[go: up one dir, main page]

NL2025414B1 - AC synchronous motor - Google Patents

AC synchronous motor Download PDF

Info

Publication number
NL2025414B1
NL2025414B1 NL2025414A NL2025414A NL2025414B1 NL 2025414 B1 NL2025414 B1 NL 2025414B1 NL 2025414 A NL2025414 A NL 2025414A NL 2025414 A NL2025414 A NL 2025414A NL 2025414 B1 NL2025414 B1 NL 2025414B1
Authority
NL
Netherlands
Prior art keywords
magnets
plate
holder
openings
container
Prior art date
Application number
NL2025414A
Other languages
Dutch (nl)
Inventor
Hendrikus Maria Bos Jeroen
Léon Van Vuure Thorwald
Original Assignee
Tecnotion Assets B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tecnotion Assets B V filed Critical Tecnotion Assets B V
Priority to NL2025414A priority Critical patent/NL2025414B1/en
Application granted granted Critical
Publication of NL2025414B1 publication Critical patent/NL2025414B1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Processes or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, moulding insulation, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

The present invention relates to a method for manufacturing one of a rotor and stator for an alternating current, ’AC’, synchronous motor. 5 According to the present invention, a holder used for defining the distance between adjacent magnets is left in place and is, similar to the magnets themselves, covered by a protective synthetic resin. FIG. 3A 10

