[go: up one dir, main page]

NL2027064B1 - Greenhouse with carbon dioxide dosing installation - Google Patents

Greenhouse with carbon dioxide dosing installation Download PDF

Info

Publication number
NL2027064B1
NL2027064B1 NL2027064A NL2027064A NL2027064B1 NL 2027064 B1 NL2027064 B1 NL 2027064B1 NL 2027064 A NL2027064 A NL 2027064A NL 2027064 A NL2027064 A NL 2027064A NL 2027064 B1 NL2027064 B1 NL 2027064B1
Authority
NL
Netherlands
Prior art keywords
carbon dioxide
air
greenhouse
outlet
space
Prior art date
Application number
NL2027064A
Other languages
Dutch (nl)
Inventor
Peter Johannes Vissers Rudolf
Marcel Poelman Robert
Nicolaas Adrianus Van Der Sar Jan
Original Assignee
Dalsem Beheer B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalsem Beheer B V filed Critical Dalsem Beheer B V
Priority to NL2027064A priority Critical patent/NL2027064B1/en
Application granted granted Critical
Publication of NL2027064B1 publication Critical patent/NL2027064B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Greenhouses (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The invention relates to a greenhouse for cultivating crops therein, comprising multiple rows of support columns connected by transverse frames for forming a roof support construction; a fabric screen for at least 5 partially darkening and/or thermally shielding the greenhouse, wherein the fabric screen extends in a horizontal separation plane within the greenhouse that divides the greenhouse in a cultivation. space below the separation plane and a roof space above the separation 10 plane; and a carbon dioxide (C02) dosing installation for dosing carbon dioxide into at least the cultivation space, wherein the carbon dioxide dosing installation comprises a carbon dioxide source and a carbon dioxide circulating arrangement in fluid communication with the carbon dioxide 15 source and configured for receiving carbon dioxide from the carbon dioxide source and for displacing the received carbon dioxide and/or air within the cultivation space, wherein the carbon dioxide circulating arrangement is arranged within an upper part of the cultivation space.

