[go: up one dir, main page]

MX2007015252A - Identification of tumors and tissues - Google Patents

Identification of tumors and tissues

Info

Publication number
MX2007015252A
MX2007015252A MX/A/2007/015252A MX2007015252A MX2007015252A MX 2007015252 A MX2007015252 A MX 2007015252A MX 2007015252 A MX2007015252 A MX 2007015252A MX 2007015252 A MX2007015252 A MX 2007015252A
Authority
MX
Mexico
Prior art keywords
genes
sequences
tumor
sample
types
Prior art date
Application number
MX/A/2007/015252A
Other languages
Spanish (es)
Inventor
G Erlander Mark
Ma Xiaojun
Original Assignee
Aviaradx Inc
G Erlander Mark
Ma Xiaojun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aviaradx Inc, G Erlander Mark, Ma Xiaojun filed Critical Aviaradx Inc
Publication of MX2007015252A publication Critical patent/MX2007015252A/en

Links

Abstract

The invention provides methods for the use of gene expression measurements to classify or identify tumors in samples obtained from a subject in a clinical setting, such as in cases of formalin fixed, paraffin embedded (FFPE) samples.

Description

IDENTIFICATION OF TUMORS AND TISSUES FIELD OF THE INVENTION This invention relates to the use of gene expression to classify human tumors. Classification is done by the use of gene expression profiles, or patterns, of approximately 5 to 49 expressed sequences that are correlated with tumors arising from certain tissues as well that are correlated with certain tumor types. The invention also provides the use of approximately 5 to 49 specific gene sequences, the expression of which are correlated with the source of tissue and the type of tumor in various cancers. Gene expression profiles, whether incorporated into nucleic acid expression, protein expression or other expression formats, can be used to determine a sample that contains tumor cells from a tissue type or a tissue origin to allow a more precise identification of the cancer and in this way the treatment of it as well as the prognosis of the subject from whom the sample was obtained. BRIEF DESCRIPTION OF THE INVENTION This invention relates to the use of gene expression measurements to classify or identify tumors of samples containing cells obtained from a subject in a clinical setting, such as in cases of samples embedded in paraffin, fixed with formalin (FFPE). ) A) Yes as fresh samples, which have been subjected to little by little or minimal treatment (such as simply storage at a reduced, non-freezing tempera) and frozen samples. The invention thus provides the ability to classify tumors in the real-world conditions faced in the hospital and other laboratories that lead to tests on clinical FFPE samples. The samples may be from a primary tumor sample or from a tumor that has resulted from a metastasis from another tumor. Alternatively, the sample may be a cytological sample, such as, but not limited to, cells in a blood sample. In some cases of a tumor sample, tumors may not have been classified by traditional pathology techniques, may have been initially classified but confirmation is desired, or have been classified as a "carcinoma of unknown primary" (CUP) or "tumor of unknown origin" (TUO) or "unknown primary tumor". The need for confirmation is particularly relevant in view of the 5 to 10% estimates of poor classification using standard techniques. Thus, the invention can be visualized as providing means for the identification of cancer, or CID. In a first aspect of the invention, the classification is made by the use of gene expression profiles or patterns, from about 5 to 49 expressed sequences. Gene expression profiles, whether incorporated into nucleic acid expression, protein expression, or other gene expression markers, can be used to determine a sample that contains cells as it contains tumor cells from a tissue type or from a tissue origin to allow a more precise identification of the cancer and in this way the treatment thereof as well as the prognosis of the subject from whom the sample was obtained. In some embodiments, the invention is used to classify between at least 34 or at least 39 types of tumor with significant precision in a clinical setting. The invention is based in part on the surprising and unexpected discovery that approximately 5 to 49 sequences expressed in the human genome are capable of classifying between at least 34, or at least 39, tumor types, as well as subsets of those tumor types, in a significant way. Established differently, the invention is based in part on the discovery that it is not necessary to use supervised learning to identify gene sequences that are expressed in correlation with different tumor types. Thus, the invention is based in part on the recognition that any of about 5 to 49 expressed sequences, even a random collection of sequences expressed, they have the ability to classify, and thus can be used to classify, a cell as being a tumor cell of a tissue or tissue origin. On the other hand, relatively little expressed sequences are necessary to classify between different types of tumor. The ratio of expressed sequences to the number of tumor types that can be classified, based on the expression levels of the sequences, range from about 1: 2 to about 5: 2 or higher as demonstrated herein. In another aspect, the invention provides for the classification of a sample containing cells as it contains a tumor cell of a tissue type or origin by determining the expression levels of approximately 5 to 49 transcribed sequences and then by classifying the sample containing cells since it contains a tumor cell of a plurality (two or more) tumor types. To classify between 34 to 39 tumor types, and subsets thereof, as few as approximately 5 of expressed sequences can be used to provide classification in a meaningful way. It was found that the expressed sequences do not need to be those of the expression levels that are evidently or highly correlated (directly, or indirectly through the correlation with another expressed sequence, with any of the types of tumor. Thus the invention provides, in yet another embodiment, the use of gene expression levels, the expression levels of which are not strongly correlated with the current classification of the particular tumor sample, as one of approximately 5 to 49 transcribed sequences. All selected genes can be such uncorrelated, or only a portion of the genes can be uncorrelated, typically at least 90%, 85%, 75%, 50% or 25%, as well as portions that fall within the ranges created by using any of the two previous indicative examples as endpoints of an interval. The invention is practiced in determining the expression levels of gene sequences where the sequences need not be selected based on a correlation of their expression levels with the types of tumor that are classified. As well as a non-limiting example, gene sequences do not need to be selected based on their correlation values with tumor types or a classification based on correlation values. Additionally, the invention can be practiced with the use of gene expression levels that are not necessarily correlated with one or more levels of gene expression used for classification. So in some modalities, the ability for the level of expression of a sequence expressed to function in the classification is non-redundant with (is independent of) the ability of at least one other level of gene expression used for classification. The invention can be applied to identify the origin of a cancer in a patient in a wide variety of cases including, but not limited to, identification of the origin of a cancer in a clinical facility. In some embodiments, identification is made by sorting a sample containing cells known to contain cancer cells, but the origin of those cells is unknown. In other embodiments, identification is made by sorting a sample containing cells containing one or more cancer cells followed by identification of the origin (s) of that cancer cell (s). In further embodiments, the invention is practiced with a sample from a subject with a prior history of cancer, and an identification is made by sorting a cell whether it is from a cancer of a previous origin of cancer or from a new origin. Additional modalities include those where multiple cancers found in the same organ or tissue and the invention is used to determine the origin of each cancer, as well as whether the cancers are of the same origin. The invention is also based in part on the discovery that the expression levels of sequences of particular genes can be used to classify between tumor types with greater precision than the expression levels of a random group of gene sequences. In one embodiment, the invention provides for the use of expression levels of approximately 5 to 49 expressed sequences from a first set of 74 sequences expressed in the human genome to classify at least 39 types of tumor with significant precision. The invention thus provides for the identification and use of gene expression patterns (or profiles or "signatures") based on approximately 5 to 49 sequences expressed as correlated with at least 39 types of tumor. The invention also provides the use of about 5 to 49 of the 74 expressed sequences to classify among the subsets of the 39 tumor types. The ratio of expressed sequences to the number of tumor types, from 2 to 39 that can be classified based on the expression levels of the sequences varies from approximately 1: 2 to approximately 5: 2 with greater precision than the use of a group random of expressed sequences. Depending on the number of tumor types, positions vary from above 75% to 95% which can be easily achieved. In another embodiment, the invention provides the use of expression levels of approximately 5 to 49 expressed sequences from a second set of 90 expressed sequences in the human genome to classify at least 39 tumor types, or subsets thereof, with significant precision. 38 of the sequences in this second set are present in the first set of 74 sequences. The expression levels of the approximately 5 to 49 sequences in the second set can be used in the same manner as described for the first set of 74 sequences. Depending on the number of tumor types, accuracies ranging from approximately 75% to approximately 95% can be achieved. The invention is also based in part on the discovery that the use of approximately 5 to 49 sequences expressed to classify among 53 tumor types, which include (but are not limited to) the 34 and 39 types described herein, was limited by the number of available samples of some types of tumor. As mentioned hereinafter, the position is related to the number of available samples of each type of tumor such that the ability to classify additional tumor types is easily achieved by applying increased numbers of each type of tumor. Thus while the invention is exemplified by the use of the classification between 34 or 39 tumor types as well as subsets of the 34 or 39, approximately 5 to 49 expressed sequences can also be used for Classify among all tumor types with the inclusion of samples of additional tumor types. Thus the invention also provides the classification of a tumor as being of a type beyond the 34 or 39 types described herein. The invention is based on the expression levels of the gene sequences in a set of known tumor cells from different tissues and different types of tumor. The gene expression profiles (of gene sequences in different cells / known tumor types), whether incorporated into nucleic acid expression, protein expression, or other expression formats, can be compared with the expression levels of the same sequences in an unknown tumor sample to identify the sample as containing a tumor of a particular type and / or a particular origin or cell type. The invention provides, as in a clinical facility, the advantages of a more precise identification of a cancer and thus the treatment thereof as well as the prognosis, including the survival and / or the likelihood of cancer recurrence after treatment, of the subject from whom the sample was obtained. The invention is also based in part on the discovery that the use of about 5 to 49 expressed sequences as described herein is able to classify between two or more tumor types necessarily and effectively eliminates one or more tumor types from consideration during classification. This reflects the lack of a need to select genes with expression levels that are highly correlated with all tumor types within the range of the classification system. Established differently, the invention can be practiced with a plurality of gene expression levels of which are not highly correlated with any of the individual tumor types or multiple types in the group of tumor types that are classified. This is in contrast to the other procedures based on the selection and use of highly correlated genes, which probably do not "rule out" other types of tumor as opposed to "including" a type of tumor based on positive correlation. The classification of a tumor sample as being one of the possible tumor types described herein to the exclusion of other types of tumor is of course done based on a level of confidence as described below. Where the confidence level is low, or an increase in the level of confidence is preferred, the classification can be made simply at the level of a particular tissue origin or cell type to take a sample. Alternatively, and where a tumor sample is not Easily classified as a single tumor type, the invention allows the classification of the sample as one of a few possible tumor types described herein. This advantageously provides the ability to reduce the number of possible tissue types, cell types and tumor types from which to consider the selection and administration of the therapy to the patient from whom the sample was obtained. The invention thus provides a non-subjective means for the identification of the tissue source and / or tumor type of one or more cancers of an afflicted subject. Where the subjective interpretation may have previously been used to determine the source of tissue and / or type of tumor, as well as the prognosis and / or treatment of cancer based on that determination, the present invention provides objective gene expression factors, which can be Use alone or in combination with subjective criteria to provide a more accurate identification of the cancer classification. The invention is particularly advantageously applied to samples of secondary or metastasized tumors, but any sample containing cells (including a primary tumor sample) for which the source of tissue and / or tumor type is preferably determined by objective criteria can also be used with the invention. Of course the determination The end of the class can be done based on a combination of objective and non-objective criteria (or subjective / partially subj ective). The invention includes its use as part of the clinical or medical care of a patient. Thus, in addition to using a gene expression profile as described herein to analyze a sample containing cells from a subject afflicted with cancer to determine the source of tissue and / or cancer tumor type, the profile can also be use as part of a method to determine the prognosis of cancer in the subject. The tumor / cancer classification and / or the prognosis can be used to select or determine or alter the therapeutic treatment for the subject. Thus the classification methods of the invention can be directed towards the treatment of the disease, which is diagnosed in whole or in part based on classification. Given the diagnosis, the administration of an antitumor agent or appropriate therapy, or the maintenance or alteration of an antitumor agent or therapy can be used to treat cancer. Other clinical methods include those involved in the provision of medical care to a patient based on a classification as described herein. In some modalities, the methods are related to providing diagnostic services based on the levels of expression of gene sequences, with or without the inclusion of a level interpretation for the cell classification of a sample. In some embodiments, the method for providing a diagnostic service of the invention is preceded by a determination of a need for the service. In other modalities, the method includes acts in the monitoring of service performance as well as acts in the petition or waste of the reimbursement for the performance of the service. The details of one or more embodiments of the invention are set forth in the accompanying drawing and the following description. Other features, objects and advantages of the invention will be apparent from the drawing and the detailed description, and from the claims. DEFINITIONS As used herein, a "gene" is a polynucleotide that encodes a discrete product, either RNA or proteinaceous in nature. It is appreciated that more than one polyucleotide may be able to encode a discrete product. The term includes alleles and polymorphisms of a gene encoding the same product, or a functionally associated analogue (including gain, loss or modulation of function) thereof, based on the chromosomal location and the ability to recombine during normal mitosis.
A "sequence" or "gene sequence" as used herein is a nucleic acid molecule or polynucleotide composed of a discrete order of nucleotide bases. The term includes the ordering of bases that encode a discrete product (ie, "coding region"), either RNA or proteinaceous in nature. It is appreciated that more than one polynucleotide may be able to encode a discrete product. It is also appreciated that alleles and polymorphisms of human gene sequences may exist and may be used in the practice of the invention to identify the level (s) of expression of the gene sequences or an allele or polymorphism thereof. The identification of an allele or polymorphism depends in part on the chromosomal location and the ability to recombine during mitosis. The terms "correlate" or "correlation" or equivalents thereof refer to an association between the expression of one or more genes and another event, such as, but not limited to, the physiological or characteristic phenotype, such as tumor type. . A "polynucleotide" is a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Just as this term includes double and single-stranded DNA and RNA. This too includes known types of modifications including labels known in the art, methylation, "terminations", substitution of one or more of the naturally occurring nucleotides with an analog, and internucleotide modifications such as non-charged bonds (eg, phosphorothioates, phosphorodithioates, etc.), as well as unmodified forms of the polynucleotide. The term "amplify" is used in the broad sense to mean the creation of an amplification product that can be enzymatically made with DNA or RNA polymerases. "Amplification", as used herein, generally refers to the process of producing multiple copies of a desired sequence, particularly those of a sample. "Multiple copies" means at least 2 copies. A "copy" does not necessarily mean the complementarity or identity of the perfect sequence to the template sequence. Methods for amplifying mRNA are generally known in the art, and include reverse transcription PCR (RT-PCR) and quantitative PCR (or Q-PCR) or real-time PCR. Alternatively, the RNA can be directly labeled as the corresponding cDNA by methods known in the art. By "corresponding" it is proposed that a nucleic acid molecule shares a substantial amount of sequence identity with another nucleic acid molecule.
