NO115954B - - Google Patents
Info
- Publication number
- NO115954B NO115954B NO15957865A NO15957865A NO115954B NO 115954 B NO115954 B NO 115954B NO 15957865 A NO15957865 A NO 15957865A NO 15957865 A NO15957865 A NO 15957865A NO 115954 B NO115954 B NO 115954B
- Authority
- NO
- Norway
- Prior art keywords
- gas
- catalyst
- reactor
- wall
- catalyst bed
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 claims description 87
- 239000007789 gas Substances 0.000 claims description 47
- 239000012495 reaction gas Substances 0.000 claims description 21
- 238000010574 gas phase reaction Methods 0.000 claims description 5
- 239000011148 porous material Substances 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000005192 partition Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 4
- 238000007210 heterogeneous catalysis Methods 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011949 solid catalyst Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0207—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly horizontal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00884—Means for supporting the bed of particles, e.g. grids, bars, perforated plates
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
Reaktor for utførelse av gassfasereaksjoner ved heterogen katalyse. Reactor for carrying out gas-phase reactions by heterogeneous catalysis.
Oppfinnelsen angår en reaktor for utforelse av gassfasereaksjoner ved heterogen katalyse. Reaktoren ifolge oppfinnelsen kan være utformet på konvensjonell måte med katalysator anbragt i et sylindrisk katalysatorleie, som gjennomstrommes av reaksjonsgassen i aksial oppad- eller nedadgående retning. I en særlig foretrukken utforelsesform er reaktoren ifolge oppfinnelsen utformet som et sylindrisk trykkskall, som inneholder katalysator i et sylindrisk katalysatorleie med radial gjen-nomstromningsretning for reaksjonsgassen, i hvilket trykkskall katalysatorleiet begrenses av sylindriske vegger som tillater passasje av reaksjonsgassen. Reaktorens innhold av katalysator kan. eventuelt være for-delt i to eller flere katalysatorleier. The invention relates to a reactor for carrying out gas phase reactions by heterogeneous catalysis. The reactor according to the invention can be designed in a conventional manner with a catalyst placed in a cylindrical catalyst bed, through which the reaction gas flows in an axial upward or downward direction. In a particularly preferred embodiment, the reactor according to the invention is designed as a cylindrical pressure shell, which contains catalyst in a cylindrical catalyst bed with a radial flow direction for the reaction gas, in which pressure shell the catalyst bed is limited by cylindrical walls that allow passage of the reaction gas. The reactor's content of catalyst can. possibly be divided into two or more catalyst beds.
En velkjent type av reaktorer for utforelse av gassfasereaksjoner ved heterogen katalyse omfatter katalysator anbragt i ét sylindrisk katalysatorleie med et forhold hoyde:diameter mellom ca'. 0.5 og ca. 100. Slike reaktorer anvendes i industriell målestokk ved så å si alle prosesser hvor det anvendes faststoff-katalysator. Herunder kan eksem-pelvis nevnes CO-konvertering, katalytisk spaltning av naturgass eller nafta med vann, reformering av bensin, ammoniakksyntese og katalytisk avsvovling av bensin eller naturgass, metanolsyntese, formaldehydsyntese og fremstilling av svovelsyre ved kontaktmetoden., A well-known type of reactor for carrying out gas-phase reactions by heterogeneous catalysis comprises a catalyst arranged in a cylindrical catalyst bed with a height:diameter ratio between approx. 0.5 and approx. 100. Such reactors are used on an industrial scale in virtually all processes where a solid catalyst is used. These include, for example, CO conversion, catalytic splitting of natural gas or naphtha with water, reforming of petrol, ammonia synthesis and catalytic desulphurisation of petrol or natural gas, methanol synthesis, formaldehyde synthesis and production of sulfuric acid by the contact method.,
Ved disse prosesser onsker man at gassens sammensetning skal endres i retning av termodynamisk likevekt ved gassens passasje gjennom katalysatorleiet. Dog er det sjelden hensiktsmessig å lede prosessen på en slik måte at den termodynamiske likevekt nås, idet dette ville kreve meget lave volumhastigheter. Volumhastighet er et mål for gasshastigheten gjennom katalysatorleiet, f.eks. uttrykt som Nm<J>gass per , nr katalysator per time. Forholdet er normalt det at en okt gassgjennom-str5mning forer til en mindre konversjon, men allikevel til en storre totalomsetning per tidsenhet og per mengdeenhet katalysator. Dette forhold gjSr det okonomisk gunstig å arbeide med så hoye volumhastigheter som praktisk mulig.. In these processes, it is desired that the composition of the gas should change in the direction of thermodynamic equilibrium when the gas passes through the catalyst bed. However, it is rarely appropriate to direct the process in such a way that the thermodynamic equilibrium is reached, as this would require very low volume velocities. Volumetric velocity is a measure of the gas velocity through the catalyst bed, e.g. expressed as Nm<J>gas per , nr catalyst per hour. The ratio is normally that an increased gas flow leads to a lower conversion, but still to a greater total turnover per unit time and per unit amount of catalyst. This ratio makes it economically advantageous to work with as high a volume rate as is practically possible.
Ved en del prosesser opptrer det dessuten uønskede sidereaksjoner som kan gjore det direkte uhensiktsmessig å fore omsetningen for langt hen imot termodynamisk likevekt. Dette gjelder f.eks. den tekniske metanolsyntese. For slike prosessers vedkommende er det nodvehdig å arbeide med relativt hoye, i visse tilfeller endog meget hoye volumhastigheter. In some processes, unwanted side reactions also occur which can make it directly inappropriate to advance the turnover too far towards thermodynamic equilibrium. This applies, for example, to the technical methanol synthesis. For such processes, it is necessary to work with relatively high, in certain cases even very high volume rates.