Description

P139289NL00 Greenhouse with carbon dioxide dosing installation
BACKGROUND The invention relates to a greenhouse for cultivating crops therein with a carbon dioxide {CO:) dosing installation.
Such a greenhouse is known. The known greenhouse comprises multiple rows of support columns connected by transverse frames for forming a roof support construction, and a fabric screen for at least partially darkening and/or thermally shielding the greenhouse. The fabric screen extends in a horizontal separation plane within the greenhouse that divides the greenhouse in a cultivation space below the separation plane and a roof space above the separation plane. Multiple rows of crops are arranged next to each other within the cultivation space of the greenhouse, wherein each row of the multiple rows of crops is arranged within a cultivation gutter. The cultivation gutters are arranged just above the bottom of the greenhouse.
It is known that the crops need carbon dioxide in order to grow optimally. In order to promote growth of the crops arranged within the greenhouse, a carbon dioxide dosing installation is provided. The carbon dioxide dosing installation has a carbon dioxide source, for example, configured for burning natural gas, and a plurality of dosing tubes arranged between and below the cultivation gutters and in fluid communication with the carbon dioxide source. Each of the plurality of the dosing tubes, in particular the part thereof that is arranged between the cultivation gutters, is provided with a plurality of dosing openings arranged within the wall of the dosing tube. During use, carbon dioxide is transported from the carbon dioxide source towards the dosing tubes, from which the carbon dioxide is dosed into the cultivation space via the dosing openings.
SUMMARY OF THE INVENTION After each cultivation period, which is a period in which the crops are planted or sown, fully grown and harvested, the dosing tubes of the known carbon dioxide dosing installation have to be removed from the cultivation space and have to be replaced with new dosing tubes before a following cultivation period. The new dosing tubes has to be positioned very precisely with respect to the cultivation gutters, in particular the crops disposed therein, since the crops are very sensitive for receiving too much or too less carbon dioxide. The known carbon dioxide dosing installation has as a disadvantage that it is very time-consuming and cost-inefficient because of the dosing tubes that need to be replaced after each cultivation period.
It is an object of the present invention to ameliorate the disadvantages of the known greenhouse, to provide an improved greenhouse or to provide an alternative greenhouse.
According Lo a first aspect, the invention provides a greenhouse for «cultivating crops therein, comprising: multiple rows of support columns connected by transverse frames for forming a roof support construction; a fabric screen for at least partially darkening and/or thermally shielding the greenhouse, wherein the fabric screen extends in a horizontal separation plane within the greenhouse that divides the greenhouse in a cultivation space below the separation plane and a roof space above the separation plane; and a carbon dioxide (CO;) dosing installation for dosing carbon dioxide into at least the cultivation space, wherein the carbon dioxide dosing installation comprises a carbon dioxide source and a carbon dioxide circulating arrangement in fluid communication with the carbon dioxide source and configured for receiving carbon dioxide from the carbon dioxide source and for displacing the received carbon dioxide and/or air within the cultivation space, wherein the carbon dioxide circulating arrangement is arranged within an upper part of the cultivation space.
In the greenhouse according to the invention, the carbon dioxide circulating arrangement is arranged within the upper part of the cultivation space, which has to be understood as that the carbon dioxide circulating arrangement is arranged well above the crops disposed within the cultivation space of the greenhouse. Preferably, the carbon dioxide circulating arrangement is arranged at such height within the cultivation space, that people are enabled to walk freely through the greenhouse without being obstructed by the carbon dioxide circulating arrangement. During use, the carbon dioxide dosing installation is used for providing and displacing carbon dioxide to and within, respectively, the cultivation space, for example, when it is determined that the concentration of carbon dioxide within the cultivation space is too low. The carbon dioxide, thus, is introduced into the cultivation space at a height above the crops cultivated therein. When the carbon dioxide has been introduced into the cultivation space, the carbon dioxide will descend downwards due to having a higher specific mass than air and eventually will reach the crops cultivated within the cultivation space. Since the carbon dioxide circulating arrangement is arranged within the upper part of the cultivation space, the carbon dioxide circulating arrangement is prevented from causing any obstruction, for example, during harvesting cultivated crops from the cultivation space. Therefore, there is no need Lo remove the carbon dioxide circulating arrangement from the cultivation at the end of a cultivation period. It is advantageously possible to place new crops into the cultivation space in order to start a new cultivation period, as soon as the previous cultivation period has ended, without the need of installing new dosing tubes. The greenhouse according to the invention, therefore, has a less time-consuming and more cost-efficient carbon dioxide dosing installation.
An additional advantage may be that the amount of carbon dioxide reaching the crops within the cultivation space is increased with respect to the known greenhouse.
In an embodiment, the carbon dioxide circulating device 1s arranged at or near the horizontal separation plane within the greenhouse. An advantage of this embodiment is that the carbon dioxide circulating device is prevented from obstructing persons walking through the greenhouse.
It is noted that the carbon dioxide is introduced into the cultivation space relatively high, such that the time needed by the carbon dioxide to descend downward to the crops within cultivation space may enable the carbon dioxide to spread throughout the cultivation space. Advantageously, this may result in an equal or substantially equal spreading of the carbon dioxide within the cultivation space.
In an embodiment, the carbon dioxide dosing installation has one or more carbon dioxide supply ducts extending between the carbon dioxide source and the carbon dioxide circulating arrangement and configured for transporting carbon dioxide from the carbon dioxide source to the carbon dioxide «circulating arrangement. This embodiment has as an advantage that carbon dioxide is only introduced into the cultivation space of the greenhouse at desired positions.
In an embodiment, the carbon dioxide circulating arrangement comprises a ventilating device, wherein the 5 ventilating device has an inlet side, at which air is drawn into the ventilating device, and an outlet side, at which air is blown out of the ventilating device.
In an embodiment, the ventilating device comprises a fan, and an outlet of one of the one or more carbon dioxide supply ducts is arranged downstream of the fan at the inlet side thereof, such that carbon dioxide ejected from the outlet of the one of the one or more carbon dioxide supply ducts is drawn into the fan. In an embodiment thereof, the fan is arranged at a first height within the cultivation space, and the outlet of the one of the one or more carbon dioxide supply ducts is arranged at a second height within the cultivation space, wherein the second height is higher than the first height. Carbon dioxide has a specific mass, also known as volumetric mass density, which is higher than the specific mass of air. By introducing carbon dioxide directly downstream of the fan at the second height, the introduced carbon dioxide descends downwards along the inlet side of the fan. As a result, the carbon dioxide enters the suction flow of the fan and is drawn into the fan, in which the carbon dioxide is thoroughly mixed with air. Additionally, the fan may be used as a recirculating fan for recirculating air and carbon dioxide within the cultivation space, which advantageously may result in a more uniform concentration of carbon dioxide throughout the cultivation space.
In an embodiment, the carbon dioxide circulating arrangement comprises a ventilating device having a fan with an inlet side, at which air is drawn into the fan, and an outlet side, at which air is blown out of the fan, and an air blender arranged downstream of the fan and/or at the inlet side thereof, wherein the air blender comprises a blender housing with a first air inlet for receiving air from the roof space and/or from outside the greenhouse, a second air inlet for drawing in air from the cultivation space, an air outlet in fluid communication with the inlet side of the fan, and a blending space defined between the first air inlet, the second air inlet and the air outlet. In an embodiment thereof, one of the one or more carbon dioxide supply ducts is in fluid communication with the air blender and debouches into the blending space of the air blender, in particular directly downstream of the air outlet.
In an embodiment, the carbon dioxide dosing installation comprises a duct connector for connecting the one of the one or more carbon dioxide supply ducts to the air blender, wherein the duct connector has a T-shaped connector piece with a connector inlet connected to the respective carbon dioxide supply duct, a first connector outlet and a second connector outlet, opposite to the first connector outlet, wherein the first connector outlet is connected to a first side of the blender housing by means of a first connecting duct debouching into the blending space, and the second connector outlet is connected to a second side, opposite to the first side, of the blender housing by means of a second connecting duct debouching into the blending space. According to this embodiment, carbon dioxide is introduced into the blending space at opposite sides thereof and therewith at opposite sides of an air flow within the blending space. This advantageously contributes to a thorough mixing of air and carbon dioxide within the fan downstream of the air blender.
