NL1043526B1 - Double dipped enhanced biodegradable nitrile rubber glove - Google Patents
Double dipped enhanced biodegradable nitrile rubber glove Download PDFInfo
- Publication number
- NL1043526B1 NL1043526B1 NL1043526A NL1043526A NL1043526B1 NL 1043526 B1 NL1043526 B1 NL 1043526B1 NL 1043526 A NL1043526 A NL 1043526A NL 1043526 A NL1043526 A NL 1043526A NL 1043526 B1 NL1043526 B1 NL 1043526B1
- Authority
- NL
- Netherlands
- Prior art keywords
- nitrile rubber
- glove
- biodegradable
- agent
- layer
- Prior art date
Links
- 229920000459 Nitrile rubber Polymers 0.000 title claims abstract description 38
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000006065 biodegradation reaction Methods 0.000 claims description 52
- 229920001971 elastomer Polymers 0.000 claims description 47
- 239000005060 rubber Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims description 13
- 230000015556 catabolic process Effects 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 10
- 238000006731 degradation reaction Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 7
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- 239000002906 medical waste Substances 0.000 claims description 6
- 238000004132 cross linking Methods 0.000 claims description 5
- 229910052717 sulfur Inorganic materials 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 239000011787 zinc oxide Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 238000000855 fermentation Methods 0.000 claims 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims 3
- 238000000465 moulding Methods 0.000 claims 2
- 230000001133 acceleration Effects 0.000 claims 1
- 230000003139 buffering effect Effects 0.000 claims 1
- 230000004151 fermentation Effects 0.000 claims 1
- 150000004767 nitrides Chemical class 0.000 claims 1
- 239000002245 particle Substances 0.000 claims 1
- 239000013589 supplement Substances 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000002699 waste material Substances 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 description 28
- -1 alkali metal aluminates Chemical class 0.000 description 17
- 239000000126 substance Substances 0.000 description 14
- 229920003023 plastic Polymers 0.000 description 12
- 239000004033 plastic Substances 0.000 description 12
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 150000002241 furanones Chemical class 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 239000003963 antioxidant agent Substances 0.000 description 7
- 239000004626 polylactic acid Substances 0.000 description 7
- 239000002975 chemoattractant Substances 0.000 description 6
- 244000005700 microbiome Species 0.000 description 6
- 229920000747 poly(lactic acid) Polymers 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 239000011347 resin Substances 0.000 description 6
- 229920002988 biodegradable polymer Polymers 0.000 description 5
- 239000004621 biodegradable polymer Substances 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000003078 antioxidant effect Effects 0.000 description 4
- NTXGQCSETZTARF-UHFFFAOYSA-N buta-1,3-diene;prop-2-enenitrile Chemical compound C=CC=C.C=CC#N NTXGQCSETZTARF-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000035605 chemotaxis Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 241000228212 Aspergillus Species 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229920005615 natural polymer Polymers 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920002961 polybutylene succinate Polymers 0.000 description 3
- 239000004631 polybutylene succinate Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical class O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229940123361 Quorum sensing inhibitor Drugs 0.000 description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 229920001222 biopolymer Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- RHDGNLCLDBVESU-UHFFFAOYSA-N but-3-en-4-olide Chemical compound O=C1CC=CO1 RHDGNLCLDBVESU-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 230000000593 degrading effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 230000007071 enzymatic hydrolysis Effects 0.000 description 2
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 230000007483 microbial process Effects 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 229920000779 poly(divinylbenzene) Polymers 0.000 description 2
- 229920001610 polycaprolactone Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 229940075065 polyvinyl acetate Drugs 0.000 description 2
- 238000010058 rubber compounding Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- 241000235389 Absidia Species 0.000 description 1
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 241000186361 Actinobacteria <class> Species 0.000 description 1
- 241000223600 Alternaria Species 0.000 description 1
- 241000191412 Alternaria infectoria Species 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000171738 Arthrinium Species 0.000 description 1
- 241000134821 Aspergillus caesiellus Species 0.000 description 1
- 241000131314 Aspergillus candidus Species 0.000 description 1
- 241000131965 Aspergillus carneus Species 0.000 description 1
- 241000228193 Aspergillus clavatus Species 0.000 description 1
- 241000133597 Aspergillus deflectus Species 0.000 description 1
- 241000228197 Aspergillus flavus Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000132177 Aspergillus glaucus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000122824 Aspergillus ochraceus Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000228230 Aspergillus parasiticus Species 0.000 description 1
- 241000134912 Aspergillus penicillioides Species 0.000 description 1
- 241000228254 Aspergillus restrictus Species 0.000 description 1
- 241001465318 Aspergillus terreus Species 0.000 description 1
- 241000122818 Aspergillus ustus Species 0.000 description 1
- 241000203233 Aspergillus versicolor Species 0.000 description 1
- 241000223651 Aureobasidium Species 0.000 description 1
- 208000034309 Bacterial disease carrier Diseases 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 241001465178 Bipolaris Species 0.000 description 1
- 241000335423 Blastomyces Species 0.000 description 1
- 241001465180 Botrytis Species 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 240000000533 Capsicum pubescens Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241001619326 Cephalosporium Species 0.000 description 1
- 241000221955 Chaetomium Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- 241000222290 Cladosporium Species 0.000 description 1
- 241001149956 Cladosporium herbarum Species 0.000 description 1
- 241000346819 Cladosporium macrocarpum Species 0.000 description 1
- DBPRUZCKPFOVDV-UHFFFAOYSA-N Clorprenaline hydrochloride Chemical compound O.Cl.CC(C)NCC(O)C1=CC=CC=C1Cl DBPRUZCKPFOVDV-UHFFFAOYSA-N 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 201000007336 Cryptococcosis Diseases 0.000 description 1
- 241000221204 Cryptococcus neoformans Species 0.000 description 1
- 241000909206 Cryptostroma corticale Species 0.000 description 1
- 241000235555 Cunninghamella Species 0.000 description 1
- 241000223208 Curvularia Species 0.000 description 1
- 241000371644 Curvularia ravenelii Species 0.000 description 1
- RGHNJXZEOKUKBD-MGCNEYSASA-N D-galactonic acid Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-MGCNEYSASA-N 0.000 description 1
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 1
- 241001492222 Epicoccum Species 0.000 description 1
- 241001480035 Epidermophyton Species 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000427940 Fusarium solani Species 0.000 description 1