Det er imidlertid begrenset hvor hoye volumhastigheter som kan anvendes i de kjente reaktorer. However, it is limited how high volume velocities can be used in the known reactors.
Hvis man f.eks. betrakter en reaktor med et sylindrisk katalysatoi leie med et forhold mellom hoyde og diameter lik 1 og onsker å frem-stille en tilsvarende reaktor med hoyere volumhastighet, så kan dette gjores på to måter; Man kan bibeholde det opprinnelige hoyde:diameter-forhold uendret og oke den lineære gasshastighet gjennom apparatet. Herved vil trykkfallet over katalysatorleiet imidlertid stige sterkt, hvorved driftsSkonomien vil bli påvirket i ugunstig retning. Eller man kan holde trykkfallet gjennom katalysatorleiet konstant, idet forholdene hoyderdiameter minskes samtidig med at- den lineære gasshastighet gjennom katalysatorleiet okes tilsvarende passende. Imidlertid moter man her dei vanskelighet at jo mindre forholdet hoyde .-diameter for katalysatorleiet If you e.g. if you consider a reactor with a cylindrical catalyst bed with a ratio between height and diameter equal to 1 and wish to produce a corresponding reactor with a higher volume velocity, this can be done in two ways; One can maintain the original height:diameter ratio unchanged and increase the linear gas velocity through the apparatus. In this way, however, the pressure drop across the catalyst bed will rise sharply, whereby the operating economy will be adversely affected. Or you can keep the pressure drop through the catalyst bed constant, as the height-diameter ratio is reduced at the same time as the linear gas velocity through the catalyst bed is increased accordingly. However, one encounters the difficulty here that the smaller the height-diameter ratio for the catalyst bed
blir, desto storre betydning får de små forskjeller med hensyn til kata- becomes, the greater the importance given to the small differences with regard to cata-
lysatorens pakningstetthet på forskjellige steder i katalysatorleiet som det i praksis er umulig å unngå. Slike forskjeller vil bevirke at reaksjonsgassen fordeles ulikt over katalysatorleiet, således at største-delen av reaksjonsgassen i de verste tilfeller passerer gjennom en liten del av katalysatorleiet mens resten av katalysatorleiet ikke utnyttes. Dette problem er velkjent fra industrielle reaktorer, hvor fenomenet er kjent som kanaldannelse. Det forekommer især i reaktorer med et hoyde: diameter-forhold på opptil ca. 100. the packing density of the lysator at different places in the catalyst bed which is practically impossible to avoid. Such differences will cause the reaction gas to be distributed unequally over the catalyst bed, so that the majority of the reaction gas in the worst cases passes through a small part of the catalyst bed while the rest of the catalyst bed is not utilized. This problem is well known from industrial reactors, where the phenomenon is known as channel formation. It occurs especially in reactors with a height:diameter ratio of up to approx. 100.
Foreliggende oppfinnelse har til formål å skaffe en reaktor i hvilken de ovennevnte ulemper unngås. The purpose of the present invention is to provide a reactor in which the above-mentioned disadvantages are avoided.
Ifolge foreliggende oppfinnelse er det således tilveiebragt en reaktor for utforelse av gassfasereaksjoner ved heterogen katalyse, kjennetegnet ved at minst en av de veggflater, herunder bunnflate og takflate, som begrenser katalysatorleiet og hvorigjennom gassen strommer, består av to flater som er adskilt ved et gassmellomrom, og som begge er forsynt med åpninger eller porer, som tillater gjennomgang av reaksjonsgassen, og at nevnte åpninger i den ene av disse veggflater velges således at det over denne veggflate ved reaksjonsgassens passasje gjennom reaktoren oppnåes et trykkfall som under normal drift av reaktoren utgjor minst 0.1 ganger trykkfallet over katalysatorleiet, fortrinnsvis omkring 1.0 ganger trykkfallet over katalysatorleiet eller mer. According to the present invention, a reactor has thus been provided for carrying out gas-phase reactions by heterogeneous catalysis, characterized by the fact that at least one of the wall surfaces, including the bottom surface and roof surface, which limits the catalyst bed and through which the gas flows, consists of two surfaces which are separated by a gas gap, and both of which are provided with openings or pores, which allow passage of the reaction gas, and that said openings in one of these wall surfaces are chosen so that over this wall surface, when the reaction gas passes through the reactor, a pressure drop is achieved which, during normal operation of the reactor, amounts to at least 0.1 times the pressure drop across the catalyst bed, preferably around 1.0 times the pressure drop across the catalyst bed or more.
Derved motvirkes tendensen til skjev gassfordeling i katalysatorleiet, idet en skjev gassfordeling ville medfOre at trykkfallet over den omhandlede veggflate, som vokser tilnærmelsesvis proporsjonalt med has-tighetens kvadrat, blir storst på det sted hvor gasshastigheten er storst, dvs. ved det sted i katalysatorleiet hvor katalysatortrykkfallet er minst. Dette har naturligvis stSrst interesse ved reaktorer hvor katalysatorleiets hoyde:diameter-forhold er lite og hvor tendensen til skjev gassfordeling er storst. Thereby, the tendency to skewed gas distribution in the catalyst bed is counteracted, since a skewed gas distribution would mean that the pressure drop across the wall surface in question, which grows approximately proportionally to the square of the velocity, becomes greatest at the place where the gas velocity is greatest, i.e. at the place in the catalyst bed where the catalyst pressure drop is the least. This is of course of greatest interest in reactors where the height:diameter ratio of the catalyst bed is small and where the tendency for skewed gas distribution is greatest.