In an embodiment, the ventilating device comprises an air duct with an air duct inlet, an air duct outlet, and an air channel extending between the air duct inlet and the air duct outlet, wherein the air channel debouches into the air outside of the greenhouse via a roof passage, wherein the air channel passes through the separation plane, and wherein the ventilation device is arranged for drawing air into the air channel. When the screen in the greenhouse according to this embodiment is closed, the roof space comprises a stock of air having specific and well measurable conditions. As the air duct of passes through the separation plane and the roof space, fresh air may be drawn into the cultivation space without altering the conditions of the stock of air in the roof space. The cultivation space may thus be ventilated without influencing the conditions of the air in the roof space, or without the need of indirect reheating via the cultivation space, in combination with controlling the concentration of carbon dioxide within the cultivation space of the greenhouse.
In an embodiment, the ventilating device comprises a closing panel configured to move between a first position, in which the air channel is closed off, and a second position, in which air is allowed to pass through the air channel. In an embodiment thereof, the air duct comprises a further air inlet in the roof space, and a further closing panel that 1s configured to move between a third position, in which air is allowed to pass through the further air inlet, and a fourth position, in which the further air inlet is closed off, preferably wherein the closing panel and the further closing panel are operably connected to each other for synchronized movement.
In an embodiment, the greenhouse comprises a further carbon dioxide dosing arrangement comprising a further ventilating device having a further fan with a further inlet side, at which air is drawn into the further fan, and a further outlet side, at which air is blown out of the further fan, and a further air blender arranged downstream of the further fan and/or at the further inlet side thereof, wherein the further air blender comprises a further blender housing with a further first air inlet for receiving air from the roof space, a further second air inlet for drawing in air from the cultivation space, a further air outlet in fluid communication with the further inlet side of the further fan, and a further blending space defined between the further first air inlet, the further second air inlet and the further air outlet. In an embodiment thereof, one of the one or more carbon dioxide supply ducts is in fluid communication with the further air blender and debouches into the further blending space of the further air blender, in particular directly downstream of the further air outlet.
In an embodiment, the further ventilating device comprises a further air duct with a further air duct inlet, a further air duct outlet, and a further air channel extending between the further air duct inlet and the further air duct outlet, wherein the further air channel debouches into the roof space of the greenhouse, wherein the further air channel passes through the separation plane, and wherein the further ventilation device is arranged for drawing air into the further air channel.
In an embodiment, the carbon dioxide dosing arrangement and/or further carbon dioxide dosing arrangement comprise a ventilation device adapter for arranging the carbon dioxide dosing arrangement and/or further carbon dioxide dosing arrangement within the greenhouse, in particular the cultivation space thereof.
In an embodiment, the ventilation device adapter comprises a top base beam extending parallel to the separation plane, and wherein the air duct or the further alr duct is supported by the top base beam. In an embodiment thereof, the top base beam comprises at least one air passage and the air channel or the further air channel extends through the at least one air passage.
In an embodiment, the top base beam extends between subseguent transverse frames in a direction transverse thereto, and wherein the fabric screen is guided along the longitudinal sides of the top beam between the subsequent transverse frames.
In an embodiment, the top base beam extends parallel along and is secured to one of the transverse frames, and wherein the top base beam is arranged between the respective transverse frame and the fabric screen.
In an embodiment, the greenhouse comprises a carbon dioxide monitoring device configured for monitoring a concentration of carbon dioxide within the cultivation space. Such a carbon dioxide monitoring device provides advantageously to introduce carbon dioxide into the cultivation space when it is required.
According to a second aspect, the invention provides a method for carbon dioxide dosing in a cultivation space of a greenhouse according to the first aspect of the invention, wherein the method comprises the steps of: - by the carbon dioxide dosing arrangement, displacing air within the cultivation space; — monitoring the concentration of carbon dioxide within the cultivation space; and = if the monitored concentration of carbon dioxide is below a first predetermined threshold, supplying carbon dioxide to the carbon dioxide circulating arrangement in order to displace carbon dioxide within the cultivation space.
The method as at least the same technical advantages as described in relation to the greenhouse according to the first aspect of the invention.
In an embodiment, the method further comprises the step of stopping supplying carbon dioxide to the carbon dioxide circulating arrangement, if the monitored concentration of carbon dioxide is above a second predetermined threshold.
The various aspects and features described and shown in the specification can be applied, individually, wherever possible. These individual aspects, in particular the aspects and features described in the attached dependent claims, can be made subject of divisional patent applications.
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be elucidated on the basis of an exemplary embodiment shown in the attached drawings, in which: Figure 1 shows a schematic overview of a part of an agricultural and/or horticultural greenhouse with multiple rows of support columns connected by transverse frames, and a carbon dioxide dosing installation with a first carbon dioxide dosing arrangement according to an embodiment of the invention; Figures 2A-2C show an isometric view, a front view and a side view, respectively, of the first carbon dioxide dosing arrangement of figure 1; and Figure 3 shows a schematic overview of a part of an agricultural and/or horticultural greenhouse with multiple rows of support columns connected by transverse frames, and a carbon dioxide dosing installation with a carbon dioxide dosing arrangement according to a further embodiment of the invention
DETAILED DESCRIPTION OF THE INVENTION A greenhouse 1, such as an agricultural and/or horticultural greenhouse, according to an embodiment of the invention is shown partially in figure 1. The partially shown greenhouse 1 is a Venlo type greenhouse, and comprises a number of identical metal columns 2, for example metal lattice columns, that are positioned spaced apart and in rows oriented in the longitudinal direction L of the greenhouse 1. The lattice columns 2 are connected by means of metal transverse frames 3, extending in the transverse direction T of the greenhouse 1, for forming a supporting structure for a roof structure 4. Each of the transverse frames 3 comprises a horizontal top bar 5 and a horizontal bottom bar 6 extending below the horizontal top bar 5. The horizontal top bar 5 and the horizontal bottom bar 6 are interconnected by means of brace struts 7 extending between the horizontal top bar 5 and the horizontal bottom bar 6. The roof 4 of the greenhouse 1 comprises multiple identical support gutters 8 extending parallel to each other in the longitudinal direction L of the greenhouse 1. The support gutters 4 are alternately supported by the columns 2 or by the transverse frames 10 in the transverse direction T of the greenhouse 1. The roof 4 comprises multiple roof ridges 9 each arranged between two adjacent support gutters 8 and extending parallel to the support gutters 8. The roof 4 comprises multiple glass rods 10 extending in the transverse direction T of the greenhouse 1 between the support gutters 8 and the roof ridges 9, and fixed glass panels 11 held by the support gutters 8, the roof ridges 9 and the glass rods 10 along their circumference. Furthermore, the roof 4 is provided with regularly distributed roof passages 12 of which one is shown in figure 1. In this example the roof passage 12 has a rectangular shape and is located near one of the roof ridges 9.
The greenhouse 1 has multiple screens 15 of which one is shown in figure 1. The screens 15 are provided between a pair of adjacent transverse frames 3, and a non- shown plurality of guiding wires for guiding the screens 15 and extending between the transverse frames 3 in the longitudinal direction L of the greenhouse 1. The screens 15 are moveable between the shown open state, and a non- shown closed stated, by means of one or more non-shown actuators. In the closed state, the screens 15 extending in a substantially horizontal or horizontal separation plane in which the screens 15 divide the greenhouse 1 into a cultivation space 13 located below the separation plane and a roof space 14 located above the separation plane. The closed state of the screen 15 enables the cultivation space 13 and the roof space 14 to have different climate conditions, for example with respect to alr temperature,
air humidity, and concentrations of carbon dioxide and oxygen in the air.
