[go: up one dir, main page]

NL2018325B1 - A vertical axis wind turbine, and method for operating such a wind turbine - Google Patents

A vertical axis wind turbine, and method for operating such a wind turbine Download PDF

Info

Publication number
NL2018325B1
NL2018325B1 NL2018325A NL2018325A NL2018325B1 NL 2018325 B1 NL2018325 B1 NL 2018325B1 NL 2018325 A NL2018325 A NL 2018325A NL 2018325 A NL2018325 A NL 2018325A NL 2018325 B1 NL2018325 B1 NL 2018325B1
Authority
NL
Netherlands
Prior art keywords
wind turbine
permanent magnet
generator
electromagnetic induction
electromagnetic
Prior art date
Application number
NL2018325A
Other languages
Dutch (nl)
Inventor
Kim Van Wagtendonk Jan-Willem
Hopman Marko
Original Assignee
Hypnagogia Ug
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hypnagogia Ug filed Critical Hypnagogia Ug
Priority to NL2018325A priority Critical patent/NL2018325B1/en
Priority to PCT/EP2018/052894 priority patent/WO2018146069A1/en
Application granted granted Critical
Publication of NL2018325B1 publication Critical patent/NL2018325B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • F03D7/0284Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power in relation to the state of the electric grid
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/02Details of the control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)
  • Wind Motors (AREA)

Abstract

The present invention relates to a wind turbine, comprising a substantially vertically oriented rotation shaft, at least one wing or blade that is attached to said rotation shaft for rotating the shaft when there is a wind force exerted to the wing or blade, at least one permanent magnet electromagnetic generator, attached or coupled to the shaft, at least one induction electromagnetic generator attached or coupled to the shaft, an electric power converter, for converting the power generated by the one permanent magnet electromagnetic generator and/or the induction electromagnetic generator to a suitable voltage and/or waveform, a controller, configured for enabling the stator current of the at least one induction electromagnetic generator when the rotation shaft is above a predetermined rotational speed; and disabling stator current field of the at least one induction electromagnetic generator when the rotation shaft is below a predetermined rotational speed.The present invention relates to a wind turbine, including a substantially vertically oriented rotation shaft, at least one wing or blade that is attached to said rotation shaft for rotating the shaft when there is a wind force, exerted to the wing or blade, at least one permanent magnet electromagnetic generator, attached or coupled to the shaft, at least one induction electromagnetic generator attached or coupled to the shaft, an electric power converter, for converting the power generated by the one permanent magnet electromagnetic generator and / or the induction electromagnetic generator to a suitable voltage and / or waveform, a controller, configured for enabling the stator current or the least one induction electromagnetic generator when the rotation shaft is above a predetermined rotational speed; and disabling stator current field of the least one induction electromagnetic generator when the rotation shaft is below a predetermined rotational speed.