- 241000159512 Geotrichum Species 0.000 description 1
- 241000896533 Gliocladium Species 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 241000872577 Helicomyces Species 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 241000228402 Histoplasma Species 0.000 description 1
- 102000004195 Isomerases Human genes 0.000 description 1
- 108090000769 Isomerases Proteins 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 239000004594 Masterbatch (MB) Substances 0.000 description 1
- 241001598064 Memnoniella Species 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 241001480037 Microsporum Species 0.000 description 1
- 241001363490 Monilia Species 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 241001467460 Myxogastria Species 0.000 description 1
- 241000189150 Nigrospora Species 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 241000896238 Oidium Species 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 241001236817 Paecilomyces <Clavicipitaceae> Species 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- 241000222291 Passalora fulva Species 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 241000395955 Periconia Species 0.000 description 1
- 241001223281 Peronospora Species 0.000 description 1
- 208000031956 Phaehyphomycosis Diseases 0.000 description 1
- 201000011404 Phaeohyphomycosis Diseases 0.000 description 1
- 241001503951 Phoma Species 0.000 description 1
- 241000305299 Pithomyces Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000221535 Pucciniales Species 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 241000235402 Rhizomucor Species 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000223252 Rhodotorula Species 0.000 description 1
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000122799 Scopulariopsis Species 0.000 description 1
- 241001279813 Sepedonium Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241001674251 Serpula lacrymans Species 0.000 description 1
- 241000881765 Serratia ficaria Species 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 241000305302 Spegazzinia Species 0.000 description 1
- 241001567174 Sphaerospermopsis Species 0.000 description 1
- 241000894703 Sporoschisma Species 0.000 description 1
- 241001149962 Sporothrix Species 0.000 description 1
- 241001085826 Sporotrichum Species 0.000 description 1
- 241001279361 Stachybotrys Species 0.000 description 1
- 241000371621 Stemphylium Species 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 241000736854 Syncephalastrum Species 0.000 description 1
- 241000006364 Torula Species 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 241001121162 Trichocladium Species 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 241000223238 Trichophyton Species 0.000 description 1
- 241000601794 Trichothecium Species 0.000 description 1
- 241001495012 Tritirachium <Pucciniomycotina> Species 0.000 description 1
- 241000266300 Ulocladium Species 0.000 description 1
- 241000221561 Ustilaginales Species 0.000 description 1
- 241000082085 Verticillium <Phyllachorales> Species 0.000 description 1
- 241000607618 Vibrio harveyi Species 0.000 description 1
- 241000120737 Viscum fischeri Species 0.000 description 1
- 241001339206 Wallemia Species 0.000 description 1
- 229930194204 Wallemia Natural products 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- 230000008953 bacterial degradation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 229920000704 biodegradable plastic Polymers 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 229940071162 caseinate Drugs 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002361 compost Substances 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- BFMKFCLXZSUVPI-UHFFFAOYSA-N ethyl but-3-enoate Chemical compound CCOC(=O)CC=C BFMKFCLXZSUVPI-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000021312 gluten Nutrition 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920006158 high molecular weight polymer Polymers 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000003864 humus Substances 0.000 description 1
- 210000004276 hyalin Anatomy 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- BZZORYDPNKSSOZ-UHFFFAOYSA-L iron(2+);dicarbamodithioate Chemical compound [Fe+2].NC([S-])=S.NC([S-])=S BZZORYDPNKSSOZ-UHFFFAOYSA-L 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229940049920 malate Drugs 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N malic acid Chemical compound OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N n-hexadecanoic acid Natural products CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- BQHTWZRFOSRCCH-UHFFFAOYSA-L nickel(2+);dicarbamodithioate Chemical compound [Ni+2].NC([S-])=S.NC([S-])=S BQHTWZRFOSRCCH-UHFFFAOYSA-L 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 238000010943 off-gassing Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-L oxaloacetate(2-) Chemical compound [O-]C(=O)CC(=O)C([O-])=O KHPXUQMNIQBQEV-UHFFFAOYSA-L 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 239000005014 poly(hydroxyalkanoate) Substances 0.000 description 1
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 1
- 229920000141 poly(maleic anhydride) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920009537 polybutylene succinate adipate Polymers 0.000 description 1
- 239000004630 polybutylene succinate adipate Substances 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000903 polyhydroxyalkanoate Polymers 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 230000030786 positive chemotaxis Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000018612 quorum sensing Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/02—Direct processing of dispersions, e.g. latex, to articles
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D19/00—Gloves
- A41D19/0055—Plastic or rubber gloves
- A41D19/0058—Three-dimensional gloves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B42/00—Surgical gloves; Finger-stalls specially adapted for surgery; Devices for handling or treatment thereof
- A61B42/10—Surgical gloves
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/02—Copolymers with acrylonitrile
- C08L9/04—Latex
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2309/00—Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
- C08J2309/02—Copolymers with acrylonitrile
- C08J2309/04—Latex
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Textile Engineering (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Gloves (AREA)
Abstract
The present disclosure relates to double dipped enhanced biodegradable gloves and methods for the manufacture thereof. In the recent years, users more and more demand disposable products, such as hospita! gloves, to be in a certain extent biodegradable, in order to reduce the problems the disposable waste creates for the environment. A double dipped nitrile rubber glove comprising different relative amounts of a biodegradable agent in the glove layers is disclosed. 1043526
Description
Title : Double dipped enhanced biodegradable nitrile rubber glove Technical field and background: The present disclosure relates to double dipped enhanced biodegradable gloves and methods for the manufacture thereof. In the recent years, users more and more demand disposable products, such as hospital gloves, to be in a certain extent biodegradable, in order to reduce the problems the disposable waste creates for the environment. Biodegradable gloves are known in the prior art, such as disclosed in US2014/0065311, the contents of which disclosure are for ease of reading fully incorporated here within.