How the screens 15 may be incorporated into the greenhouse 1, for example, is shown in Dutch patent publication NL 2001036.
The greenhouse 1 includes a carbon dioxide (COz) dosing installation 20 for dosing carbon dioxide into the cultivation space 13. The carbon dioxide dosing installation 20 comprises a first carbon dioxide ventilation arrangement 21 and a second carbon dioxide ventilation arrangement 22 each configured for dosing carbon dioxide into the cultivation space 13. In addition to being configured for dosing carbon dioxide into the cultivation space 13, the first carbon dioxide ventilation arrangement 21 is configured for circulating air in the cultivation space 13 and/or for drawing air from outside the greenhouse 1 into the cultivation space 13, and the second carbon dioxide ventilation arrangement 22 is configured for circulating air in the cultivation space 13 and/or for drawing air from the roof space 14 into the cultivation space 13.
As shown in figure 1, each of the first and the second carbon dioxide ventilation arrangement 21, 22 has a ventilation device adapter 23 extending between and substantially transverse to adjacent transverse frames 3. Fach ventilation device adapter 23 has a top base beam 24, extending within the separation plane, and a bottom base beam 25 arranged below the top base beam 24. The top base beam 24 and the bottom base beam 25 are each provided with two oblique beam legs 26, 27 merging into a beam center section 28, and with an air passage 29 within the beam center section 28. Each ventilation device adapter 23 is provided with an intermediate coupling duct 30 arranged between the top base beam 24 and the bottom base beam 25 and in air communication with the air passage 29 of the top base beam 24 and the bottom base beam 25.
The first and the second carbon dioxide ventilation arrangement 21, 22 each comprises a ventilation device 35 that is arranged below the bottom base beam 25 and is coupled to the bottom base beam 25 by means of a lower coupling duct 33 having a duct air inlet connected to the air passage of the bottom base beam 25, and a duct air outlet. The ventilation device 35 has an air blender 36 that is connected to the duct air outlet of the lower coupling duct 33, and a fan 37 that is connected to the air blender 36. The air blender 36, as shown in figure 2A, comprises a blender housing 38 with a first blender inlet 39 at the topside thereof and in air communication with the duct air outlet of the lower coupling duct 33, a second blender inlet 40 that is in air communication with the cultivation space 13, and a blender outlet 41 opposite to the second blender inlet 40 and in air communication to the fan 37. The blender housing 38 defines a blending space between the first blender inlet 39, the second blender inlet 40 and the blender outlet 41. The air blender 36 comprises non-shown blending flaps provided parallel to each other within the blending space 62 and rotatable about a rotation axis substantially parallel to the transverse direction T of the greenhouse 1 by means of a not shown motor.
The fan 37 in this example is an axial fan comprising fan blades that are rotatable by a motor. When the fan 37 is activated, air is drawn into the air blender
36. By adjusting the orientation of the blending flaps, the ratio of air drawn into the blending space from the lower coupling duct 33 and from the cultivation space 13 can be regulated.
As shown in figure 1, the first carbon dioxide ventilation arrangement 21 is provided with an upper coupling duct 34 arranged at the top base beam 24 and extending between the top base beam 24 and the roof passage 12, which might be closed or opened by a closing panel 42. The first carbon dioxide ventilation arrangement 21, therefore, is enabled to draw air in from the outside of the greenhouse 1, where the second carbon dioxide ventilation arrangement 22 is enabled to draw air in from the roof space 14 of the greenhouse 1. In respect of the first carbon dioxide ventilation arrangement 21, the intermediate coupling duct 30, the lower coupling duct 33 and the upper coupling duct 34 form an air duct, while in respect of the second carbon dioxide ventilation arrangement 22, the intermediate coupling duct 30 and the lower coupling duct 33 form an air duct.
Furthermore, the carbon dioxide dosing installation 20 has a non-shown carbon dioxide source, such as a source configured for burning natural gas, for example a boiler or a cogenerator for cogeneration, Or a source comprising liquid carbon dioxide, such as one or more refillable carbon dioxide storage tanks. The carbon dioxide dosing installation 20 further includes one or more carbon dioxide supply ducts 50 provided within the greenhouse 1, wherein each of the carbon dioxide supply ducts 50 extends between the carbon dioxide source and one of the first and second carbon dioxide ventilation arrangements 21, 22 in order to supply carbon dioxide to each of the first and second carbon dioxide ventilation arrangements 21, 22.
As shown in more detail in figures 2A-2C, the carbon dioxide supply duct 50 is connected to the blender housing 38 directly downstream of the blender outlet 41 by means of a duct connector 51. The duct connector 51 has a T-shaped connector piece 52 having a connector inlet 53, a first connector outlet 54 and a second connector outlet 55, opposite to the first connector outlet 54, The connector inlet 53 is connected to the outlet of the carbon dioxide supply duct 50 such that carbon dioxide transported from the non-shown carbon dioxide source can be received by the T-shaped connector piece 52. The first connector outlet 54 is connected to a first side of the blender housing 38 by means of a first connecting duct 56 debouching into the blending space, and wherein the second connector outlet 55 is connected to a second side, opposite to the first side, of the blender housing 38 by means of a second connecting duct 57 debouching into the blending space.
The second carbon dioxide dosing arrangement 22 is connected to the carbon dioxide source accordingly.
During use, carbon dioxide ís transported from the carbon dioxide source towards the blender housing 38 and is introduced into the blending space directly downstream of the blender outlet 41. The fan 37 draws in a combination of air and carbon dioxide from the blender space, and the air and carbon dioxide become mixed up thoroughly by the rotating fan blades.
The mixture of air and carbon dioxide is blown into the cultivation space, in particular the upper part thereof, by the fan 37, such that the carbon dioxide gets distributed throughout the cultivation space 13. Since carbon dioxide has a specific mass, also known as volumetric mass density, which is higher than the specific mass of air, the carbon dioxide will descend downwards to the crops disposed within the cultivation space 13. As a result, the dosed carbon dioxide is spread equally or substantially equally over the crops within the greenhouse 1. Another embodiment of a greenhouse 101 according to the invention is shown in figure 3. The greenhouse 101 comprises substantially the same features as the greenhouse 1 as shown in figure 1. In order to refrain from re- introducing features, similar features are referred to by the same reference number increased with 100. The greenhouse 101 differs from the greenhouse 1 in that the carbon dioxide dosing installation 120 comprises, as a carbon dioxide ventilation arrangement 121, a fan 137, being the ventilation device, such as an axial fan comprising fan blades that are rotatable by a motor, that is arranged at one of the metal columns 102 and in the upper part of the cultivation space 103. In particular, the fan 137 is arranged just below the separation plane.
The fan 137 is arranged at the metal column 102 by means of a mounting frame 160 configured for supporting the fan 137 with respect to the metal column 102.
As shown in figure 3, the fan 137 has an inlet side 161, at which air is drawn into the fan 137, and an outlet side 162, at which air is blown into the cultivation space 113. The carbon dioxide supply duct 150, which is connected to the carbon dioxide source, is arranged in such manner, that the outlet thereof is located at the inlet side 161 of the axial fan 137. The outlet of the carbon dioxide supply duct 150 is situated higher, in particular slightly higher, than the fan 137. Although only one fan 137 is shown, it is noted that multiple fans 137 may be arranged within the cultivation space 137. During use, carbon dioxide ís transported from the carbon dioxide source to the outlet of the carbon dioxide supply duct 150, where the transported carbon dioxide is ejected from the carbon dioxide supply duct 150. Due to the specific mass of carbon dioxide being higher than the specific mass of air, the ejected carbon dioxide descends downwards. Because of the rotating fan blades of the fan 137, air and therewith the carbon dioxide is drawn into the fan 137. Within the fan 137, the drawn in air and carbon dioxide are mixed up. Subsequently, the mixture of air and carbon dioxide is blown into the cultivation space 113 in a blow direction V, in particular above the crops situated within the cultivation space 113. Since the fan 137 functions as a recirculation fan 137, carbon dioxide is recirculated within the cultivation space 113, such that an uniform distribution of carbon dioxide throughout the cultivation space 113 is obtained.
It is noted that although a single carbon dioxide supply duct 50, 150 is shown in the figures, the carbon dioxide supply duct 50, 150 may be part of a network structure of interconnected supply ducts and regulating valves in order to regulate the amount of carbon dioxide being transported from the carbon dioxide source to one or more of the carbon dioxide circulating arrangements.
It is to be understood that the above description is included to illustrate the operation of the preferred embodiments and is not meant to limit the scope of the invention.
From the above discussion, many variations will be apparent to one skilled in the art that would yet be encompassed by the scope of the present invention.