Description

Octrooicentrum
Θ 2018325
(21) Aanvraagnummer: 2018325 © Aanvraag ingediend: 7 februari 2017 (g) Int. CL:
F03D 7/02 (2018.01) H02J 3/38 (2018.01)
(4^ Aanvraag ingeschreven: (73) Octrooihouder(s):
29 augustus 2018 Hypnagogia UG te Crivitz OT Basthorst,
Bondsrepubliek Duitsland, DE.
(43) Aanvraag gepubliceerd:
(72) Uitvinder(s):
(47) Octrooi verleend: Jan-Willem Kim van Wagtendonk
29 augustus 2018 te Maastricht.
Marko Hopman te Crivitz OT Basthorst (DE).
(45) Octrooischrift uitgegeven:
30 oktober 2018
(74) Gemachtigde:
ir. H.Th. van den Heuvel c.s.
te 's-Hertogenbosch.
© A vertical axis wind turbine, and method for operating such a wind turbine © The present invention relates to a wind turbine, comprising a substantially vertically oriented rotation shaft, at least one wing or blade that is attached to said rotation shaft for rotating the shaft when there is a wind force exerted to the wing or blade, at least one permanent magnet electromagnetic generator, attached or coupled to the shaft, at least one induction electromagnetic generator attached or coupled to the shaft, an electric power converter, for converting the power generated by the one permanent magnet electromagnetic generator and/or the induction electromagnetic generator to a suitable voltage and/or waveform, a controller, configured for enabling the stator current of the at least one induction electromagnetic generator when the rotation shaft is above a predetermined rotational speed; and disabling stator current field of the at least one induction electromagnetic generator when the rotation shaft is below a predetermined rotational speed.
NL Bl 2018325
Dit octrooi is verleend ongeacht het bijgevoegde resultaat van het onderzoek naar de stand van de techniek en schriftelijke opinie. Het octrooischrift komt overeen met de oorspronkelijk ingediende stukken.
A vertical axis wind turbine, and method for operating such a wind turbine
The invention relates to a vertical axis wind turbine for extracting energy from wind. The invention also relates to a method for operating such a wind turbine.
A wind turbine is a machine that converts the kinetic energy from the wind into mechanical energy. Such mechanical energy when captured by a wind turbine may be employed to drive machinery using the abundantly available wind. The most familiar wind turbines to the general public are wind turbines which are essentially horizontal-axis wind turbines which have the main rotor shaft engaged to blades which are situated at the distal end of a large and tall tower (mast). The blades are engaged to the rotor at a substantially perpendicular angle and in order to spin the rotor the blades must be pointed in a direction into the wind. Smaller windmill type turbines are constantly redirected into the wind stream by a simple wind vane. Larger windmills or horizontal axis turbines being heavier generally employ a wind sensor coupled to a motor to constantly reposition the blades to intersect the wind stream driving them.
Horizontal axis style turbines have, at least in certain situations, a number of disadvantages. First they have difficulty operating in the light winds near the ground and must be elevated and employ tall towers able to support the force of the wind against long blades. Further because of their height and weight, horizontal axis turbines are difficult to install and maintain. Additionally, the blades have to be repositioned periodically to point into the wind which is rather laborious and easily leads to a reduced energy yield.
Vertical axis wind turbines (VAWTs) on the other hand, have the main rotor shaft running vertically. This arrangement has a key advantage over the horizontal axis turbine in that the generator can be placed at the bottom, near the ground so the tower doesn't need to support it. Further, vertical axis turbines do not require very large blades and tall towers to support them and the blades do not need to be constantly repositioned to point into the wind.
Power for vertical-axis wind turbines is generally provided by wind acting against the plurality of wing-shaped blades and the lift created by the wind passing over the surfaces thereof. One surface being longer than the other will create a lifting force as the wind traverses and accelerates to reach the rear of the blade at the same time as the wind traveling over the shorter surface. The lift created is perpendicular to the direction of the wind and therefore it is advantageous to reposition each blade to maximize lift during traverse through the airstream and minimize drag when rotated out of a perpendicular encounter with the same airstream.
Since vertical axis wind turbines operate closer to the ground and are simpler to assemble and install, vertical axis wind turbines are much easier to employ on a small scale to power homes and small businesses. Additionally, they do not present the large eyesore that conventional horizontal axis wind turbines exhibit. Finally, vertical axis wind turbines are much safer for wildlife such as birds which frequently fall prey to the large rotating blades of horizontal axis wind turbines since the lowpositioned smaller blades are not encountered by unsuspecting wildlife in flight.
As such there is an unmet need for an improved design for a vertical axis wind turbine to allow wider employment of such devices to produce energy.