Substantial amount means at least 95%, usually at least 98% and more usually at least 99%, and sequence identity is determined using the BLAST algorithm, as described in AltschuJ et al. (1990), J. Mol. Biol. 215: 403-410 (using the published error adjustment, ie, parameters w = 4, t = 17). A "microarray" is a linear or two-dimensional or three-dimensional array (and solid phase) of discrete regions, each having a defined area, formed on the surface of a solid support such as, but not limited to, glass, plastic or membrane synthetic The density of the discrete regions on a microarray is determined by the total numbers of immobilized polynucleotides that are detected on the surface of an individual solid phase support, such as at least about 50 / cm2, at least about 100 / cm2 , or at least about 500 / cm2, up to about 1,000 / cm2, or higher. The arrays may contain less than about 500, about 1000, about 1500, about 2000, about 2500 or about 3000 immobilized polynucleotides in total. As used herein, a "DNA microarray" is an array of oligonucleotides or polynucleotide probes placed on a chip or other surfaces used to hybridize to amplified or cloned polynucleotides of a polynucleotide. sample. Since the position of each particular group of probes in the array is known, the identities of a sample of polynucleotides can be determined based on their binding to a particular position in the microarray. As an alternative the use of a microarray, an array of any size can be used in the practice of the invention, including an arrangement of one or more positions of a two-dimensional or three-dimensional array on a solid phase to detect the expression of a single sequence of gene. In some embodiments, a microarray for use with the present invention can be prepared by photolithographic techniques (such as the synthesis of nucleic acid probes on the 3 'end surface) or by nucleic acid synthesis followed by deposition on a solid surface. Because the invention depends on the identification of gene expression, some embodiments of the invention determine expression by hybridizing or an amplified or cloned version thereof, from a sample cell to a polynucleotide that is unique to a particular gene sequence. Polynucleotides of this type contain at least about 16, at least about 18, at least about 20, at least about 22, at least about 24, at least about 26, at least about 28, at least about 30 or at least about 32 consecutive base pairs of a gene sequence that is not found in other gene sequences. The term "approximately" as used in the previous sentence refers to an increase or decrease of 1 of the established numerical value. Other embodiments are polynucleotides of at least about 50, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least or about 350, at least about 400, at least about 450, or at least about 500 consecutive bases of a sequence that is not found in another gene sequence. The term "approximately" as used in the preceding sentence refers to an increase or decrease of 10% of the numerical value established. The longer polynucleotides may contain, of course, minor mismatches (for example, via the presence of mutations) that do not affect the hybridization to the nucleic acids of a sample. Such polynucleotides can also be referred to as polynucleotide probes that are capable of hybridizing to sequences of the genes, or unique portions thereof, described herein. Such polynucleotides can be labeled to aid in their detection. The sequences can be those of mRNA encoded by the genes, the cDNA corresponding to such mRNAs and / or amplified versions of such sequences. In some embodiments of the invention, the polynucleotide probes are immobile on an array, other solid support devices, or individual points locating the probes. In other embodiments of the invention, all or part of a gene sequence can be amplified and detected by methods such as polymerase chain reaction (PCR) and variations thereof, such as, but not limited to, quantitative PCR ( Q-PCR), reverse transcription PCR (RT-PCR) and real-time PCR (including as a means to measure the initial amounts of mRN copies for each sequence of a sample), optionally real-time RT-PCR or Real-time Q-PCR. Such methods would use one or two primers that are complementary to portions of a gene sequence, where the primers are used to prime the nucleic acid synthesis. The newly synthesized nucleic acids are optionally labeled and can be detected directly or by hybridization to a polynucleotide of the invention. The newly synthesized nucleic acids can be contacted with polynucleotides (containing sequences) of the invention under conditions that allow their hybridization. Additional methods for detecting the expression of expressed nucleic acids include RNAse protection assays, including liquid phase hybridizations, and in vitro cell hybridization. Alternatively, and in further embodiments of the invention, gene expression can be determined by analyzing the protein expressed in a sample of cells of interest by using one or more antibodies specific for one or more individual gene product epitopes ( proteins), or proteolytic fragments thereof, in the cell sample or in a body fluid of a subject. The cell sample can be one of breast cancer epithelial cells enriched from the blood of a subject. Such as by the use of antibodies labeled against cell surface markers followed by the classification of fluorescent activated cells (FACS). Such antibodies can be labeled to allow their detection after binding to the gene product. Appropriate detection methodologies for use in the practice of the invention include, but are not limited to, immunohistochemistry of samples containing cells or tissue, enzyme-linked immunosorbent assays (ELISAs) including antibody intercalation assays of cell-containing tissues or blood samples, mass spectroscopy and immuno-PCR. The terms "label" or "label" refer to a composition capable of producing an indicative detectable signal of the presence of the labeled molecule. Suitable labels include radioisotopes, nucleotide chromophores, enzymes, substrates, phosphorylating molecules, chemiluminescent portions, magnetic particles, bioluminescent portions and the like, just as a label is any composition detectable by spectroscopic, photochemical, biochemical, immunochemical, electrical, optical or chemical. The term "support" refers to conventional supports such as beads, particles, sheets, fibers, filters, membranes and silane or silicate supports such as glass cations. "Expression" and "gene expression" include the transcription and / or translation of nucleic acid material. As used herein, the term "comprising" and its cognates are used in their inclusive sense, that is, equivalent to the term "including" and its corresponding affines. Conditions that "allow" an event to occur or conditions that are "adequate" for an event to occur, such as hybridization, strand extension and the like, or "adequate" conditions are conditions that do not prevent such events from occurring. Thus, these conditions allow, increase, facilitate and / or are conducive to the event. Such conditions, known in the art and described in the present, depend on, for example, the nature of the nucleotide sequence, the temperature and the conditions of the buffer solution. These conditions also depend on what case is desired, such as hybridization, segmentation, extension or strand transcription. "Mutation" of sequence, as used herein, refers to any sequence sequence in a gene disclosed herein of interest as compared to a reference sequence. A sequence mutation includes individual nucleotide changes, or alterations of more than one nucleotide in a sequence, due to mechanisms such as substitution, deletion or insertion. The individual nucleotide polymorphism (SNP) is also a sequence mutation as used in the present. Because the present invention is based on the relative level of gene expression, mutations in non-coding regions of genes as disclosed herein can also be analyzed in the practice of the invention. "Detection" or "detecting" includes any means to detect, including direct and indirect determination of the level of gene expression and changes in it. Unless otherwise defined, all technical and scientific terms used herein have the meaning as is commonly understood for one. of ordinary skill in the art to which this invention pertains. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows a graph of ability for the ability to use the subset expression levels of a set of 100 expressed gene sequences to classify between 39 tumor types and subsets thereof. random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 49 (each shown 10 times) of the 100 sequences were used with tumor type data and then used to predict random sets of test samples of tumor (each shown 10 times) that varies from 2 to 39 types. A plot of numbers of tumor types (x-axis) against prediction accuracies (y-axis) for the results using 5 to 49 genes are shown as non-limiting examples. The data from the use of 5 genes results in a curve closer to the x axis while the data from the use of 49 genes results in a curve farther from the x axis. Generally, accuracy is improved with higher numbers than gene sequences, where 30 to 49 gene sequences (the three curves farthest from the x axis) provide approximately the same level of accuracy). Figure 2 shows an alternative presentation of the data used with respect to Figure 1. A graph of numbers of gene sequences used, which varies from 5-49 (and on the x-axis), against prediction accuracies (y-axis) for several representative numbers of tumor types is shown. The lines plotted from the top to the bottom, are from the results of 2, 10, 20, 30 and 39 tumor types, respectively. Figure 3 provides further analysis of the ability to use the expression levels of subsets of a set of 100 randomly expressed gene sequences selected to classify among 39 tumor types. The data used with Figures 1 and 2 are presented in a graph of the number of tumor types versus the number of gene sequences used in prediction accuracies of 55-70% are shown as non-limiting examples. Generally, accuracy is improved with higher numbers of gene sequences. Figure 4 shows a graph of ability for the ability to use the expression levels of portions of a first set of 74 expressed gene sequences to classify between 39 tumor types and subsets thereof. The expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 49 (each shown 10 times) of the 74 sequences were used with tumor type data and then used to predict random sets of test samples of tumor (each shown times) that varies from 2 to 39 types. A plot of numbers of tumor types against prediction accuracies for results using 5 to 49 genes are shown as non-limiting examples. The lines plotted, from the top to the bottom, are from the results of 49, 40, 30, 20, 10 and gene sequences, respectively. Figure 5 shows an alternative presentation of the data used with respect to Figure 4. A plot of numbers of gene sequences used, ranging from 5-49, against prediction accuracies for several representative numbers of tumor types is shown . The lines plotted, from the top to the bottom, are from the results of 2, 10, 20, 30 and 39 types of tumor, respectively. Figure 6 is analogous to Figure 3 except with the presentation of the data used with Figures 4 and 5. Figure 7 shows a capacity graph for the ability to use the expression levels of subsets of a set of 90 gene sequences expressed to classify between 39 types of tumor and subsets thereof. The expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 49 (each shown 10 times) of the 90 sequences were used with tumor type data and then used to predict random sets of test samples of tumor (each shown 10 times) that varies from 2 to 39 types. A plot of numbers of tumor types against prediction accuracies for results using 5 to 49 genes are shown as non-limiting examples. The graphed lines, from the top to the bottom, are from the results of 49, 40, 30, 20, 10 and gene sequences, respectively. Figure 8 shows an alternative presentation of the data used with respect to Figure 7. A graph of numbers of gene sequences used, ranging from 5-49, against prediction accuracies for several representative numbers of tumor types is shown. The lines plotted, from the top to the bottom, are from the results of 2, 10, 20, 30 and 39 tumor types, respectively. Figure 9 is analogous to Figures 3 and 6 except for the presentation of the data used with Figures 7 and 8. Figures 10A-10D show a "tree" that classifies types of tumors covered herein as well as tumor types. additional acquaintances. This was built mainly in accordance with "Cancer, Principles and Practice of Oncology, (DeVito, Hellman and Rosenberg) 6th edition". So starting with a "tumor of unknown origin" (or "tuo"), the first chances are that it is either a germ cell or non-germ cell origin. If this is the first, then it may be of ovarian or testicular origin. Within those of origin of the testis, the tumor may be of semmoma origin or of "other" origin. If the tumor is from a non-germinal cell origin, then it is either of an epithelial or non-epithelial origin. If this is the first, then this is either scaly or non-scaly. The tumors of squamous origin are of cervix, esophagus, larynx, lung, or skin in origin. Tumors of non-squamous origin are urinary bladder, breast, carcinoid intestine, cholangiocarcinoma, digestive, kidney, liver, lung, prostate, reproductive system, basal cell of the skin, or origin of thyroid-follicular, papillary. Among those of digestive origin, the tumors are of the small and large intestine, adenocarcinoma of the stomach, bile duct, esophagus, biliary bladder and pancreas in origin. Tumors of esophageal origin can be either Barrett's esophagus or adenocarcinoma types. Of the tumors of origin of the reproductive system, this may be of the type of cervical adenocarcinoma, endometrial tumor, or ovarian origin. Tumors of ovarian origin are the clear, serous, mucinous and endometroid types. If the tumor is of non-epithelial origin, then it is from an adrenal gland, brain, G1ST (gastrointestinal stromal tumor), Jinfoma, meningioma, mesothelioma, sarcoma, Melanoma of the skin, or of thyroid-medullary origin. Of the lymphomas, they are of the B-cell, Hodgkin's or T-cell type. Sarcomas are leiomyosarcoma, osteosarcoma, soft tissue sarcoma, soft tissue MFH (malignant fibrous histiocytoma), soft tissue synovial sarcoma. , soft tissue Ew i ng sarcoma, soft tissue fibrosarcoma and types of soft tissue rhabdomyosarcoma. DETAILED DESCRIPTION OF WAYS TO PRACTICE THE INVENTION This invention provides methods for the use of gene expression information to classify tumors in a more objective manner than is possible with conventional pathology techniques. Thus in a first aspect, the invention provides a method for classifying a sample containing cells such as including a tumor cell (de) (or) a type of tissue or a tissue origin. The method comprises determining or measuring the expression levels of about 5 to 49 transcribed cell sequences in a sample containing cells obtained from a subject, and classifying the sample as containing tumor cells of a tissue type of a plurality of cells. types of tumor based on the expression levels of the sequences. As used in the present, "a plurality" refers to the state of two or more. The classification is based on a comparison of the expression levels of approximately 5 to 49 sequences transcribed in the cells of the sample at their expression levels in known tumor samples and / or known non-tumor samples. Alternatively, the classification is based on a comparison of the expression levels of the approximately 5 to 49 sequences transcribed to the expression of reference sequences in the same samples, relative to, or based on, the same comparison of known tumor samples. and / or known non-tumor samples. As a non-limiting example, the expression levels of the gene sequences can be determined in a set of known tumor samples to provide a database against which the levels of expression detected or determined in a sample containing cells from a subject is compared. The level (s) of expression of gene sequence (s) in a sample can also be compared to the level (s) of expression of the sequence (s) in normal or non-cancerous cells. , preferably of the same sample or subject. As is described below and in embodiments of the invention using Q-PCR or real-time Q-PCR, the expression levels can be compared with expression levels of reference genes in the same sample or a ratio of expression levels can be used. In practice, the method uses a relation, of sequences transcribed to the number of tumor types classified, ranging from about 1: 2 to about 5: 2 or higher. Established differently, the ratio of the number of expression levels needed to the number of tumor types that can be classified based on those levels, ranges from about 1: 2 to about 1: 1 to about 3: 2 to about 2: 1. at approximately 5: 2 or higher. This is reflected by the ability to use as few as approximately 20 levels of expression to classify among 39 tumor types (see Figure 6). Thus, and based on the data as shown in Figures 1-9, the invention can be practiced with approximately 5 to 49 gene sequences within the ratio of estimated genes to the classified tumors. The selection of approximately 5 to 49 gene sequences for use can be random, or by selection based on several criteria. As a non-limiting example, gene sequences can be selected based on unsupervised learning, including clustering techniques. As another non-limiting example, the selection may be to reduce or remove the redundancy with respect to your ability to classify the type of tumor. For example, gene sequences are selected based on the lack of correlation between their expression and the expression of one or more other gene sequences used for the classification.