Claims (23)

CONCLUSIESCONCLUSIONS 1. Kas voor het daarin telen van gewassen, omvattend: meerdere rijen van steunkolommen die zijn verbonden door dwarsspanten voor het vormen van een daksteunconstructie; een schermdoek voor het ten minste gedeeltelijk verdonkeren en/of thermisch afschermen van de kas, waarbij het schermdoek zich uitstrekt in een horizontaal scheidingsvlak binnen de kas, dat de kas verdeelt in een teeltruimte onder het scheidingsvlak en een dakruimte boven het scheidingsvlak; en een koolstofdioxide {(CO:) -doseringsinstallatie voor het doseren van koolstofdioxide in ten minste de teeltruimte, waarbij de koolstofdioxide-doseringsinstallatie een koolstofdioxidebron en een koolstofdioxide- circulatiesamenstel omvat in fluldumverbinding met de koolstofdioxidebron en geconfigureerd voor het ontvangen van koolstofdioxide vanaf de koolstofdioxidebron en voor het verplaatsen van de ontvangen koolstofdioxide en/of lucht binnen de teeltruimte, waarbij het koolstofdioxide-circulatiesamenstel is aangebracht binnen een bovendeel van de teeltruimte.A greenhouse for growing crops therein, comprising: a plurality of rows of support columns connected by transverse trusses to form a roof support structure; a screen cloth for at least partially darkening and/or thermally screening the greenhouse, the screen cloth extending in a horizontal partition within the greenhouse, which divides the greenhouse into a cultivation space below the partition and a roof space above the partition; and a carbon dioxide (CO:) metering device for metering carbon dioxide into at least the growing space, the carbon dioxide metering equipment comprising a carbon dioxide source and a carbon dioxide circulation assembly in fluid communication with the carbon dioxide source and configured to receive carbon dioxide from the carbon dioxide source and for displacing the received carbon dioxide and/or air within the cultivation space, wherein the carbon dioxide circulation assembly is arranged within an upper part of the cultivation space. 2. Kas volgens conclusie 1, waarbij het koolstofdioxide-circulatiesamenstel is aangebracht aan of nabij het horizontale scheidingsvlak binnen de kas.Greenhouse according to claim 1, wherein the carbon dioxide circulation assembly is arranged at or near the horizontal interface within the greenhouse. 3. Kas volgens conclusie 1 of conclusie 2, waarbij de koolstofdioxide-doseringsinstallatie één of meer koolstofdioxide-toevoerleidingen heeft die zich uitstrekken tussen de koolstofdioxidebron en het koolstofdioxide- circulatiesamenstel en die zijn geconfigureerd voor het transporteren van koolstofdioxide vanaf de koolstofdioxidebron naar het koolstofdioxide-A greenhouse according to claim 1 or claim 2, wherein the carbon dioxide metering installation has one or more carbon dioxide supply lines extending between the carbon dioxide source and the carbon dioxide circulation assembly and configured to transport carbon dioxide from the carbon dioxide source to the carbon dioxide source. circulatiesamenstel.circulation assembly. 4. Kas volgens conclusie 1, 2 of 3, waarbij het koolstofdioxide-circulatiesamenstel een ventilatie- inrichting omvat, waarbij de ventilatie-inrichting een inlaatzijde, waaraan lucht in de ventilatie-inrichting wordt getrokken, en een uitlaatzijde heeft, waaraan lucht uit de ventilatie-inrichting wordt geblazen.A greenhouse according to claim 1, 2 or 3, wherein the carbon dioxide circulation assembly comprises a ventilation device, the ventilation device having an inlet side, to which air is drawn into the ventilation device, and an outlet side, to which air is drawn from the ventilation. device is blown. 5. Kas volgens conclusies 3 en 4, waarbij de ventilatie-inrichting een ventilator omvat, en waarbij een uitlaat van één van de één en meer koolstofdioxide- toevoerleidingen stroomafwaarts van de ventilator is aangebracht aan de inlaatzijde daarvan, zodat koolstofdioxide dat is uitgeworpen vanuit de uitlaat van de ene van de één of meer koolstofdioxide-toevoerleidingen in de ventilator wordt getrokken.A greenhouse according to claims 3 and 4, wherein the ventilation device comprises a fan, and wherein an outlet of one of the one and more carbon dioxide supply lines downstream of the fan is arranged on the inlet side thereof, so that carbon dioxide ejected from the exhaust from one of the one or more carbon dioxide supply lines is drawn into the fan. 6. Kas volgens conclusie 5, waarbij de ventilator is aangebracht op een eerste hoogte binnen de teeltruimte, en de uitlaat van de ene van de één of meer koolstofdioxide- toevoerleidingen is aangebracht op een tweede hoogte binnen de teeltruimte, waarbij de tweede hoogte hoger is dan de eerste hoogte.Greenhouse according to claim 5, wherein the fan is arranged at a first height within the cultivation space, and the outlet of one of the one or more carbon dioxide supply lines is arranged at a second height within the cultivation space, the second height being higher. then the first height. 7. Kas volgens één der conclusies 1-3, waarbij het koolstofdioxide-circulatiesamenstel een ventilatie- inrichting omvat met een ventilator die een inlaatzijde, waaraan lucht in de ventilator wordt getrokken, en een uitlaatzijde heeft, waaraan lucht uit de ventilator wordt geblazen, en een luchtmenger die stroomafwaarts van de ventilator en/of aan de inlaatzijde daarvan is aangebracht, waarbij de luchtmenger een mengbehuizing omvat met een eerste luchtinlaat voor het ontvangen van lucht vanuit de dakruimte en/of vanaf buiten de kas, een tweede luchtinlaat voor het intrekken van lucht vanuit de teeltruimte, een luchtuitlaat in fluidumverbinding met de inlaatzijde van de ventilator, en een mengruimte die is gedefinieerd tussen de eerste luchtinlaat, de tweede luchtinlaat en de luchtuitlaat.A greenhouse according to any one of claims 1 to 3, wherein the carbon dioxide circulation assembly comprises a ventilation device with a fan having an inlet side to which air is drawn into the fan and an outlet side to which air is blown out of the fan, and an air mixer arranged downstream of the fan and/or on the inlet side thereof, the air mixer comprising a mixing housing with a first air inlet for receiving air from the roof space and/or from outside the greenhouse, a second air inlet for drawing in air air from the cultivation space, an air outlet in fluid communication with the inlet side of the fan, and a mixing space defined between the first air inlet, the second air inlet and the air outlet. 