Description

AC synchronous motor The present invention relates to a method for manufacturing one of a rotor and stator for an alternating current, ° AC’, synchronous motor. This motor may be a linear motor or may have the more common rotating form. The present invention further relates to a part of an AC synchronous motor, the part being either a stator or a rotor, wherein the part has been obtained by applying this method. In addition, the present invention relates to an AC synchronous motor comprising the part.
Figure 1 illustrates an iron-core AC synchronous linear motor 1 known from the prior art. It comprises a primary part 2 and a secondary part 3. Secondary part 3 comprises a plurality of spaced apart magnets 4 that are mounted to a closing plate 5 made of iron or steel. Although not shown, magnets 4 are typically covered by a protective synthetic resin.
Primary part 2 comprises a housing 6 in which a plurality of electrical coils are provided. Electrical wiring 7 is passed through housing 6 to allow the electrical coils to be energized for the purpose of causing a relative motion between primary part 2 and secondary part 3 along a direction indicated by arrow M.
In figure 1, primary part 2 constitutes the moving part of the motor, i.e. the rotor, and the secondary part 3 constitutes the stationary part of the motor, i.e. the stator. However, in other embodiments the roles are reversed.
By energizing the electrical coils, a Lorentz force directed along the direction indicated by arrow W will be generated that acts on primary part 2. This force causes a relative motion between primary part 2 and secondary part 3. Primary part 2 is typically configured for three-phase systems. The plurality of electrical coils are then grouped into three groups, each group corresponding to a different phase Pi, P2, P3, of the three-phase system. A phase offset of 120 degrees exists between each pair of phases. Moreover, in a typical case, electrical coils belonging to a different phase are adjacently arranged.
Figures 2A and 2B illustrate a known method by which magnets 4 can be arranged on closing plate 5. As a first step (I), magnets 4 are coupled to a mesh-like non-magnetic holder 10 that comprises a plurality of openings 11. Holder 10 is held against a magnetic plate 13. Near plate 13, holder 10 is provided with shoulders 12 to prevent magnets 4 from getting into direct contact with magnetic plate 13. Consequently, after magnets 4 become coupled to magnetic plate 13, shown as step (II), a clearance 14 exists between magnets 4 and magnetic plate 13.
As a next step (111), holder 10 with magnets 4 and magnetic plate 13 are brought into close proximity with closing plate 5 that is also magnetic. Due to clearance 14, the magnetic force exerted by closing plate 5 onto magnets 4 will be larger than the magnetic force exerted by magnetic plate 13. Consequently, magnets 4 will move relative to holder 10 towards closing plate 5, which is shown as step (IV). This relative motion can be further stimulated by increasing clearance 14 by moving away magnetic plate 13. Prior to coupling with closing plate 5, magnets 4 are provided with an adhesive (not shown) to allow magnets 4 to be fixedly attached to closing plate 5.
After the adhesive has sufficiently cured, magnetic plate 13 and holder 10 are removed from magnets 4, which is shown as steps (V) and (VI). It is noted that holder 19 and magnetic plate 13 may be fixedly attached to each other in which case holder 10 and magnetic plate 13 are removed as a single unit.
As a final step, shown as step (VII), a protective synthetic resin 15 is applied to cover magnets 4.
To obtain smooth motion of primary part 2 over secondary part 3, it is important that the magnets are regularly spaced relative to each other. More in particular, the interval between adjacent magnets should preferably be identical for each pair of adjacent magnets. If the intervals are different, the resulting force and/or motion will display unwanted disturbances referred to as cogging or ripple.
An object of the present invention is to provide a method for manufacturing one of a rotor and stator for an AC synchronous motor in which the abovementioned disturbances are reduced.
According to a first aspect of the present invention, this object is achieved using the method as defined in claim 1. This method comprises the steps of a) providing a plurality of permanent magnets, and b) providing a first plate of magnetic material onto which the magnets need to be mounted, and a second plate of magnetic material.
