NO119191B - - Google Patents
Download PDFInfo
- Publication number
- NO119191B NO119191B NO162896A NO16289666A NO119191B NO 119191 B NO119191 B NO 119191B NO 162896 A NO162896 A NO 162896A NO 16289666 A NO16289666 A NO 16289666A NO 119191 B NO119191 B NO 119191B
- Authority
- NO
- Norway
- Prior art keywords
- fuel
- filter
- tank
- temperature
- liters
- Prior art date
Links
- 239000000446 fuel Substances 0.000 claims description 48
- SVTBMSDMJJWYQN-UHFFFAOYSA-N 2-methylpentane-2,4-diol Chemical compound CC(O)CC(C)(C)O SVTBMSDMJJWYQN-UHFFFAOYSA-N 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 15
- 229940051250 hexylene glycol Drugs 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 125000004432 carbon atom Chemical group C* 0.000 claims description 2
- 239000013078 crystal Substances 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000003208 petroleum Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 5
- 238000007789 sealing Methods 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47B—TABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
- A47B88/00—Drawers for tables, cabinets or like furniture; Guides for drawers
- A47B88/40—Sliding drawers; Slides or guides therefor
- A47B88/483—Sliding drawers; Slides or guides therefor with single extensible guides or parts
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47B—TABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
- A47B96/00—Details of cabinets, racks or shelf units not covered by a single one of groups A47B43/00 - A47B95/00; General details of furniture
- A47B96/06—Brackets or similar supporting means for cabinets, racks or shelves
- A47B96/063—C-shaped brackets for gripping the shelf edge
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47B—TABLES; DESKS; OFFICE FURNITURE; CABINETS; DRAWERS; GENERAL DETAILS OF FURNITURE
- A47B97/00—Furniture or accessories for furniture, not provided for in other groups of this subclass
Landscapes
- Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
- Assembled Shelves (AREA)
- Warehouses Or Storage Devices (AREA)
Description
Brennstoffblandinger for jetmotorer. Fuel mixtures for jet engines.
Foreliggende oppfinnelse angår brennstoffblandinger for drift av flyturbinmotorer. The present invention relates to fuel mixtures for the operation of aircraft turbine engines.
Brennstoffblandinger som egner seg for drift av flyturbinmotorer, slik som petroleum, kan inneholde så meget som 0,01 vektsprosent vann ved vanlige omgivende temperaturer og ved forholdsvis lave temperaturer, har isen som dannes ved frysingen av dette vann, en tilbøye-lighet til å tette det filter som slike motorer normalt er utstyrt med. Hovedformålet med foreliggende oppfinnelser er å skaffe en blanding for flyturbinmotorer som ikke har denne ulempe. Fuel mixtures suitable for the operation of aircraft turbine engines, such as petroleum, may contain as much as 0.01% by weight of water at normal ambient temperatures and at relatively low temperatures, the ice formed by the freezing of this water has a tendency to clog the filter that such engines are normally equipped with. The main purpose of the present invention is to provide a mixture for aircraft turbine engines which does not have this disadvantage.
Ifølge foreliggende oppfinnelse er det i en brennstoffblanding, som egner seg for drift av flyturbinmotorer, iblandet 0,1 til 1 volumprosent av en alifatisk toverdig alkohol, som inneholder fra 5 til 8 kullstoffatomer pr. molekyl. According to the present invention, in a fuel mixture, which is suitable for the operation of aircraft turbine engines, 0.1 to 1 percent by volume of an aliphatic dihydric alcohol containing from 5 to 8 carbon atoms per molecule.
Den foretrukne toverdige alkohol er en heksylenglykol, og særlig heksylen-glykol med konstitusjonsformelen The preferred dihydric alcohol is a hexylene glycol, and in particular hexylene glycol of the constitutional formula
Foreliggende oppfinnelse er anvendelig for alle flyturbinbrennstoffer, som for øyeblikket er i bruk. Egenskapene for spesielle av disse brenn-stoffer er satt opp i tabell 1. The present invention is applicable to all aircraft turbine fuels currently in use. The properties for particular of these fuels are set out in table 1.