8. Kas volgens conclusie 7, waarbij één van de één of meer koolstofdioxide-toevoerleidingen in fluidumverbinding is met de luchtmenger en uitmondt in de mengruimte van de luchtmenger, in het bijzonder direct stroomafwaarts van de luchtuitlaat.A greenhouse according to claim 7, wherein one of the one or more carbon dioxide supply lines is in fluid communication with the air mixer and opens into the mixing space of the air mixer, in particular immediately downstream of the air outlet. 9. Kas volgens conclusie 8, waarbij de koolstofdioxide-doseringsinstallatie een leidingconnector omvat voor het verbinden van de ene van de één of meer koolstofdioxide-toevoerleidingen met de luchtmenger, waarbij de leidingconnector een T-vormig connectorstuk heeft met een connectorinlaat die is verbonden met de respectievelijke koolstofdioxide-toevoerleiding, een eerste connectoruitlaat en een tweede connectoruitlaat, tegengesteld aan de eerste connectoruitlaat, waarbij de eerste connectoruitlaat is verbonden met een eerste zijde van de mengbehuizing door middel van een eerste verbindingsleiding die uitmondt in de mengruimte, en de tweede connectoruitlaat is verbonden met een tweede zijde, tegenovergelegen aan de eerste zijde, van de mengbehuizing door middel van een tweede verbindingsleiding die uitmondt in de mengruimte.A greenhouse according to claim 8, wherein the carbon dioxide dosing installation comprises a line connector for connecting one of the one or more carbon dioxide supply lines to the air mixer, the line connector having a T-shaped connector piece with a connector inlet connected to the respective carbon dioxide supply conduit, a first connector outlet and a second connector outlet opposite to the first connector outlet, the first connector outlet being connected to a first side of the mixing housing by a first connecting conduit opening into the mixing space, and the second connector outlet being connected with a second side, opposite to the first side, of the mixing housing by means of a second connecting pipe which opens into the mixing space. 10. Kas volgens één der conclusies 7-9, de ventilatie-inrichting een luchtleiding omvat met een luchtleidinginlaat, een luchtleidinguitlaat, en een luchtkanaal dat zich uitstrekt tussen de luchtleidinginlaat en de luchtleidinguitlaat, waarbij het luchtkanaal uitmondt in de lucht buiten de kas via een dakdoorgang, waarbij het luchtkanaal passeert door het scheidingsvlak, en waarbij de ventilatie-inrichting is aangebracht voor het trekken van lucht in het luchtkanaal.10. A greenhouse according to any one of claims 7-9, the ventilation device comprises an air duct with an air duct inlet, an air duct outlet, and an air duct extending between the air duct inlet and the air duct outlet, wherein the air duct opens into the air outside the greenhouse via an air duct. roof passage, wherein the air duct passes through the interface, and wherein the ventilation device is arranged for drawing air into the air duct. 11. Kas volgens conclusie 10, waarbij de ventilatie-inrichting een afsluitpaneel omvat dat is geconfigureerd om te bewegen tussen een eerste positie, waarin het luchtkanaal is afgesloten, en een tweede positie, waarin lucht kan passeren door het luchtkanaal.A greenhouse according to claim 10, wherein the ventilation device comprises a closing panel configured to move between a first position, in which the air duct is closed, and a second position, in which air can pass through the air duct. 12. Kas volgens één der conclusies 10-11, waarbij de luchtleiding is voorzien van een verdere luchtinlaat in de dakruimte, en een verder afsluitpaneel dat is geconfigureerd om te bewegen tussen een derde positie, waarin lucht kan passeren door de verdere luchtinlaat, en een vierde positie, waarin de verdere luchtinlaat is afgesloten, bij voorkeur waarbij het afsluitpaneel en het verdere afsluitpaneel werkzaam met elkaar zijn verbonden voor gesynchroniseerde beweging.A greenhouse according to any one of claims 10-11, wherein the air duct includes a further air inlet in the roof space, and a further closing panel configured to move between a third position, in which air can pass through the further air inlet, and a fourth position, wherein the further air inlet is closed off, preferably wherein the closure panel and the further closure panel are operatively connected to each other for synchronized movement. 13. Kas volgens één der voorgaande conclusies, omvattend een verdere koolstofdioxide-doseringssamenstel met een verdere ventilatie-inrichting die een verdere ventilator heeft met een verdere inlaatzijde, waaraan lucht in de verdere ventilator wordt getrokken, en een verdere uitlaatziide, waaraan lucht uit de verdere ventilator wordt geblazen, en een verdere luchtmenger die stroomafwaarts van de verdere ventilator en/of aan de verdere inlaatzijde daarvan is aangebracht, waarbij de verdere luchtmenger een verdere mengbehuizing omvat met een verdere eerste luchtinlaat voor het ontvangen van lucht vanaf de dakruimte, een verdere tweede luchtinlaat voor het intrekken van lucht vanuit de teeltruimte, en een verdere luchtuitlaat in fluidumverbinding met de verdere inlaatzijde van de verdere ventilator, en een verdere mengruimte die is gedefinieerd tussen de verdere eerste luchtinlaat, de verdere tweede iuchtinlaat en de verdere luchtuitlaat.Greenhouse according to any one of the preceding claims, comprising a further carbon dioxide dosing assembly with a further ventilation device having a further fan with a further inlet side, to which air is drawn into the further fan, and a further outlet side, to which air is drawn from the further fan. fan is blown, and a further air mixer arranged downstream of the further fan and/or on the further inlet side thereof, the further air mixer comprising a further mixing housing with a further first air inlet for receiving air from the roof space, a further second air inlet for drawing in air from the cultivation space, and a further air outlet in fluid communication with the further inlet side of the further fan, and a further mixing space defined between the further first air inlet, the further second air inlet and the further air outlet. 