Ved en særlig hensiktsmessig utforelsesform omfatter reaktoren et sylindrisk trykkskall, som inneholder katalysator i et sylindrisk katalysatorleie med radial stromningsretning for reaksjonsgassen, idet katalysatorleiet begrenses av sylindriske vegger som tillater passasje av reaksjonsgassen. In a particularly suitable embodiment, the reactor comprises a cylindrical pressure shell, which contains catalyst in a cylindrical catalyst bed with a radial flow direction for the reaction gas, the catalyst bed being limited by cylindrical walls that allow passage of the reaction gas.
Ved denne utformning av reaktoren oppnåes alle de fordeler som er forbundet med å la gassen strSmme radialt gjennom katalysatorleiet, samtidig med at risikoen for ulik gassfordeling i katalysatorleiet er min-sket vesentlig i forhold til de hittil kjente reaktorer med radial gass-giJénnomstromningsretning. Ved- utformningen av reaktoren ifolge oppfinnelsen hvor det trykk fall som oppnåes over de av katalysatorleiets vegger som gjennomstrømmes av reaksjonsgassen, under normal drift av reaktoren utgjor minst 0.1 ganger, fortrinnsvis omkring 1.0 ganger trykkfallet over katalysatorleiet, oppnåes en fordelaktig balanse mellom effektiviteten av den onskede utjevning av gassfordelingen og de driftsmessige omkostninger, som folge av det ekstra trykkfall over katalysatorleiets veggflater. With this design of the reactor, all the advantages associated with allowing the gas to flow radially through the catalyst bed are achieved, while at the same time that the risk of different gas distribution in the catalyst bed is significantly reduced compared to the previously known reactors with a radial gas flow direction. By designing the reactor according to the invention, where the pressure drop achieved across the walls of the catalyst bed through which the reaction gas flows, during normal operation of the reactor is at least 0.1 times, preferably around 1.0 times the pressure drop across the catalyst bed, an advantageous balance is achieved between the efficiency of the desired equalization of the gas distribution and the operating costs, as a result of the additional pressure drop across the catalyst bed wall surfaces.
En særlig hensiktsmessig utforelsesform for reaktoren ifolge oppfinnelsen erkarakterisert vedat det omtalte mellomrom mellom veggflatene oppdeles gasstett i horisontal retning eller i radial-vertikal retning eller begge deler. Herved oppnåes oppfinnelsens formål, bedre fordeling av gass-strommen gjennom katalysatorleiet, på mer effektiv måte enn det ville være mulig uten en slik gasstett oppdeling. Reaktoren ifolge oppfinnelsen kan dog utformes uten en gasstett oppdeling av mellomrommet, men i så fall må mellomrommet utformes på en slik måte at reaksjonsgassens stromning langs veggflatene i mellomrommet mellom dem medforer et visst, ikke uvesentlig trykkfall. Dette kan f.eks. oppnåes ved at mellomrommene dimensjoneres passende snevert, eventuelt i forbindelse med at en av eller begge mellomrommets veggflater er bSlget. A particularly suitable embodiment of the reactor according to the invention is characterized by the mentioned space between the wall surfaces being divided gas-tight in a horizontal direction or in a radial-vertical direction or both. This achieves the purpose of the invention, better distribution of the gas stream through the catalyst bed, in a more efficient manner than would be possible without such a gas-tight division. The reactor according to the invention can however be designed without a gas-tight division of the space, but in that case the space must be designed in such a way that the flow of the reaction gas along the wall surfaces in the space between them entails a certain, not insignificant pressure drop. This can e.g. is achieved by dimensioning the spaces suitably narrow, possibly in connection with one or both of the wall surfaces of the space being sealed.
Den av mellomrommets veggflater over hvilken det onskes et trykkfall som er vesentlig i forhold til trykkfallet over katalysatorleiet, kan utformes på forskjellige måter. I reaktorer med loddrett stromningsretning vil begge mellomrommets begrensende veggflater vanligvis være plane, mens de kan være sylindriske i sylindriske reaktorer med radial stromningsretning og kuleforede i kulereaktorer med radial gjennom-strømning. I de sistnevnte typer av reaktorer er oppnåelsen av god stromningsfordeling et spesielt problem, blant annet fordi det er vanske-lig å oppnå samme pakningstetthet for katalysatoren i bunnen og i toppen av katalysatorlaget. Foreliggende oppfinnelse har derfor særlig betydning for disse typer av reaktorer. The wall surfaces of the intermediate space over which a pressure drop that is significant in relation to the pressure drop over the catalyst bed is desired can be designed in different ways. In reactors with a vertical flow direction, both of the interspace's limiting wall surfaces will usually be planar, while they may be cylindrical in cylindrical reactors with a radial flow direction and ball-lined in ball reactors with radial through-flow. In the latter types of reactors, achieving good flow distribution is a particular problem, partly because it is difficult to achieve the same packing density for the catalyst at the bottom and at the top of the catalyst layer. The present invention is therefore particularly important for these types of reactors.
