[go: up one dir, main page]

NL1043209B1 - Cryogenic modular 3 DoF vibration isolator - Google Patents

Cryogenic modular 3 DoF vibration isolator Download PDF

Info

Publication number
NL1043209B1
NL1043209B1 NL1043209A NL1043209A NL1043209B1 NL 1043209 B1 NL1043209 B1 NL 1043209B1 NL 1043209 A NL1043209 A NL 1043209A NL 1043209 A NL1043209 A NL 1043209A NL 1043209 B1 NL1043209 B1 NL 1043209B1
Authority
NL
Netherlands
Prior art keywords
translation
force
modules
frame
stiffness
Prior art date
Application number
NL1043209A
Other languages
Dutch (nl)
Inventor
Hubertus Leonardus Mathias Marie Janssen Ir
Bartholomeus Catharina Thomas Bree Van Ir
Willem Hans Trines Robin
Original Assignee
Jpe
Hubertus Leonardus Mathias Marie Janssen Ir
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jpe, Hubertus Leonardus Mathias Marie Janssen Ir filed Critical Jpe
Priority to NL1043209A priority Critical patent/NL1043209B1/en
Application granted granted Critical
Publication of NL1043209B1 publication Critical patent/NL1043209B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/046Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means using combinations of springs of different kinds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/063Negative stiffness

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

The invention concerns a modular vibration isolator that will attenuate base vibrations along 3 orthogonal 5 translational axes, specially designed for use in a cryogenic environment Many experiments in a cryogenic environment need objects to be positioned with high resolution, d own to the nanometer or even fractions of that. Base vibrations, for instance having 10 their origin in seismic noise, cryocooler pumps or machinery, will have a negative effect on the object position stability. The solution is placing the experiment on the platform of a vibration isolator that will start to attenuate base vibrations above the so- 15 called cut-off frequency. In order to reach cryogenic temperatures at the location of the experiment such a vibration isolator must incorporate a path of high thermal conductivity between the cold base and the to be cooled platform. Since many 20 cryogenic experiments involve magnetic fields it is also mandatory for the vibration isolator to be non-magnetic. 1043209