14. Kas volgens conclusie 13, waarbij één van de één of meer koolstofdioxide-toevoerleidingen in fluidumverbinding is met de verdere luchtmenger en uitmondt in de verdere mengruimte van de verdere luchtmenger, in het bijzonder direct stroomafwaarts van de verdere luchtuitlaat.14. A greenhouse according to claim 13, wherein one of the one or more carbon dioxide supply lines is in fluid communication with the further air mixer and opens into the further mixing space of the further air mixer, in particular immediately downstream of the further air outlet. 15. Kas volgens conclusie 13 of 14, waarbij de verdere ventilatie-inrichting een verdere luchtleiding omvat met een verdere luchtleidinginlaat, een verdere luchtleidinguitlaat, en een verder luchtkanaal dat zich uitstrekt tussen de verdere luchtleidinginlaat en de verdere luchtleidinguitlaat, waarbij het verdere luchtkanaal uitmondt in de dakruimte van de kas, waarbij het verdere luchtkanaal passeert door het scheidingsvlak, en waarbij de verdere ventilatie-inrichting is ingericht voor het trekken van lucht in het verdere luchtkanaal.15. Greenhouse according to claim 13 or 14, wherein the further ventilation device comprises a further air duct with a further air duct inlet, a further air duct outlet, and a further air duct extending between the further air duct inlet and the further air duct outlet, wherein the further air duct debouches into the roof space of the greenhouse, wherein the further air duct passes through the separating plane, and wherein the further ventilation device is designed for drawing air into the further air duct. 16. Kas volgens één der conclusies 7-15, waarbij het koolstofdioxide-doseringssamenstel en/of verdere koolstofdioxide-doseringssamenstel een ventilatie- inrichtingsadapter omvat voor het aanbrengen van het koolstofdioxide-doseringssamenstel en/of verdere koolstofdioxide-doseringssamenstel in de kas, in het bijzonder de teeltruimte daarvan.A greenhouse according to any one of claims 7-15, wherein the carbon dioxide dosing assembly and/or further carbon dioxide dosing assembly comprises a ventilation device adapter for arranging the carbon dioxide dosing assembly and/or further carbon dioxide dosing assembly in the greenhouse, in particular its cultivation area. 17. Kas volgens conclusie 16, waarbij de ventilatie-inrichtingsadapter een bovenste basisbalk omvat die zich parallel aan het scheidingsvlak uitstrekt, en waarbij de luchtleiding of de verdere luchtleiding is ondersteund door de bovenste basisbalk.A greenhouse according to claim 16, wherein the ventilation device adapter comprises an upper base beam extending parallel to the interface, and wherein the air duct or the further air duct is supported by the upper base beam. 18. Kas volgens conclusie 17, waarbij de bovenste basisbalk ten minste één luchtdoorgang omvat en het luchtkanaal of het verdere luchtkanaal zich uitstrekt door de ten minst ene luchtdoorgang.18. Greenhouse according to claim 17, wherein the upper basic beam comprises at least one air passage and the air passage or the further air passage extends through the at least one air passage. 19. Kas volgens conclusie 17 of 18, waarbij de bovenste basisbalk zich uitstrekt tussen opvolgende dwarsspanten in een richting dwars daarop, en waarbij het schermdoek is geleid langs de longitudinale zijden van de bovenste balk tussen de opvolgende dwarsspanten.19. Greenhouse according to claim 17 or 18, wherein the upper base beam extends between successive transverse trusses in a direction transverse thereto, and wherein the screen cloth is guided along the longitudinal sides of the upper beam between the successive transverse trusses. 20. Kas volgens conclusie 17 of 18, waarbij de bovenste basisbalk zich uitstrekt parallel aan en is bevestigd aan één van de dwarsspanten, en waarbij de bovenste basisbalk is aangebracht tussen de respectievelijke dwarsspant en het schermdoek.20. Greenhouse according to claim 17 or 18, wherein the upper basic beam extends parallel to and is attached to one of the transverse trusses, and wherein the upper basic beam is arranged between the respective transverse truss and the screen cloth. 21. Kas volgens één der voorgaande conclusies, omvattend een koolstofdioxide-monitoringsinrichting die is geconfigureerd voor het monitoren van een concentratie van koolstofdioxide binnen de teeltruimte.A greenhouse according to any one of the preceding claims, comprising a carbon dioxide monitoring device configured for monitoring a concentration of carbon dioxide within the cultivation space. 22. Werkwijze voor koolstofdioxidedosering in een teeltruimte van een kas volgens één der voorgaande conclusies, waarbij de werkwijze de stappen omvat van: — door het koolstofdioxide-doseringssamenstel, het verplaatsen van lucht binnen de teeltruimte; - het monitoren van de concentratie van koolstofdioxide binnen de teeltruimte; en - indien de gemonitorde concentratie van koolstofdioxide onder een eerste vooraf bepaalde grens is, het toevoeren van koolstofdioxide aan het koolstofdioxide- circulatiesamenstel om koolstofdioxide te verplaatsen binnen de teeltruimte.A method for carbon dioxide dosing in a cultivation space of a greenhouse according to any one of the preceding claims, wherein the method comprises the steps of: - displacing air within the cultivation space through the carbon dioxide dosing assembly; - monitoring the concentration of carbon dioxide within the cultivation area; and - if the monitored concentration of carbon dioxide is below a first predetermined limit, supplying carbon dioxide to the carbon dioxide circulation assembly to displace carbon dioxide within the cultivation space. 23. Werkwijze volgens conclusie 22, verder omvattend de stap van het stoppen van het toevoeren van koolstofdioxide aan het koolstofdioxide-circulatiesamenstel, indien de gemonitorde concentratie van koolstofdioxide boven een tweede vooraf bepaalde grens is.The method of claim 22, further comprising the step of stopping feeding carbon dioxide to the carbon dioxide circulation assembly if the monitored concentration of carbon dioxide is above a second predetermined limit. -0-0-70-0-0-0-0-0--0-0-70-0-0-0-0-0-
NL2027064A 2020-12-08 2020-12-08 Greenhouse with carbon dioxide dosing installation NL2027064B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2027064A NL2027064B1 (en) 2020-12-08 2020-12-08 Greenhouse with carbon dioxide dosing installation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2027064A NL2027064B1 (en) 2020-12-08 2020-12-08 Greenhouse with carbon dioxide dosing installation