For oppnåelse av det onskede trykkfall kan den omhandlede veggflate utformes som en fast vegg forsynt med et passende antall hull. Runde hull er velegnet. Antallet og storrelsen av disse hull velges slik at det onskede trykkfall oppnåes. To achieve the desired pressure drop, the wall surface in question can be designed as a solid wall provided with a suitable number of holes. Round holes are suitable. The number and size of these holes are chosen so that the desired pressure drop is achieved.
Ved en foretrukken utforming av reaktoren ifolge oppfinnelsen oppnåes det onskede trykkfall ved hjelp av passende dyser. Ved å anvende dyser istedenfor hull som er frembragt i selve veggflaten oppnåes en storre noyaktighet, som er vesentlig for oppnåelsen av den best mulige gassfordeling. In a preferred design of the reactor according to the invention, the desired pressure drop is achieved by means of suitable nozzles. By using nozzles instead of holes created in the wall surface itself, greater accuracy is achieved, which is essential for achieving the best possible gas distribution.
Den omhandlede veggflate kan dog også utformes på en hvilken som helst annen måte som tillater gassgjennomgang under et visst trykkfall. Veggflaten kan således bestå av porost materiale, f.eks. et porost keramisk materiale eller sintermetall. However, the wall surface in question can also be designed in any other way that allows gas passage under a certain pressure drop. The wall surface can thus consist of porous material, e.g. a porous ceramic material or sintered metal.
I det folgende beskrives oppfinnelsen nærmere linder henvisningIn the following, the invention is described in more detail by reference
til tegningen, på hvilkento the drawing, on which
fig. 1 viser et loddrett snitt gjennom en reaktor med bare ett katalysatorleie, fig. 1 shows a vertical section through a reactor with only one catalyst bed,
fig. 2 viser i storre målestokk et loddrett snitt gjennom leié-bunnen i den i fig. 1 viste reaktor, fig. 2 shows on a larger scale a vertical section through the leié bottom in the one in fig. 1 showed reactor,
fig. 3 et loddrett snitt gjennom en reaktor med flere katalysatorleier, fig. 3 a vertical section through a reactor with several catalyst beds,
fig. 4 et loddrett snitt gjennom en ammoniakk-konverter med radial stromningsretning, og fig. 4 a vertical section through an ammonia converter with radial flow direction, and
fig. 5 og 6 aksialsnitt gjennom to utforelsesformer for en delfig. 5 and 6 axial sections through two embodiments of a part
av veggflaten i katalysatorkurven ved den i fig. 4 viste reaktor.of the wall surface in the catalyst basket at the one in fig. 4 showed reactor.
I fig. 1 er 1 en sylindrisk beholder med konisk topp 2 og bunn 3*;4 og 5 er rortilslutninger for tilforsel av reaksjonsgass og avgang av reaksjonsproduktet. Som antydet med piler 6 kan reaksjonsgassen inn-fores oventil og reaksjonsproduktet avgå nedentil. ;En katalysatorfylling 7 er anbragt i beholderen 1 i et katalysatorleie som er dannet av beholderens sylindriske vegg og en i beholderen montert plan, vannrett leiebunn 8, som tillater gassen å passere. ;Fig. 2 viser et eksempel på en«utforelsesform for leiebrunnen, idet 9 er en plate med. et antall åpninger 10, hvilken plate er adskilt fra en annen plate 11, som i det viste eksempel er en poros plate som ved skillevegger 12 er holdt adskilt fra platen 11, slik at platene 9 ;og 11 danner to flater adskilt ved et gassmellomrom 13. Skilleveggene 12 kan være gasstett eller i det vesentlige gasstett forbundet med platene 9°g H« Åpningene 10 er slik dimensjonert og forefinnes i et slikt antall at de bare gir anledning til et uvesentlig trykkfall ved gassens passasje, og fortrinnsvis slik at det oppnåes det storst mulige hullareal i leiebunnen 9 under hensyntagen til katalysatorens vekt og partikkelstorrelse. Eventuelt kan det over platen 9 anbringes ett eller flere nett 14 av passende finhet, for derved å kunne anvende en storre hullstorrelse i platen 9«Platen 11 skal være av en slik beskaffenhet eller utformning at reaksjonsgassen ved passasje gjennom platen får et trykktap (friksjonstap) som utgjor mellom 0.1 og 2.0, fortrinnsvis omkring 1.0 ganger trykkfallet over katalysatorfyllingen. Når platen, som i den viste utforelsesform, er av porost materiale kan dette, avhengig av prosessbetingelsene, være f.eks. av keramisk natur eller bestå av et porost sintermetall. ;Katalysatorleiet kan være udekket eller dekket av enten en per-forert dekkplate, et nett, et lag kuler eller ringer av tungt materiale, eller et annet dekklag som kan tjene til å hindre katalysatorpartiklene i overflaten av katalysatorfyllingen i å bevege seg under påvirkning av gass-strommen. I alle tilfeller er det viktig at katalysatorfyllingens overflate er jevn og at katalysatorfyllingen er like hoy over hele reaktorens tverrsnitt. ;Dersom gass-strommen, som antydet med pilene 6, tilledes oventil, må der over katalysatoren være et rom 15 som er tilstrekkelig stort til at gassen her kan fordele seg jevnt over