Description

Cryogenic modular 3DoE vibration isolator The invention concerns a modular vibration isolator that will attenuate base vibrations along 3 orthogonal translational axes, specially designed for use in a cryogenic environment. Many experiments in a cryogenic environment need objects to be positioned with high resolution and high position stability, down to the nanometer or even fractions of that. Base vibrations, for instance having their origin in seismic noise, cryocooler pumps or machinery, will have a negative effect on the object position stability. The solution is placing the experiment on the platform of a vibration isolator that will start to attenuate base IS vibrations above the so-called cut-off frequency.
In order to reach cryogenic temperatures at the location of the experiment such a vibration isolator must incorporate a path of high thermal conductivity between the cold base and the to be cooled platform. Since many cryogenic experiments involve magnetic fields it is also mandatory for the vibration isolator to be non-magnetic, The exact nature of this invention, as well as its objectives become clear in the accompanying drawings wherein: Fig.l Is a side view of a single axis vibration isolator module according the invention.
Fig.2 Shows a side view of how 3 single axis modules are configured into a 3 axes vibration isolator system with orthogonal axes according the invention.
Fig.3 Shows a top view of how 3 single axis modules are configured inte a 3 axes vibration isolator system with orthogonal axes according the invention.
A single axis vibration isolator module is depicted in figure 1. The frame 1 is rigidly connected to a cold and vibrating base and is connected via a series of elastic elements Sl and S2 and rigid intermediate body 3 to the table 2. Shaping the springs Sl and 82 as leaf springs will allow the table 2 to translate along the T-axis while constrained in all other directions. The range of motion is limited by the gaps Gl. The table 2 is effectively a mass on the springs Sl and S2, resuliing in a resonance freguency § = /{(Z2ay*sqri{kim}, as described by a standard second order mass-spring system, with m denotes the mass of table 2 and k denotes the combined stiffness of springs 81 and 82.
Base vibrations along the T-axis with freguencies above this frequency T are reduced in amplitude at the location of table 2. For this reason, frequency f is often referred to as the cut-off frequency.
Reducing the cut-off frequency by increasing the mass m or reducing the stiffness k is desired, but in practice limited by boundary conditions from machining, volume, robustness Or costs.
Another method of reducing the cut-off frequency is adding a force F2 on the table 2 that counteracts the force Fl having its origin in the stiffness k. This means that ¥2 must push the table 2 away from T=0 when not at T=0. This effect is also known as a negative stiffness.
Introducing the negative stiffness is achieved by using a spring clement S8 with high axial stiffness but low stiffness in the direction T.
The element S88 is under a compressive load FS from tension spring S3 via the lever L2 having a flexure pivot point S7 with low rotational stiffness k7. This force F8 will have a component along the T-axis when the table is not in position T=0. Keeping the lever ratio {B+A}/A greater than 1 will reduce the influence of the spring stiffness k3, and pivot stiffness k7, thereby also reducing non linearities in the force F2. Introducing the possibility, in general via a screw Tl on S3, to tune the force F2 will allow a near perfect counterbalancing of Fl such that table 2 has virtually no position preference along
1§ the T-axis and thereby no position preference with respect to frame 1, thus effectively having a near zero cut-off frequency.
Any external force F3 acting on table 2 along the T-axis will now move table 2 against one of the end stops at
Gl.
The constant component of such a force along the T- axis can be counterbalanced by introducing a spring element S4 with high axial stiffness.
The element S4 is under an axial load F4 from spring $6 via the lever Ll having a flexure pivot point SS with low rotational stiffness k5. Keeping the lever ratio C/D greater than 1 will reduce the influence of the spring stiffness ké6, and pivot stiffness k5, thereby also reducing non linearities in the force F4, Introducing the possibility, in general via a screw T2 on S6, to tune the force F4 will allow a near perfect counterbalancing of F3 such that table 2 can be positioned in its neutral position T=0,
Combining 3 single axis vibration isolation modules as depicted in figures 2 and 3 will isolate platform 12 along 3 orthogonal translation axes Ti, T2 and T3 with respect to the cold and vibrating base 11. Each of the modules Mi, M2 and M3 is connected via its frame 1 to the vibrating base ll of the system.