De følgende eksempler vil vise effektiviteten av alifatiske toverdige alkoholer for for-målet ifølge oppfinnelsen. The following examples will show the effectiveness of aliphatic dihydric alcohols for the purpose of the invention.
Eksempel 1 ble utført i et laboratorieprøve-utstyr, hvor en porsjon brennstoff bringes til å sirkulere gjennom et areal av et brennstoffilter med sirkulasjonshastigheten. Effektiviteten for et spesielt tilsetningsmiddel kan bedømmes på en av to måter. Example 1 was carried out in a laboratory test equipment, where a portion of fuel is made to circulate through an area of a fuel filter at the rate of circulation. The effectiveness of a particular additive can be judged in one of two ways.
Fremgangsmåte 1, Method 1,
Brennstoffet avkjøles med en bestemt hastighet inntil det er nådd en temperatur, ved hvilken det oppstår fullstendig filtertetning. Jo mer effektivt tilsetningmidlet er jo lavere er den temperatur, ved hvilken det oppstår fullstendig tetning. De data som ble oppnådd ved anvend-else av denne fremgangsmåte, og idet det ble anvendt forskjellige mengder heksylen-glykol i en fiyturbinpetroleum (F.T.P.), er satt opp i tabell 2. The fuel is cooled at a certain rate until it reaches a temperature at which complete filter sealing occurs. The more effective the additive, the lower the temperature at which complete sealing occurs. The data obtained using this method, and when different amounts of hexylene glycol were used in a fuel turbine petroleum (F.T.P.), are set out in table 2.
Bemerkning: Brennstoffet i disse forsøk inneholdt 0,003 volumprosent oppløst vann. Note: The fuel in these tests contained 0.003 volume percent dissolved water.
Fremgangsmåte 2. Procedure 2.
Brennstoffet holdes ved en bestemt temperatur (selvfølgelig høyere enn temperaturen for fullstendig filtertetning) og sirkuleringen fortsatte ved denne temperatur inntij det oppnås spesielle tap i sirkulasjonshastighet. Dataene som er ført opp i tabell 3 viser effektiviteten av heksylen-glykol på sirkulasjonstiden, oppnådd før et tap på 20% og 50% i brennstoffsirkula-sjonshastighet. The fuel is kept at a certain temperature (of course higher than the temperature for complete filter sealing) and circulation continued at this temperature until special losses in circulation speed are reached. The data listed in Table 3 show the effectiveness of hexylene glycol on circulation time, obtained before a 20% and 50% loss in fuel circulation rate.
Bemerkning: Brennstoffet innehold igjen 0,003 volumprosent oppløst vann. Note: The fuel still contained 0.003 volume percent dissolved water.
De beskrevne forsøk i de følgende eksempler ble utført i et prøveutstyr, som er vist skjema-tisk på tegningen. The experiments described in the following examples were carried out in a test equipment, which is shown schematically in the drawing.
Prøvebrennstoffet inneholdes i en lagrings-tank A, vanligvis lukket ved hjelp av et passende lokk og omgitt av flybensin, som inneholdes i en større tank C. Prøvebrennstoffet avkjøles ved tilsetning av «Drikold» (kullsyreis) til flybensinen i tank C. Det avkjølte brennstoff overføres ved hjelp av en fly-hjelpepumpe B og ventil Vx til apparaturen, som i serie omfatter strømningsmåler D, slik som anvendes i brenn-stoffsystemet i fly, en brennstoffoppvarmer E, som utgjorde en del av motorbrennstoffsystemet, men soiri ikke var i bruk, et filter F, som hadde et effektivt filtreringsareal på 3 dm<2>, en pumpe P, en ventil V2, som kontrollerer brennstoff-strømningshastigheten gjennom apparaturen; et rotameter R og en tank T for oppsamling av brennstoffet. The test fuel is contained in a storage tank A, usually closed with a suitable lid and surrounded by jet fuel, which is contained in a larger tank C. The test fuel is cooled by adding "Drikold" (carbonated ice) to the jet fuel in tank C. The cooled fuel is transmitted by means of an aircraft auxiliary pump B and valve Vx to the apparatus, which in series includes flow meter D, such as is used in the fuel system in aircraft, a fuel heater E, which formed part of the engine fuel system, but soiri was not in use, a filter F, which had an effective filtering area of 3 dm<2>, a pump P, a valve V2, which controls the fuel flow rate through the apparatus; a rotameter R and a tank T for collecting the fuel.