The method according to the invention further comprises the steps of c) providing a holder having openings at well defined, e.g. identical, intervals and with a size that is substantially identical to a size of the magnets, and d) arranging the magnets into the openings of the holder such that the magnets become fitted to the holder while the holder is supported by a supporting surface.
In addition, the method of the invention comprises the steps of e) magnetically coupling the holder with the magnets to the second plate via spacing means, wherein the spacing means are physically separated from the holder and are configured to lower a strength of the magnetic coupling between the magnets and the second plate. In addition, the method of the invention further comprises f) bringing the second plate, the holder, and the magnets in close proximity of the first plate causing the magnets to become more magnetically coupled to the first plate than they are coupled to the second plate, wherein the magnets, prior to be being coupled to the first plate, are provided with an adhesive, and wherein the magnets, after being coupled to the fust plate, contact the first plate via the adhesive.
As final steps, the method of the invention comprises g) decoupling the second plate from the magnets by moving the second plate away from the magnets and the holder, h) allowing the adhesive to cure thereby fixating the magnets, while being coupled to the holder, onto the first plate, and i) covering the magnets and holder with an synthetic resin. For example, the synthetic resin may comprise epoxy or polyurethane, The magnets are coupled to the holder in such a manner that the magnets do not or hardly move relative to the holder during at least steps e)-i). This could be achieved by optimizing the tolerances on the openings in the holder to create the tightest tolerances on the positioning of the magnets in these openings. For example, the sizes of the magnets and openings can be such that, during step d, the magnets can be snugly and/or tightly fitted in the openings of the holder.
Contrary to the method described in connection with figures 2A and 2B, the magnets IO remain coupled to the holder in the final product.
The Applicant has found that irregular intervals between adjacent magnets in the known AC synchronous motor manufactured using the method illustrated in figures 2A and 2B can be attributed to the relative motion between holder 10 and magnets 4.
The Applicant has found that openings 11 must be somewhat larger than magnets 4 to facilitate the relative motion required for coupling magnets 4 to closing plate 5 in step (IV) and to allow holder 10 to be removed from magnets 4 in step (VI). In addition, openings 11 cannot be too small as this complicates removal of holder 10 without disturbing the placement of magnets 4 on closing plate 5. However, openings 11 cannot be too large with respect to magnets 4 as this would impede accurate placement of magnets 4.
By allowing the holder to remain coupled to the magnets, the abovementioned problems can be mitigated.
Furthermore, in the known method, shoulders 12, which form a part of holder 10, are used to keep magnets 4 separated from magnetic plate 13 such that the latter can more easily be removed when magnets 4 become coupled to closing plate 5. In this sense, shoulders 12 constitute spacing means for lowering a strength of the magnetic coupling between the magnets and the magnetic plate. According to the invention however, the spacing means are physically separated from the holder which means that the spacing means can be removed after the magnets are magnetically coupled to the second plate, e.g. the closing plate. In this manner, there are little to no protruding elements that extend beyond the magnets. This allows the primary part to pass by the magnets at a relatively close distance, thereby increasing the maximum force that can be generated by the motor.
The method may further comprise providing a supporting element such as a further plate. In this case, step d) may comprise arranging the holder on the supporting element such that the holder is supported by the supporting element during said arranging the magnets into the openings of the holder. Here, the supporting element merely has a mechanical supporting function and need not be made of magnetic material.
Further to the above, the magnets can be arranged into the openings of the holder with a side of the magnets facing the supporting element, wherein step e) may comprise bringing the second plate into close proximity of the magnets at an opposite side of the magnets. When using a supporting element, the spacing means may comprise a preferably non- magnetic spacer element, such as a foil. Step e) may then comprise arranging the spacer element in between the holder and the second plate before coupling the magnets to the second plate. Alternatively, the spacing means may comprise a plurality of recesses in the second plate corresponding to the plurality of magnets. Step e) may then comprise aligning the recesses with the magnets prior to coupling the magnets to the second plate.