This is done by estimating the level of expression of each gene sequence in the expression data set for correlation, through the plurality of samples, with the level of expression of another gene in the data set to produce a matrix of correlation of correlation coefficients. These correlation determinations can be performed directly, between the expression of each pair of gene sequences, or indirectly, without direct comparison between the expression values of each pair of gene sequences. A variety of correlation methodologies can be used in the correlation of expression data of individual gene sequences within the data set. Non-limiting examples include parametric and non-parametric methods as well as methodologies based on mutual information and non-linear approximations. Non-limiting examples of parametric approaches include the Pearson correlation (or Pearson r, also referred to as the linear or product-moment correlation) and the cosine correlation. Non-limiting examples of non-parametric methods include the Spearman's R correlation (or rank order), Kendall's Tau correlation, and the Gamma statistic. Each correlation methodology can be used to determine the level of correlation between the expression of individual gene sequences and the eJ data set. The correlation of all the sequences with all the other sequences is more easily considered as a matrix. Using the Pearson correlation as a non-limiting example, the correlation coefficient r in the method is used as the indicator at the level of correlation. When other correlation methods are used, the correlation coefficient analogous to r can be used, along with the recognition of equivalent levels of correlation corresponding to r which is at or about 0.25 or which is at or about 0.5. The correlation coefficient can be selected as desired to reduce the number of gene sequences correlated with several numbers. In some embodiments of the invention utilizing r, the selected coefficient value may be about 0.25 or higher, about 0.3 or higher, about 0.35 or higher, about 0.4 or higher, about 0.45 or higher, or about 0.5 or higher. The selection of a coefficient value means that where the expression between gene sequences in the data set is correlated at that value or higher, they are possibly not included in a subset of the invention. Thus in some embodiments, the method comprises excluding or removing (not using the classification) one or more gene sequences that are expressed in correlation, above one desired correlation coefficient, with another gene sequence in the tumor type data set. This is pointed out, however, that there were gene sequence situations that are not related to any other gene sequence, in which case they are not necessarily removed from use in the classification. Thus the expression levels of gene sequences, where more than about 10%, more than about 20%, more than about 30%, more than about 40%, more than about 50%, more than about 60%, more than about 70%, more than about 80%, or more than about 90% of the levels are not correlated with that of the other gene sequence used, can be used in the practice of the invention. The correlation between expression levels can be based on a value below about 0.9, about 0.8, about 0.7, about 0.6, about 0.5, about 0.4, about 0.3 or about 0.2. The ability to classify between classes excluding the expression levels of some gene sequences is present because the expression of the gene sequences in the subset is correlated with the expression of the gene sequences excluded from the subset. So no information was lost because the information based on the expression of the sequences of Excluded gene is still represented by the sequences retained in the subset. Therefore, the expression of the gene sequences of the subset has information content relevant to the properties and / or characteristics (or phenotype) of a cell. This has application and relevance to the classification of additional tumor type classes not included as part of the original gene expression data set that can be classified by using a subset of the invention due to what is based on information redundancy. of the expression of sequences in the subset and the sequences expressed in those additional classes. Thus the invention can be used to classify cells as being a type of tumor beyond the plurality of known classes used to generate the gene expression data set or final. The selection of gene sequences based on the correlation of expression reduction to a particular tumor type can also be used. This also reflects a discovery of the present invention, based on the observation that expression levels that were more highly correlated with one or more tumor types were not necessarily of greater value in classifying between different tumor types. This is reflected both by the ability to randomly use gene sequences selected for classification as well as the use of particular sequences, as described herein, which are not expressed with the most significant correlation with one or more types of tumor. Thus the invention can be practiced without selection of gene sequences based on the most significant P values or a classification based on the correlation of gene expression and one or more tumor types. Thus the invention can be practiced without the use of classification-based methodologies, such as the Kruskal-Wal 1 i s H test. The gene sequences used in the practice of the invention may include those that have been observed to be expressed in correlation with particular tumor types, such as the expression of estrogen receptor that has been observed to be expressed in correlation with some cancers of breast and ovarian. In some embodiments of the invention, however, the invention is practiced with the use of the level of expression of at least one gene sequence that has not previously been identified as being associated with any of the tumor types that are classified. Thus the invention can be practiced without all the gene sequences that have been previously associated or correlated with the expression in the 2 or more (up to 39 or more) tumor types to which a sample containing cells can be classified.
While the invention is described primarily with respect to human subjects, samples from other subjects may also be used. All that is necessary is the ability to estimate the expression levels of gene sequences in a plurality of known tumor samples at L that the expression levels in an unknown sample or test can be compared. Thus the invention can be applied to samples of any organism for which a plurality of expressed sequences and a plurality of known tumor samples are available. A non-limiting example is the application of the invention to mouse samples, based on the availability of the mouse genome to allow the detection of murine sequences expressed in the availability of known mouse tumor samples with the ability to obtain known samples. Thus, the invention is contemplated for use with other samples, including those of mammals, primates, and animals used in clinical testing (such as rats, mice, rabbits, dogs, cats, and chimpanzees) as non-limiting examples. While the invention is readily practiced with the use of samples containing cells, any sample containing nucleic acid that can be analyzed for gene expression levels can be used in the practice of the invention. Without limiting the invention, a Sample of the invention can be one that is suspected or known to contain tumor cells. Alternatively, a sample of the invention may be a "tumor sample" or "tumor-containing sample" or "sample containing tumor cells" of tissue or fluid isolated from an individual that is suspected of being afflicted with, or at risk of, to develop, cancer. Non-limiting examples of samples for use with the invention include a clinical sample, such as, but not limited to, a fixed sample, a fresh sample, or a frozen sample. The sample can be an aspirate, a cytological sample (including blood or other body fluid) or a tissue sample, which includes at least some information that considers the context in if your cells in the sample, while cells or Suitable nucleic acids are available for the determination of gene expression levels. The invention is based in part on the discovery that the results obtained with frozen tissue sections can be validly applied to the situation with fixed tissue or cell samples and extended to fresh samples. Non-limiting examples of fixed samples include those that are fixed with formaldehyde or formaldehyde (including FFPE samples) with Borden, glutaldehyde, acetone, alcohols, or any other fixative, such as those used to fix cell samples or tissue for immunohistochemistry (IHC). Other examples include fixatives that precipitate nucleic acids and proteins associated with the cell. Possible complications given in the handling of fresh tissue samples, such as the need to maintain its frozen state, the invention can be practiced with non-frozen samples, such as fixed samples, fresh samples, including blood cells or other body fluid or tissue, and minimally treated samples. In some applications of the invention, ours has not been classified using standard pathology techniques, such as, but not limited to, assays based on immunochemistry. In some embodiments of the invention, the sample is classified as containing a tumor cell of a type selected from the following 53, and subsets thereof: Breast adenocarcinoma, Cerviz denocarcinoma, Esophageal denocarcinoma, Adenocarus noma of Biliary Vesicle, Lung Adenocarcinoma, Adenocaryoma of Pancreas, Adenocarcinoma of Large-Thin Intestine, Stomach Denocarcinoma, Astrocytoma, Basal Cell Carcinoma of the Skin, CoJ Liver Angiocarcinoma, Adenocarcinoma of Clear Ovarian Cell, Lymphoma of Large Diffuse B Cell, Embryonal Carcinoma of the Testicle, Lndomet Carcinoma of the Uterus, Ewing's Sarcoma, Follicular Thyroid Carcinoma, Gastrointestinal Stromal Tumor, Germinal Cell Tumor Ovary, Germinal Tumor Cell Tumor, Glioblastoma Multiforme, Liver Hepatocellular Carcinoma, Hodgkin's Lymphoma, Large Cell Lung Carcinoma, Leiomyosarcoma, Liposarcoma, Lobular Breast Carcinoma, Malignant Fibrous Histiocytoma, Medullary Thyroid Carcinoma, Melanoma, Meningioma, Lung Mesothelioma, Mucinous Ovarian Adenocarcinoma, Myofibrosarcoma, Neuroendocrine Tumor of the Intestine, Oligodendroglioma, Osteosarcoma, Papillary Thyroid Carcinoma, Pheochromocytoma, Renal Kidney Cell Carcinoma, Rhabdomyosarcoma, Testicular Seminoma, Ovarian Serous Dysnocarcinoma, Cell Carcinoma Small Lung, Cerviz Squamous Cell Carcinoma, Squamous Cell Carcinoma of the Esophagus, Squamous Cell Carcinoma of the Larynx, Squamous Cell Carcinoma of the Lung, Squamous Cell Carcinoma of the Skin, Synovial Sarcoma, T-cell Lymphoma, and Carcinoma of the Transitional Bladder Cell. In other embodiments of the invention, the sample is classified as containing a tumor cell of a type selected from the following 34, and subsets thereof: adrenal, brain, breast, carci noid-intestine, cervix (squamous cell) cholangy Ocarcinoma, Endometrium, Germ Cell, GIST (Root Canal Gastric Stromal Tumor), Kidney, Leiomyosarcoma, Liver, Lung (Adenocarcinoma, Large Cell), Lung (Small Cell), Lung (Scaly), Lymphoma (B Cell), Lmfoma (Hodgkins) ), menmgioma, mesothelioma, osteosarcoma, ovary (clear cell), ovary (serous cell), pancreas, prostate, skin (basal cell), skin (melanoma), small and large intestine; soft tissue (liposarcoma); soft tissue (MFH or Malignant Fibrous Histiocytoma), soft tissue (Sarcoma-synovial), testicle (seminoma), thyroid (follicular-papillary), thyroid (medullary carcinoma) and urinary bladder. In other embodiments of the invention, the sample that is classified as containing a tumor cell of a type selected from the following 39, and subsets thereof: adrenal gland, brain, breast, carcinoid-intent, cervical adenocarcinoma, cervix squamous, endometrium, gallbladder, germinal cell ovary, GIST, kidney, Jiomyosarcoma, liver, large lung adenocarcinoma cell, small lung cell, squamous lung, lymphoma B cell, lmfoma Hodgkin, lmfoma T cell, meningioma, mesothelioma, osteosarcoma, clear ovarian cell, serous ovary, pancreas, prostate, basal cell of the skin, melanoma of the p, scaly skin, small and large intestine, soft tissue liposarcoma, soft tissue MFH, sarcoma if nov i to soft tissue, adenocarcinoma of the stomach, testicle or other (or not seminoma), testicle-seminoma, thyroid-fol LCU! a r, papillary, medullary thyroid and urinary bladder. The methods of the invention can also be apply to classify a sample containing cells as containing a tumor cell from a tumor of a subset of any of the above sets. The size of the subset will usually be small, consisting of two, three, four, five, six, seven, eight, nine or ten of the tumor types described above. Alternatively, the size of the subset can be any integral number up to the full size of the set. The embodiments of the invention include the classification between 11, 12, 13, 14, 1.5, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 , 32, 33, 34, 35, 36, 37, 3.8, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 or 52 of the above types. In some embodiments, the subset will be composed of tumor types that are the same tissue or organ type. Alternatively, the subset will be composed of tumor types from different tissues or organs. In some embodiments, the subset will include one or more selected types of adrenal gland, brain, carcinoid intestine, cervical adenocarcinoma, squamous cervix, gallbladder, germinal cell ovary, GIST, lyomiosarcoma, liver, meningioma, osteosarcoma, basal cell of Ja skin, scaly skin, soft tissue liposarcoma, soft tissue MFH, soft tissue synovial sarcoma, testis-other (or non-seminoma), testis-seminoma, thyroid-follicular-papular, and thyroid-medullary.
The classification between subsets of the above tumor types is demonstrated by the results shown in Figures 1-9, where the expression levels of as few as about 5 or more gene sequences can be used to classify between random samples of 2 types of tumor among those in the set of 39 listed in the above. Expression levels of as few as approximately 20 to 49 can be used to classify among all 39 tumor types with varying degrees of accuracy. The invention may be practiced with expression levels of about 10 or more, about 15 or more, about 20 or more, about 25 or more, about 30 or more, about 35 or more, about 40 or more or about 45 or more to 49 sequences transcribed as found in human "transcriptome" (transcribed portion of the genome). The invention can also be practiced with expression levels of about 10-20 or more, about 20-30 or more, about 30-40 or more, about 40-50 or more, or 49 transcribed sequences. In some embodiments of the invention, the transcribed sequences may be randomly collected or include all or some of the specific gene sequences disclosed herein. As it is demonstrated in the present, the classification with precision is of approximately 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, or about 95% or higher can be made by using the present invention. In other embodiments, the gene expression levels of other gene sequences can be determined in conjunction with the determinations described above for the level of expression for use in the classification. A non-limiting example of this is observed in the case of a microarray-based platform for determining gene expression, where the expression of other gene sequences is also measured. Where other expression levels are not used in the classification, they can be considered the result of sequences transcribed "in excess" and not critical to the practice of the invention. Alternatively, and where other expression levels are used in the classification, they are within the scope of the invention, where the description of the use of particular sequence numbers does not necessarily exclude the use of expression levels of additional sequences. In some embodiments, the invention includes the use of level (s) of expression of one or more "excess" gene sequences, such as those that can provide redundant information to one or more other gene sequences used in a method of the invention. invention.