In this respect, before explaining at least one embodiment of the invention in detail it is to be understood that the invention is not limited in its application to the details of construction and to the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting. As such, those skilled in the art will appreciate that the conception, upon which this disclosure is based, may readily be utilized as a basis for designing other vertical-axis wind turbines and methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent construction insofar as they do not depart from the spirit and scope of the present invention.
An object of this invention is the provision of an improved vertical-axis wind turbine as well as a method for operating such turbine.
These together with other objects and advantages which will become subsequently apparent reside in the details of the construction and operation as more fully hereinafter described and claimed, with reference to the accompanying drawings. The present invention proposes a wind turbine, comprising a substantially vertically oriented rotation shaft, at least one wing or blade that is attached to said rotation shaft for rotating the shaft when there is a wind force exerted to the wing or blade, at least one permanent magnet electromagnetic generator, attached or coupled to the shaft, at least one induction electromagnetic generator attached or coupled to the shaft, an electric power converter, for converting the power generated by the one permanent magnet electromagnetic generator and/or the induction electromagnetic generator to a suitable voltage and/or waveform, a controller, configured for enabling the stator current of the at least one induction electromagnetic generator when the rotation shaft is above a predetermined rotational speed; and disabling stator current field of the at least one induction electromagnetic generator when the rotation shaft is below a predetermined rotational speed.
A permanent magnet electromagnetic generator is to be understood as a generator having a rotor or stator comprising permanent magnets for causing a magnetic field, meaning that no external excitation for afield is required. Such generator directly starts to generate electric power once it is rotated.
An induction electromagnetic generator is to be understood as a generator having a rotor or stator comprising coils for causing a magnetic field, meaning that an external excitation for a field is required. Such generator only generates electric power once it is powered.
A disadvantage of permanent magnet generators is that they require a relatively high torque to overcome the default mutual orientation of the stator and the rotor, as a result of the magnetic field induced by the permanent magnets. This torque becomes higher when a larger output power of the generator is required, and therefore the permanent magnet generator is considered less suitable for high power than an induction electromagnetic generator. Another disadvantage is that the generated power as a result of the rotational speed has an asymptote, which makes it less efficient for high speed power generation.
An induction electromagnetic generator has the advantage that a very low torque is required to rotate it when the field coils are not powered.
The generator according to the invention now combines both types of generators in an efficient way. The permanent magnet generator is used for low speeds, where it is beneficial since it does not require an external power source to generate power. At high speeds, where a permanent magnet generator has an asymptotic power yield that is limited, the induction electromagnetic generator takes over, since this type of generator becomes more effective at higher speeds. According to the invention, the power for the field of the induction electromagnetic generator may be provided by the permanent magnet generator.
Since a general disadvantage of permanent magnet generators is their relatively high friction torque for startup, according to the present invention, a relatively small permanent magnet generator is preferred. In particular, in a preferred embodiment of the present invention, a permanent magnet electromagnetic generator has a static torque smaller than 50 Nm and preferably smaller than 30 Nm. Generators with a maximum generated power of about 1 kW usually fulfil this requirement.
In a further embodiment, the controller deducts the predetermined speed from the voltage generated by the permanent magnet electromagnetic generator. With a known voltage-speed curve, the voltage is a reference for the speed of the central shaft. An advantage is that this voltage, being an electric quantity, is directly applicable as an input signal for the converter. The presence of a generated voltage is also an indication that the generator is actually turning.
The controller may further be configured to electrically disconnect the permanent magnet electromagnetic generator from the power converter when the voltage generated by the permanent magnet electromagnetic generator exceeds a predetermined value. For this voltage, the voltage is chosen above which the permanent magnet generator is no longer efficient.