Tre trykkmålere Gx, G2 og G3 måler trykket i røret som normalt er 0,7 kg/cm<2> ved filteret. Forbindelser fra brennstoffrøret i oppovergående og nedovergående strøm til og fra filteret tas til kvikksølvmanometeret M, og under prøven tas det avlesninger av kvikksølvnivåene i dette manometer med to minutters mellomrom, således at tiden fra starten til isingen begynner kan bestemmes. Når brennstoffet passerer fritt gjennom filteret er trykkfallet på ca. 50 mm kvikksølv. Three pressure gauges Gx, G2 and G3 measure the pressure in the pipe, which is normally 0.7 kg/cm<2> at the filter. Connections from the fuel pipe in the upward and downward flow to and from the filter are taken to the mercury manometer M, and during the test, readings are taken of the mercury levels in this manometer at two-minute intervals, so that the time from the start to the onset of icing can be determined. When the fuel passes freely through the filter, the pressure drop is approx. 50 mm mercury.
Det anvendes passende termoelementer og et pyrometer for måling av temperaturen i brennstoffet i tanken, og på forskjellige punkter i apparaturen, men temperaturen i brennstoffet på selve filteret måles ved hjelp av et lite pyrometer av flytypen. Appropriate thermocouples and a pyrometer are used to measure the temperature of the fuel in the tank, and at various points in the apparatus, but the temperature of the fuel on the filter itself is measured using a small aircraft-type pyrometer.
Eksempel 2. Example 2.
2270 liter flypetroleum ble pumpet inn i en liten beholder og 454 ml vann (tilsvarende 0,02 volumprosent) ble sprøytet over overflaten på brennstoffet, idet det ble anvendt en atomisør som ble drevet med komprimert luft. Det ble helt 11,4 liter heksylen-glykol (tisvarende 0,5 volumprosent) i beholderen, og blandingen ble fremkalt ved å sirkulere petroleumen gjennom en pumpe fra bunnen til toppen av beholderen med en hastighet på omtrent 13,5 liter pr. sekund i et tidsrom på omtrent en time. 680 liter av blandingen ble deretter overført til lagringstanken A. 2270 liters of jet fuel was pumped into a small container and 454 ml of water (equivalent to 0.02% by volume) was sprayed over the surface of the fuel, using an atomizer powered by compressed air. There were 11.4 liters of hexylene glycol (equivalent to 0.5% by volume) in the container, and the mixture was developed by circulating the petroleum through a pump from the bottom to the top of the container at a rate of approximately 13.5 liters per minute. second in a period of approximately one hour. 680 liters of the mixture was then transferred to storage tank A.
Blandingen i tanken A ble avkjølt i omtrent 45 minutter til -10° C og ble deretter sendt gjennom apparaturen og filteret i 10 minutter med en hastighet på 680 liter pr. time (hvilket svarer til de verst mulige betingelser under virkelige forhold, dvs. brennstofforbruk ved start av et fly). Ved slutten av denne periode ble brennstoffstrømmen stoppet. Petroleumen ble avkjølt til 5° C og videre ble det utført en 10-minutters drift. Denne fremgangsmåte ble fortsatt for filtertemperaturer på 0 til -5° C, The mixture in tank A was cooled for about 45 minutes to -10°C and then passed through the apparatus and filter for 10 minutes at a rate of 680 liters per minute. hour (which corresponds to the worst possible conditions under real conditions, i.e. fuel consumption at the start of an aircraft). At the end of this period, the fuel flow was stopped. The petroleum was cooled to 5° C and further a 10-minute operation was carried out. This procedure was continued for filter temperatures of 0 to -5° C,
-10° C, -15° C og -25° C. Den siste del av driften ble fortsatt i 15 minutter inntil brensel-lagringstanken var nesten tom, og under denne periode avtok brennstofftemperaturen på filteret langsomt til -30° C, mens sluttemperaturen i blandingen i tank A nådde -37° C. Det oppsto ingen filtertetning. Dataene er oppstilt i tabell 4. -10° C, -15° C and -25° C. The last part of the operation continued for 15 minutes until the fuel storage tank was almost empty, during which time the fuel temperature on the filter decreased slowly to -30° C, while the final temperature in the mixture in tank A reached -37° C. No filter clogging occurred. The data are listed in table 4.