The axes Ti, T2 and T3 match the respective Taxis of the 3 identical modules MI, M2 and M3, each of which is uniquely oriented with its axis T perpendicular to one of the 3 planes P.
The planes P are defined by 3 planes of a cube intersecting in one of the cube corner points and this cube is placed with the body diagonal through that mutual corner point collinear with the axis z of the system.
Each of the modules MI, M2 and M3 is
IS connected to the platform 12 via 2 elastic elements R, each being stiff along their longitudinal axis only and connected to table 2 of the module via a connection C, such that the elements R are not colinear and are both parallel to translation axis T of that module,
Many experiments on platform 12 will require electrical connections between the base 11 and platform 12. e.g. for operation of positioners and sensors.
The number of contacts can become significant and the electrical wiring 3 as schematically depicted in figure 2, may become a source of vibrations to the platform 12 for 3 reasons, Firstly, because the wires are typically routed with multiple bends to make a low stiffness coupling to the platform 12 along the axes Ti, TZ and T3 and as a
3D result they also become long, heavy and voluminous.
The practical effect of this is that they will have a low internal resonance frequency, because of their high mass versus stiffness ratio, and will be excited by matching frequencies in the vibrating base Il.
As a result, the platform 2 will experience parasitic vibrations also.
Secondly because the combined wiring will introduce both a stiffness and a load that are
5 undefined and variable, especially when cables are deforming when the platform 12 moves with respect to base 11. The delicate balances that were set to get a low cut-off frequency and to place the modules in their neutral position can easily be disturbed.
Thirdly the individual wires will be in contact and will have relative motion when the platform 12 moves with respect to base 11. The resulting friction forces are undefined and will cause parasitic vibrations of the platform,
A great improvement of all 3 problems can be achieved by implementing a so-called flexible printed circuit board on at least one of the modules, as schematically depicted by FPCB in figure 2. The FPCB with multiple electrical lines has a very thin sheet like cross section and is stiff along its length, The FPCB is connected to frame | of a module, represented by screw T3 and connected to table 2 of ihat module, represented by screw T4. A single and relatively short bend between T3 and T4 is now sufficient to overcome the relative motion along axis T between T3 and T4 without introducing a significant load or stiffness along the T axis.
The practical effect of this is that firstly internal resonances of the electrical connections are greatly increased because of the improved mass versus stiffness ratio, secondly their stiffness and load have become much more predictable because of the well-defined position, shape and deformation of the FPCB and thirdly friction forces are eliminated because of the monolithic behaviour of the FPCB. The described 3 axes vibration isolation system will work in normal ambient conditions but the intended use in an ultra-high vacuum at cryogenic temperatures down to the millikelvin level requires additional specifie requirements. The first is that it is mandatory to have a high thermal conductivity between the platform 12 and the base 11, without compromising the vibration isolation performance. The typical solution is very similar to the above described use of individual wires for the electrical connections. Namely to connect a flexible and conductive copper braid 3, as schematically 1§ depicted in figure 2, made of multiple thin strands or sheets. Such a braid is not a solution here for the same 3 reasons observed for the electrical connections: low internal resonance frequencies, introducing both a stiffness and a load that is undefined and variable, individual strands or sheets will be in contact and will result in undefined friction forces. The solution is to make a high thermal conductivity path in the isolator modules themselves by machining at least the following features as a single monolithic copper part; frame 1, table 2, intermediate body 3 and springs Sl and S82. And at least the following additional parts must be made of copper: connections C, rods R, base 11 and platform 12. The second requirement is that the system is non- magnetic. The abovementioned use of copper is compatible with this requirement. Other parts of the system can be made of non-magnetic materials also.
1043209 eee