The controller may connect the permanent magnet electromagnetic generator to a battery charger for charging a battery that can be used for an auto-start of the permanent magnet generator, or to a resistance in the case that it is desired to let the permanent magnet generator function as a brake.
In a more advanced embodiment, the wind turbine according to the invention comprises multiple induction electromagnetic generators, each with a different power level, wherein the controller is configured for sequentially enabling the stator fields of the induction electromagnetic generators. This way, the power level of the generator can be gradually adapted to the rotational speed of the generator, and thus to the wind speed. This enables to use each generator or each combination of generators at their maximum efficiency.
Preferably the induction electromagnetic generators have different power ratings, and the controller is configured for enabling higher power induction electromagnetic generators with increasing rotational speed of the shaft. Additionally, the controller may be configured for disabling lower power induction electromagnetic generators with increasing rotational speed of the shaft.
The power converter may be configured for converting the generated power to a grid voltage, waveform and/or frequency, in order to be able to deliver the power to the grid. Alternatively, a battery may be provided, to which the generated energy is delivered, for later use.
The controller may also be configured for disabling the stator current of at least one induction electromagnetic generator, when the rotational speed of the rotation shaft is within a predetermined range of an Eigen frequency of the turbine. By disabling the stator current, the torque required for rotating the generator decreases, and the central shaft encounters a lower load. As a result, its rotational speed will increase, and it will at a certain point get outside the predetermined range. From then on, the induction electromagnetic generator may be switched on again. This may be done gradually, to prevent lowering the rotational speed into the range again.
The controller may also be configured for transferring energy to a resistor when the wind speed exceeds a predetermined value, for example 25 m/s. This resistor dissipates energy and thus works as a break. Alternatively, the turbine may comprise a battery, coupled to the permanent magnet electromagnetic generator, for storing the generated energy therein. The battery may be arranged within a housing, such as a mast housing, of the permanent magnet electromagnetic generator.
In a further embodiment, the turbine is provided with a fail-safe protection, comprising a timer, that electronically resets after a disruption. If the in mast battery, the grid and/or an additional energy storage cannot supply power, a short circuit used as a brake is never disengaged after the specific time period, because the timer will not work without power. The turbine can become operational again only when the short circuit brake is manually disengaged.
The invention will now be elucidated into more detail with reference to figure 1, which shows a schematic view of an embodiment of the present invention. The figure shows a wind turbine 1, comprising a substantially vertically oriented rotation shaft 2, a number of blades 3 that are attached to said rotation shaft 2 for rotating the shaft 2 when there is a wind force exerted to the wing or blade. The turbine has a permanent magnet electromagnetic generator 4 coupled to the shaft 2 and an induction electromagnetic generator 5 attached or coupled to the shaft 2.
The wind turbine further comprises an electric power converter 6, in this case for converting the power generated by the induction electromagnetic generator 5 to a suitable voltage and waveform, in this case for a grid 8. In other embodiments, the electric power converter 6 may also convert the power from the permanent magnet electromagnetic generator 4 to a value suitable for the grid 8. Here however, a second power converter 9 is present, for converting the power from the permanent magnet electromagnetic generator 4 to a voltage suitable for a battery charger 10, to which a battery 11 is coupled. The wind turbine further comprises a controller 7, configured for enabling the stator current of the induction electromagnetic generator 5 when the rotation shaft 2 is above a predetermined rotational speed; and disabling stator current field of the induction electromagnetic generator 5 when the rotation shaft 2 is below a predetermined rotational speed. The controller 7 deducts the predetermined speed from the voltage generated by the permanent magnet electromagnetic generator. Thereto, a voltage sensing array 12 is coupled between the permanent magnet electromagnetic generator 4 and the controller 7. Additionally or alternatively to the grid 8, the power converter 6 may be coupled to an external energy storage 13, for storing (a surplus of) energy therein. A further addition may be a second induction electromagnetic generator 5’ which may be switched on in dependency of the required power, the wind speed and/or the rotational speed of the shaft 2.
This embodiment was presented as an example only and does in no way or sense limit the scope of protection of the present application, as defined in the following claims.