The definitions and all technical and scientific terms in the following description are identical as to those defined in US2014/0065311 (D1 = for example known as Showa Best Gloves with Eco Best Technology), this applies to terms such as for example "biodegradable", "ranges”, "polymer", "glove former" etc. etc.. However, to a certain extent, the in US2014/0065311 (D1) disclosed gloves are intended for dumping on ordinary landfills, and do not match the requirements as nowadays posed by European end-users such as hospitals, since most hospital waste is not ending in a landfill but finally fed into waste incinerators. As the cost for waste incineration is growing fast, up to and above 2000 Euro per ton of waste, a need has arisen for enhanced biodegradable hospital products, in particular for enhanced biodegradable gloves.
Recently, in some hospitals the waste including solids and liquids is centrally collected and shredded in a so called Pharmafilter shredder, the liquids/solids are than separated, followed by a water treatment for the liquids and for the solids followed by an anaerobic high temperature treatment {at around 60 degrees Celcius } for a few months, after which the solids, significantly reduced in mass, are incinerated.
Another disposable glove design is disclosed in US2010/0257657 (D2 = SmartHealth), wherein polylactic acid biodegradable gloves are the subject of disclosure. This document, in disclosing only PLA based gloves, is clearly leading away from the use of nitril rubber as a base material for the gloves. However it might be of some interest for the skilled person because of the disclosed multi layered approach (see fig. 3 in US2010/0257657, and fig. 7 for the production method), and because of the notion that document 1 in paragraph 29 that each layer of the polylactic acid (PLA) glove is being designed to comply with specific requirements for a given end-use application. Yet another biodegradable multi layer based glove is disclosed in US2013/0067635 (D3 = inteplast Group), for ethylene based gloves only. Again this disclosure is leading away from the commonly known nitril (butyl) rubber based gloves, but this publication is still of interest for the shown multi layer approach in general. The PLA (as in D2 = US2010/0257657) and ethylene (as in D3 = US2013/0067635) based gloves are deemed inferior to nitril rubber gloves, in particular in medical environments. For those reasons a skilled person is unlikely to consider the contents of these publications when trying to further improve the biodegradability of nitril rubber based gloves.
The term nitrile rubber in this application also includes so called soft nitrile rubber formulations, such as disclosed in EP0925329 (D4 = North Safety Products), wherein it is explained in more detail how crosslinking increases the strength and elasticity of the rubber.
Carboxylated nitrile rubbers can be chemically crosslinked in at least two ways: the butadiene subunits can be covalently crosslinked with sulfur/accelerator systems; and the carboxylated (organic acid) sites can be ionically crosslinked with metal oxides or salts. Sulfur crosslinks often result in large improvements in oil and chemical resistance. lonic crosslinks, resulting from, for example, the addition of zinc oxide to the rubber, result in a rubber having high tensile strength, puncture resistance, and abrasion resistance, as well as high elastic modulus (a measure of the force required to stretch a film of the rubber), but poor oil and chemical resistance.
Many currently available rubber formulations generally employ a combination of the two curing mechanisms. For example, in combination with sulfur and accelerators, carboxylated nitrile rubber manufacturers frequently recommend addition of 1-10 parts of zinc oxide per 100 parts of rubber (as is also disclosed in par. 129 and 130 in US2014/0065311 (= D1).
When zinc oxide is not employed, the curing time required to reach an optimum state of cure can be much longer and the curing may be less efficient. This means that the crosslinks are longer (more sulfur atoms per crosslink) and there may be a higher amount of sulfur that does not crosslink polymer chains. The result can be a less-effectively cured rubber that has lowered heat resistance and less chemical resistance.