Claims (10)

CONCLUSIESCONCLUSIONS 1.De uitvinding betreft een inrichting met het kenmerk dat: Een zogenoemde module een tafel bevat welke ten opzichte van een frame in diezelfde module in één richting kan worden getransleerd en wel zodanig dat alle andere vrijheidsgraden door middel van een rechtgeleiding, uitgevoerd met elastische elementen waardoor wrijving en speling in het bewegende deel worden voorkomen, worden vastgelegd; de rechtgeleiding wordt uitgevoerd als 2 parallelgeleidingen, uitgevoerd met elastische elementen, in serie, gekoppeld via cen tussenlichaam, zodanig geplaatst dat er geen parasitaire verplaatsing loodrecht op de beoogde translatie van de tafel optreedt; het frame een axiaal stijf, axiaal voorgespannen en in de translatierichting slap elastisch element bevat welke een kracht uitoefent op de tafel, welke de krachten die de rechtgeleiding bij een translatie als gevolg van zijn stijfheid op de tafel uitoefent compenseert, met het gevolg dat de tafel in de iranslatierichting geen voorkeurspositie heeft ten opzichte van het frame; bovengenoemde axiaal stijve element axiaal wordt voorgespannen met cen veer welke zijn kracht op het axiaal stijve element overbrengt via een hefboom welke de gevoelde stijfheid van de veer ter plekke van het axiaal stijve element verkleint; de kracht van bovengenoemde veer instelbaar is gemaakt door verandering van de voorspanlengte met eon instelmechanisme; 1043209 ee het frame een tweede axiaal stijf, axiaal voorgespannen elastisch element bevat die een kracht uitoefent op de tafel zodanig dat een externe en levens constante kracht die de tafel in zijn translatierichting ondervindt compenseert, met het gevolg dat de tafel in een bepaalde voorkeurspositie ten opzichte van het frame geplaatst kan worden; bovengenoemde tweede axiaal stijve element wordt voorgespannen met een tweede veer welke zijn kracht op het tweede axiaal stijve element overbrengt via een tweede hefboom welke de gevoelde stijfheid van de veer ter plekke van het tweede axiaal stijve element verkleint; de kracht van bovengenoemde veer instelbaar is gemaakt door verandering van de voorspanlengte met een tweede instelmechanisme; in ieder geval het frame, de rechtgeleiding en de tafel worden gemaakt als een monolitisch deel vervaardigd uit koper, een materiaal dat in cryogene temperaturen cen hoge warmtegeleiding behoudt en niet magnetisch is; alle overige onderdelen in de module van een niet magnetisch materiaal gemaakt zijn.The invention relates to a device characterized in that: A so-called module comprises a table which can be translated in one direction with respect to a frame in the same module, in such a way that all other degrees of freedom by means of a straight guide, provided with elastic elements preventing friction and backlash in the moving part. the rectification is carried out as 2 parallel guides, constructed with elastic elements, in series, coupled via an intermediate body, placed in such a way that no parasitic displacement perpendicular to the intended translation of the table occurs; the frame comprises an axially rigid, axially biased and in the direction of translation slack elastic element which exerts a force on the table, which compensates for the forces exerted on the table by the straight guide in translation due to its stiffness, with the result that the table does not have a preferred position with respect to the frame in the direction of translation; the aforementioned axially rigid element is biased axially with a spring which transmits its force to the axially rigid element via a lever that reduces the perceived stiffness of the spring at the location of the axially rigid element; the force of the above spring is made adjustable by changing the pretension length with an adjustment mechanism; 1043209 The frame includes a second axially rigid, axially biased elastic element that exerts a force on the table such that it compensates for an external and life-constant force experienced by the table in its direction of translation, with the result that the table is in a certain preferred position relative to of the frame; said second axially rigid element is biased with a second spring which transmits its force to the second axially rigid element via a second lever which reduces the perceived stiffness of the spring at the second axially rigid element; the force of the above spring is made adjustable by changing the pretension length with a second adjustment mechanism; in any case, the frame, straight guide and table are made as a monolithic part made of copper, a material that retains high thermal conductivity in cryogenic temperatures and is non-magnetic; all other parts in the module are made of a non-magnetic material. 