Because the classification of a sample as containing cells from one of the tumor types inherently also classifies tissue or organ site origin of the sample, the methods of the invention can be applied for classification to a tumor sample as which is from a particular tissue or site of the patient's organ. The application of the invention is particularly useful in cases where the sample is from a tumor that is the result of metastasis by another tumor. In some embodiments of the invention, the tumor sample is classified as one of the following 24: Adrenal, Bladder, Bone, Brain, Sinus, Cervix, Endometrium, Esophagus, Biliary Vesicle, Kidney, Larynx, Liver, Lung, Ganglion Lymphatic, Ovary, Pancreas, Prostate, Skin, Soft Tissue, Small / Large Intestine, Stomach, Testicles, Thyroid and Uterus. While the invention also provides classification as one of the above tumor types based on comparisons of the expression levels of sequences in the 39 tumor types, a higher level of confidence in the classification may be desired. If an increase in the confidence of the classification is preferred, the classification can be adjusted to identify the tumor sample as being from a particular source such as the cell type as shown in Figure 10. Thus an increase in confidence is can do the exchange for a decrease in specificity regarding the type of tumor by identifying the origin or type of cell. Classifying a sample that contains cells as having a tumor cell from one of the 39 above tumor types inherently also classifies the tissue or organ site origin of the sample. For example, the identification of a sample as being cervical-squamous necessarily classifies the tumor as being of cervical origin, type of squamous cell (and thus epithelial rather than non-epithelial at origin) as shown in Figure 10. This it also means that the tumor was necessarily non-germ cell in origin. Thus, the methods of the invention can be applied to the classification of a tumor sample as being from a tissue or particular organ sites of a subject or patient. This application of the invention is particularly useful in cases where the sample is from a tumor that is the result of metastasis by another tumor. The practice of the invention to classify a sample containing cells as having a tumor cell of one of the above types is by the use of an appropriate classification algorithm that uses supervised learning to accept 1) the expression levels of the sequences of gene in a plurality of tumor types known as a training set and 2) levels of expressing the same genes in one or more cells of a sample to classify the sample as having cells of one of the tumor types. Further discussion of these is provided in the Examples section herein. Expression levels can be provided based on the signals in any format, including nucleic acid expression or protein expression as described herein. As would be evident to provide the expert, the range of classification is affected by the number of tumor types as well as the number of samples for each type of tumor. But given adequate samples of the full range of human tumors as provided herein, the invention is readily applied to the classification of those tumor types as well as additional types. Non-limiting examples of classification algorithms that can be used in the practice of the invention include supervised learning algorithms, machine learning algorithms, linear discriminant analysis, attribute selection algorithms, artificial neural levels (ANN). In preferred embodiments of the invention, a distance-based classification algorithm, such as the nearest neighbor algorithm k (KNN), or support vector machine (SVM), are used. The use of KNN in some modalities of the invention is further discussed as a representative non-limiting example. KNN can be used to analyze the expression data of genes in a "training set" of known tumor samples that include all 39 types of tumor described herein. The training data set can then be compared with the expression data for the same genes in a cell-containing sample. The expression levels of the genes in the sample are then compared to the training data set via KNN to identify those tumor samples with the most similar expression patterns. As a non-limiting example, the five "closest neighbors" can be identified and the tumor types used to classify the unknown tumor sample. Of course you can use other numbers of "nearest neighbors". Non-limiting examples include less than 5, about 7, about 9, or about 11 or more "nearest neighbors" As a hypothetical example, if the five "closest neighbors" of an unknown sample are four B-cell lymphomas and one lymphoma of T cell, then the classification of the sample is a B-cell lymphoma can be done with great accuracy. This has been used with 84% or greater precision, such as 90%, as described in the examples. The classification ability can be combined with the inherent nature of the classification scheme to provide a means to increase the confidence of tumor classification in certain situations. For example, if the five "closest neighbors" of a sample are three clear ovarian cells and two serous ovarian tumors, the confidence can be improved by simply treating the tumors as being of ovapic origin and by treating the subject or patient. (from whom the sample was obtained) accordingly. See Figure 10. This is an example of exchange of specificity in favor of increased confidence. This provides the added benefit of addressing the possibility that the unknown sample was a mucinous or endometroid tumor. Of course the expert practitioner is free to treat the tumor as one or both of these two most likely possibilities and proceed according to that determination. Due to the lineage of tumor cell development in certain types of tumor (eg, germ cells) can be complex and involve multiple cell types, Figure 10 can be presented over simplified. However, this serves as a basis to relate known histopathology and to serve as a "guide tree" to analyze and relate the signs of gene expression associated with tumor. The inherent nature of the classification scheme also provides a means to increase the confidence of tumor classification in cases where the "closest neighbors" are ambiguous. For example, if the five "closest neighbors" were an ordinary bladder, a breast, a kidney, a liver and a prostate, the classification can be simply that of a non-squamous cell tumor. Such a determination can be made with significant confidence and the subject or patient - from whom the sample was obtained can be treated accordingly. Without being related by theory, and presented only to improve the understanding of the invention, the last two examples reflect the similarities in cell gene expression of a similar cell type and / or tissue origin. The fashions of the invention include the use of the methods and materials described herein to identify the origin of a cancer of a patient. Thus given a sample containing tumor cells, the tissue origin of the tumor cells is identified by the use of the present invention. A non-limiting example is in the case of a subject with an inflamed lymph node containing cancer cells. The cells can be of a tissue or organ that drains into the lymph node or can be from another tissue source. The present invention can be used to classify cells as being from a particular tumor or tissue type (or origin) that allows identification of the source of cancer cells. In an alternative non-limiting example, the sample (such as that of a lymph node) contains cells, which are first analyzed for the use of the invention to classify at least one cell which is a tumor cell of a tissue type. or of origin. It is then used to identify the source of the cancer cells in the sample. Both of these examples of the advantageous use of the invention save time, effort and cost in the use of other cancer diagnostic tests. In additional fashion, the invention is practiced with a sample of a subject with a previous history of cancer. As a non-limiting example, a sample containing cell (lymph node or other part) of the subject can be found to contain cancer cells such that the present invention can be used to determine whether the cells are the same or a different tissue from that of previous cancer. This application of the invention is also. can be used to identify a new primary tumor, such as is the case where new cancer cells They are found in the liver of a subject who previously had breast cancer. The invention can be used to identify new cancer cells as being the result of metastases from previous breast cancer (or of another type of tumor, either previously identified or unidentified) as a new primary occurrence of liver cancer. The invention can also be applied to samples of a tissue or organ where multiple cancers are found that determine the origin of each cancer, as well as whether the cancers are of the same origin. While the invention can be practiced with the use of the expression levels of a random group of expressed gene sequences, the invention also provides exemplary gene sequences for use in the practice of the invention. The invention includes a first group of 74 gene sequences of which about 5 to 49 can be used in the practice of the invention. The 5 to 49 gene sequences can be used in conjunction with the determination of expression levels of additional sequences while the gene sequence expression levels of the set of 74 are used in the classification. A non-limiting example of such embodiments of the invention is where the expression of approximately 5 to 49 of the 74 gene sequences is measured together with the expression levels of a plurality of other sequences, such as mediate the use of a platform based on microarray used to perform the invention. Where those other expression levels are not used in the classification, they can be considered the results of sequences transcribed in "excess" and not critical for the practice of the invention. Alternatively, and where those other levels of expression are used in the classification, they are within the scope of the invention, where the use of the sequence described in the foregoing, does not necessarily preclude the use of expression levels of additional sequences. The sequences of mRN? corresponding to a set of 74 gene sequences for use in the practice of the invention are provided in the appended Appendix (Sequence Listing) together with the additional identification information. The list of identification information, including access numbers and other information, is provided by the following > Hs.73995_mRNA_l gi | 190403 | g | M60502 1 | HUMPROFILE Human prophylaggrin mRNA, 3 • end polyA = l a > Hs 75236_mRNA_4 gi | 14280328 | gb | Y033998 l | Homo sapiens polyA = 3 > Hs.299867_mRNA_l ga | 4758533 | ref | NM_004496.1 | Homo sapiens nuclear hepatocyte factor 3, alpha (H F3A), mRNA polyA = 3 > Hs.285401_cont? Gl AI147926 | AI880S20 | AA768316 | AA761543 | AA279147 | AI216016 | AI738S63 | N79248 | AI 684489 | AA960845 | AI718599 | AI379138 | N29366 | BF002507 I AW044269 I R34339 I R66326 | H04648 | R67467 | AI523112 | BF941500 polyA = 2 polyA = 3 > Hs.l82507_mR A_l gi | 15431324 | ref | NM_002283.2 | Homo sapiens keratin, air, basic, 5 (KRTHB5), mRNA polyA = 3 > Hs .292653_contigl AI200660 | AW014007 | AI341199 | AI692279 | AI393765 | AI378686 | AI695373 | AW292108 | T10352 | R44346 | AW470408 | AI380925 | BF938983 | A 003704 | HO8077 | F03856 | H08075 | F 08895 | AW468398 | AI865976 | H22568 | AI858374 | AI216499 polyA = 2 polyA = 3 > Hs.97616_mRNA_3 gi | 12654852 | g | BC001270.1 | BC001270 Homo sapiens clone MGC: 5069 IMAGE: 3458016 polyA = 3 > Hs.123078_mRNA_3 gi | 14328043 | gb | BC009237.1 | BC009237 Homo sapiens clone MGC: 2216 IMAGE: 2989823 p? LyA = 3 > Hs.285508_C? Ntigl A 194680 | BF939744 | BF516467 polyA = l polyA = l > Hs .183274_contigl BF437393 | BF064008] BF509951 | A 134603 | AI277015 | AI803254 | AA887915 | BF054958 | AI004 13 | AI39391l | AI278517 | A 612644 AI492162 j AI309226 AI863671 | AA448864 AI640165AA479926AA461188 | AA780161 j BF591180 jAI918020 AI758226 AI291375 | BF001845 | BF003064¡AI337393 ¡AI522206 [BE85678 j BF001760 ¡AI280300 FLAG = 1 polyA = 2 WARN polyA = 3 > Hs.334841_mRNA_3 gi | 14290606 | gb | BC009084.1] BC009084 Homo sapiens clone MGC: 9270 IMAGE: 3853674 polyA = 3 > Hs.3321_contigl AI804745 | AI492375 | A594799 | BE672611 | AA814147 | AA722404 | AW170088 | D11718JBG 153444 | AI680648lAA06356l | BE2190S4 | AI590287 | R55185 | A1479167 | AI796872 | AI01 8324 | AI701122 | BE 18203 | AA905336 | AI681917 | BIO84742 | AI480008 | AI217994 | AI40 1468 polyA = 2 polyA = 3 > Hs.306216_singletl AW083022 polyA = l polyA = 2 > Hs.99235_C? Ntigl AA456140 | AI167259 | AA450056 polyA = 2 polyA = 3 > Hs.l69172_mRNA_2 gi | 2274961 | emb | AJ000388.1 | HSCANPX Homo Sapiens mRNA for calpain-like protease CANPX polyA = 3 > Hs.351486_mRNA_l gi | 16549178 | dbj | AK054605.1 | AK054605 Homo sapiens cDNA FLJ30043 fis, clone 3NB692001548 polyA = 0 > Hs .153504_contig2 BE962007 | AW016349 | AW016358 | A 13914 | AA932969 | AI025620 | AI688744 | AI865632 | AA85429l | AA932970 AU156702 | AI6344 9 AA152496] I539557 j AI123490 | AI613215 j AI318363 AW105672 | AA843483 j AI366889 | AW181938 j AI813801 j AI433695 AA934772 | N72230 | AI760632 | BE858965 | A 058302 | AI760087 | AI682077 | AA886672 | AI350384 | AW 243848 AW300574 | BE466359 AI859529¡AI921588 BF062899 | BE85559 BE617708 polyA = 2 polyA = 3 > Hs.l99354_singletl AI669760 polyA = l polyA = 2 > Hs.l62020_contigl A 291189 | AA505872 polyA = 2 polyA = 3 > Hs.30743_mRNA_3 gi | 18201906 | ref | NM_006115.2 | Homo sapiens preferentially expressed antigen in melanoma (PRAME), mRNA polyA = 3 > Hs.271580_contigl AI632869 | AW338882 | W338875 | AW61377 | AI982899 | AW193151 | BE206353 | BE208200 | AI811548 | AW264021 polyA = 2 polyA = 3 >; Hs.69360_mRNA_2 gi | 14250609 | gb [BC008764.1 (BC008764 Homo sapiens clone MGC: 1266 IMAGE: 3347571 polyA = 3> Hs. 30827_contigl H07885 | 39347 | 85913 | A583408 | 86449 polyA = 2 polyA = 3> Hs .211593_contig2 BF592799 | AI? 70478 | AA234440 | 4021 | BESO1078 | A 59378 | I184050 AI284161 | W7 2149 | AW780437 | AI247981 | AW241273 | H60824 polyA = 2 polyA = 3> Hs.l55097_mRNA_l gi | 15080385 | gb | BC011949.1 | BC011949 Homo sapiens clone MGC: 9006 IMAGE: 3863603 polyA = 3> Hs.5163_mRNA_l gi | 15990433 | gb | BC015582.1] BC015582 Homo sapiens clone MGC: 23280 IMAGE: 4637504 p? LyA = 3> Hs.55150_mRNA_l gi | 17068414 | gb | BC017586. 