Claims (20)

ConclusiesConclusions 1. Windturbine, omvattende:A wind turbine comprising: een in hoofdzaak verticaal georiënteerde rotatie-as;a substantially vertically oriented axis of rotation; ten minste één wiek of blad die is bevestigd aan voornoemde rotatie-as voor het roteren van de as wanneer een windkracht wordt uitgeoefend op de wiek of het blad;at least one blade or blade attached to said axis of rotation for rotating the axis when a wind force is applied to the blade or blade; ten minste één elektromagnetische permanente-magneetgenerator, verbonden of gekoppeld met de as;at least one electromagnetic permanent magnet generator connected or coupled to the shaft; ten minste één elektromagnetische inductiegenerator verbonden of gekoppeld met de as;at least one electromagnetic induction generator connected or coupled to the axis; een elektrische energieomzetter, voor het omzetten van energie opgewekt door de ene elektromagnetische permanente magneet generator en/of de ene elektromagnetische inductie generator naar een geschikte spanning en/of golfvorm;an electrical energy converter, for converting energy generated by the one electromagnetic permanent magnet generator and / or the one electromagnetic induction generator to a suitable voltage and / or waveform; een besturingsinrichting, ingericht voor:a control device, arranged for: o het inschakelen van de statorstroom van de ten minste ene elektromagnetische inductie generator indien de rotatieas boven een vooraf bepaalde rotatiesnelheid is; en o het uitschakelen van het statorstroomveld van de ten minste ene elektromagnetische inductie generator indien de rotatieas onder een vooraf bepaalde rotatiesnelheid is.o switching on the stator current of the at least one electromagnetic induction generator if the rotation axis is above a predetermined rotation speed; and o switching off the stator current field of the at least one electromagnetic induction generator if the rotation axis is below a predetermined rotation speed. 2. Windturbine volgens conclusie 1, waarbij de elektromagnetische permanente magneet generator een statisch koppel kleiner dan 50 Nm heeft en bij voorkeur kleiner dan 30 Nm.Wind turbine according to claim 1, wherein the electromagnetic permanent magnet generator has a static torque of less than 50 Nm and preferably less than 30 Nm. 3. Windturbine volgens conclusie 1 of 2, waarbij de energie voor het statorveld van de elektromagnetische inductie generator wordt geleverd door de elektromagnetische permanente magneet generator.3. Wind turbine according to claim 1 or 2, wherein the energy for the stator field of the electromagnetic induction generator is supplied by the electromagnetic permanent magnet generator. 4. Windturbine volgens een van de voorgaande conclusies, waarbij de besturingsinrichting de vooraf bepaalde snelheid aftrekt van de spanning opgewekt door de elektromagnetische permanente magneet generator.Wind turbine according to any of the preceding claims, wherein the control device subtracts the predetermined speed from the voltage generated by the electromagnetic permanent magnet generator. 5. Windturbine volgens een van de voorgaande conclusies, waarbij de besturingsinrichting de elektromagnetische permanente magneet generator elektrisch ontkoppeld van de energieomzetter wanneer de spanning opgewekt door de elektromagnetische permanente magneet generator een vooraf bepaalde waarde overschrijdt.Wind turbine according to any of the preceding claims, wherein the control device electrically disconnects the electromagnetic permanent magnet generator from the energy converter when the voltage generated by the electromagnetic permanent magnet generator exceeds a predetermined value. 6. Windturbine volgens conclusie 5, waarbij de besturingsinrichting de elektromagnetische permanente magneet generator verbindt met een acculader of een weerstand wanneer de spanning opgewekt door de elektromagnetische permanente magneet generator een vooraf bepaalde waarde overschrijdt.The wind turbine of claim 5, wherein the control device connects the electromagnetic permanent magnet generator to a battery charger or a resistor when the voltage generated by the electromagnetic permanent magnet generator exceeds a predetermined value. 