Eksempel 3. Example 3.
454 liter av den brennstoffblanding, som er fremstilt ved eksempel 2, ble overført til tanken A, avkjølt til en temperatur på omtrent -20° C og deretter sendt gjennom filteret med 680 liter pr. time. Ettersom gjennomløpet fortsatte avtok brennstofftemperaturen på grunn av avkjølings-effekten i flypetroleumen til -80 ° C i den ytre tank C, og etter 34 min. nådde brennstofftemperaturen på filteret -30,5° C. Det oppsto ingen tetning i dette forsøk, hvilket ble fortsatt innen 25 min. etter avbrudd av forløpet som beskre-vet i eksempel 1, og uten noen begynnende fjernelse av is, som måtte ha avsatt seg på filteret under det første gjennomløp. De opp-nådde data for gjennomløp 2 er oppstilt i tabell 5. 454 liters of the fuel mixture, which is prepared in example 2, was transferred to tank A, cooled to a temperature of approximately -20° C and then sent through the filter at 680 liters per hour. As the run continued, the fuel temperature decreased due to the cooling effect in the jet fuel to -80 °C in the outer tank C, and after 34 min. reached the fuel temperature on the filter -30.5° C. No clogging occurred in this test, which continued within 25 min. after interruption of the course as described in example 1, and without any initial removal of ice, which must have settled on the filter during the first pass. The data obtained for run 2 are listed in table 5.
Resultatene fra disse to eksempler viser The results from these two examples show
overbevisende at heksylen-glykol er effektivt ved hindring av fllternedising. Under lignende prøvebetingelser ville petroleum uten tilset-ningen gi isvanskeligheter ved omtrent -2° C eller alternativt, hvis avkjølt til -10° C, ville gi en «isningstid» på apparaturen på omtrent 2 minutter. convincingly that hexylene glycol is effective in preventing fllterneding. Under similar test conditions, petroleum without the addition would cause icing difficulties at approximately -2° C or alternatively, if cooled to -10° C, would give an "icing time" on the apparatus of approximately 2 minutes.
Eksempel k. Example k.
2270 liter flypetroleum ble overført til en 2,270 liters of jet fuel were transferred to a
lagringsbeholder og det ble tilsatt 1],35 liter heksylen-glykol ved at dette ble helt inn gjennom en åpning i toppen av beholderen. For å lette blandingen ble heksylen-glykolet tilsatt mens petroleumen ble pumpet inn, men etter at den tilmålte mengde petroleum var blitt overført til beholderen ble videre blanding ut-ført ved å sirkulere blandingen fra bunn til topp gjennom en ytre pumpe. Denne sirkula-sjon ble fortsatt minst i en time. Til slutt ble 4,5 liter vann helt inn i beholderen. Brennstoff-mengden som ble brukt ble målt til beholderen og avlesningene ble kontrollert med en måle-pinne. Det var derfor mulig å måle nøyaktig 2270 liter ( + 2,3 liter) inn i en beholder, og den tilsatte mengde heksylen-glykol ga således en tilsetningskonsentrasjon på 0,5 volumprosent. storage container and 1].35 liters of hexylene glycol were added by pouring this in through an opening in the top of the container. To facilitate the mixing, the hexylene glycol was added while the petroleum was pumped in, but after the measured amount of petroleum had been transferred to the container, further mixing was carried out by circulating the mixture from bottom to top through an external pump. This circulation continued for at least an hour. Finally, 4.5 liters of water were poured into the container. The amount of fuel used was measured into the container and the readings were checked with a dipstick. It was therefore possible to measure exactly 2270 liters (+ 2.3 litres) into a container, and the added amount of hexylene glycol thus gave an added concentration of 0.5% by volume.