2
However, ionic crosslinking often increases the stiffness of an article made from the rubber. This is a disadvantage for applications in which a softer rubber is needed. For example, surgical gloves made of soft rubbers can provide greater tactile sensitivity for the wearer, which is desirable to improve the surgeon's "feel" during operations and to prevent fatigue of the hands.
Amore comfortable nitrite glove that is easier to stretch, i.e. has lower elastic modulus, can be made using a polymer which contains less acrylonitrile or by crosslinking the polymer to a lesser degree. These changes, however, often compromise strength, chemical resistance, or both, resulting in articles that are unsuitable for many applications. Accordingly, a soft rubber having strength and chemical resistance similar to stiffer rubbers is highly desirable.
US-A-2,868,754 discloses the formation and use of carboxyl-containing elastomers. The problems associated within the use of zinc oxide curing agents are overcome in this document by using alkali metal aluminates. Another method includes the steps of combining a nitrile latex base with a stabilizing agent, such as ammonium caseinate, and adjusting the pH of the nitrile latex to about 8.5 - 10.0 to yield a basic nitrile rubber. The basic nitrile rubber is contacted with a substantially metallic-oxide-free sulphur crosslinking agent and with at least one accelerator, to form a nitrile rubber composition. That composition is substantially free of metallic oxide.
Another known biodegradable nitril rubber glove is known under the brand name Powerform S6 Ecotek. These gloves use a single layered glove design made of nitril rubber mixed with a naturally occurring microorganism, which makes them suitable for industrial applications.
One the latest relevant disclosures on biodegradable elastomeric compositions, including nitril rubber, is given in WO2019/074354. The therein stated disclosure for elastomers in general does form some relevant prior art but also indicates the rather large mental step the present inventors had to take in order to arrive at the nitril rubber gloves forming the subject matter as disclosed in the present claims. The objective of this invention is to prepare nitril rubber based gloves, such as for example disclosed in US2014/0065311 (= D1), in particular also including the soft nitril rubber gloves such as those disclosed in EP0925329 (= D4), with a strongly enhanced biodegradable functionality, complying to all up to date generally known norms and standards, such as the norms and standards listed in US2014/0065311, for hospital or medical examination gloves such as for strength and chemical resistance, but as well as for the latest 2019 biodegradation norms and standards.
3
For this application, more focus will further be placed on the so called double dipped gloves, such as disclosed in US2007/0033704 (=D5, Encompass Medical Supplies), wherein a method of making a glove is described dipping a glove form into two different formulations, with different amounts of covalent and ionic cross linkers.
In US2007/0033704 no link whatsoever is made to obtaining a biodegradable NBR nitril rubber glove, but after extensive testing applicant has found that in particular this double dipping method of making a glove, when adapted and modified, is in particular suited for obtaining a biodegradable nitril rubber glove with acceptable and comfortable stress retention features.
Furthermore, as the trend is towards thinner nitril rubber gloves, for less cost and less pollution, it has been found by surprise the double dipped versions of biodegradable nitril rubber gloves perform better as initially expected in the mechanical puncture tests, even when loaded with significant biodegradable agent amounts which is required in order to get acceptable biodegradability results.
NBR nitril rubber is incomparable to, for example, PLA based materials, and requires a total novel approach concerning the additives loading.
It is to be understood, that the foregoing general and following detailed description are exemplary and explanatory only and are in no way not restrictive to the invention, as solely defined in the claims.
Description: After own extensive testing of the biodegradable gloves produced following the US2014/0065311 disclosure, it appeared most functionalities could be met within norms and standards, however in particular not for the aspect that these gloves shall degrade much faster as is required by modern hospital use.
A normal solution would be, to add a bit more biodegrading agent, however was shown only possible to a very limited extent for strength and other required functional requirements.
Knowing the double dipped nitril rubber gloves disclosed in US2007/0033704, testing started for how to develop a more enhanced, more biodegradable nitril rubber glove, using the combined know how supplied in the documents US2014/0065311 and US2007/0033704. While on a normal landfill the outside of the glove remains outside forever, the difference with the recent practice in especially designed hospital waste treatment systems (based on for example EP2859952 and EP3015750 Pharmafilter B.V.) can be used to a common advantage to create an improved biodegradability of the nitril rubber glove. 4
Because in modern hospital waste disposal systems a shredder will shred the complete glove in pieces, with these pieces sized in the cm range {so pieces with dimensions of around 0.5 to 5 cm large), an inside and outside of the glove will not exist anymore once anaerobic digestion (storage) at around 60 degrees Celsius begins to activate the biodegradable agent and the NBR nitril rubber starts to degrade, under emission of gasses sucked away (which might be used as biogas for heating purposes).