2. Een inrichting volgens voorgaande conclusie, met het kenmerk dat: De 3 modules via hun frame rigide geplaatst worden op een gezamenlijke basis en de tafel van elk van de 3 modules wordt voorzien van een tweetal elastische elementen welke uitsluitend in hun axiale richting stijf zijn, hierna genoemd spriet, waarbij deze sprieten beide evenwijdig georiënteerd zijn met de translatierichting van de module maar de sprieten niet in elkaars verlengde liggen; de sprieten gezamenlijk een platform vasthouden waarbij de translatierichtingen van de drie modules onderling orthogonaal op een drietal vlakken staan welke gedefinieerd worden door 3 elkaar in een hoekpunt van een kubus rakende vlakken; in ieder geval de basis, sprieten en platform vervaardigd worden van koper; alle overige onderdelen in het systeem van een niet magnetisch materiaal gemaakt zijn.A device according to the preceding claim, characterized in that: The 3 modules are rigidly placed via their frame on a common base and the table of each of the 3 modules is provided with two elastic elements which are rigid only in their axial direction , hereinafter referred to as whip, wherein these blades are both oriented parallel to the direction of translation of the module but the blades are not in line with each other; the blades jointly hold a platform in which the translation directions of the three modules are mutually orthogonal to three planes which are defined by planes touching each other at a corner point of a cube; in any case the base, blades and platform are made of copper; all other parts in the system are made of a non-magnetic material. 3. Een inrichting volgens conclusie 1 met het kenmerk dat de rechtgeleiding wordt uitgevoerd als een enkele parallelgeleiding, met elastische elementen,A device according to claim 1, characterized in that the straight guide is designed as a single parallel guide, with elastic elements, 4. Een inrichting volgens conclusie 1 met het kenmerk dat het thermisch goed geleidende en niet magnetische koper wordt vervangen door een ander materiaal.A device according to claim 1, characterized in that the thermally conductive and non-magnetic copper is replaced by another material. S, Een inrichting volgens ven der voorgaande conclusies met het kenmerk dat elektrische verbindingen in het systeem tussen het bewegende deel en het stationaire deel zodanig worden uitgevoerd dat ze een lage constante kracht en stijfheid introduceren in de translatierichting die door de instelmechanismes voor kracht en stijfheidscompensatie in de modules kunnen worden gecompenseerd.S, An apparatus according to any one of the preceding claims, characterized in that electrical connections in the system between the moving part and the stationary part are made such that they introduce a low constant force and stiffness in the direction of translation created by the force and stiffness compensation adjustment mechanisms. the modules can be compensated. 6. Een inrichting volgens voorgaande conclusie met het kenmerk dat elektrische verbindingen in het systeem tussen het bewegende deel en het stationaire deel worden uitgevoerd door toepassing van een flexibele printplaat eventueel met aanbrengen van cen bocht of ius in de printplaat tussen beide bevestigingspunten.A device according to the preceding claim, characterized in that electrical connections in the system between the moving part and the stationary part are made by using a flexible printed circuit board, optionally with the provision of a bend or loop in the printed circuit board between the two fixing points. 7. Een inrichting volgens conclusie 1 met het kenmerk dat de kracht en/of stijfheidscompensaiie wordt uitgevoerd door een in cryogene omstandigheden werkend instelmechanisme.A device according to claim 1 characterized in that the force and / or stiffness compensation is performed by an adjusting mechanism operating under cryogenic conditions. 8. Een inrichting volgens conclusie 1 met het kenmerk dat: Een zestal modules in de welbekende hexapod configuratie worden geplaatst, waarbij de frames van de modules rigide verbonden zijn met een gezamenlijke basis; de translatierichtingen van deze modules samenvallen met de zes ondersteuningen die een platform vasthouden; de tafels van deze modules verbonden zijn, elk via een elastisch element dat uitsluitend stijf is in de translatierichting van de module, met dat platform.An apparatus according to claim 1, characterized in that: Six modules are placed in the well known hexapod configuration, the frames of the modules being rigidly connected to a common base; the translation directions of these modules coincide with the six supports holding a platform; the tables of these modules are connected, each via an elastic element that is rigid only in the direction of translation of the module, to that platform. 9. Een inrichting volgens conclusie 1 met het kenmerk dat er een contactloze demping van de beweging van de tafel ten opzichte van het frame wordt gerealiseerd door introductie van een permanentmagneet die een relatieve beweging van tafel ten opzichte van het frame orvaart en daarbij wervelstromen introduceert.A device according to claim 1 characterized in that a non-contact damping of the movement of the table with respect to the frame is realized by introducing a permanent magnet which moves relative movement of the table with respect to the frame and thereby introduces eddy currents. 10. Een inrichting volgens conclusie 2 met het kenmerk dat de elastische spriet wordt geoptimaliseerd voor een goede thermische geleiding door deze uit te voeren als twee maal twee haaks op elkaar staande lijnscharnieren met een verdikt middendeel.A device according to claim 2, characterized in that the elastic blade is optimized for good thermal conduction by designing it as two times two perpendicular line hinges with a thickened middle part.
NL1043209A 2019-03-28 2019-03-28 Cryogenic modular 3 DoF vibration isolator NL1043209B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NL1043209A NL1043209B1 (en) 2019-03-28 2019-03-28 Cryogenic modular 3 DoF vibration isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL1043209A NL1043209B1 (en) 2019-03-28 2019-03-28 Cryogenic modular 3 DoF vibration isolator