katalysatorfyllingen under inn-flytelse alene av trykkfallet i katalysatorleiet og leiebunnen. Reaksjonsgassen strSmmer loddrett ned gjennom katalysatorfyllingen, hvor den onskede omsetning finner sted. Under passasjen av gassen gjennom fyllingen oppstår et visst, trykktap, som f.eks. kan være av størrelses-ordenen fra 0.1 atm. til 1 atm. Heretter passerer gassen gjennom leiebunnen 8, hvor det som ovenfor nevnt skjer et ytterligere trykkfall. Reaksjonsgassen samler seg deretter i et rom 16 under katalysatorleiet og fores ut av reaktoren gjennom rortilslutningen 5*In fig. 1 is 1 a cylindrical container with a conical top 2 and bottom 3*; 4 and 5 are pipe connections for the supply of reaction gas and departure of the reaction product. As indicated by arrows 6, the reaction gas can be fed in at the top and the reaction product can leave at the bottom. A catalyst filling 7 is placed in the container 1 in a catalyst bed which is formed by the cylindrical wall of the container and a flat, horizontal bed bottom 8 mounted in the container, which allows the gas to pass. Fig. 2 shows an example of an embodiment of the rental well, with 9 being a plate with a number of openings 10, which plate is separated from another plate 11, which in the example shown is a porous plate which is kept separate from the plate 11 by partitions 12, so that the plates 9 and 11 form two surfaces separated by a gas gap 13 The partition walls 12 can be gas-tight or essentially gas-tight connected to the plates 9°g H« The openings 10 are so dimensioned and present in such a number that they only give rise to an insignificant pressure drop during the passage of the gas, and preferably so that it is achieved largest possible hole area in the bearing base 9, taking into account the catalyst's weight and particle size. Optionally, one or more nets 14 of suitable fineness can be placed over the plate 9, in order to thereby be able to use a larger hole size in the plate 9. The plate 11 must be of such a nature or design that the reaction gas experiences a pressure loss when passing through the plate (friction loss) which constitutes between 0.1 and 2.0, preferably around 1.0 times the pressure drop across the catalyst filling. When the plate, as in the embodiment shown, is made of porous material, this can, depending on the process conditions, be e.g. of a ceramic nature or consist of a porous sintered metal. ;The catalyst bed may be uncovered or covered by either a perforated cover plate, a net, a layer of balls or rings of heavy material, or another cover layer which may serve to prevent the catalyst particles in the surface of the catalyst packing from moving under the influence of gas -the electricity. In all cases, it is important that the surface of the catalyst filling is smooth and that the catalyst filling is the same height over the entire cross-section of the reactor. If the gas flow, as indicated by the arrows 6, is fed upwards, there must be a space 15 above the catalyst which is sufficiently large so that the gas here can distribute evenly over the catalyst filling under the influence of the pressure drop in the catalyst bed and the bed bottom alone. The reaction gas flows vertically down through the catalyst filling, where the desired conversion takes place. During the passage of the gas through the filling, a certain pressure loss occurs, which e.g. can be of the order of magnitude from 0.1 atm. to 1 atm. The gas then passes through the bearing bed 8, where, as mentioned above, a further pressure drop occurs. The reaction gas then collects in a room 16 below the catalyst bed and is fed out of the reactor through the rudder connection 5*
Ved den i fig. 3 viste utforelsesform for reaktoren, ifolge oppfinnelsen er toppen og bunnen formet som kulekalotter,.og rortilslut-ningene 4 og 5©r anbragt i veggen av den sylindriske beholder 1. Beholderen er innvendig bekledt med et varmeisolerende lag 17. Reaktoren har flere katalysatorleier, som hvert begrenses av isolasjonslaget 17 By the one in fig. 3 shown embodiment of the reactor, according to the invention the top and bottom are shaped like spherical caps, and the tube connections 4 and 5© are arranged in the wall of the cylindrical container 1. The container is internally lined with a heat-insulating layer 17. The reactor has several catalyst beds, which are each limited by the insulation layer 17
og av leiebunnen 8, som kan være utformet som vist i fig. 2. Mellom katalysatorleiene er der over katalysatorfyllingene 7 rom 15 som sikrer at gassen kan fordele seg fritt. and of the bearing base 8, which can be designed as shown in fig. 2. Between the catalyst beds, there are spaces 15 above the catalyst fillings 7 which ensure that the gas can distribute freely.
Såvel ved den i fig. 1 som ved den i fig. 3 viste utforelsesform for reaktoren kan gass-strommen istedenfor å stromme loddrett nedad ledes nedenfra oppad. As well as the one in fig. 1 as with the one in fig. 3 embodiment of the reactor, instead of flowing vertically downwards, the gas stream can be led from below upwards.