By adding relatively much more biodegrading agent into a glove outer layer, where initially it does not have too much a detrimental effects on the glove functional requirements (for example, sharp nails on the inside), and keeping the inner layer filled with less biodegrading agent as an additive, overall glove biodegradation is significantly enhanced under modern hospital waste treatment condition, while keeping a fully functional nitril rubber glove, displaying an uncompromised quality performance when in use. By creating two different layers, each having significantly different biodegradation agent, a stronger double dipped nitril rubber glove can be created which is performing well in biodegrading after use. Against common wisdom, this invention adds significantly more biodegradable agent to the nitril rubber polymer as is conventionally known and disclosed, such as in US2014/0065311 (= D1, Showa), wherein 2 % of a biodegradable agent as additive is clearly regarded as upper limit. By additionally applying a double dipping technique two mechanically slightly differently behaving layers are created which has a surprising positive effect on in particular the needle puncture resistance, leading to an acceptable mechanical performance as required by the standards (such as the ASTM), but with a significantly higher biodegradable agent load creating a much better biodegradability. As the known biodegrading agents are not so much costly, in practice the additional cost for the end customer can be limited to amounts of a maximum of 2 dollar per 1000 gloves, this is deemed to be still acceptable for a requirement expected to be legally mandatory in the not so far future. Example: A nitril rubber glove has been prepared, wherein first an inner nitril rubber layer comprising 2 % (by weight, which is considered very high by the skilled person) of a biodegradable agent (in this case: ECM Biofilms Masterbatch pellets, comprising Low Density Polyethylene pellets with additive ingredients of Organoleptic-Organic chemical names / cultured colloids, Harmonized system based Schedule B code ECM6.0404 is 3901.10.5020) is first produced around a glove former, followed by a second outer layer on the glove former applying a nitril rubber comprising 5 % (by dry parts, so significantly more than in the inner layer) of the same biodegradable agent composition.
5
The effect on the biodegradation, as per ASTM D5511 "Standard test method for determining anaerobic biodegradation of plastic materials under high-solids anaerobic digestion conditions", of an, as in example 1, produced glove has been tested in a real life hospital environment, using a "Pharmafilter B.V." shredding first, followed by a 6 week anaerobic digester storage at 60 degrees Celsius. The effects were surprisingly convincing, as was furthermore proven by a more than 80 % larger CO2 production in the resulting off-gassing. Biodegradability in the ASTM D5511 test came at least 25 % higher as compared to the percentage biodegradation of the corresponding reference material (using for example gloves known in the market place as Showa Best Gloves with Eco Best Technology, apparently based on US2014/0065311 technology). But what was even more important was the strongly improved digester biodegradation at temperatures of 60 degrees Celsius, after 60 days (compared to the Showa Best Gloves) an improval rate of over 75 % in biodegradation effect was measured.
Wherein after 60 days in the digester (after shredding) the Showa Best gloves with Eco Best Technology showed a biodegradation in the range of 4 to 5 %, the gloves according to the invention were at least 6 to 9 % biodegraded, with potentially a much further degradation after 300 or 900 days in the range of 30 up to 85 % overall biodegradation.
Other components such as a swelling agents, or other chemo attractant agents, can/may be added in small amounts for enhancing the biodegradation effects, but were regarded not yet necessary for this comparative example. Other chemistries, such as alkali stabilizers, as indicated in US2014/0065311, as included in its entirety for reference again, can be included in minor quantities in any of the glove layers for the usual and obvious functional reasons (this also includes, if required, curing agents). Any of the biodegradable components mentioned in US2014/0065311 can be mixed into another blend of a suitable biodegradable agent, and mixed into one the glove layers as per claim 1 and any of the dependent claims.
From document US2014/0065311, for being clear about what is regarded a biodegradable agent as defined ín this application, a non-exhaustive listing of possible biodegradable agents is hereby listed, suitable to be used as components in order to enhance the degradation of the nitril rubber glove after use: Biodegradation is generally considered as consisting of either enzyme-catalyzed hydrolysis, non-enzymatic hydrolysis, metabolic action, or both. The enzymes may be either endoenzymes which 6 cleave the internal chain linkages within the chain or exoenzymes which cleave terminal monomer units sequentially. Biodegradation is a functional decay of material, e.g. loss of strength, substance, transparency, or good dielectric properties where it is known to be identifiable with exposure of the material to a living environment, which may itself be very complex, and the property loss may be attributable to physical or chemical actions as first steps in an elaborate chain of processes. A biodegradable polymer is a high molecular weight polymer that, owing to the action of micro- and/or macroorganisms or enzymes, degrades to lower molecular weight compounds. Natural polymers are by definition those which are biosynthesized by various routes in the biosphere. Proteins, polysaccharides, nucleic acids, lipids, natural rubber, and lignin, among others, are all biodegradable polymers, but the rate of this biodegradation may vary from hours to years depending on the nature of the functional group and degree of complexity. Biopolymers are organized in different ways at different scales. This hierarchical architecture of natural polymers allows the use of relatively few starting molecules (i.e. monomers), which are varied in sequences and conformations at molecular-, nano-, micro-, and macroscale, forming truly environmentally adaptable polymers.
On the other hand, the repetitive units of synthetic polymers are hydrolyzable, oxidizable, thermally degradable, or degradable by other means. Nature also uses these degradation modes, e.g., oxidation or hydrolysis, so in that sense there is no distinction between natural or synthetic polymers. The catalysts promoting the degradations in nature (catabolisms) are the enzymes, which are grouped in six different classes according to the reaction catalyzed. These classes include oxidoreductase for catalyzing redox reactions, transferase for catalyzing transfer of functional group reactions, hydrolase for catalyzing hydrolysis, lyase for catalyzing addition to double bond reactions, isomerase for catalyzing isomerization and ligase for catalyzing formation of new bonds using ATP.
Biodegradation of oxidizable polymers is generally slower than biodegradation of hydrolyzable ones.
Even polyethylene, which is rather inert to direct biodegradation, has been shown to biodegrade after initial photo-oxidation. An oxidized polymer is more brittle and hydrophilic than a non-oxidized polymer, which also usually results in a material with increased biodegradability.