7. Windturbine volgens een van de voorgaande conclusies, omvattende meerdere elektromagnetische inductie generatoren, elk met een verschillend vermogensniveau, waarbij de besturingsinrichting is ingericht voor het sequentieel inschakelen van de statorvelden van de elektromagnetische inductie generatoren.Wind turbine according to one of the preceding claims, comprising a plurality of electromagnetic induction generators, each with a different power level, the control device being adapted to sequentially switch on the stator fields of the electromagnetic induction generators. 8. Windturbine volgens conclusie 7, waarbij de elektromagnetische inductie generatoren verschillende nominale vermogens hebben, en waarbij de besturingsinrichting is ingericht voor het inschakelen van hoger vermogen elektromagnetische inductiegeneratoren met toenemende rotatiesnelheid van de as.A wind turbine according to claim 7, wherein the electromagnetic induction generators have different nominal powers, and wherein the control device is adapted to switch on higher power electromagnetic induction generators with increasing axis rotation speed. 9. Windturbine volgens conclusie 8, waarbij de elektromagnetische inductie generatoren verschillende nominale vermogens hebben, en waarbij de besturingsinrichting is ingericht voor het uitschakelen van lager vermogen elektromagnetische inductiegeneratoren met toenemende rotatiesnelheid van de as.The wind turbine according to claim 8, wherein the electromagnetic induction generators have different nominal powers, and wherein the control device is adapted to switch off lower power electromagnetic induction generators with increasing axis rotation speed. 10. Windturbine volgens een van de voorgaande conclusies, waarbij de energieomzetter is ingericht voor het omzetten van de opgewekte energie naar een netspanning, golfvorm en/of frequentie.10. Wind turbine according to one of the preceding claims, wherein the energy converter is adapted to convert the generated energy to a mains voltage, waveform and / or frequency. 11. Windturbine volgens een van de voorgaande conclusies, waarbij de besturingsinrichting is ingericht voor het uitschakelen van de statorstroom van ten minste één elektromagnetische inductie generator, wanneer de rotatiesnelheid van de rotatieas binnen een vooraf bepaald bereik van een Eigenfrequentie van de turbine is.A wind turbine according to any one of the preceding claims, wherein the control device is adapted to switch off the stator current of at least one electromagnetic induction generator when the rotational speed of the axis of rotation is within a predetermined range of a natural frequency of the turbine. 12. Windturbine volgens een van de voorgaande conclusies, waarbij de besturingsinrichting is ingericht voor het overbrengen van energie naar een weerstand wanneer de windsnelheid een vooraf bepaalde waarde overschrijdt, bijvoorbeeld 25 m/s.A wind turbine according to any one of the preceding claims, wherein the control device is adapted to transfer energy to a resistor when the wind speed exceeds a predetermined value, for example 25 m / s. 13. Windturbine volgens een van de voorgaande conclusies, omvattende een accu, gekoppeld met de elektromagnetische permanente magneetgenerator.A wind turbine according to any one of the preceding claims, comprising a battery coupled to the electromagnetic permanent magnet generator. 14. Windturbine volgens conclusie 13, waarbij de accu in een behuizing is aangebracht, zoals een mastbehuizing, van de elektromagnetische permanente magneet generator.The wind turbine of claim 13, wherein the battery is disposed in a housing, such as a mast housing, of the electromagnetic permanent magnet generator. 15. Windturbine volgens een van de voorgaande conclusies, voorzien van een fouttolerant bescherming, omvattende een timer, die elektronisch reset na een onderbreking, waarbij indien in een mastaccu, een net en/of een additionele energieopslag geen energie kan leveren, een kortsluiting gebruikt als een rem nooit uitgeschakeld wordt na de bepaalde tijdsperiode, tenzij de kortsluiting handmatig wordt uitgeschakeld.A wind turbine according to any one of the preceding claims, provided with a fault tolerant protection, comprising a timer, which resets electronically after an interruption, wherein if in a mast battery, a network and / or an additional energy storage cannot supply energy, a short circuit is used as a brake is never switched off after the specified time period, unless the short circuit is switched off manually. 