Instead of using a supporting element, the second plate can be configured to support the holder during step d). In this case, the step of coupling the magnets to the holder and the step of magnetically coupling the holder with the magnets to the second plate are performed substantially simultaneously. Moreover, in this case, the spacing means may comprise a preferably non- magnetic spacer element, such as a foil, and the method may further comprise arranging the spacer element in between the holder and the second plate prior to arranging the magnets in the openings of the holder. Alternatively, the spacing means may comprise a plurality of recesses in the second plate corresponding to the plurality of magnets, and step d) may comprise aligning the openings with the recesses in the second plate prior to arranging the magnets in the openings of the holder.
The holder can be planar and mesh-shaped and can be made from non-magnetic material.
For example, the holder can be made from acrylonitrile butadiene styrene, ‘ABS’, polyether ether ketone ‘PEEK’, nylon, ultra-high-molecular-weight polyethylene, ‘HMPE’, aluminum, titaniam and/or carbon fiber.
After coupling the holder with the magnets to the second plate, a first side of the magnets can be facing the second plate. After coupling the magnets to the first plate, a second side of the magnets, opposite to the first side, can be facing the first plate, wherein the magnets, prior to be being coupled to the first plate, are provided with said adhesive on the second side of the magnets.
The magnets may lie flush with or slightly above the holder on the second side of the magnets prior to performing step 1). In this manner, physical contact of the magnets with the first plate, albeit via the adhesive, can be guaranteed.
Additionally or alternatively, the magnets may lie flush with the holder on the first side of the magnets after performing step d). In this manner, no protruding elements will extend beyond the magnets that would prevent the coils and the magnets to pass at close range.
Step d) may comprise using an adhesive to further fixate the magnets to the holder. As stated before, the magnets are fitted into the openings to prevent the magnets from moving relative to the holder during the process of attaching the magnets to the first plate, for example by means of a tight or snug fit. This fixation may be further aided by the application of an adhesive between the magnets and the holder.
According to a second aspect, the present invention provides a part of an AC synchronous motor, the part being either a stator or a rotor, and being obtained by the method as described 5 above.
According to a third aspect, the present invention provides a part of an AC synchronous motor, the part being either a stator or a rotor. This part comprises a first plate of magnetic material, a plurality of permanent magnets fixedly attached to the first plate using an adhesive, a holder comprising a plurality of openings into which the magnets are fitted, preferably in a snugly or tightly fit manner, at predefined intervals, and a resin covering the first plate, the magnets, and the holder.
According to a fourth aspect, the present invention provides an AC synchronous motor comprising the part described above.
Next, the present invention is explained further by referring to the appended drawings wherein: Figure 1 illustrates an iron-core AC synchronous motor known from the prior art; Figures 2A-2B illustrate a known method for manufacturing the secondary part of the motor of figure 1; Figures 3A-3B illustrate a first method for manufacturing the secondary part of an AC synchronous motor in accordance with the present invention; Figures 4A-4B illustrate a second method for manufacturing the secondary part of an AC synchronous motor in accordance with the present invention; and Figures 5A-5B illustrate a third method for manufacturing the secondary part of an AC synchronous motor in accordance with the present invention.
In the description of the figures that will follow next, the coupling between the first plate and the magnets, between the second plate and the magnets, and between the magnets and the supporting element, will be illustrated by indicating a particular direction in which these elements are coupled, e.g. top to bottom or vice versa. It is however noted that such coupling direction is provided for illustrative purposes only. The invention is not limited to a particular coupling direction.