1 | BC017586 Homo sapiens clone MGC: 26610 IMAGE -.4837506 polyA = 3> Hs.l70177_contig3 AI620495 | AW291989 | AA780896 | AA976262 | AI298326 | BF111862 JAW591523 | AI922518 | AI480280 | BF589437¡AA600354 | AI886238 | AA035599 H90049 | BF112011 | N52601 | AI57 0965 | AI565367 | A 768847 | H90073 | BE5043611 45292 | AI632075 | AA679729 | AW168052 | AI978827 | AI968410 | AI669255 | N45300 | AI651256 | AI698970 | AI521256 | A 078614 | A 1802070 | AI885947 | AI342534 | AI653624 | AW243936 | T16586 | 15989 | AI289789 | AI871 636 | AI718785 | AW148847 polyA = 2 polyA = 3 > Hs.184601_mRNA_5 gi j 4426639 | g | AF104032.1 | AF104032 Homo sapiens polyA = 2 > Hs.351972_singletl AA865917 polyA = 2 polyA = 3 > Hs.5366__mRNA_2 gi | 15277845 | gb | BC012926.1 | BC012926 Homo sapiens clone MGC: 16817 IMAGE: 3853503 polyA = 3 > Hs .18140_contigl AI68593l | AA410954 | T97707 | AA706873 [AI911572 | AW614616 | AA548520 | AW027764 | BF 511251 | AI914294 | AW151688 polyA = l polyA = l > Hs .133196_contig2 BF224381 | BE467992 | AW137689 | AI695045 | AW207361 | BF445141 | AA405473 polyA = 2 WARN polyA = 3 > Hs.63325_mRNA_5 gi | 15451939 | ref | NM_019894.1 | Homo sapiens transmembrane protease, serine 4 (TMPRSS4), mRNA polyA = 3 > Hs.250692_mRNA_2 gi | 184223 | gb | M95585.1 HUMHLF Human hepatic leukemia factor (HLF) mRNA, complete cds polyA = 3 > Hs.250726_singlet4 AW298545 polyA = 2 polyA = 3 > Hs.79217_mRNA_2 gi | 16306657 | gb | BC001504.1 | BC001504 Homo sapiens clone MGC: 2273 IMAGE: 3505512 polyA = 3 > Hs.47986_mRNA_l gi | 13279253 | gb | BC004331.1 | BC004331 Homo sapiens clone MGC: 10940 IMAGE: 3630835 polyA = 3 > Hs.94367_mRNA_l gi | 10440200 | dbj | AK027147.1 | AK027147 Homo sapiens cDNA: FLJ23494 fis, clone LNG01885 polyA = 3 > Hs .49215_contigl BI493248 | 66529 | AA452255 | BI492877 | AW196683 | AI963900 | BF478125 | AI421654 | BE 466675 polyA = l polyA = l > Hs.281587_contig2 R61469 | R15891 | AA007214 | R61471 | AI014624 | N69765 | AW592075 | H09780 | AA709038 | A 1335898 | AI559229 | F09750 | 49594 | H11055 | T72573 | AA935558 | AA988654 | AA826438 | AI00243l | AI299721 polyA = l polyA = 2 > Hs.79378_mRNA_l gi 16306528 | ref | NM_003914.2 | Homo sapiens cyclin Al (CCNA1), mRNA polyA = 3 > Hs .156469_contig2 AI341378 | AI670817 | AI701687 | AI335022 | A 235883 | AI948598 | AA446356 polyA = 2 polyA = 3 > Hs.6631_mRNA_l gi | 7020430 | db | AK000380.1 | AK000380 Homo sapiens cDNA FLJ20373 fis, clone HEP19740 polyA = 3 > Hs.155977_contigl AI309080 | AI313045 polyA = l WARN polyA = l > Hs.95197_mRNA_4 gi | 5817138 em | AL110274.1 | HSM800829 Homo sapiens mRNA; CDNA DKFZp564I0272 (from clone DKFZp564I0272) polyA = 3 > Hs.48956_contigl N64339 | AI569513 | AI694073 polyA = l polyA = l > Hs.ll8825_mRNA_10 gi | 1495484 | emb | X96757.1 HSSAPKK3 H. sapiens mRNA for MAP kinase kinase polyA = 3 > Hs .135118_contig3 AI683181 | AI032848 | A 770198 | AI333188 | AI873435 | AW169942 | AI806302 | AW340718 | BF196955 AA909720 polyA = l polyA = 2 > Hs.l71857_mRNA__l. gi | l3161080 | gb | AF332224.11AF332224 Homo sapiens testis protein mRNA, partial cds polyA = 3 > Hs.l8910_mRNA_3 gi | 12804464 | gb | BC001639.1 | BC001639 Homo sapiens clone MGC: 1944 IMAGE: 2959372 polyA = 3 > Hs.l94774_mRNA_l gi | 16306633 | g | BC001492.1 | BC001492 Homo sapiens clone MGC: 1774 IMAGE: 3510004 polyA = 3 > Hs .127428_mRNA_2 gi | 16306818 | g j BC006537.1 | BC006537 Homo sapiens clone MGC: 1934 IMAGE: 2987903 polyA = 3 > Hs .126852_contigl AI802118 | BF197404 | BF224434 | AA93196 | AW236083 | AI253119 | AW614335 | AI671372 | AI79324? | AW00685l | I9S3604 AI640505 AI633982 AW195809 | AI493069 | AW058576 | AW293622 polyA = 2 polyA = 3 > Hs.28149_mRNA_l gi | 14714936 | gb | BC010626.1 | BC010626 Homo sapiens clone MGC: 17687 IMAGE: 3865868 polyA = 3 33 > Hs .35453_mRNA_3 gi | 701849 | em | AL157475.11 HSM802461 Homo sapiens mRNA; cDNA DKFZp761G151 (from clone DKFZp761G151); partial cds polyA = 3 > Hs .180570_contigl R08175 | AA707224 | AA699986 | R11209 | W89099 | T98002 | AA494546 polyA = 2 polyA = 3 > Hs.l96270_mRNA_l gi | 11545416 | g JAF283645.1 | AF283645 Homo sapiens chromosome 8 map 8q21? OlyA = 3 > Hs .9030_mRNA_3 gi | 12652600 | gb | BC000045.1 | BC000045 Homo sapiens clone MGC: 2032 IMAGE: 3504527 polyA = 3 > Hs .1282_mRNA_3 gi | 559405 | ref | NM_000065.1 | Homo sapiens complement component 6 (C6), mRNA polyA = l > Hs.268562_mRNA_2 gi | 15341874 | gb | BC013117.1 | BC013117 Homo sapiens clone MGC: 8711 IMAGE: 3882749 polyA = 3 > Hs.l51301_mRNA_3 gi | 16041747 | gb | BC015754.1 | BC015754 Homo sapiens clone MGC: 23085 IMAGE: 862492 polyA = 3 > Hs.lll_C? Ntigl AA946776 | AW242338 | H2427 | AI078616 polyA = l polyA = 2 > Hs.l50753_contigl AI123582 (AI288234 polyA = 0 polyA = 0> Hs.82109_mRNA_l gi | 14250611 | gb | BC008765.1 | BC008765 Homo sapiens clone MGC: 1622 IMAGE: 3347793 polyA = 3 > Hs.44276_mRNA_2 gi | 12654896 | gb | BC001293.1 | BC001293 Homo sapiens clone MGC: 5259 IMAGE: 3458115 polyA = 3 > Hs .2142_mRNA_4 gi [13325274 | gb | BC004453.1 | BC004453 Homo sapiens clone MGC: 4303 IMAGE: 2819400 polyA = 3 > Hs.l80908_C? NtÍgl AA84682) A 611680 | AA846182 | AA846342 | AA846360 polyA = 2 polyA = 3 > Hs .89436_mRNA_l gi 116507959 | ref | NM_004063.2 | Homo sapiens cadherin 17, Ll cadherin (liver-intestine) (CDH17), mRNA? OlyA = l > Hs.151544_mRNA_8 gi | 3153107 | emb | AL023657.1 | HSDSHP Homo sapiens SH2D1A cDNA, formerly known as DSHP polyA = 3 > Hs .1657_contig4 A 473119 | AA164586 | AI540656 | AI758480 | AI810941] AI978964 | AI675862 | AI784397 | AW591562 AW514102 AI888116 AI983175 AI634735 j AI669577 | A? 202659 j I910598 AI961352¡AI565481¡AI886254 ¡AI538838 jAA291749 | AW571455 | AI370308 AI274727 j AW473925AW514787 | AI27387l | AW470552 j AI524356 j AI888281 j A 089672 | AI952766 | A 44060l | AI654044 AW438839 jAI972926 polyA = 2 polyA = 3 > Hs.35984_mRNA_l gi | 6049161 | gb | AF133587.1 | F133587 Homo sapiens chromosome 22 map 22qll.2 polyA = 3 > Hs.334534__mRNA_2 gi | 17389403 | gb | BC017742.1 | BC017742 Homo sapiens, clone IMAGE: 4391536, mRNA polyA = 3 > Hs.60162_mRNA_l gi | 10437644 | dbj | AK025181.1 | AK025181 Homo sapiens cDNA: FLJ21528 fis, clone COL05977 polyA = 3 As will be understood by the skilled person, the detection of the expression of any of the sequences identified in the above, or the sequences provided in the appended Appendix (Sequence Listing) can be done by detecting expression of any portion or appropriate fragment of these sequences. Preferably, the portions are large enough to contain unique sequences relative to other sequences expressed in a sample containing cells. On the other hand, the skilled person will recognize that the disclosed sequences represent a strand of a double-stranded molecule and that any one can be detected as an indicator of the portion of the disclosed sequences. This follows because the disclosed sequences are expressed as RNA molecules in cells that are preferably converted to cDNA molecules for ease of handling and detection. The resulting cDNA molecules can have the RNA sequences expressed as well as those of the strand complementary thereto. So either the RNA sequence strand or the complementary strand can be detected. Of course, it is also possible to detect the RNA expressed without conversion to cDNA. In some embodiments of the invention, the expression levels of gene sequences are measured by detecting sequences expressed in a sample containing cells such as hybridizing the following oligonucleotides, which correspond to the above sequences as indicated by accession numbers provided. > AF133587 CCCGGATCGCCATCAGTGTCATCGAGTTCAAACCCTGAGCCCTTCATTCACCTCTGTGAG > BC017742 TGCCCTTGCTCTGTGTCATCTCAGTCATTTGACTTAGAAAGTGCCCTTCAAAAGGACCCT > BF437393 GGAGGGAGGGCTAATTATATATTTTGTTGTTCCTCTATACTTTGTTCTGTTGTCTGCGCC > AI620495 CAGTTTGGATTGTATAATAACGCCAAGCCCAGTTGTAGTCGTTTGAGTGCAGTAATGAAA > AK000380 5 AAATCAGAGTAACCCTTTCTGTATTGAGTGCAGTGTTTTTTACTCTTTTCTCATGCACAT > BC009237 TGCCTGGCACAAAGAAGGAAGAATATAAATGATAGTTCGACTCGTCTGTGGAAGAACTTA > BC008765 AGTCTTTTGCTTTTGGCAAAACTCTACTTAATCCAATGGGTTTTTCCCTGTACAGTAGAT >; BC001504 GGTTACTGTGGGTGGAATAGTGGAGGCCTTCAACTGATTAGACAAGGCCCGCCCACATCT > NM_019894 TAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCTACTGTTGTCATTGTTATTA > BF224381 I O TTCTCTTTTGGGGGCAAACACTATGTCCTTTTCTTTTTCTAGATACAGTTAATTCCTGGA > AL157475 AAGACCCACACCCTGTAGCAATACCAAGTGCTATTACATAATCAATGGACGATTTATACT > AY033998 AGTGTTGCAAGTTTCCT TAAAACCAACAAAGCCCACAAGTCCTGAATTTCCCATTCTTA > H07885 GTCACTGTCATAGCAGCTGTGATTTCACAAGGAAGGGTGCTGCAGGGGGACCTGGTTGAT > NM_004496 TTTCATCCAGTGTTATGCACTTTCCACAGTTGGTGTTAGTATAGCCAGAGGGTTTCATTA > AA846824, 5 GGGAAGTAGGGATTATTCGTTTAAATTCAATCGCGAGCACCAAGTCGGACTGGCCGGGGA > BC017586 GGGACCAGGCCCTGGGACAGCCATGTGGCTCCAAATGACTAAATGTCAGCTCAAAAACCA > AA456140 TCCGTTTATGGAGGCAATTCCATATCCTTTCTTGAACGCACATTCAGCTTACCCCAGAGA > NM_002283 AGAGTTAAGCCACTTCCTGGGTCTCCTTCTTATGAC? GTCTATGGGTGCATTGCCTTCTG > AL023657 GTGGCCTGAGTAATGCATTATGGGTGGTTTACCATTTCTTGAGGTAAAAGCATCACATGA > BC001639 ACACATGCATGTGTCTGTGTATGTGTGAATGTGAGAGAGACACAGCCCTCCTTTCAGAAG > BC015754 TCTGTAACTGCACAACCCTGGGGTTTGCTGCAGAGCTATTTCTTTCCATGTAAAGTAGTG > AF332224 AAACACTCTTTCCGACTCCAGAGGAGAAGCTGGCAGCTCTCTGTAAGAAATATGCTGATC > BC001270 GCTTCCTCTATCGCCCAATGCAAAATCGATGAAATGGGGAGTTCTCTGGGCCAGGCCACA > AI147926 GTAGAATCCTCTGTTCATAATGAACAAGATGAACCAATGTGGATTAGAAAGAAGTCCGAG > AW298545 CTGTTTTAAAACTGAATGGCACGAAATTGTTTTCCTCAACTCGGAGATTCCTGTATGGAG 25 > AI802118 AATAAATAGTAGCTCTGCTGATGATGACGTTGATAACCAAACTGTTCTGTGGTCTTAAGT > AI683181 CAAACAGCCCGGTCTTGATGCAGGAGAGTCTGGAAAAGGAAGAAAATGGTTTCAGTTTCA > M95585 AACATGGACCATCCAAATTTATGGCCGTATCAAATGGTAGCTGAAAAAACTATATTTGAG > AK027147 TTGT7AATCATGCCAATTCCAGATCAATAACTGCATGTCTGTTCTTTGGTAGAAATAGCTT > AW291189 AAAGATTATTAACCCAAATCACCTTTCTTGCTTACTCCAGATGCCTCAGCCTCTGATATA > AI632869 GACTTCCTTTAGGATCTCAGGCTTCTGCAGTTCTCATGACTCCTACTTTTCATCCTAGTC > BC006537 CTGTATATTTTGCAATAGTTACCTCAAGGCCTACTGACCAAATTGTTGTGTTGAGATGAT > R61469 TGTTCAAACAGACTTTAACCTCTGCATCATACTTAACCCTGCGACATGCGTACAGTATGC > BC009084 TGAGTCATATACATTTACTGACCACTGTTGCTTGTTGCTCACTGTGCTGCTTTTCCATGA > N64339 CTGAAATGTGGATGTGATTGCCTCAATAAAGCTCGTCCCCATTGCTTAAGCCTTCAAAAA > AI200660 ATCAAGAAAACCTAATCTTCTGACTCCCAGGCCAGGATGTTTTATTTCTCACATCATGTC > AK054605 TTCATTTCCAAACATCATCTTTAAGACTCCAAGGATTTTTCCAGGCACAGTGGCTCATAC > NM_006115 AGTTAGAAATAGAATCTGAATTTCTAAAGGGAGATTCTGGCTTGGGAAGTACATGTAGGA > X96757 CAATTTTCTTTTTACTCCCCCTCTTAAGGGGGCCTTGGAATCTATAGTATAGAATGAACT > AI804745 GGGTGGAGTTTCAGTGAGAATAAACGTGTCTGCCTTTGTGTGTGTGTATATATAGAGAGA > AJ000388 CTCGCTCATTTTTTACCATGTTTTCCAGTCTGTTTAACTTCTGCAGTGCCTTCACTACAC > BC008764 CTTTGGGCCGAGCACTGAATGTCTTGTACTTTAAAAAAATGTTTCTGAGACCTCTTTCTA > AI309080 CTGGACCCTTGGAGCAGTGTTGTGTGAACTTGCCTAGAACTCTGCCTTCTCCGTTGTCAA > AA865917 CCACCTCCTTCGACCTCCACTGCGCCCCACCTCCCTGCCTGTGTGTGTTATTTCAAAGGA > AA946776 TCTGGCTGGTGGCCTGCGCGAGGGTGCAGTCTTACTTAAAAGACTTTCAGTTAATTCTCA > AF104032 AGATGCTGTCGGCACCATGTTTATTTATTTCCAGTGGTCATGCTCAGCCTTGCTGCTCTG > AW194680 TCCTTCCTCTTCGGTGAATGCAGGTTATTTAAACTTTGGGAAATGTACTTTTAGTCTGTC > BC001293 GTCCTGTCCCTGTCTGGGAGTTGTGTTATTTAAAGATATTCTGTATGTTGTATCTTTTGC > BE962007 ATTATATTTCAGGTGTCCTGAACAGGTCACTAGACTCTACATTGGGCAGCCTTTAAATAT > BI493248 AGGAATGGTACTACCGTTCCAGATTTTCTGTAATTGCTTCTGCAAAGTAATAGGCTTCTT > AF283645 CTGTACCCAAAGGATGCCAGAATACTAGTATTTTTATTTATCGTAAACATCCACGAGTGC > AI669760 ATTGCCCCCCTAACCAATCATGCAAACTTTTCCCCCCCTGGGGTAATTCACCAGTTAAAA > BC001492 CCCACAGTATTTAATGCCCTGTCAGTCCCTTCTAGTCTGACTCAATGGTAACTTGCTGTA > BC004453 AAAACCAACTCTCTACTACACAGGCCTGATAACTCTGTACGAGGCTTCTCTAACCCCTAG > BC010626 CTCAGACTGGGCTCCACACTCTTGGGCTTCAGTCTGCCCATCTGCTGAATGGAGACAGCA > BC013117 CCTAATGGGGATTCCTCTGGTTGTTCACTGCCAAAACTGTGGCATTTTCATTACAGGAGA > BC011949 