252A (en) | Preparation of Methanol Synthesis Catalyst | |
CN114984998A (en) | Catalyst with KIT-6 as carrier and preparation method and application thereof | |
USH1311H (en) | Methanol synthesis process | |
JPH0515501B2 (en) |