Figures 3A-3B illustrate a first method for manufacturing the secondary part of an AC synchronous motor in accordance with the present invention. This method starts with a step (1) of coupling magnets 4 with their first sides 4A facing second plate 13 into openings 101 of a holder 100 while a non-magnetic foil 102 is being arranged in between holder 100 and second plate 13.
After magnets 4 are coupled to holder 100, shown as step (11), a second side 4B of magnets 4 lies flush with a top-side of holder 100.
Holder 100 is a planar mesh-like structure having a thickness, i.e. dimension perpendicular to second plate 13, which is at least approximately the same as a thickness of magnets 4. Openings 101 are provided at well-defined and preferably identical intervals. Foil is generally a thin foil having a thickness of about 1 mm and is made from acrylonitrile butadiene styrene, ‘ABS’ ultra-high-molecular-weight polyethylene, ‘HMPE’, and/or polytetrafluoroethylene, ‘PTFE’.
In step (IID), first plate 5, i.e. the closing plate, is brought into close proximity with magnets 4. At a given distance, the magnetic force exerted onto magnets 4 by first plate 5 will exceed that magnetic force that is exerted onto magnets 4 by second plate 13. It is noted that the magnetic force exerted by second plate 13 is reduced due to the presence of foil 102, which effectively increases a distance between second plate 13 and magnets 4.
As a result of moving first plate 5 towards magnets 4, magnets 4 and holder 100 will move as an entity towards first plate 5. This situation is shown as step (IV). This allows second plate 13 and foil 102 to be moved away from magnets 4 as shown in step (V). As a final step (VI), magnets 4 and holder 100 can be covered using a protective synthetic resin 15.
Figures 4A-4B illustrate a second method for manufacturing the secondary part of an AC synchronous motor in accordance with the present invention. As a first step (I), magnets 4 are moved towards a non-magnetic supporting plate 202 on which a holder 200 with openings 201 is arranged. After arranging magnets 4 in openings 201, as shown in step (Il), a magnetic second plate 205 with recesses 205A is moved towards magnets 4. As shown in the figure, recesses 205A are aligned with magnets 4. After moving second plate 205 sufficiently close to magnets 4, magnets 4 and holder 200 to which they are coupled, become magnetically coupled to second plate 205 as shown as step (IV). Recesses 205A reduce the strength of the magnetic coupling that would have otherwise existed between second plate 205 and magnets 4 if the magnets 4 would have been arranged completely against second plate 205.
As a next step (V), supporting plate 202 is moved away from magnets 4. Thereafter, as step (VD), a first plate 5, e.g. closing plate, is brought into contact with magnets 4. As the magnetic force exerted by plate 5 is much higher than that of second plate 205, magnets 4 become magnetically coupled allowing second plate 205 to be moved away in step (VII) without displacing magnets 4 relative to first plate 5. Prior to coupling magnets 4 to first plate 5, an adhesive such as glue is provided between magnets 4 and first plate 5. As a final step (VI), a protective synthetic resin 15 is applied over magnets 4 and holder 200. This step is performed after the applied adhesive has sufficiently or fully cured.
In steps (D-(I1I) of figure 4A, a non-magnetic supporting element 202 was used during the process of coupling, e.g. pressing, magnets 4 into openings 201 of holder 200. Alternatively, holder 200 can be first aligned relative to second plate 205. More in particular, openings 201 can be aligned relative to recesses 205A. Thereafter, magnets 4 can be arranged in openings 201 without the use of supporting element 202. Put differently, second plate 205 functions as supporting element.
Similarly, in step (I) of figure 3A, second plate 13 acted as supporting element during the process of arranging magnets 4 in openings 101 of holder 100. Alternatively, the coupling of magnets 4 could equally have been performed using a non-magnetic supporting plate on which holder 100 would be arranged. After arranging magnets 4 in openings 101, foil 102 could then be arranged over magnets 4. Thereafter, second plate 13 could be brought into close proximity with magnets 4 allowing them to be magnetically coupled to second plate 13. Once coupled, the supporting plate could be removed easily thereby arriving at a similar situation as depicted in step IO (I) of figure 3A.
In the above, the present invention has been explained using detailed embodiments thereof. However, various modifications can be made to these embodiments without departing from the scope of the invention which is defined by the appended claims and their equivalents.