CACTCACAATTGTTGACTAAAATGCTGCCTTTAAAACATAGGAAAGTAGAATGGTTGAGT > A 083022 CTTTGAAGGGCTGCTGCACATTGT? GAATCCATCGACCTTTAGCTGCAATGGGATCTCTA > R08175 TGCCTCATCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGTCT > NM_000065 AAAACAGACAAAAGCCTTTGCCTTCATGAAGCATACATTCATTCAGGGGTAGACACACAA > AK025181 TAACAAACAAAGGCAGTA.GCTCATCACTTGGGTAGCAGGTACCCATTTTAGGACCCTACA > NM_003914 ATATCAGAAGTGCCAATAATCGTCATAGGCTTCTGCACGTTGGATCAACTAATGTTGTTT > AI123582 ATCATAGCCCAACCATGTGAGAAGAAGGAGAAGGCCCCCCTTTCTTCATTAATCTGAAAA > BC004331 GCAGACCATTCTATCATACCTGGCAGGGCTTCTGTTTTATTTTGTAGGCTGGATGCTACC > AI341378 ACTACAAGCCTCTTGTTTTTCACCAAAACCCTACATCTCAGGCTTACTAATTTTTGTGAT > NM_004063 GCCATGCATACATGCTGCGCATGTTTTCTTCATTCGTATGTTAGTAAAGTTTTGGTTATT > BC012926 CACCTATTTATTTTACCTCTTTCCCAAACCTGGAGCATTTATGCCTAGGCTTGTCAAGAA > AL110274 GTGGACATAGCCACTAACCAACTAGTTACCTTTGGACTGCAACAAAAAATGTGAAAATGA >; A 473119 ACTTGTAAACCTCTTTTGCACTTTGAAAAAGAATCCAGCGGGATGCTCGAGCACCTGTAA > AI685931 AATTCTCTATAAACGGTTCACCAGCAAACCACCAATACATTCCATTGTTTGCCTAGAGAG > BF592799 AATGGCCCATGCATGCTGTTTGCAGCAGTCAATTGAGTTGAA TAGAATTCCAACCATAC > BC000045 GAGCTCAGTACT GCCCTGTGAAAATCCCAGAAGCCCCCGCTGTCAATGTTCCCCATCCA > BC015582 ATGAAGCGGAATTAGGCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGA > M60502 AGTGGCTATATCAACATCAGGGCTAGCACATCTTTCTCTATTATCCTTCTATTGGAATTC The invention also provides a second group of 90 gene sequences of which about 5 to 49 can be used in the practice of the invention. The approximately 5 to 49 gene sequences can be used together with the determination of expression levels of additional sequences while the expression levels of gene sequences of the set of 90 are used in the classification. A non-limiting example of such embodiments of the invention is where the expression of approximately 5 to 49 of the 90 gene sequences is measured together with the expression levels of a plurality of other sequences, such as by the use of a microarray-based platform used to perform the invention. Where those other levels of expression are not used in the classification, they can be considered the results of sequences transcribed in "excesses" and not critical to the practice of the invention. Alternatively, and where those other expression levels are used in the classification, they are within the scope of the invention, where the use of the sequences described in the foregoing does not necessarily exclude the use of the expression levels of additional sequences. 38 members of the set of 90 are included in the first set of 74 described in the above. The access numbers of these members in common between the two sets are AA456140, AA846824, AA946776, AF332224, AI620495, AI632869, AI802118, AI804745, AJ000388, AK025181, AK027147, AL157475, A 194680, A 291189, AW298545, A 473119, BC000045 , BC001293, BC001504, BC004453, BC006537, BC008765, BC009084, BC011949, BC012926, BC013117, BC015754, BE962007, BF224381, BF437393, BI493248, M60502, NM_000065, NM-003914, NM__004063, N _004496, NM_006115 and R61469. The mRNA sequences corresponding to the members of the set of 90 that are not present in the set of 74 gene sequences are also provided in the attached Appendix (List of Sequence) together with the additional identification information. The listing of identification information for these 52 unique members by access numbers, as well as the corresponding oligonucleotide sequences that can be used in the practice of the invention, is provided by the following. > R15881 ACTTCTGGTGATGATAAAAATGGTTTTATCACCCAGATGTGAAAGAAGCTGCCTGTTTAC > AI041545 GTGGTTCTGTAAAAACGCAGAGGAAAAGAGCCAGAAGGTTTCTGTTTAATGCATCTTGCC > NM_024423 TTTATAAGGAAGCAGCTGTCTAAAATGCAGTGGGGTTTGTTTTGCAATGT TTAAACAGA > AB038160 CTTATGAAGCTGGCCGGGCCAC CACGTTCAATGGTACATCTGGG CTCTATGTGGTTCT > AK026790 GTGAGCCAGCATTTCCCATAGCTAACCCTATTCTCTTAGTCTTTCAAAATGTAGAATGGG > BC012727 CTTTACACCTGATAAAATATTTTGCGAAGAGAGGTGTTCTTTTTCCTTACTGGTGCTGAA > BC016451 GCATACATCTCATCCACAGGGGAAGATAAAGATGGTCACACAAACAGTTTCCATAAAGAT > H09748 TGAGTTCAGCATGTGTCTGTCCATTTCATTTGTACGCTTGTTCAAAACCAAGTTTGT? CT > NM_006142 AAGACCGAGACTGAGGGAAAGCATGTCTGCTGGGTGTGACCATGTTTCCTCTCAATAAAG > AF191770 GGCATCTGGCCCCTGGTAGCCAGCTCTCCAGAATTACTTGTAGGTAATTCCTCTCTTCAT > NM_006378 TGGATGTTTGTGCGCGTGTGTGGACAGTCTTATCTTCCAGCATGATAGGATTTGACCATT > BC006819 TCCTGGCAGAGCCATGGTCCCAGGCTTCCCAAAAGTGTTTGTGGCAATTATTCCCCTAGG > X79676 TTTGATGATAGCAGACATTGTTACAAGGACATGGTGAGTCTATTTTTAATGCACCAATCT > BC006811 TTCTTCCAGTTGCACTATTCTGAGGGAAAATCTGACACCTAAGAAATTTACTGTGAAAAA > NM_000198 GAACAATTGTGGTCTCTCTTAACTTGAGGTTCTCTTTTGACTAATAGAGCTCCATTTCCC > AF301598 GTTAAGTGTGGCCAAGCGCACGGCGGCAAGTTTTCAAGCACTGAG? TTCTATTCCAAGAT > NM_002847 CGGCCTACTGAGCGGACAGAATGATGCCAAAATATTGCTTATGTCTCTACATGGTATTGT > NM_004062 CAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAACTGGGCTGGGCCCTATGGGATTGGTA > AW118445 TGTACAGTTTGGTTGTTGCTGTAAATATGGTAGCGTTTTGTTGTTGTTGTTTTTTCATGC > BC002551 TACCAAACTGGGACTCACAGCTTTATTGGGCTTTCTTTGTGTCTTGTGTGTTTCTTTTAT > AA765597 CATTGAGGTTTGGATGGTGGCAGGTAAAACAGAAAGGCAAGATGTCATCTGACATTAGGC > AL137761 AGTTCAGCACTGTGGTTATCATTGGTGATGCCAGAAAACATTAGTAGACTTAGACAATTG > X78202 TAAAATTTCTTGATTGTGACTATGTGGTCATATGCCCGTGTTTGTCACTTACAAAAATGT > AK025615 AGCCATCTGGTGTGAAGAACTCTATATTTGTATGTTGAGAGGGCATGGAATAATTGTATT > BC001665 CTTATTGTCACTGGTTAAGAACTTGGCGAGATTGAAGGGCTTTTGTTATTGTTGTTGGAT > AI985118 CTTTCTAGTGAGCTAACCGTAACAGAGAGCCTACAGGATACACGTGAGATAATGTCACGT > AL039118 TTGTCTTAAAATTTCTTGATTGTGATACTGTGGTCATATGCCCGTGTTTGTCACTTACAA > AA782845 CCTGGGGGAAAGGGGCATTCATGACCTGAACTTTTTAGCAAATTATTATTCTCAGTTTCC > BC016340 TTCATTAACAGTACTAAGTGGAAGGGATCTGCAGATTCCAAATTGGAATAAGCTCTATCA > AA745593 CCAATGCAGAAGAGTATTAAGAAAGATGCTCAAGTCCCATGGCACAGAGCAAGGCGGGCA >; NM_004967 CAAGGCTACGATGGCTATGATGGTCAGAATTACTACCACCACCAGTGAAGCTCCAGCCTG > BF510316 AGCTCACAGCTGGACAGGTGTTGTATATAGAGTGGAATCTCTTGGATGCAGCTTCAAGAA > AA993639 TCCAAAGTAGAAAGGGTTCTTTTAGAAAACTTGAAGAATGTGCCTCCTCTTAGCATCTGT > AV656862 GATGCATTTTTCAGTCCCTTTTCAGAGCAAATGCTTTTGCAATGGTAGTAATGTTTAGTT > X69699 CCTGTGGGGCTTCTCTCCTTGATGCTTCTTTCTTTTTT? AAAGACAACCTGCCATTACCA > BC013282 TTGCACTAAGTCATGCTGTTTCCTCAAAGAAGCTTTGTTTTTTGTTAACGTATTACTCAG > AI457360 CTGGATCCCAGGCCCTGGCACCCCTCAGGAAATACAAGAAAAAGAATATTCACATCTGTT > A 445220 TTAGAGGGGCCACCTATCAACTCATCAGTGTTCAAAGAATATGCTGGGAGCATGGGTGAG > AF038191 GGCCCATTTATGTCCCTCATGTCTCTAGATTTTCTCGTCACCCAGCCTCAAAAATATATG > X05615 TCCCCAAAAACCTCACCCGAGGCTGCCCACTATGGTCATCTTTTTCTCTAAAATAGTTAC > BC005364 GAAATTCCTCACACCTTGCACCTTCCCTACTTTTCTGAATTGCTATGACTACTCCTTGTT > AK025701 TGTCTGTCCACCACGAGATGGGAGGAGGAGAAAAAGCGGTACGATGCCTTCCTGACCTCA > BF446419 GTCTTATCTCTCAGGGGGGGTTTAAGTGCCGTTTGCAATAATGTCGTCTTATTTATTTAG > AK025470 CCGAGTAGTATGGGTCTCTGTGTGAGAAACCAGGAGATATTTTCATCTTGTTCGGAAATA > BE552004 TTGTGCAAAAGTCCCACAACCTTTCTGGATTGATAGTTTG GGTGAAATAAACAATTTTA > H05388 TCCAGTATTCTGCAGGGCCAGTCAGTTGTACAGAAGTTGGAATATTCTGTTCCAGAATTA > NM_033229 GTCTCGAACAGCGGTTGTTTTTACTTTATTTATCTTAGGCCCTCAGCTCCCTGACGTCCT > BC010437 AGTGAATCTTTTCCTCTTGGTAGCATCAACACTGGGGATAAATCAGAACCATTCTGTGGA > AI952953 TGAGAGCCCAGAACAAGAAGGAGCAGAAGGGCACTTTGACCTTCATTATTATGAAAATCA > R45389 GGAAGAACTGATGCTTGCTGCTAACTAAAGTTTTGGATGTATCGATTTAGAGAACCAATT > NM_001337 GAATGAGAGAATAAGTCATGTTCCTTCAAGATCATGTACCCCAATTTACTTGCCATTACT > AI499593 TACGGAAAGGAAACAGGTTATACTCTTAGATTTAAAAAGTGAAAGAAACTGCAGGCGCCT In some embodiments of the invention, the expression levels of gene sequences are measured by the detection of sequences expressed in a sample containing as hybrid to the previous oligonucleotides, corresponding to the sequences in. the Appendix (Sequence Listing) as indicated by the access numbers provided. In further embodiments, the invention provides for the use of any number of the gene sequences of the set of 74 or the set of 90 in the methods of the invention. Thus any one of all of the 49 gene sequences used in the invention can be either or both of the above sets. Thus from one, two, three, four or five or more of the approximately 5 to 49 sequences can be from the set of 74 or from the set of 90. Similarly and where from 10 to 49 sequences are used, six, seven, eight , nine or ten of the sequences can be from one of these sets. As used herein, a "tumor sample" or "sample containing tumor" or "sample containing tumor cell" or variations thereof, refers to samples containing tissue cells or fluid isolated from it that is suspected of being afflicted with, or at risk of developing, cancer. The samples may contain tumor cells that can be isolated by known methods or other appropriate methods as deemed desirable by the skilled artisan. These include, but are not limited to, micssection, laser capture micssection (LC), or laser micssection (LMD) before use in the present invention. Alternatively, cells not dissected within a "section" of tissue can be used. Non-limiting examples of such samples include primary isolates (in contrast to cultured cells) and can be collected by any non-invasive or minimally invasive means, including, but not limited to, ductal washout, fine needle aspiration, needle biopsy, devices and methods described in US Pat. No. 6,328,709, or any other suitable means recognized in the art. Alternatively, the sample may be collected by an invasive method, including, but not limited to, surgical biopsy. The detection and measurement of transcribed sequences can be performed by a variety of means known in the art or as deemed appropriate by the skilled artisan. Essentially, a test method can be used as long as the test reflects, quantitatively or qualitatively, to expression of the transcribed sequence that is detected. The ability to classify tumor samples is provided by recognition in the relevance of the level of expression of the gene sequences (either randomly selected or specific) and not by the form of the assay used to determine the current level of expression. An assay of the invention can utilize any identifying feature of an individual gene sequence as disclosed herein, as long as the assay reflects, quantitatively or qualitatively, the expression of the gene in the "transen ptoma" (the transcribed fraction of genes). in a genome) or the "proteome" (the translated fraction of genes expressed in a genome). Additional assays include those based on the detection of mRNA polypeptide fragments or relevant proteome members. Non-limiting examples of the latter include the detection of proteolytic fragments found in a biological fluid, such as blood or serum. Identification characteristics include, but are not limited to, unique nucleic acid sequences used to encode (DNA) or express (RNA), the gene or epitopes specific to, or activities of, a protein encoded by a gene sequence. Additional means include detection of nucleic acid amplification as is indicative of increased expression levels and nucleic acid inactivation, deletion or methylation, as is indicative of decreased expression levels. Established differently, the invention can be practiced by analyzing one or more aspects of the DNA template (s) that involves the expression of each gene sequence, of the RNA used as an intermediate to express the sequence, or of the product proteinaceous expressed by the sequence, as well as the proteolytic fragments of each product. As such, the detection of the presence of, amount of, stability of, or degradation (including proportion) of such DNA, RNA and proteinaceous molecules can be used in the practice of the invention. In some embodiments, all or part of a gene sequence can be amplified and detected by methods such as polymerase chain reaction (PCR) and variations thereof, such as, but not limited to, quantitative PCR (Q-PCR ), Reverse transcription PCR (RT-PCR) and real-time PCR (including as a means to measure the initial quantities of mRNA copies of each sequence in a sample), optionally real-time RT-PCR or Q-PCR of real time. Such methods would use one or two primers that are complementary to the portions of a gene sequence and where the primers are used to prime the nucleic acid synthesis. The newly synthesized nucleic acids are optionally labeled and can be detected directly or by hybridization to a polynucleotide of the invention. The newly synthesized nucleic acids can be contacted with polynucleotides (containing gene sequences) of the invention under conditions that allow their hybridization. Additional methods for detecting the expression of expressed nucleic acids include RNAse protection assays, including hybridizations in the liquid phase, and hybridization of cells. Alternatively, the expression of gene sequences in samples in FFPL can be detected as disclosed in US applications 60 / 504,087, filed September 19, 2003, 10 / 727,100, filed December 2, 2003 and 10 / 773,762. , filed on February 6, 2004 (all three of which are incorporated herein by reference as being fully disclosed.) Briefly, the expression of all or part of an expressed or transcribed gene sequence can be detected by the use of detection mediated by hybridization (such as, but not limited to, microarray, count, or particle-based technology) or detection mediated by quantitative PCR (such as, but not limited to, real-time PCR and reverse transcriptase PCR) ) as non-limiting examples.