For example, by combining a nickel dithiocarbamate (photo antioxidant) with an iron dithiocarbamate (photo proxidant), a wide range of embrittlement times may be obtained. 7
The gloves disclosed herein provides for increased susceptibility to biodegradation of nitril rubber by means of additives including a biopolymer. In this way a nitril rubber polymer blend is obtained that is more susceptible to biodegradation. A filler might be added to a composition to be added to a polymer thereby increasing the biodegradability. For relevant fillers, reference is also made to claims 8, 9 and 10 as stated in W02019/074354. Starch is of course one of the more popular fillers (as in Starch-graft-acrylonitrile ANS), however also collagen is a known filler in combination with nitril rubber, as well as is keratine. Microbial or enzymatic attack of pure aromatic polyester is increased by exposure to certain microbes, for example Trichosporum, athrobacteria and Asperyillus negs.
Aliphatic polyester degradation is seen as a two-step process: the first is depolymerization, or surface erosion. The second is enzymatic hydrolysis which produces water-insoluble intermediates that can be assimilated by microbial cells.
Polyurethane degradation may occur by fungal degradation, bacterial degradation and degradation by polyurethane enzymes.
In one aspect, the biodegradation agent can be a polymer, such as a biodegradable polymer. The polymers can be homo- or co-polymers. In one aspect, the polymer is a homopolymer. In another aspect, the polymer is a co-polymer. Co-polymers include AB and ABA type co-polymers. In one aspect, the polymer comprises polylactic acid, poly(lactic-co-glycolic acid), polypolypropylene carbonate, polycaprolactone, polyhydroxyalkanoate, chitosan, gluten, and one or more aliphatic/aromatic polyesters such as polybutylene succinate, polybutylene succinate-adipate, polybutylene succinate-sebacate, or polybutylene terephthalate-coadipate, or a mixture thereof.
In one aspect the polymer is polybutylene succinate. In one aspect, the polybutylene succinate can have a number average molecular mass (Mn) from 1,000 g/mole to 100,000 g/mole. The biodegradation agent may comprise a carboxylic acid compound. The biodegradation agent may comprise a chemo attractant compound; a glutaric acid or its derivative; a carboxylic acid compound with chain length from 5-18 carbons; a polymer; and a swelling agent.
The biodegradation agent may further comprise a microbe capable of digesting the acrylonitrile butadiene based (nitril) rubber. 8
The polymer that may be comprised in the biodegradation agent can be selected from the group consisting of: polydivinyl benzene, ethylene vinyl acetate copolymers, polyethylene, polypropylene, polystyrene, polyterephthalate, polyesters, polyvinyl chloride, methacrylate, nylon 6, polycarbonate, polyamide, polychloroprene, acrylonitrile butadiene based rubber, and any copolymers of said polymers, or a combination thereof. The biodegradation agent may further comprise a compatibilizing additive. The biodegradation agent may further comprise a carrier resin. Suitable carrier resins include, but are not limited to, polydivinyl benzene, ethylene vinyl acetate copolymers, maleic anhydride, and acrylic acid with polyolefins, or a combination thereof.
The biodegradation agent may further comprise a chemotaxis agent to attract microbes. Suitable chemotaxis agents comprise, but are not limited to, a sugar or a furanone. It can be selected from 3,5 dimethylyentenyl dihydro 2(3H)furanone isomer mixtures, emoxyfurane and N-acylhomoserine lactones. The chemotaxis agent may comprise coumarin and/or coumarin derivatives.
Without being bound by theory, it is believed that the biodegradation agent enhances the biodegradability of otherwise non-biodegradable plastic products through a series of chemical and biological processes when disposed of in a microbe-rich environment, such as a biologically active landfill or a digester tank held at elevated temperatures in between 50 to 70 deg C. The biodegradation agent causes the plastic to be an attractive food source to certain soil microbes, encouraging the plastic to be consumed more quickly than plastics without the biodegradation agent.
The biodegradation agent requires the action of certain enzymes for the biodegradation process to begin, so plastics containing the biodegradation agent will not start to biodegrade during the intended use of the materials and gloves described herein. For example, the microbes can secrete enzymes that break down the polymers into components that are easily consumed by microbes. Typically, when an organic material biodegrades in an anaerobic environment, the by-products are: humus, methane and carbon dioxide. It is believed that when plastics containing the biodegradation agent are biodegraded to the same by-products as an organic material.
Biodegradation processes can affect polymers in a number of ways. Microbial processes that can affect polymers include mechanical damage caused by growing cells, direct enzymatic effects leading to breakdown of the polymer structure, and secondary biochemical effects caused by excretion of 9 substances other than enzymes that may directly affect the polymer or change environmental conditions, such as pH or redox conditions. Although microorganisms such as bacteria generally are very specific with respect to the substrate utilized for growth, many are capable of adapting to other substrates over time. Microorganisms produce enzymes that catalyze reactions by combining with a specific substrate or combination of substrates. The conformation of these enzymes determines their catalytic reactivity towards polymers. Conformational changes in these enzymes may be induced by the changes in pH, temperature, and other chemical additives. Microbes that may assist in biodegradation are psychrophiles, mesophiles, thermophiles, actinomycetes, saprophytes, absidia, acremonium, alternaria, amerospore, arthrinium, ascospore, aspergillus, aspergillus caesiellus, aspergillus candidus, aspergillus carneus, aspergillus clavatus, aspergillus deflectus, aspergillus flavus, aspergillus fumigatus, aspergillus glaucus, aspergillus nidulans, aspergillus ochraceus, aspergillus oryzae, aspergillus parasiticus, aspergillus penicilloides, aspergillus restrictus, aspergillus sydowi, aspergillus terreus, aspergillus ustus, aspergillus versicolor, aspergillus/penicillium-like, aureobasidium, basidiomycetes, basidiospore, bipolaris, blastomyces, B.