Publications (1)

Publication Number Publication Date
NL2027064B1 true NL2027064B1 (en) 2022-07-07

Family

ID=74592666

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2027064A NL2027064B1 (en) 2020-12-08 2020-12-08 Greenhouse with carbon dioxide dosing installation

Country Status (1)

Country Link
NL (1) NL2027064B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060436A2 (en) * 2007-11-08 2009-05-14 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization, (A.R.O.), Volcani Center Method and system for heating and dehumidifying
NL2001036C2 (en) 2007-11-28 2009-06-02 Dalsem Tuinbouwprojecten B V Greenhouse with screen, has screen cord extending inside chamber in transverse frame for supporting roof
JP2015223118A (en) * 2014-05-28 2015-12-14 こもろ布引いちご園株式会社 Control method of plant growth environment, control device, and program for control
WO2018062988A2 (en) * 2016-09-30 2018-04-05 Nges Holding B.V. Assimilation lamp device
EP3424298A1 (en) * 2016-02-29 2019-01-09 Teijin Film Solutions Limited Greenhouse, plant cultivation method using said greenhouse, and heat-ray reflecting film structure
WO2019216768A1 (en) * 2018-05-09 2019-11-14 Dalsem Beheer B.V. Horticultural and/or agricultural greenhouse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060436A2 (en) * 2007-11-08 2009-05-14 The State Of Israel, Ministry Of Agriculture & Rural Development, Agricultural Research Organization, (A.R.O.), Volcani Center Method and system for heating and dehumidifying
NL2001036C2 (en) 2007-11-28 2009-06-02 Dalsem Tuinbouwprojecten B V Greenhouse with screen, has screen cord extending inside chamber in transverse frame for supporting roof
JP2015223118A (en) * 2014-05-28 2015-12-14 こもろ布引いちご園株式会社 Control method of plant growth environment, control device, and program for control
EP3424298A1 (en) * 2016-02-29 2019-01-09 Teijin Film Solutions Limited Greenhouse, plant cultivation method using said greenhouse, and heat-ray reflecting film structure
WO2018062988A2 (en) * 2016-09-30 2018-04-05 Nges Holding B.V. Assimilation lamp device
WO2019216768A1 (en) * 2018-05-09 2019-11-14 Dalsem Beheer B.V. Horticultural and/or agricultural greenhouse

Similar Documents

Publication Publication Date Title
US10278337B2 (en) Greenhouse and forced greenhouse climate control system and method
US8707617B2 (en) Greenhouse and forced greenhouse climate control system and method
NL2020907B1 (en) Horticultural and/or agricultural greenhouse
US5097627A (en) Method and apparatus for hydroponic gardening
US20220192105A1 (en) Hvac system for hydroponic farm
JP2001231376A (en) Seedling raising device and seedling raising method
JP2021519095A (en) Air distribution conduit
NL1043187B1 (en) A greenhouse with air conduits for climate control
DE10315626A1 (en) Air conditioner and air conditioning process for plant growing
KR101259674B1 (en) Plant cultivation system using united crop cultivation booth
NL2027064B1 (en) Greenhouse with carbon dioxide dosing installation
WO2021091372A1 (en) Horticultural or agricultural greenhouse
DE102005022934A1 (en) Plants e.g. herbs, fostering controlling cabinet for use in restaurant, has control device to control air heater and light energy producing device to control growth parameters e.g. air temperature, air volume, duration of light production
EP4302592B1 (en) Greenhouse arrangement
US20210137037A1 (en) Hydroponic growth system and assembly
NL2024182B1 (en) Horticultural or agricultural greenhouse
JP2019010077A (en) Plant cultivation device, plant cultivation system and plant cultivation method
NL2027017B1 (en) A greenhouse
NL2027656B1 (en) Greenhouse having an air treatment unit with perforated air tubes
EP3747260A1 (en) Greenhouse provided with ventilation system
US20230044520A1 (en) Optimised greenhouse air treatment chamber, and corresponding greenhouse.
RU232919U1 (en) Microclimatic cell of a greenhouse
KR20220162481A (en) Container Type Cultivation System for Plant
US20220039332A1 (en) Greenhouse
CA2592674C (en) Greenhouse and forced greenhouse climate control system and method