Expression of all or part of an expressed polypeptide can be detected by the use of immunohistochemistry or other antibody-mediated detection (such as, but not limited to, use of labeled antibodies that specifically bind to at least part of the polypeptide relative to other polypeptides) as non-limiting examples. Additional means for the analysis of gene expression are available, including the detection of expression within an assay for the expression of a global or quasi-global gene in a sample (for example as part of a profiling analysis of gene expression as such). as a microarray). Non-limiting examples of linear RNA amplification and those described in US patent application 10 / 062,857 (filed October 25, 2001), as well as US provisional patent applications 60 / 298,847 (filed June 15, 2001) and 60 / 257,801 (filed December 22, 2000), all of which are incorporated herein by reference in their entireties as they are fully set forth. Modes using the nucleic acid-based assay to determine expression include immobilization of one or more gene sequences on a solid support, including but not limited to, a solid substrate as an array or accounts or to account-based technology such as it is known in the art. Alternatively, solution-based expression assays known in the art may also be used. The immobilized gene sequence (s) may be in the form of polynucleotides that are unique or otherwise specific to the gene (s) such that the polynucleotides would be capable of hybridizing to the DNA or RNA of the (the) gene (s). These polynucleotides may be the full length of the gene (s) or be short sequences of the genes (up to one nucleotide shorter than the full length sequence known in the art by deleting the 5 'or 3' end). 'of the sequence) which are optionally minimally interrupted (such as by mismatches or non-complementary base pairs inserted) such that hybridization with a DNA or RNA corresponding to the genes is not affected. In some embodiments, the Linucleotides used are from the 3 'end of the gene, such as within about 350, about 300, about 250, about 200, about 150, about 100, or about 50 nucleotides of the polyadenylation signal or site. of poliadem 1 ation of a gene or expressed sequence. Polynucleotides containing mutations relative to the sequences of the disclosed genes can also be used while the presence of the mutations still allows disclosure to produce a detectable signal. A) Yes, the practice of the present invention is unaffected by the presence of minor inequalities between the disclosed sequences and those expressed by the cell of a sample of the subject. A non-limiting example of the existence of such mismatches are observed in cases of sequence polymorphisms between individuals of a species, such as individual human patients within Homo sapi ens. As will be appreciated by those skilled in the art, some gene sequences include 3 'poly A (or poly T in the complementary strand) stretches that do not contribute to the uniqueness of the disclosed sequences. The invention can thus be practiced with gene sequences lacking the 3 'pol A (or poly T) stretches. The uniqueness of the disclosed sequences refers to the portions or totalities of the sequences found only in nucleic acids, including unique sequences found in the 3 'untranslated portion thereof. Some unique sequences for the practice of the invention are those that contribute to consensual sequences for genes such that unique sequences will be useful in detecting expression in a variety of individuals rather than being specific for a polymorphism present in some individuals. Alternatively, unique sequences to an individual or a subpopulation can be used. The unique sequences can be of lengths of polynucleotides of the invention as described herein. In further embodiments of the invention, polynucleotides having sequences present in the 3 'untranslated regions and / or non-coding gene sequences are used to detect expression levels in samples containing samples of the invention. Such polynucleotides may optionally contain sequences found in the 3 'portions of the coding regions of gene sequences. Polynucleotides that contain a combination of sequences of the 3 'non-coding and coding regions preferably have the sequences arranged contiguously, without intervening heterologous sequence (s). Alternatively, the invention can be practiced with polynucleotides having sequences present in the 5 'untranslated regions and / or non-coding gene sequences to detect the level of expression of the cells and samples of the invention. Such polynucleotides may optionally contain sequences found in the 5 'portions of the coding regions. Polynucleotides that contain a combination of sequences from the 5 'coding and non-coding regions may have the sequences arranged contiguously, without intervening heterologous sequence (s). The invention it can also be practiced with sequences present in the coding regions of gene sequences. The polynucleotides of some embodiments contain sequences of the 3 'or 5' untranslated and / or non-coding regions of at least about 16, at least about 18, at least about 20, at least about 22, so less about 24, at least about 26, at least about 28, at least about 30, at least about 32, at least about 34, at least about 36, at least about 38, at least about 40, at least about 42, at least about 44, or at least about 46 consecutive nucleotides. The term "approximately" as used in the previous sentence refers to an increase or decrease of one from the established numerical value. These embodiments use polynucleotides containing sequences of at least about 50, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least or approximately 350, or at least or approximately 400 consecutive nucleotides. The term "approximately" as used in the preceding sentence refers to an increase or decrease of 10% of the numerical value established. The 3 'or 5' end sequences of the gene coding regions as found in the polynucleotide of the invention are of the same lengths as those described above, except that they would naturally be limited by the length of the coding region . The 3 'end of a coding region can include sequences up to 3' half of the coding region. Conversely, the 5 'end of a coding region can include sequences up to 5' I in the middle of the coding region. Of course the sequences described in the above, or the coding regions and polynucleotides that contain portions thereof, can be used in their totalities. In another embodiment of the invention, polynucleotides containing nucleotide deletions of the 5 'and / or 3' end of gene sequences can be used. The deletions are preferably 1-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-5, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-125, 125-150, 150-175, or 175-200 nucleotides from the 5 'and / or 3' end, although the degree of suppression it would be naturally limited by the length of the sequences and the need to be able to use the polynucleotides for the detection of expression levels. Other polynucleotides of the invention of the end 3 'of the gene sequences include those of primers and optional probes for quantitative PCR. Preferably, the primers and probes are those that amplify a region less than about 750, less than about 700, less than about 650, less than about 6000, less than about 550, less than about 500, less than about 450, less than about 400, less than about 350, less than about 300, less than about 250, less than about 200, less than about 150, less than about 100, or less than about 50 nucleotides from the poly adenineation signal or polyadenylation site of an expressed gene or sequence. The size of a PCR amplicon of the invention can be any size, including at least about 50, at least about 100, at least about 150, at least about 200, at least about 250, at least or about 300, at least or about 350, or at least or about 400 consecutive nucleotides. All with the inclusion of the complementary portion to the PCR primers used. Other polynucleotides for use in the practice of the invention include those that have sufficient homology to the gene sequences to detect their expression through the use of hybridization techniques. Such polynucleotides preferably have about 95%, about 96%, about 97%, about 98%, or about 99% identity with the gene sequences that are used. The identity is determined using the BLAST algorithm, as described above. The other polynucleotides for use in the practice of the invention can also be described on the basis of the ability to hybridize to polynucleotides of the invention under severe conditions of about 4% and about 50% formamide and about 0.01 M a about 0.15 M salt for hybridization and from about 0.01 M to about 0.15 M salt for washing conditions at about 55 to about 65 ° C or higher, or equivalent conditions thereto. In additional embodiments of the invention, a population of single-stranded nucleic acid molecules comprising one or both strands of a human gene sequence is provided as a probe such that at least a portion of the population can be hybridized to one or both strands of a quantitatively amplified nucleic acid molecule of RNA from a cell or sample of the invention. The population can be only the antisense strand of a human gene sequence such that a sense strand of a molecule of or amplified from, a cell can be hybridized to a portion of the population. The preferred population comprises a sufficiently excess amount of the one or both strands of a human gene sequence as compared to the amount of expressed (or amplified) nucleic acid molecules that contain a complementary gene sequence. The invention further provides a method for classifying a human tumor sample by detecting the expression levels of about 5 to 49 transcribed sequences in a sample containing nucleic acid or cells obtained from a human subject and classifying the sample as containing a cell of tumor of a type of tumor found in humans to the exclusion of one or more other types of human tumor. In some modalities, the method can be used to classify a sample as being, or having cells from, one of the 53 types of tumor listed in the above to the exclusion of one or more of the other 52. In other modalities, the method is used to classify a sample as it is, or it has cells from, one of the 34 types of tumor listed above to the exclusion of one or more of the other 33 tumor types. In additional modalities, the method is used to classify a sample as being, or having cells from, one of the 39 tumor types listed above to the exclusion of one or more of the other 38 tumor types.
The invention also provides a method for classifying tumor samples as being a subset of the possible tumor types described herein by detecting the expression levels of 50 or more transcribed sequences in a tumor sample containing nucleic acid obtained from a human subject and classify the sample as being one of a number of tumor types found in humans to the exclusion of one or more other types of human tumor. In some embodiments of the invention, the number of other tumor types is from 1 to about 3, more preferably from 1 to about 5, from 1 to about 7, or from 1 to about 9 or to about 10. In other embodiments, the number of tumor types are all of the same tissue or origin or organ as those listed in the above. This aspect of the invention relates to the above discussion of Figure 10 and to the exchange of specificity in favor of increased confidence and can be advantageously applied to situations where the classification of a sample with a single tumor type is at a level of precision or performance that can be improved by classifying the sample of one or a subset of possible tumor types. In additional embodiments, the invention can be practiced by analyzing gene expression of individual cells or homogenous cell populations that have been dissected away from, or otherwise isolated from, or encoded from contaminating cells in a sample are not present in a simple biopsy. An advantage provided by these modalities is that the contamination of non-tumor cells (such as infiltration lymphocytes or other cells of the immune system) can be removed to be absent from affecting the genes identified by the subsequent analysis of the expression levels of gene as provided herein. Such contamination is present where a biopsy is used to generate gene expression profiles. In additional embodiments of the invention using Q-PCR or reverse transaminase Pseudo Q-PCR as the assay platform, the expression levels of the gene sequences of the invention can be compared to expression levels of the reference genes in the same sample or a relationship of expression levels can be used. This provides a means to "normalize" the expression data for the comparison of data in a plurality of known tumor types and a sample containing cells to be analyzed. While a variety of reference genes can be used, the invention can also be practiced with the use of 8 particular reference gene sequences that were identified for use with the set of 39 tumor types. On the other hand, Q-PCR can be performed in whole or in part with the use of a multiplex format. The mRNA sequences coresponding to the 8 reference sequences are provided in the appended Appendix (Sequence Listing) together with additional identification information. The listing of the identification information, including access numbers and other information, is provided by the following: > Hs.77031_mRNA_l gi | 16741772 | gb | BC016680.1 | BC016680 Homo sapiens clone MGC: 21349 IMAGE: 338754 polyA = 3 > Hs.77541_mRNA_l gi | 1280436 | gb | BC003043.1] BC003043 Homo sapiens clone MGC: 4370 IMAGE: 2822973 polyA = 3 > Hs.7001_mRNA_l gi | 6808256 | em | A 137727.1 | HSM802274 Homo sapiens mRNA; cDNA DKFZp434M0519 (from clone DKF2p434M0519); partial cds polyA = 3 > He.302144_m NA__l gi | 11493400 | gb | AF130047.1 | AF130047 Homo sapiens clone F B3020 polyA = 0 > Hs.26510_mRNA_2 gi | 11345385 | g | AF308803.1 | AF308803 Homo sapiens chromosome 15 map 15q26 polyA = 3 > Hs.32 709_mRNA_2 gi | 12655026 | g | BC001361.1 | BC001361 Homo sapiens clone MGC: 2474 IMAGE: 3050694 polyA = 2 > He.65756_mRNA_3 gi | 3641494 | gb | AF035154.1 | AF035154 Homo sapiens chromoeome 16 map 16pl3.3 polyA = 3 > Hs.l65743_mRNA_2 gi | 13543889 | gb | BC006091.1 | BC006091 Homo sapiens clone MGC: 12673 IMAGE: 3677524 polyA = 3 Detection of the expression of any of the above reference sequences can be by the same or different methodology for the other gene sequences described in the above. In some embodiments of the invention, the expression levels of the gene sequences are measured by detecting sequences expressed in a sample containing cells such as hybridizing the following oligonucleotides, which correspond to the previous sequences as indicated by the access numbers provided. > BC006091 TCATCTTCACCAAACCAGTCCGAGGGGTCGAAGCCAGACACGAGAGGAAGAGGGTCCTGG > BC003043 CTCTGCTCCTGCTCCTGCCTGCATGTTCTCTCTGTTGTTGGAGCCTGGAGCCTTGCTCTC > AF130047 TGCTCCCGGCTGTCCTCCTCTCCTCTTCCCTAGTGAGTGGTTAATGAGTGTTAATGCCTA > AF035154 CCCCATCTCTAAAACCAGTAAATCAGCCAGCGAATACCCGGAAGCAAGATGCACAGGCGG > BC001361 CCAGAAACAAGGAAGAGGAAAGACAAAGGGAAGGGACGGGAGCCCTGGAGAAGCCCGACC > AF308803 AAGTACAACCCATGCTGCTAAGATGCGAGCAGGAAGAGGCATCCTTTGCTAAATCCTGTT > BC016680 ACCTCACCCCTGCCCGGCCCAAGCTCTACTTGTGTACAGTGTATATTGTATAATAGACAA > AL137727 TTCCCTTAATTCCTCCTCCCGACCTTTTTTACCCCCCCAGTTGCAGTATTTAACTGGGCT In a further aspect, the methods provided by the present invention can also be automated together or in part. This includes the embodiment of the invention in software. Non-limiting examples include processor-executable instructions on one or more computer-readable cursive devices where the instructions direct the computation of tumor samples based on the gene expression levels as described herein. Additional executable executable instructions on one or more computer readable storage devices are contemplated where instructions cause representation and / or manipulation, via a computer output device, the process or results of a classification method. The invention includes software and hardware of the embodiments wherein the gene expression data of a set of gene sequences in a plurality of known tumor types are incorporated as a data set. In some embodiments, the gene expression data set is used for the practice of a method of the invention. The invention also provides computer-related means and systems for disclosing the methods disclosed herein. In some embodiments, an apparatus for classifying a sample containing cells is provided. Such an apparatus may comprise an online input configured to receive an online storage configured to store a set of gene expression data as described herein, received from an online entry; and a module for entering and using the storage data in a classification algorithm as described herein. The apparatus may further comprise a chain storage for the results of the classification algorithm, optionally with a module for entering and using data from the chain storage of an output algorithm as described herein. The steps of a method, process, or algorithm described in connection with the embodiments disclosed herein may be incorporated directly into the hardware, into a software module executed by a processor, or into a combination of the two. The various stages or acts in a The method or process can be performed in the order shown, or it can be done in another order. Additionally, one or more stages of the process or methods may be omitted or one or more stages of the process or method may be added in the methods and processes. An additional stage, block, or action can be added at the beginning, end, or existing intervention elements of the methods and processes. A further aspect of the invention provides the use of the present invention in relation to clinical activities. In some embodiments, the determination or measurement of gene expression as described herein is performed as part of the provision of medical care to a patient, including the provision of diagnostic services in support to provide medical care. Thus the invention includes a method in the medical care of a patient, the method comprising determining or measuring the expression levels of gene sequences in a sample containing cells obtained from a patient as described herein. The method may further comprise the classification of the sample, based on the determination / measurement, as including a tumor cell of a tumor type or tissue origin in a manner as described herein. The determination and / or classification may be for use in relation to any aspect or modality of the invention as described herein.
The determination or measurement of expression levels can be preceded by a variety of related actions. In some modalities, measurement is preceded by a determination or diagnosis of a human subject as in need of measurement. The measurement can be preceded by a determination of a need for measurement, such as those by a medical doctor, nurse or other health care provider or professional, or those who work under their instruction, or a health insurer's staff or maintenance organization to approve the performance of the measurement as a basis for the request for reimbursement or performance payment. The measurement can also be preceded by preparatory acts necessary for the current measurement. Non-limiting examples include the current obtaining of a sample containing cells from a human subject; or the reception of a sample containing cell; or sectioning a sample containing cell; or the isolation of cells from a cell-containing sample; or obtaining RNA from cells of a cell-containing sample; or the RNA of cell reverse transcription of a sample containing cells. The sample can be any as described herein for the practice of the invention. In further embodiments, the invention provides a method of ordering, or receiving an order for, the performance of a method in the medical care of a patient or another method of the invention. The ordering can be done by a medical doctor, a nurse, or another health care provider, or those who work under your instruction, while the reception, directly or indirectly, can be done by any person who carries out the work. method. The ordering can be by any means of communication, including communication that is written, oral, electronic, digital, analog, telephone, in person, by facsimile, by mail or other means through a jurisdiction within the United States . The invention further provides methods in the processing of reimbursement or payment for a test, such as the above method in the medical care of a patient or other method of the invention. A method in the processing of the refund or payment may include the indication that 1) the payment has been received, or 2) the payment will be made by another subscriber, or 3) the payment remains unpaid on paper or on a fee basis. data after the performance of a detection of the level of expression, determination or measurement method of the invention. The database can be in any form, with electronic forms such as the computer-implemented database within the scope of the invention. The indication can be in the form of a code (such as a CPT code) on paper or in the database. The "other subscriber" can be any person or entity beyond that of a previous request for reimbursement or payment of that which is made. Alternatively, the method may include receipt or reimbursement in payment for the technical or current performance of the previous method in the medical care of a patient; for the interpretation of the results from the method; or for any other method of the invention. Of course the invention also includes modalities that include the inclusion of another person or party to receive the reimbursement or payment. The order can be any means of communication, including those described in the above. The reception can be from any entity, including an insurance company, health maintenance organization, government health agency or a patient as non-limiting examples. The payment can be in whole or in part. In the case of a patient, the payment may be in the form of a partial payment known as co-payment. In yet another embodiment, the method may comprise advancing or ha advanced a reimbursement or request for payment or an insurance company, health maintenance organization, governmental health agency or a patient for the performance of the above method in the medical care of a patient. patient or another method of the invention.