borstelensis, botrytis, candida, cephalosporium, chaetomium, cladosporium, cladosporium fulvum, cladosporium herbarum, cladosporium macrocarpum, ciadosporium sphaerospermum, conidia, conidium, conidobolus, Cryptococcus neoformans, cryptostroma corticale, cunninghamella, curvularia, dreschlera, epicoccum, epidermophyton, fungus, fusarium, fusarium solani, geotrichum, gliocladium, helicomyces, helminthosporium, histoplasma, humicula, hyaline mycelia, memnoniella, microsporum, mold, monilia, mucor, mycelium, myxomycetes, nigrospora, oidium, paecilomyces, papulospora, penicillium, periconia, perithecium, peronospora, phaeohyphomycosis, phoma, pithomyces, rhizomucor, rhizopus, rhodococcus, rhodotorula, rusts, saccharomyces, scopulariopsis, sepedonium, serpula lacrymans, smuts, spegazzinia, spore, sporoschisma, sporothrix, sporotrichum, stachybotrys, stemphylium, syncephalastrum, Thermononespore fusca DSM43793, torula, trichocladium, trichoderma, trichophyton, trichothecium, tritirachium, ulocladium, verticillium, wallemia and yeast.
One or several furanone compounds combined can act as chemo attractants for bacteria and or as odorants for the decomposing or degrading polymer. Some furanones, particularly certain halogenated furanones are quorum sensing inhibitors. Quorum sensing inhibitors are typically low-molecular-mass molecules that cause significant reduction in quorum sensing microbes. In other words, halogenated furanones kill certain microbes. Halogenated furanones prevent bacterial colonization in bacteria such 10 as V. fischeri, Vibrio harveyi, Serratia ficaria and other bacteria. However, the natural furanones are ineffective against P. aeruginosa, but synthetic furanones can be effective against P. aeruginosa.
Some furanones, including but not limited to those listed below, can be chemo attractant agents for bacteria. Suitable furanones include but are not limited to: 3,5 dimethylyentenyl dihydro 2(3H)furanone isomer mixtures, emoxyfurane and N-acylhomoserine lactones, or a combination thereof.
Bacteria that have shown to attract to the furanone compounds listed above include, but are not limited to C. violaceum.
Other chemo attractant agents include sugars that are not metabolized by the bacteria. Examples of these chemo attractant agents may include but are not limited to: galactose, galactonate, glucose, succinate, malate, aspartate, serine, fumarate, ribose, pyruvate, oxalacetate and other L-sugar structures and D-sugar structures but not limited thereto. Examples of bacteria attracted to these sugars include, but are not limited to Escherichia coli, and Salmonella. In a preferred embodiment the sugar is a non-estererfied starch.
The biodegradation agents (such as delivered under the Brand names of Enso Plastics) are combined with an acrylonitrile butadiene based rubber. When combined in small quantities with any of acrylonitrile butadiene based rubber, the resulting gloves become biodegradable while maintaining their desired characteristics. The resulting materials and products (i.e. gloves) made therefrom exhibit the same desired mechanical properties, and have effectively similar shelf-lives as products without the additive, and yet, when disposed of, are able to at least partially metabolize into inert biomass by the communities of anaerobic and aerobic microorganisms commonly found almost everywhere on Earth. This biodegradation process can take place aerobically or anerobically. It can take place with or without the presence of light. Traditional polymers and products therefrom are now able to biodegrade in land fill and compost environments within a reasonable amount of time as defined by the EPA to be 30 to 50 years on average.
The biodegradation agents increase, when added, the biodegradation rate of the disclosed gloves. The gloves can be degraded into an inert humus-like form that is harmless to the environment. An example of attracting microorganisms through chemotaxis is to use a positive chemotaxis, such as a scented polyethylene terephthalate pellet, starch D-sugars not metabolized by the microbes or furanone that attracts microbes or any combination thereof.
11
The biodegradation process might begin with one or more proprietary swelling agents that, when combined with heat and moisture, expands the plastics’ molecular structure. After the one or more swelling agents create space within the plastic's molecular structure, the combination of bio-active compounds discovered after significant laboratory trials attracts a colony of microorganisms that break down the chemical bonds and metabolize the plastic through natural microbial processes. The biodegradation agent might comprise a furanone compound, a glutaric acid, a hexadecanoic acid compound, a polycaprolactone polymer, a carrier resin to assist with placing the additive material into the polymeric material in an even fashion to assure proper biodegradation. The biodegradation agent can also comprise organoleptic organic chemicals as swelling agents i.e. natural fibers, cultured colloids, cyclo-dextrin, polylactic acid, etc.