I fig. 4 er det vist en form for en reaktor ifolge oppfinnelsen som kan tjene til syntese av ammoniakk fra en blanding av nitrogen og, hydrogen. Reaktoren har et trykkskall 18 og et innlop 19 for gass er anordnet i reaktorens topp. Gassen passerer, som vist med piler 20, på In fig. 4 shows a form of a reactor according to the invention which can serve for the synthesis of ammonia from a mixture of nitrogen and hydrogen. The reactor has a pressure shell 18 and an inlet 19 for gas is arranged in the top of the reactor. The gas passes, as shown by arrows 20, on
i og for seg kjent måte forst ned til bunnen av reaktoren langs inner-siden av trykkskallet 18 gjennom et snevert, ring<g>jrmig rom 21, som ved en sylindrisk kappe 22 med plan topp 23 og bekledt med et isolerende lag, er adskilt fra en katalysator 24 og eh varmeutveksler 25. Nedentil passerer gassen rundt om den sylindriske kappes 22 nedadvendende kant inn i sylinderens indre, hvis nederste del opptas av varmeutveksleren 25. I varmeutveksleren er det prellplater 26 som vekselvis strekker seg in a manner known per se, first down to the bottom of the reactor along the inner side of the pressure shell 18 through a narrow, annular space 21, which is separated by a cylindrical jacket 22 with a flat top 23 and covered with an insulating layer from a catalyst 24 and a heat exchanger 25. Below, the gas passes around the downward-facing edge of the cylindrical shell 22 into the interior of the cylinder, the lower part of which is occupied by the heat exchanger 25. In the heat exchanger, there are baffle plates 26 which alternately extend
fra kappen innover og fra midten utover. Storstedelen av varmeutvekslerens indre rom er utfylt av loddrette avgangsrår for den avgående ammoniakkanrikede gass. Disse ror er antydet ved strekpunkterte, med nedadgående piler forsynte linjer 27, og forer fra en i kappen anbragt skillevegg 28 til den Sverste flate av en nedentil i trykkskallet anbragt samlekasse 29, hvorfra et avgangsror 30 er fort ut gjennom trykkskallet. I varmeutveksleren passerer gassen oppover utenom prellplatene 26 og bringes derved i berer ing med de ved de strekpunkterte linjer 27 antydede avgangsr5r. I midten av varmeutveksleren er det et ror 31, som rager opp til varmeutvekslerens Sverste del og som tilforer tøold syntese-gass ,i en mengde som avpasses slik at den varmeutvekslede gass kan få from the mantle inwards and from the center outwards. The majority of the heat exchanger's inner space is filled with vertical exhaust pipes for the outgoing ammonia-enriched gas. These rudders are indicated by dash-dotted lines 27 provided with downward arrows, and lead from a partition wall 28 placed in the casing to the topmost surface of a collecting box 29 placed at the bottom of the pressure shell, from which an outlet rudder 30 is quickly out through the pressure shell. In the heat exchanger, the gas passes upwards outside the baffle plates 26 and is thereby brought into contact with the outlet pipes indicated by the dotted lines 27. In the middle of the heat exchanger there is a rudder 31, which projects up to the heat exchanger's most part and which supplies cold synthesis gas, in an amount that is adjusted so that the heat exchanged gas can get
en forutbestemt temperatur.a predetermined temperature.
Fra varmeutvekslingsrommet passerer gassen skilleveggen 28 gjennom et sentralror 32 og fores opp i katalysatorens indre. Roret 32 er på den del som rager opp i katalysatoren forsynt med passende hull, gjennom hvilke gassen kan passere opp i katalysatorfyllingen. Katalysatoren befinner seg i en katalysatorkurv 33, som utgjores av en sylindrisk beholder, som er vist med plan bunn 34°g tak 35, og som har en sylindrisk vegg 36 som i overensstemmelse med den foreliggende oppfinnelse består av to flater som er adskilt ved et gassmellomrom (13 og 44),°g som begge har åpninger som tillater gjennomgang av reaksjonsgass. From the heat exchange space, the gas passes the partition wall 28 through a central pipe 32 and is fed up into the interior of the catalyst. The rudder 32 is provided on the part which protrudes into the catalyst with suitable holes, through which the gas can pass up into the catalyst filling. The catalyst is located in a catalyst basket 33, which is made up of a cylindrical container, which is shown with a flat bottom 34° and roof 35, and which has a cylindrical wall 36 which, in accordance with the present invention, consists of two surfaces which are separated by a gas spaces (13 and 44), both of which have openings which allow the passage of reaction gas.
Veggen 36 kan være delt i seksjoner og fig. 5°g 6 viser eksempler på utformningen av disse. The wall 36 can be divided into sections and fig. 5 and 6 show examples of the design of these.
I disse figurer er 37 en sylindrisk plate med hull 38 av en slik storrelse og i et så stort antall at gassens passasje gjennom denne plate ikke gir anledning til noe vesentlig trykkfall. Den sylindriske plate 37 danner en veggflate i katalysatorkurven, som vender inn mot katalysatoren, idet denne i fig. 5°g 6 må tenkes å befinne seg til venstre for det viste snitt. Den annen veggflate dannes av en plate 39, som i den viste utforelsesform er forsynt med langt færre åpninger 40, av en slik storrelse at det ved reaksjonsgassens stromning gjennom dem oppstår et i forhold til trykkfallet over katalysatoren vesentlig trykkfall. Mellomrommet 44 mellom de to veggflater er gasstett oppdelt i seksjoner ved hjelp av skillevegger 41, som samtidig tjener til .understottelse av platene 37» De skillevegger 41 hvis tverrsnitt sees på figuren strekker seg langs hele omkretsen av katalysatorkurven og medforer en bedre aksial fordeling av gassen. Katalysatorkurven kan dessuten ha loddrette skillevegger i det nevnte mellomrom mellom veggflåtene for ytterligere deling av seksjonene, hvorved det også oppnåes en forbedret fordeling av gassen over reaktorens horisontale tverrsnitt. I den sylindriske plate 39 kan det være ett eller flere hull 4-0 for hver seksjon. I fig. 6 er det i hvert av hullene 40 innsatt en dyse 42, som bestemmer gjennomstromnings- In these figures, 37 is a cylindrical plate with holes 38 of such a size and in such a large number that the passage of the gas through this plate does not give rise to any significant pressure drop. The cylindrical plate 37 forms a wall surface in the catalyst basket, which faces in towards the catalyst, as this in fig. 5°g 6 must be thought of as being to the left of the section shown. The other wall surface is formed by a plate 39, which in the embodiment shown is provided with far fewer openings 40, of such a size that when the reaction gas flows through them, a significant pressure drop occurs in relation to the pressure drop over the catalyst. The space 44 between the two wall surfaces is gas-tightly divided into sections by means of partitions 41, which at the same time serve to support the plates 37". The partitions 41, whose cross-section can be seen in the figure, extend along the entire circumference of the catalyst curve and result in a better axial distribution of the gas . The catalyst curve can also have vertical dividing walls in the aforementioned space between the wall rafts for further division of the sections, whereby an improved distribution of the gas over the reactor's horizontal cross-section is also achieved. In the cylindrical plate 39 there may be one or more holes 4-0 for each section. In fig. 6, a nozzle 42 is inserted in each of the holes 40, which determines the flow
arealet og medforer den fordel at stromningsmotstanden herved kan fast-area and entails the advantage that the flow resistance can thereby be
settes med langt storre noyaktighet enn ved anvendelse av enkle hull.are set with far greater accuracy than when using simple holes.