Etter å ha stått over fritt vann i en uke After standing over free water for a week
ble følgende prøve utført: the following test was carried out:
680 liter av blandingen ble innført i lagringstanken A og samtidig ble en avmålt mengde vann, som tilsvarte 0,01 volumprosent av det totale innhold i tanken sprøytet inn i den-inn-kommende strøm petroleum. Vannet ble dis-pergert til en meget fin stråle ved hjelp av en atomisør, som ble drevet med komprimert luft. Brennstoffet ble deretter avkjølt og når temperaturen i petroleumen i tanken hadde nådd -20° C ble passering av brennstoffet gjennom filteret påbegynt. Gjennomløpet ble fortsatt i 54 minutter inntil tanken i det vesentlige var tom, og under denne periode ble det ikke iakt-tatt noen indikering på filtertilstopping. Ved avslutningen av gjennomløpet var brennstofftemperaturen på filteret -36° C. Forsøksdata-ene som ble notert under gjennomløpet er opp-ført i tabell 6. 680 liters of the mixture was introduced into the storage tank A and at the same time a measured quantity of water, which corresponded to 0.01 volume percent of the total contents in the tank, was injected into the incoming stream of petroleum. The water was dispersed into a very fine jet by means of an atomizer, which was powered by compressed air. The fuel was then cooled and when the temperature of the petroleum in the tank had reached -20° C, passage of the fuel through the filter began. The run-through was continued for 54 minutes until the tank was essentially empty, during which time no indication of filter clogging was observed. At the end of the run-through, the fuel temperature on the filter was -36° C. The experimental data recorded during the run-through are listed in table 6.
Eksempel 5. Example 5.
Tanken A ble fylt påny med 680 liter av brennstoffblandingen, og idet det ble anvendt samme teknikk som i eksempel 4 ble en bestemt mengde vann (tilsvarende 0,02 volumprosent på 680 liter) sprøytet på den inngående strøm av petroleum. Tank A was refilled with 680 liters of the fuel mixture, and using the same technique as in example 4, a certain amount of water (corresponding to 0.02 volume percent of 680 liters) was sprayed onto the incoming stream of petroleum.
Gjennomløpet ble påbegynt mens tankinn- The run was started while the tank in-
holdet hadde en temperatur på -18,5° C og ble fortsatt inntil nivået var falt så lavt at det oppsto tomrom i pumpen. Varigheten av gjen-nomløpet var 42 minutter, i denne tid nådde brennstofftemperaturen på filteret -29° C, men det oppsto ikke noe filtertetning og trykkfor-skjellen mellom hver side av filteret ga ingen indikasjon på isdannelse. Dataene for forsøkene under gjennomløpet er oppstilt i tabell 7. the hold had a temperature of -18.5° C and was continued until the level had fallen so low that a vacuum appeared in the pump. The duration of the run-through was 42 minutes, during which time the fuel temperature on the filter reached -29° C, but no filter sealing occurred and the pressure difference between each side of the filter gave no indication of ice formation. The data for the trials during the run are listed in table 7.
Resultatene fra eksemplene 4 og 5 viser The results from examples 4 and 5 show
at petroleum som inneholder 0,5 volumprosent that petroleum containing 0.5 volume percent
heksylen-glykol, hvis det lagres over fritt vann hexylene glycol, if stored over free water
i en uke, vil gi beskyttelse mot isdannelse ved for a week, will provide protection against ice formation
temperaturer ned til -35° C i nærvær av 0,01% temperatures down to -35° C in the presence of 0.01%
tilsatt, vann, og ved temp< raturer på minst ned added, water, and at temperatures of at least down
til -25° C i nærvær av 0,02% tilsatt vann. to -25° C in the presence of 0.02% added water.