Publications (1)

Publication Number Publication Date
NL1043209B1 true NL1043209B1 (en) 2020-10-02

Family

ID=66690898

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1043209A NL1043209B1 (en) 2019-03-28 2019-03-28 Cryogenic modular 3 DoF vibration isolator

Country Status (1)

Country Link
NL (1) NL1043209B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1044323B1 (en) * 2022-05-09 2023-11-16 Jpe Active controlled modular multi-DoF vibration isolator for cryogenic environment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140190677A1 (en) * 2012-08-16 2014-07-10 Minus K. Technology, Inc. Thermal straps for spacecraft
US20150122970A1 (en) * 2013-11-04 2015-05-07 Minus K. Technology, Inc. Compact vertical-motion isolator
CN106763466A (en) * 2015-11-21 2017-05-31 北京工业大学 A kind of novel positive and negative Stiffness low frequency vibration isolation mechanism
CN107654567A (en) * 2017-10-25 2018-02-02 西安交通大学 A kind of airborne quasi- zero stiffness vibration-isolating platform

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140190677A1 (en) * 2012-08-16 2014-07-10 Minus K. Technology, Inc. Thermal straps for spacecraft
US20150122970A1 (en) * 2013-11-04 2015-05-07 Minus K. Technology, Inc. Compact vertical-motion isolator
CN106763466A (en) * 2015-11-21 2017-05-31 北京工业大学 A kind of novel positive and negative Stiffness low frequency vibration isolation mechanism
CN107654567A (en) * 2017-10-25 2018-02-02 西安交通大学 A kind of airborne quasi- zero stiffness vibration-isolating platform

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1044323B1 (en) * 2022-05-09 2023-11-16 Jpe Active controlled modular multi-DoF vibration isolator for cryogenic environment

Similar Documents

Publication Publication Date Title
US10239167B2 (en) Stiffness-frequency adjustable XY micromotion stage based on stress stiffening
Sun et al. A novel piezo-driven microgripper with a large jaw displacement
US9038815B2 (en) Article sorting and conveying device
CN101813156B (en) Flexible high-precision spacial vibration damping platform
Panas et al. Eliminating underconstraint in double parallelogram flexure mechanisms
Jiang et al. Stiffness modeling of compliant parallel mechanisms and applications in the performance analysis of a decoupled parallel compliant stage
US10222578B2 (en) Linear driving apparatus using vibration wave motor and optical apparatus
JPS63259506A (en) High resonance adjustable mirror mounting apparatus
NL1043209B1 (en) Cryogenic modular 3 DoF vibration isolator
Yong et al. High speed single-and dual-stage vertical positioners
US20150002279A1 (en) Haptic solenoid and haptic solenoid mounting structure
Cai et al. Modeling and tracking control of a novel XYθz stage
KR20130022253A (en) Ultra-precision moving apparatus
EP1512888B1 (en) Lever-arm displacement-increasing device
JP7225543B2 (en) Anti-vibration devices and optical products
CN106763398A (en) A kind of orthogonal vibration-isolating platform of modular active-passive integratedization based on piezoelectricity
US7595944B2 (en) Optical actuator
US20120181094A1 (en) Weighing device, particularly an electromagnetic force compensating weighing device
JP2002081498A (en) Vibration resisting method and its device
JP2000230603A (en) Multi-dimensionally synchronized passive vibration control device and active vibration control device
JP2003062773A (en) Micromanipulator
JP6235315B2 (en) Tunable filter device
TWI661138B (en) Adjustable damper and controlling method thereof
US20200266331A1 (en) Displacement magnification device
NL1044323B1 (en) Active controlled modular multi-DoF vibration isolator for cryogenic environment

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20240401