Claims (17)

GEWIJZIGDE CONCLUSIES L Werkwijze voor het vervaardigen van een van een rotor en stator voor een AC- synchrone motor, omvattende de stappen van: a) het verschaffen van een veelvoud aan permanente magneten; b) het verschaffen van een eerste plaat van magnetisch materiaal waarop de magneten moeten worden gemonteerd, en een tweede plaat van magnetisch materiaal; c) het verschaffen van een houder met openingen op goed gedefinieerde intervallen en met een afmeting welke in hoofdzaak identiek is aan een afmeting van de magneten; d) het in de openingen van de houder plaatsen van de magneten zodat de magneten in de houder passend worden terwijl de houder wordt ondersteund door een steunoppervlak; e) het magnetisch koppelen van de houder met de magneten aan de tweede plaat; f) het in dichte nabijheid van de eerste plaat brengen van de tweede plaat, de houder en de magneten waardoor de magneten meer magnetisch gekoppeld worden aan de eerste plaat dan dat ze gekoppeld zijn aan de tweede plaat, waarbij de magneten, voordat ze worden gekoppeld aan de eerste plaat, worden verschaft met een kleefmiddel, en waarbij de magneten, nadat ze gekoppeld zijn aan de eerste plaat, via het kleefmiddel in contact komen met de eerste plaat; £) het ontkoppelen van de tweede plaat van de magneten door de tweede plaat weg te bewegen van de magneten en de houder; en h) het laten uitharden van het kleefmiddel waardoor de magneten gefixeerd worden op de eerste plaat terwijl ze aan de houder zijn gekoppeld; met het kenmerk, dat de werkwijze verder de stap omvat van i) het bedekken van de magneten en de houder met een kunsthars, en dat de magneten zodanig zijn gekoppeld aan de houder dat de magneten niet of nauwelijks bewegen ten opzichte van de houder gedurende ten minste stappen e)-1), en dat het genoemde magnetisch koppelen van de houder met de magneten aan de tweede plaat via afstandsmiddelen is welke fysiek zijn gescheiden van de houder en welke zijn ingericht voor het verlagen van een sterkte van de magnetische koppeling tussen de magneten en de tweede plaat.MODIFIED CONCLUSIONS L A method of manufacturing a rotor and stator for an AC synchronous motor, comprising the steps of: a) providing a plurality of permanent magnets; b) providing a first plate of magnetic material on which the magnets are to be mounted, and a second plate of magnetic material; c) providing a container with openings at well-defined intervals and having a size substantially identical to a size of the magnets; d) placing the magnets in the openings of the container so that the magnets fit into the container while the container is supported by a support surface; e) magnetically coupling the holder with the magnets to the second plate; f) bringing the second plate, the holder and the magnets into close proximity to the first plate causing the magnets to be magnetically coupled to the first plate more than they are coupled to the second plate, the magnets before being coupled provided with an adhesive to the first plate, and wherein the magnets, after being coupled to the first plate, contact the first plate through the adhesive; ) disconnecting the second plate from the magnets by moving the second plate away from the magnets and the holder; and h) allowing the adhesive to set thereby fixing the magnets to the first plate while coupled to the holder; characterized in that the method further comprises the step of i) covering the magnets and the holder with a synthetic resin, and in that the magnets are coupled to the holder such that the magnets do not or hardly move with respect to the holder for at least least steps e)-1), and that said magnetically coupling the holder with the magnets to the second plate is via spacers physically separated from the holder and arranged to decrease a strength of the magnetic coupling between the magnets and the second plate. 2. Werkwijze volgens conclusie 1, verder omvattende het verschaffen van een steunelement zoals een verdere plaat, en waarbij stap d) het plaatsen van de houder op het steunelement omvat zodanig dat de houder ondersteund wordt door het steunelement gedurende het plaatsen van de magneten in de openingen van de houder.A method according to claim 1, further comprising providing a support element such as a further plate, and wherein step d) comprises placing the holder on the support element such that the holder is supported by the support element during placement of the magnets in the support element. openings of the container. 3. Werkwijze volgens conclusie 2, waarbij de magneten worden geplaatst in de openingen van de houder met een zijde van de magneten naar het steunelement gericht, waarbij stap e) het in dichte nabijheid van de magneten brengen van de tweede plaat omvat aan een tegenoverliggende zijde van de magneten.A method according to claim 2, wherein the magnets are placed in the openings of the holder with one side of the magnets facing the support element, step e) comprising bringing the second plate into close proximity to the magnets on an opposite side. of the magnets. 4. Werkwijze volgens conclusie 2 of 3, waarbij de afstandsmiddelen een bij voorkeur niet-magnetische afstandselement omvatten, zoals een folie, waarbij stap e) het tussen de houder en de tweede plaat plaatsen van het afstandselement omvat voorafgaand aan het koppelen van de magneten aan de tweede plaat.A method according to claim 2 or 3, wherein the spacer means comprise a preferably non-magnetic spacer element, such as a foil, wherein step e) comprises placing the spacer element between the holder and the second plate prior to coupling the magnets to the second plate. 