Claims (2)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO162896A NO119191B (en) | 1966-05-05 | 1966-05-05 | |
SE6105/67*A SE305933B (en) | 1966-05-05 | 1967-04-28 | |
DE1967T0033788 DE1654751B1 (en) | 1966-05-05 | 1967-05-03 | Carrying device for a shelf and for furniture parts that can be attached to its underside |
GB20650/67A GB1136997A (en) | 1966-05-05 | 1967-05-03 | Improvements in or relating to support arrangements for shelving and the like |
FR105345A FR1521965A (en) | 1966-05-05 | 1967-05-05 | shelves supported by a frame suspended on vertical supports |
DK236967AA DK118038B (en) | 1966-05-05 | 1967-05-05 | Device by a frame for supporting enclosing a shelf plate. |
AT420567A AT267115B (en) | 1966-05-05 | 1967-05-05 | Device on a rigid frame supporting the edges of a shelf |
NL6706302A NL6706302A (en) | 1966-05-05 | 1967-05-05 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO162896A NO119191B (en) | 1966-05-05 | 1966-05-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
NO119191B true NO119191B (en) | 1970-04-06 |
Family
ID=19909545
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO162896A NO119191B (en) | 1966-05-05 | 1966-05-05 |
Country Status (7)
Country | Link |
---|---|
AT (1) | AT267115B (en) |
DE (1) | DE1654751B1 (en) |
DK (1) | DK118038B (en) |
GB (1) | GB1136997A (en) |
NL (1) | NL6706302A (en) |
NO (1) | NO119191B (en) |
SE (1) | SE305933B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060175273A1 (en) * | 2005-02-07 | 2006-08-10 | Toomey-Rossow Eve M | Take-out tray |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL113231C (en) * | 1961-02-24 |
-
1966
- 1966-05-05 NO NO162896A patent/NO119191B/no unknown
-
1967
- 1967-04-28 SE SE6105/67*A patent/SE305933B/xx unknown
- 1967-05-03 GB GB20650/67A patent/GB1136997A/en not_active Expired
- 1967-05-03 DE DE1967T0033788 patent/DE1654751B1/en active Pending
- 1967-05-05 AT AT420567A patent/AT267115B/en active
- 1967-05-05 DK DK236967AA patent/DK118038B/en unknown
- 1967-05-05 NL NL6706302A patent/NL6706302A/xx unknown
Also Published As
Publication number | Publication date |
---|---|
SE305933B (en) | 1968-11-11 |
AT267115B (en) | 1968-12-10 |
NL6706302A (en) | 1967-11-06 |
GB1136997A (en) | 1968-12-18 |
DE1654751B1 (en) | 1971-11-11 |
DK118038B (en) | 1970-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hammerschmidt | Formation of gas hydrates in natural gas transmission lines | |
Deaton et al. | Gas hydrates and their relation to the operation of natural-gas pipe lines | |
EP0736130B1 (en) | A method for inhibiting the plugging of conduits by gas hydrates | |
US4022119A (en) | Liquid carbon dioxide carbonation apparatus | |
Raymond et al. | Grain coarsening of water-saturated snow | |
US2650478A (en) | Method and apparatus for shipping and storing combustible gases | |
US4880040A (en) | Liquid petroleum confinement system | |
NO142147B (en) | RAW OIL COMBUSTION APPLIANCE. | |
US3210953A (en) | Volatile liquid or liquefied gas storage, refrigeration, and unloading process and system | |
Roedder et al. | Application of studies of fluid inclusions in Permian Salado salt, New Mexico, to problems of siting the Waste Isolation Pilot Plant | |
NO119191B (en) | ||
US2091042A (en) | Effervescent liquid dispensing device | |
US2117819A (en) | Apparatus for filling high pressure gas containers | |
US1912044A (en) | Method of and apparatus for making combustible gas | |
Stoporev et al. | Time-dependent nucleation of methane hydrate in a water-in-oil emulsion: effect of water redistribution | |
Dwyer et al. | Laboratory production of fluid hydrogen slush | |
RU2097280C1 (en) | Method of filling tank with cryogenic fluid | |
US3416902A (en) | Fuel icing prevention | |
CA1263256A (en) | Method of determining the minimum level of enrichment for a miscible gas flood | |
CN208222067U (en) | A kind of LNG storage tank peculiar to vessel overcharges early warning system | |
US2560368A (en) | Inhibition of ice formation in fuels | |
US2477566A (en) | Liquefied gas dispensing system | |
US2142212A (en) | Method of preventing freeze-ups in gas transmission lines | |
US1878174A (en) | Process and apparatus for storing and utilizing highly volatile liquids | |
Friedman et al. | Temperature and flow measurements on near-freezing aviation fuels in a wing-tank model |