16. Werkwijze voor het toepassen van een windturbine, de turbine omvattende: een in hoofdzaak verticaal georiënteerde rotatie-as;A method for applying a wind turbine, the turbine comprising: a substantially vertically oriented axis of rotation; ten minste één wiek of blad dat is bevestigd aan voornoemde rotatie-as voor het roteren van de as wanneer een windkracht wordt uitgeoefend op de wiek of het blad;at least one blade or blade attached to said axis of rotation for rotating the axis when a wind force is applied to the blade or blade; ten minste één elektromagnetische permanente magneet generator, verbonden of gekoppeld met de as;at least one electromagnetic permanent magnet generator connected or coupled to the shaft; ten minste één elektromagnetische inductie generator, verbonden of gekoppeld met de as;at least one electromagnetic induction generator connected or coupled to the shaft; een elektrische energieomzetter, voor het omzetten van energie opgewekt door de ene elektromagnetische permanente magneet generator en/of de ene elektromagnetische inductie generator naar een geschikte spanning en/of golfvorm; de werkwijze omvattende de stappen:an electrical energy converter, for converting energy generated by the one electromagnetic permanent magnet generator and / or the one electromagnetic induction generator to a suitable voltage and / or waveform; the method comprising the steps of: o het inschakelen van de statorstroom van de ten minste ene elektromagnetische inductie generator indien de rotatie-as boven een vooraf bepaalde rotatiesnelheid is; en o het uitschakelen van de statorstroomveld van de ten minste ene elektromagnetische inductie generator indien de rotatie-as onder een vooraf bepaalde rotatiesnelheid is.o switching on the stator current of the at least one electromagnetic induction generator if the rotation axis is above a predetermined rotation speed; and o switching off the stator current field of the at least one electromagnetic induction generator if the rotation axis is below a predetermined rotation speed. 17. Werkwijze volgens conclusie 16, omvattende het elektrisch ontkoppelen van de elektromagnetische permanente magneet generator van de energieomzetter wanneer de spanning opgewekt door de elektromagnetische permanente magneet generator een vooraf bepaalde waarde overschrijdt.The method of claim 16, comprising electrically disconnecting the electromagnetic permanent magnet generator from the energy converter when the voltage generated by the electromagnetic permanent magnet generator exceeds a predetermined value. 18. Werkwijze volgens conclusie 16 of 17, voor een windturbine omvattende meerdere elektromagnetische inductie generatoren, omvattende de stap van het sequentieel uitschakelen van de statorvelden van de elektromagnetische inductie generatoren.Method according to claim 16 or 17, for a wind turbine comprising a plurality of electromagnetic induction generators, comprising the step of sequentially switching off the stator fields of the electromagnetic induction generators. 19. Werkwijze voor het besturen van een windturbine, omvattende het uitschakelen of reduceren van de statorstroom van ten minste één elektromagnetische inductie generator, wanneer de rotatiesnelheid van een rotatieas van de turbine binnen een vooraf bepaald bereik van een Eigenfrequentie van de turbine valt.A method for controlling a wind turbine, comprising switching off or reducing the stator current of at least one electromagnetic induction generator, when the rotational speed of a rotation axis of the turbine falls within a predetermined range of a natural frequency of the turbine. 20. Besturingsinrichting, ingericht voor toepassing in een windturbine volgens een van de conclusies 1-16, in het bijzonder voor het uitvoeren van een werkwijze volgen een van de conclusies 16-19.20. Control device adapted for use in a wind turbine according to one of claims 1-16, in particular for carrying out a method, one of claims 16-19. 7/77/7 φ φ Ό Ό CD CD Φ Φ ra ra φ φ CL CL τ— τ— ο ο σ; σ; φ φ > > ω ω οα οα Cl Cl ο ο Q Q £Ω £ Ω L> L> φ φ < < Cl Cl ω ω > > ra ra (Y (Y
Φ Φ c: c: O O Lw Lw C7 C7 Φ Φ ,o ,O O O ~ ω Cl Cl c c OQ OQ φ φ 00 00 G G < <
NL2018325A 2017-02-07 2017-02-07 A vertical axis wind turbine, and method for operating such a wind turbine NL2018325B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2018325A NL2018325B1 (en) 2017-02-07 2017-02-07 A vertical axis wind turbine, and method for operating such a wind turbine
PCT/EP2018/052894 WO2018146069A1 (en) 2017-02-07 2018-02-06 A vertical axis wind turbine, and method for operating such a wind turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2018325A NL2018325B1 (en) 2017-02-07 2017-02-07 A vertical axis wind turbine, and method for operating such a wind turbine