5. Werkwijze volgens conclusie 2 of 3, waarbij de afstandsmiddelen een veelvoud aan uitsparingen in de tweede plaat omvatten overeenkomend met het veelvoud aan magneten, waarbij stap e) het uitlijnen van de uitsparingen met de magneten omvat voorafgaand aan het koppelen van de magneten aan de tweede plaat.A method according to claim 2 or 3, wherein the spacer means comprises a plurality of recesses in the second plate corresponding to the plurality of magnets, step e) comprising aligning the recesses with the magnets prior to coupling the magnets to the second plate. 6. Werkwijze volgens conclusie 1, waarbij de tweede plaat is ingericht voor het ondersteunen van de houder gedurende stap d).The method of claim 1, wherein the second plate is adapted to support the container during step d). 7. Werkwijze volgens conclusie 6, waarbij de afstandsmiddelen een bij voorkeur niet-magnetische afstandselement omvatten, zoals een folie, de werkwijze verder omvattende het tussen de houder en de tweede plaat plaatsen van het afstandselement voorafgaand aan het plaatsen van de magneten in de openingen van de houder.Method according to claim 6, wherein the spacer means comprise a preferably non-magnetic spacer element, such as a foil, the method further comprising placing the spacer element between the holder and the second plate prior to placing the magnets in the openings of the holder. 8. Werkwijze volgens conclusie 6, waarbij de afstandsmiddelen een veelvoud aan uitsparingen in de tweede plaat omvatten overeenkomend met het veelvoud aan magneten, waarbij stap d) het uitlijnen van de openingen met de uitsparingen in de tweede plaat omvat voorafgaand aan het plaatsen van de magneten in de openingen van de houder.A method according to claim 6, wherein the spacer means comprises a plurality of recesses in the second plate corresponding to the plurality of magnets, step d) comprising aligning the openings with the recesses in the second plate prior to placing the magnets into the openings of the container. 9. Werkwijze volgens een van de voorafgaande conclusies, waarbij de houder vlak en maasvormig is en bij voorkeur is gemaakt van niet-magnetisch materiaal.A method according to any one of the preceding claims, wherein the container is flat and mesh-shaped and is preferably made of non-magnetic material. 10. Werkwijze volgens een van de voorafgaande conclusies, waarbij: na het koppelen van de houder met de magneten aan de tweede plaat, een eerste zijde van de magneten is gericht naar de tweede plaat; en na het koppelen van de magneten aan de eerste plaat, een tweede zijde van de magneten, tegenoverliggend aan de eerste zijde, is gericht naar de eerste plaat, waarbij de magneten, voorafgaand aan het gekoppeld worden aan de eerste plaat, zijn voorzien met het kleefmiddel op de tweede zijde van de magneten.A method according to any one of the preceding claims, wherein: after coupling the holder with the magnets to the second plate, a first side of the magnets faces the second plate; and after coupling the magnets to the first plate, a second side of the magnets, opposite to the first side, faces the first plate, wherein the magnets, prior to being coupled to the first plate, are provided with the adhesive on the second side of the magnets. 11. Werkwijze volgens conclusie 10, waarbij de magneten gelijk met of iets boven de houder liggen op de tweede zijde van de magneten voorafgaand aan het uitvoeren van stap f).The method of claim 10, wherein the magnets are flush with or slightly above the container on the second side of the magnets prior to performing step f). 12. Werkwijze volgens conclusie 10 of 11, waarbij de magneten gelijk liggen met de houder op de eerste zijde van de magneten na het uitvoeren van stap €).A method according to claim 10 or 11, wherein the magnets are flush with the holder on the first side of the magnets after performing step €). 13. Werkwijze volgens een van de voorafgaande conclusies, waarbij stap d) het gebruiken van een kleefmiddel voor het verder vastzetten van de magneten aan de houder omvat.A method according to any one of the preceding claims, wherein step d) comprises using an adhesive to further secure the magnets to the holder. 14. Werkwijze volgens een van de voorafgaande conclusies, waarbij de vooraf bepaalde intervallen identieke intervallen zijn.A method according to any one of the preceding claims, wherein the predetermined intervals are identical intervals. 15. Onderdeel van een AC-synchrone motor, het onderdeel zijnde een stator of een rotor, en verkregen door de werkwijze volgens een van de voorgaande conclusies.Part of an AC synchronous motor, the part being a stator or a rotor, and obtained by the method according to any one of the preceding claims. 16. Onderdeel van een AC-synchrone motor, het onderdeel zijnde een stator of een rotor, omvattende: een eerste plaat van magnetisch materiaal; een veelvoud aan permanente magneten welke vast bevestigd zijn aan de eerste plaat met behulp van een kleefmiddel: een houder omvattende een veelvoud aan openingen waarin de magneten op vooraf bepaalde intervallen worden gepast; een hars welke de eerste plaat, de magneten en de houder bedekt.A part of an AC synchronous motor, the part being a stator or a rotor, comprising: a first plate of magnetic material; a plurality of permanent magnets fixedly attached to the first plate by an adhesive: a container including a plurality of openings into which the magnets are fitted at predetermined intervals; a resin covering the first plate, the magnets and the holder. 17. AC-synchrone motor omvattende het onderdeel volgens conclusie 15 of 16.An AC synchronous motor comprising the part of claim 15 or 16.
NL2025414A 2020-04-24 2020-04-24 AC synchronous motor NL2025414B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL2025414A NL2025414B1 (en) 2020-04-24 2020-04-24 AC synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2025414A NL2025414B1 (en) 2020-04-24 2020-04-24 AC synchronous motor