Som antydet med piler strommer gassen fra åpningene i roret 32As indicated by arrows, the gas flows from the openings in the rudder 32
inn i katalysatorfyllingen og ut gjennom veggflatene 36, hvoretter den ledes ned gjennom det snevre ringformige mellomrom mellom kappen 22 og katalysatorkurven for sluttlig å stromme ut gjennom de med linjene 27 into the catalyst filling and out through the wall surfaces 36, after which it is directed down through the narrow annular space between the jacket 22 and the catalyst basket to finally flow out through those with the lines 27
antydede avgangsror og avgangsroret 30. Stromningsretningen gjennom veggflatene 36 kan dog ved en motsvarende utformning av reaktorens stromningsveier like godt være<n>den motsatte, slik at gassen strommer fra det ringformige mellomrom 44 som omgir katalysatorkurven inn gjennom veggflatene 37, katalysatorfyllingen og ut gjennom roret 32. Den for- indicated outlet pipe and the outlet pipe 30. However, with a corresponding design of the reactor's flow paths, the direction of flow through the wall surfaces 36 can just as well be the opposite, so that the gas flows from the annular space 44 that surrounds the catalyst curve into the wall surfaces 37, the catalyst filling and out through the pipe 32. The for-
delende virkning som oppnås ved den beskrevne utformning av katalysator-splitting effect achieved by the described design of catalyst-
kurvens sylindriske vegg endres ikke ved denne forandring av stromnings-the curve's cylindrical wall does not change with this change in flow
retningen.the direction.
For å sikre mot vagabonderende stromning gjennom den overste delTo ensure against vagabond current through the upper part
av katalysatorleiet, f.eks. som folge av at katalysatorfyllingen er sunket sammen så den ikke når helt til topps i katalysatorkurven, kan man som vist i fig. 4 utforme katalysatorkurvens tak 35 med en sylindrisk vegg 43 som rager ned i'katalysatormassen, hvorved det dannes et reser- of the catalyst bed, e.g. as a result of the fact that the catalyst filling has sunk together so that it does not reach all the way to the top of the catalyst curve, one can, as shown in fig. 4 design the roof 35 of the catalyst basket with a cylindrical wall 43 that projects down into the catalyst mass, whereby a reserve is formed
voar for å motvirke virkningen av en nedsynkning av denne under driften.voar to counteract the effect of a lowering of this during operation.
De i fig. 6 og 7 viste utforelsesformer for den sylindriske plate kanThose in fig. 6 and 7 showed embodiments of the cylindrical plate can
finne tilsvarende anvendelse ved de i fig. 1 og 3 beskrevne reaktorer,find a similar application for those in fig. 1 and 3 described reactors,
likesom den i fig. 2 viste leiebunn med passende endringer kan finne an-like the one in fig. 2 shown lease base with suitable changes can find an-
vendelse ved den i fig. 4 viste reaktor.reversal at the one in fig. 4 showed reactor.
Reaktoren ifolge oppfinnelsen kan utformes på annen måte enn deThe reactor according to the invention can be designed in a different way than those
ovenfor beskrevne, f.eks. som en sylindrisk reaktor med radial stromnings-described above, e.g. as a cylindrical reactor with radial flow
retning i hvilken katalysatorfyllingen er anbragt i to eller flere ad-direction in which the catalyst filling is placed in two or more ad-
skilte katalysatorleier, eller,, som en kuleformet reaktor. For alle ut-separate catalyst beds, or, as a spherical reactor. For all out-
formninger av reaktoren ifolge oppfinnelsen består det karakteristiske i den spesielle utformning av katalysatorleiets begrensende vegg. shapes of the reactor according to the invention, the characteristic consists in the special design of the limiting wall of the catalyst bed.