The carrier resin may be selected from, but is not limited to the group of: ethylene vinyl acetate, poly vinyl acetate, maleic anhydride, and acrylic acid with polyolefins. The biodegradation agent may further comprise dipropylene glycol.
The biodegradation agent may be incorporated in the polymers described herein by, for example, granulation, powdering, making an emulsion, suspension, or other medium of similar even consistency. The biodegradation agent may be blended into the polymeric material just before sending the nitril rubber material to the forming machinery for making the gloves.
Any carrier resin may be used (such as poly-vinyl acetate, ethyl vinyl acetate, etc.) where poly olefins or any plastic material that these carrier resins are compatible with can be combined chemically and allow for the dispersion of the additive.
The biodegradation agent may comprise one or more antioxidants that are used to control the biodegradation rate. Antioxidants can be enzymatically coupled to biodegradable monomers such that the resulting biodegradable polymer retains antioxidant function. Antioxidant-couple biodegradable polymers can be produced to result in the antioxidant coupled polymer degrading at a rate consistent with an effective administration rate of the antioxidant. Antioxidants are chosen based upon the specific application, and the biodegradable monomers may be either synthetic or natural.
An exemplary biodegradation agent may comprise the organic lipid based SR5300 product available from ENSO Plastics of Mesa, Ariz. 12
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the specific gloves described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims.
13
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1043526A NL1043526B1 (en) | 2019-12-30 | 2019-12-30 | Double dipped enhanced biodegradable nitrile rubber glove |
PCT/NL2020/000019 WO2021137696A1 (en) | 2019-12-30 | 2020-12-22 | Double dipped enhanced biodegradable nitrile glove |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1043526A NL1043526B1 (en) | 2019-12-30 | 2019-12-30 | Double dipped enhanced biodegradable nitrile rubber glove |
Publications (1)
Publication Number | Publication Date |
---|---|
NL1043526B1 true NL1043526B1 (en) | 2021-09-06 |
Family
ID=74191832
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NL1043526A NL1043526B1 (en) | 2019-12-30 | 2019-12-30 | Double dipped enhanced biodegradable nitrile rubber glove |
Country Status (2)
Country | Link |
---|---|
NL (1) | NL1043526B1 (en) |
WO (1) | WO2021137696A1 (en) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL99606C (en) | 1955-06-29 | |||
US6031042A (en) | 1996-06-20 | 2000-02-29 | North Safety Products Inc. | Soft nitrile rubber formulation |
US7730554B2 (en) | 2005-08-12 | 2010-06-08 | Encompass Medical Supplies, Inc. | Double dipped gloves |
US20070207282A1 (en) * | 2006-03-01 | 2007-09-06 | Hamann Curtis P | Polylactic Acid Gloves and Methods of Manufacturing Same |
US20100257657A1 (en) | 2006-03-01 | 2010-10-14 | Smarthealth, Inc. | Polylactic acid gloves and methods of manufacturing same |
US9084445B2 (en) | 2011-09-15 | 2015-07-21 | Inteplast Group, Ltd. | Disposable gloves and glove material compositions |
US20140065311A1 (en) | 2012-08-30 | 2014-03-06 | Showa Best Glove, Inc. | Biodegradable compositions, methods and uses thereof |
NL2011600C2 (en) | 2013-10-11 | 2015-04-14 | Pharmafilter B V | METHOD AND DEVICE FOR CRUSHING WASTE. |
EP3015750B1 (en) | 2014-10-31 | 2019-10-23 | Pharmafilter B.V. | Device, method and system for shredding and disposing of waste |
WO2019074354A1 (en) | 2017-10-09 | 2019-04-18 | Muthusamy Avadiar | A biodegradable elastomeric film composition and method for producing the same |
CN108250471A (en) * | 2017-12-31 | 2018-07-06 | 镇江华扬乳胶制品有限公司 | A kind of degradation environment protection rubber gloves and preparation method thereof |
-
2019
- 2019-12-30 NL NL1043526A patent/NL1043526B1/en not_active IP Right Cessation
-
2020
- 2020-12-22 WO PCT/NL2020/000019 patent/WO2021137696A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2021137696A1 (en) | 2021-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2013308739C1 (en) | Biodegradable compositions, methods and uses thereof | |
US20140065311A1 (en) | Biodegradable compositions, methods and uses thereof | |
US9382416B2 (en) | Chemical additives to make polymeric materials biodegradable | |
US8513329B2 (en) | Chemical additives to make polymeric materials biodegradable | |
EP3233995B1 (en) | Plastic compound and preparation process | |
Brodhagen et al. | Biodegradable plastic agricultural mulches and key features of microbial degradation | |
JP5500823B2 (en) | Thermoplastic elastomer composition | |
JP2010508425A5 (en) | ||
Tiwari et al. | Recent development of biodegradation techniques of polymer | |
NL1043452B1 (en) | Enhanced biodegradable nitrile rubber glove | |
NL1043526B1 (en) | Double dipped enhanced biodegradable nitrile rubber glove | |
US20230354935A1 (en) | Enhanced biodegradable nitrile rubber glove and methods for the manufacture thereof | |
JP3345630B2 (en) | Biodegradable resin composition | |
KR20240114318A (en) | Biodegradable packaging material for low temperature food and manufacturing method therof | |
HK1137189B (en) | Chemical additives to make polymeric materials biodegradable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM | Lapsed because of non-payment of the annual fee |
Effective date: 20240101 |