Publications (1)

Publication Number Publication Date
NL2025414B1 true NL2025414B1 (en) 2021-10-28

Family

ID=71111772

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2025414A NL2025414B1 (en) 2020-04-24 2020-04-24 AC synchronous motor

Country Status (1)

Country Link
NL (1) NL2025414B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003538A2 (en) * 2001-06-28 2003-01-09 Siemens Aktiengesellschaft Cast secondary part for an electric motor with permanent magnets and device for the construction thereof, preventing the displacement of said magnets
US20050246886A1 (en) * 2004-05-07 2005-11-10 Jean-Pierre Morel Method and device for positioning and affixing magnets on a magnetic yoke member of a motor
DE102012016542A1 (en) * 2011-08-25 2013-02-28 Fanuc Corporation MAGNETIC PLATE FOR A LINEAR ENGINE AND METHOD FOR THE PRODUCTION THEREOF
EP3032724A1 (en) * 2014-12-11 2016-06-15 Siemens Aktiengesellschaft Secondary part with template
WO2016170483A1 (en) * 2015-04-21 2016-10-27 Protean Electric Limited An arrangement for mounting a magnet to an electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003003538A2 (en) * 2001-06-28 2003-01-09 Siemens Aktiengesellschaft Cast secondary part for an electric motor with permanent magnets and device for the construction thereof, preventing the displacement of said magnets
US20050246886A1 (en) * 2004-05-07 2005-11-10 Jean-Pierre Morel Method and device for positioning and affixing magnets on a magnetic yoke member of a motor
DE102012016542A1 (en) * 2011-08-25 2013-02-28 Fanuc Corporation MAGNETIC PLATE FOR A LINEAR ENGINE AND METHOD FOR THE PRODUCTION THEREOF
EP3032724A1 (en) * 2014-12-11 2016-06-15 Siemens Aktiengesellschaft Secondary part with template
WO2016170483A1 (en) * 2015-04-21 2016-10-27 Protean Electric Limited An arrangement for mounting a magnet to an electric machine

Similar Documents

Publication Publication Date Title
DK2403117T3 (en) TURNING TABLE FOR PERMANENT MAGNET TURNING MACHINE AND PROCEDURE FOR MANUFACTURING PERMANENT MAGNET TURNING MACHINE
Lee et al. Analysis of Halbach magnet array and its application to linear motor
CN110741535B (en) Pre-bent rotor for control of magnet-stator gap in axial flux machines
US5141082A (en) Linear motor elevator system
US7291953B1 (en) High performance motor and magnet assembly therefor
JP2000051175A (en) Magnetic field generator for mri, its assembling, and assembling of magnet unit used therefor
CA2329664A1 (en) Combined bearing and drive system
JP2002138754A (en) Door system
NL2025414B1 (en) AC synchronous motor
US20180331610A1 (en) Door operator with switched flux linear motor
CA2416323C (en) Secondary part of a linear motor, method for the production thereof, linear motor with secondary part and use of the linear motor
JPH08186974A (en) Permanent magnet field linear motor
Yamaguchi et al. Cogging torque calculation considering magnetic anisotropy for permanent magnet synchronous motors
Stachowiak Edge element analysis of brushless motors with inhomogeneously magnetized permanent magnets
Goraj Prediction of the static unbalanced magnetic pull in synchronous surface mounted permanent magnet machines
US11489421B2 (en) Linear motor and secondary part for a linear motor
Zhu et al. Optimal design of ironless permanent magnet planar motors for minimisation of force ripples
Wang et al. Position estimation for self-sensing magnetic bearings based on the current slope due to the switching amplifier
FI112989B (en) Attachment of the stator winding of the electric motor of the elevator machine
Ermolaev et al. Active reduction of magnetic noise occurring in the stators of an induction motors
JP3513417B2 (en) Septum electromagnet
Rusli et al. Design, Manufacture and Finite Element Analysis of a Small-Scale Ladder-Secondary Double-Sided Linear Induction Motor
Boglietti et al. Modelling high frequency phenomena in the rotor of induction motors under no-load test conditions
Dwivedi et al. Analysis of Permanent Magnet Brushless AC Motor Using Two Dimensional Fourier Transform-Parseval’s Theorem
CN220291747U (en) Stator punching sheet of rotary transformer