Claims (3)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK449064A DK119652B (en) | 1964-09-11 | 1964-09-11 | Reactor for performing gas phase reactions by passing a gas mixture through a bed filled with catalyst particles. |
Publications (1)
Publication Number | Publication Date |
---|---|
NO115954B true NO115954B (en) | 1969-01-06 |
Family
ID=8134000
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO15957865A NO115954B (en) | 1964-09-11 | 1965-09-02 |
Country Status (9)
Country | Link |
---|---|
BE (1) | BE669365A (en) |
CH (1) | CH478593A (en) |
DE (1) | DE1542499C3 (en) |
DK (1) | DK119652B (en) |
ES (1) | ES317312A1 (en) |
FI (1) | FI43426B (en) |
GB (1) | GB1118750A (en) |
NL (1) | NL147948B (en) |
NO (1) | NO115954B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4198002A (en) * | 1977-02-04 | 1980-04-15 | Glitsch, Inc. | Reactor distribution duct |
US4123008A (en) * | 1977-02-04 | 1978-10-31 | Glitsch, Inc. | Reactor distribution duct |
FR2527097A1 (en) * | 1982-05-21 | 1983-11-25 | Inst Francais Du Petrole | LONGITUDINAL REACTOR FOR CHEMICAL SYNTHESES IN GAS PHASE AND HETEROGENEOUS CATALYSIS |
FR2536676B1 (en) * | 1982-11-26 | 1993-01-22 | Inst Francais Du Petrole | PLATE REACTORS FOR CHEMICAL SYNTHESIS CARRIED OUT UNDER HIGH PRESSURE IN THE GAS PHASE AND IN HETEROGENEOUS CATALYSIS |
DE3413421A1 (en) * | 1984-04-10 | 1985-10-24 | Uhde Gmbh, 4600 Dortmund | DEVICE FOR ACHIEVING EVEN GAS DISTRIBUTION IN A RADIAL FLOWED CATALYST LAYER |
IN165082B (en) * | 1985-05-15 | 1989-08-12 | Ammonia Casale Sa | |
CH670400A5 (en) * | 1986-03-13 | 1989-06-15 | Ammonia Casale Sa | |
EP0265654A1 (en) * | 1986-09-25 | 1988-05-04 | Ammonia Casale S.A. | System and device to make catalytic basket walls for heterogeneous synthesis reactors |
WO1988002660A1 (en) * | 1986-10-17 | 1988-04-21 | Institut Kataliza Sibirskogo Otdelenia Akademii Na | Method of catalytic cleaning of waste gases |
CH670578A5 (en) * | 1987-03-25 | 1989-06-30 | Ammonia Casale Sa | |
CN116265074A (en) * | 2021-12-16 | 2023-06-20 | 中国科学院大连化学物理研究所 | A gas distribution structure for reactor and its application |
-
1964
- 1964-09-11 DK DK449064A patent/DK119652B/en unknown
-
1965
- 1965-09-01 GB GB3735165A patent/GB1118750A/en not_active Expired
- 1965-09-02 NO NO15957865A patent/NO115954B/no unknown
- 1965-09-07 DE DE19651542499 patent/DE1542499C3/en not_active Expired
- 1965-09-08 BE BE669365D patent/BE669365A/xx unknown
- 1965-09-10 ES ES0317312A patent/ES317312A1/en not_active Expired
- 1965-09-10 CH CH1261865A patent/CH478593A/en not_active IP Right Cessation
- 1965-09-10 FI FI218365A patent/FI43426B/fi active
- 1965-09-10 NL NL6511854A patent/NL147948B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DK119652B (en) | 1971-02-08 |
NL6511854A (en) | 1966-03-14 |
DE1542499C3 (en) | 1975-11-27 |
GB1118750A (en) | 1968-07-03 |
DE1542499A1 (en) | 1970-03-26 |
CH478593A (en) | 1969-09-30 |
DE1542499B2 (en) | 1975-03-13 |
NL147948B (en) | 1975-12-15 |
ES317312A1 (en) | 1966-03-16 |
FI43426B (en) | 1970-12-31 |
BE669365A (en) | 1965-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO115954B (en) | ||
US4544544A (en) | Plate reactors for chemical syntheses under high pressure in gaseous phase and with heterogeneous catalysis | |
EP0025308B1 (en) | A process and apparatus for catalytically reacting steam with a hydrocarbon in endothermic conditions | |
EP3113872B1 (en) | Steam reforming | |
US3796547A (en) | Heat exchange apparatus for catalytic system | |
DK167242B1 (en) | APPARATUS AND PROCEDURE FOR EXOTHERMAL REACTIONS | |
US4714592A (en) | Radial flow catalytic reactor including heat exchange apparatus within the bed | |
NO310756B1 (en) | Process of refreshing reversible, deactivated particulate catalyst | |
DK156701B (en) | PROCEDURE FOR IMPLEMENTING Heterogeneous CATALYTIC CHEMICAL REACTIONS | |
KR840006444A (en) | Reaction Method and Reactor | |
GB1601475A (en) | Catalytic reactor | |
US9486767B2 (en) | Multi-tube radial bed reactor | |
CN101804314A (en) | Fluidized bed reactor | |
US4205044A (en) | Reactor for catalyzed exothermic reactions | |
US8092747B2 (en) | Modular reactor for exothermic/endothermic chemical reactions | |
US4357304A (en) | Moving catalyst bed reactor | |
NO169114B (en) | METHOD AND APPARATUS FOR PREPARING A GAS CURRENT CONTAINING RAW HYDROGEN | |
DE1542517B1 (en) | Furnace for high pressure catalytic synthesis | |
JP2007530403A (en) | Fluidized bed method for performing exothermic chemical equilibrium reaction and reactor used therefor | |
EP2244821B1 (en) | Isothermal chemical reactor with plate heat exchanger | |
CN103769005B (en) | A kind of calandria type fixed bed reactor | |
NO315934B1 (en) | Reactor for chemical reactions in three-phase systems | |
US3963423A (en) | Catalytic reactor having annular catalyst tray means | |
JPS60225632A (en) | Reactor | |
US3056655A (en) | Process for making hydrogen cyanide |