Publications (1)

Publication Number Publication Date
NL2018325B1 true NL2018325B1 (en) 2018-08-29

Family

ID=58501769

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2018325A NL2018325B1 (en) 2017-02-07 2017-02-07 A vertical axis wind turbine, and method for operating such a wind turbine

Country Status (2)

Country Link
NL (1) NL2018325B1 (en)
WO (1) WO2018146069A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021165548A2 (en) 2020-02-22 2021-08-26 Hypnagogia Ug A vertical axis wind turbine and method for operating such a wind turbine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304002B1 (en) * 2000-04-19 2001-10-16 Dehlsen Associates, L.L.C. Distributed powertrain for high torque, low electric power generator
US20080129050A1 (en) * 2006-12-01 2008-06-05 Industrial Technology Research Institute Hybrid power-generating device
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US7709972B2 (en) * 2007-08-30 2010-05-04 Mitsubishi Heavy Industries, Ltd. Wind turbine system for satisfying low-voltage ride through requirement
US20130134709A1 (en) * 2011-11-30 2013-05-30 Iqwind Ltd. Wind Turbine With Variable Speed Auxiliary Generator and Load Sharing Algorithm
US20150073610A1 (en) * 2013-09-11 2015-03-12 General Electric Company Auxiliary electric power system and method of regulating voltages of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304002B1 (en) * 2000-04-19 2001-10-16 Dehlsen Associates, L.L.C. Distributed powertrain for high torque, low electric power generator
US7425771B2 (en) * 2006-03-17 2008-09-16 Ingeteam S.A. Variable speed wind turbine having an exciter machine and a power converter not connected to the grid
US20080129050A1 (en) * 2006-12-01 2008-06-05 Industrial Technology Research Institute Hybrid power-generating device
US7709972B2 (en) * 2007-08-30 2010-05-04 Mitsubishi Heavy Industries, Ltd. Wind turbine system for satisfying low-voltage ride through requirement
US20130134709A1 (en) * 2011-11-30 2013-05-30 Iqwind Ltd. Wind Turbine With Variable Speed Auxiliary Generator and Load Sharing Algorithm
US20150073610A1 (en) * 2013-09-11 2015-03-12 General Electric Company Auxiliary electric power system and method of regulating voltages of the same

Also Published As

Publication number Publication date
WO2018146069A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
EP2360375B1 (en) Method for operating a power dissipating unit in a wind turbine
US9494138B2 (en) Variable speed wind turbine, and a method for operating the variable speed wind turbine during a power imbalance event
EP2875238B1 (en) A method of operating a wind turbine as well as a system suitable thereof
US20100060001A1 (en) Wind turbine safety system and methods
Syahputra et al. Modeling and simulation of wind energy conversion system in distributed generation units
Ganthia et al. Wind turbines in energy conversion system: Types & techniques
US20110169334A1 (en) Renewable Energy Appliance
Probst et al. Small wind turbine technology
CN102748228B (en) Magnetic suspension wind driven generator
NL2018325B1 (en) A vertical axis wind turbine, and method for operating such a wind turbine
JP5483901B2 (en) Wind power generation system and stall control method for wind power generation system
EP2702684A2 (en) A variable wind turbine having a power dissipating unit; a method of operating a power dissipating unit in a wind turbine
CN105429535B (en) A kind of method for controlling number of revolution and device for small-sized wind power generator
EP2594786B1 (en) Method of operating a wind turbine
Gitano-Briggs Small wind turbine power controllers
JP2008095671A (en) Wind power generation system (ring system)
CN207470345U (en) Novel wind generator magnetic driving system
US20100060002A1 (en) Wind turbine direct current control system and methods
JP2013126319A (en) Wind power generation device and wind power generation control method
US10738764B2 (en) High torque, low RPM horizontal axis wind turbine
Howlader et al. Output power leveling of a wind generation system using inertia of a wind turbine
Kermani et al. Stall control and MPPT for a wind turbine, using a Buck converter in a battery storage system
Soliman et al. Analysis of the dynamic behavior and LVRT capability of a DFIG using SDBR during grid disturbances
CN202645865U (en) Magnetic levitation wind generator
Kumar Modelling and simulation of low speed wind power generation system using cage type induction machine