The request can be by any means of communication, including that described in the above. In a further embodiment, the method may comprise receipt of the invitation to approve the payment, or denial of payment, for performance of the above method in the medical care of a patient or other method of the invention. Such indication may come from any person or party to whom a request for reimbursement or payment was made. Non-limiting examples include an insurance company, health maintenance organization, or a government health agency, similar to Medicare or Medicaid as non-limiting examples. The indication can be by any means of communication including those described in the above. An additional embodiment is where the method comprises sending a request for reimbursement for performance of the above method in the medical care of a patient or other method of the invention. Such request can be made by any means of communication, including those described in the above. The request may have been made to an insurance company, health maintenance organization, federal health agency, or the patient for whom the method is performed. An additional method includes indicating the need for reimbursement or payment on a form or database for the performance of the above method in the medical care of a patient or other method of the invention. Alternatively, the method can simply indicate the performance of the method. The database can be in any form, with electronic forms such as a database implemented on a computer included within the scope of the invention. The indication may be in the form of a code (such as a CPT code) on paper or the database. In the above methods in the medical care of a patient or other method of the invention, the method may comprise reporting the results of the method, optionally to a health care facility, a provider or health care professional, an doctor, a nurse, or staff that works for the same. The report can also be directly or indirectly to the patient. The report can be by any means of communication, including those described in the above. The invention further provides equipment for the determination or measurement of gene expression levels in a sample containing cells as described herein. A kit will typically comprise one or more reagents for detecting gene expression as described herein for the practice of the present invention. Non-limiting examples include probes or polynucleotide primers for the detection of expression levels, a or more enzymes used in the methods of the invention and one or more tubes for use in the practice of the invention. In some embodiments, the kit will include an array, or solid medium capable of being assembled in an array, for the detection of gene expression as described herein. In another embodiment, the kit may comprise one or more antibodies that is immunoreactive with epitopes present in a polypeptide that indicates the expression of a gene sequence. In some embodiments, the antibody will be an antibody fragment. A device of the invention may also include instructional materials that disclose or describe the use of the equipment or a primer or probe of the present invention or a method of the invention as provided herein. A team may also include additional components to facilitate the particular application for which the equipment is designed. Thus, for example, a kit may additionally contain means for detecting the tag (eg, enzyme substrates for enzymatic tags, filter sets for detecting fluorescent tags, appropriate secondary tags such as a sheep anti-mouse-HRP, or Similar) . A kit may additionally include regulatory solutions and other recognized reagents for use in a method of the invention. Having now generally described the invention, it will be more readily understood by reference to the following examples which are provided by way of illustration and are not intended to be limiting of the present invention, unless specified. EXAMPLES Example 1: Random gene set information capacity. Subsets of 100 selected randomly-selected gene sequences used to classify among 39 tumor types were tested for their ability to classify among subsets of the 39 tumor types. The expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 49 (each combination shown 10 times) of the 100 expressed sequences were used with data of tumor types and then were used to predict random sets of tumor sample tests (each shown 10 times) that varied from 2 to all 39 types. Figure 1 shows the classification capacity of several sets of genes that are shown in relation to the number of classified tumor types. As expected, a higher number of gene sequences are necessary to classify tumor types with higher accuracies. Figure 2 shows the classification performance for various numbers of tumor types in relation to the number of gene sequences used.
The GenBank access numbers of 100 gene sequences are AF269223, BC006286, AK025501, AJ002367, AI469140, AW013883, NM_001238, AI476350, BC006546, AI041212, BF724944, AI376951, R56211, BC006393, X13274, BC001133, N62397, BC000885, AK001588, AK057901, AF146760, AI951287, AK025604, BC007581, BC015025, R43102, AW449550, AI922539, AI684144, AI277662, BC015999, A 444656, BC011612, BC015401, BF447279, BC009956, AL050163, BC001248, BE672684, AL137353, BC001340, U45975, BE856598, BC009060 , AL137728, AA713797, AL583913, AK054617, AI028262, AI753041, BG939593, AL080179, AA814915, AF131798, AI961568, BC009849, AK021603, BC012561, AI570494, BC006973, A 294857, BC004952, AK026535, AI923614, AW082090, AI005513, AF339768, AK023167, Ari69693, AF076249, BC007662, BC015520, AI814187, AI565381, AW271626, AK024120, AF139065, BC014075, AI887245, AF257081, A1767898, AF070634, AF155132, X69804, U65579, NM_004933, AI655104, A 131780, AI650407, AF131774, AA814057, AJ311123, BC009702 , AF264036, AL161961, AJ010857, AF106912, AK023542, Ar073518 and D83032. They are indexed from 1 to 100 and representative randomized sets used in the invention are as follows: For 2 genes, genes 33 and 63 were used, genes 17 and 72 were used, genes 64 and 21 were used, genes 48 and 25, genes 88 and 54 were used, genes 80 and 32 were used, genes 24 and 99 were used, genes 14 and 31 were used, genes 80 and 23 and genes 18 and 34 as the 10 randomized sets. For 5 genes, set 1, genes 27, 97, 56, 88 and 50 were used. In set 2, genes 24, 26, 35, 48 and 83 were used. In set 3, the genes were used. , 62, 75, 91 and 2. In set 4, genes 19, 61, 34, 80 and 13 were used. In set 5, genes 56, 32, 66, 20 and 55 were used. 6, the genes 90, 21, 6, 78 and 66 were used. In set 7, genes 73, 47, 3, 82 and 86 were used. In set 8, genes 74, 39, 13 were used. 7 and 67. In set 9, genes 34, 1, 24, 85 and 62 were used. In set 10, genes 23, 89, 15, 54 and 98 were used. For 10 genes, set 1, the used genes 11, 58, 90, 40, 20, 44, 10, 78, 72 and 74. In set 2, genes 79, 71, 42, 48, 93, 56, 55, 14, 92 and 52. In set 3, the genes 62, 53, 52, 19, 98, 26, 76, 65, 33 and 40 were used. In set 4, the genes 94, 8, 16, 99, 58 were used. 19, 97, 92, 76 and 86. In set 5, it is useful The genes 18, 97, 16, 94, 84, 52, 11, 24, 89 and 92 were housed. In set 6, the genes 12, 42, 45, 51, 2, 75, 63, 28, 13 and 58. In set 7, genes 67, 98, 55, 32, 82, 42, 2, 45, 37 and 23 were used. In set 8, the genes 40, 43, 69, 68, 13 were used. 97, 35, 3, 44 and 42. In set 9, genes 69 were used, 47, 96, 80, 100, 50, 42, 26, 65 and 17 In set 10, genes 83, 84, 69, 67, 19, 85, 35, 11, 70 and 64 were used. For 15 genes, set 1, the genes were used 98, 81, 43, 63, 18, 56, 19, 97, 47, 13, 48, 99, 75, 45 and 83. In set 2, the genes 5, 72, 31, 59, 81 were used, 40, 92, 3, 23, 50, 57, 74, 62, 21 and 93. In set 3, the genes 11, 69, 91, 100, 38, 1, 73, 64, 90, 26, 62 were used , 2, 37, 23 and 18. In set 4, genes 76, 9, 53, 4, 11, 41, 77, 44, 87, 51, 54, 49, 43, 56 and 67 were used. set 5, the genes 55, 34, 13, 89, 52, 74, 96, 80, 48, 22, 31, 39, 43, 91 and 54 were used. In set 6, the genes 59, 88 were used, 15, 90, 4, 73, 93, 7, 10, 18, 98, 83, 43, 3 and 5. In set 7, the genes 68, 91, 77, 33, 88, 94, 95, 41 were used , 46, 27, 36, 51, 97, 7 and 2. In set 8, the genes 7, 10, 78, 40, 70, 84, 55, 1, 98, 22, 99, 91, 8 were used, 17 and 89. In set 9, the genes 65, 10, 38, 8, 77, 98, 37, 43, 93, 99, 86, 16, 82, 27 and 9 were used. In set 10, the following were used: genes 97, 27, 78, 38, 24, 19, 55, 47, 77, 13, 45, 25, 43, 70 and 68. For 20 genes, set 1, the genes were used 41, 94, 38, 76, 35, 65, 92, 26, 49, 7, 85, 54, 77, 66, 98, 15, 86, 69, 70 and 67. In set 2, genes 43 were used. , 87, 1, 81, 7, 14, 94, 28, 25, 55, 100, 41, 18, 47, 96, 89, 26, 53, 29 and 32. In set 3, the genes 48, 80, 90, 99, 50, 98, 36, 91, 6, 41, 61, 96, 74, 66, 9, 5, 16, 18, 20 and 1. In set 4, the genes were used 49, 58, 73, 24, 94, 22, 41, 52, 18, 19, 63, 91, 74, 37, 59, 95, 53, 87, 72 and 13. In set 5, genes 67 were used. , 74, 2, 98, 46, 69, 5, 42, 22, 66, 60, 20, 100, 80, 24, 76, 63, 9, 39 and 15. In set 6, genes 10 were used, 74, 50, 92, 69, 68, 52, 56, 63, 71, 11, 17, 29, 64, 88, 59, 25, 94, 35 and 57. In set 7, genes 97, 72 were used , 16, 19, 14, 42, 70, 31, 29, 13, 22, 37, 95, 69, 87, 39, 18, 81, 58 and 100. In set 8, genes 5, 3, 18, 91, 77, 19, 82, 31, 92, 22, 93, 45, 76, 84, 46, 100, 53, 99, 89 and 42. In set 9, genes 62, 3, 85 were used , 37, 34, 93, 52, 40, 74, 25, 86, 57, 33, 60, , 77, 78, 17, 28 and 13. In set 10, the genes 22, 26, 23, 39, 35, 10, 43, 32, 65, 38, 54, 45, 8, 17 were used, 90, 20, 83, 60, 6 and 58. For 25 genes, set 1, the genes were used 21, 28, 50, 27, 8, 48, 74, 80, 38, 96, 71, 15, 89, 84, 32, 26, 55, 36, 29, 68, 13, 7, 18, 63 and 72. In set 2, the genes were used 61, 38, 59, 92, 3, 80, 33, 68, 79, 70, 44, 26, 95, 63, 85, 27, 60, 43, 75, 96, 42 , 99, 58, 48 and 91. In set 3, the genes were used 75, 83, 78, 5, 99, 56, 26, 36, 57, 23, 37, 28, 88, 16, 63, 2, 72, 59, 9, 80, 52, 91, 62, 3 and 27. In set 4, the genes were used 48, 75, 84, 83, 88, 29, 13, 9, 98, 6, 31, 63, 45, 5, 51, 52, 39 , 22, 100, 91, 74, 12, 94, 21 and 8. In set 5, the genes were used 79, 84, 47, 43, 26, 37, 46, 19, 85, 91, 2, 10, 81 , 89, 38, 71, 17, 57, 7, 93, 31, 87, 29, 78 and 73. In set 6, the genes 62, 93, 83, 42, 97, 96, 78, 98 were used, 47, 22, 67, 48, 89, 95, 24, 81, 16, 45, 8, 90, 66, 64, 2, 3 and 58. In set 7, the genes 100, 34, 58, 28 were used , 104, 35, 88, 76, 6, 30, 83, 81, 67, 36, 39, 87, 66, 45, 20, 15, 86, 56, 55 and 95. In set 8, the genes were used 17, 43, 50, 63, 47, 58, 95, 32, 79, 60, 16, 91, 86, 22, 97, 21, 9, 55, 72, 78, 77, 45, 100, 14 and 30. In set 9, the genes were used 24, 67, 60, 94, 59, 14, 70, 84, 8, 89, 63, 23, 39, 11, 81, 42, 33, 3, 12, 93, 54 , 35, 78, 73 and 90. In set 10, the genes 11, 2, 19, 62, 13, 51, 30, 80, 81, 82, 52, 34, 67, 57, 25, 95 were used, 93, 39, 26, 48, 44, 89, 61, 17 and 18. For 30 genes, set 1, the genes were used 30, 97, 54, 21, 34, 9, 56, 71, 62, 14, 24 , 23, 89, 61, 76, 41, 29, 67, 94, 22, 88, 4, 40, 33, 38, 78, 82, 66, 84 and 100. In set 2, genes 89, 41, 56, 43, 98, 44, 35, 26 were used , 19, 86, 15, 67, 8, 69, 3, 76, 48, 17, 55, 31, 25, 91, 72, 36, 18, 82, 37, 50, 9 and 75. In set 3, the genes were used 28, 39, 78, 15, 65, 93, 66, 29, 88, 35, 49, 69, 50, 9, 53, 80, 81, 95, 76, 44, 48, 64, 83, 11, 70, 33, 73, 96, 56 and 92. In set 4, genes 4, 2, 19, 6, 11, 84, 94, 44, 60, 37, 29, 97, 53, 83 were used. , 98, 45, 65, 9, 85, 35, 20, 89, 10, 17, 23, 74, 70, 41, 18 and 76. In set 5, genes 27, 4, 43, 1, 10 were used , 95, 88, 74, 77, 47, 63, 81, 31, 9, 41, 100, 87, 57, 8, 79, 24, 6, 26, 20, 55, 61, 34, 42, 25 and 39 In set 6, genes 47, 67, 98, 56, 37, 44, 5, 70, 48, 12, 20, 86, 83, 89, 27, 59, 19, 54, 69, 97 were used. 43, 71, 58, 82, 8, 50, 51, 10, 25 and 72. In set 7, the genes 100, 99, 37, 58, 44, 60, 39, 3, 59, 96, 50 were used , 68, 94, 69, 83, 90, 17, 4, 5, 67, 88, 56, 29, 79, 23, 1, 38, 25, 49 and 74. In set 8, genes 26 were used, 23, 58, 47, 6, 68, 41, 31, 16, 64, 19, 75, 36, 32, 87, 2, 12, 97, 73, 21, 53, 78, 15, 94, 1, 20, 79, 81, 70 and 7. In set 9, the genes were used 61, 48, 78, 75, 12, 36, 37, 66, 91, 2, 92, 32, 8, 26, 6, 82, 14, 68, 4, 88, 39 , 89, 43, 41, 40, 87, 69, 74, 42 and 9. In set 10, the genes were used 58, 99, 60, 39, 50, 25, 22, 57, 48, 85, 24, 10, 97, 68, 36, 38, 93, 62, 52, 56, 34, 18, 32, 64, 95, 81, 74, 88, 6) and 96. For 35 genes, set 1, the genes were used 52, 68, 22, 92, 43, 75, 20, 62, 15, 76, 99, 61, 64, 36, 12, 66, 24, 21, 31, 88, 25, 6, 93, 91, 55, 74, 69, 90, 23, 4, 80, 72, 97, 58 and 1. In set 2, the genes 48, 21, 68, 16, 96, 10, 1, 69, 36, 20, 3, 14, 59, 53, 12, 84, 90, 17, 9, 65, 4, 32, 75, 81, 88 , 37, 38, 5, 94, 60, 64, 45, 7, 43 and 55. In set 3, genes 33, 95 were used, 59, 86, 83, 76, 36, 55, 90, 22, 62, 98, 34, 46, 4, 87, 5, 66, 38, 78, 97, 100, 71, 25, 30, 2, 21, 99, 12, 54, 9, 14, 81, 32 and 52. In set 4, genes 27, 64, 40, 59 were used , 63, 100, 50, 19, 1, 10, 96, 2, 34, 28, 67, 26, 87, 41, 15, 57, 33, 11, 94, 66, 82, 6, 52, 55, 84 , 47, 97, 83, 80, 62 and 5. In set 5, genes 99, 86, 92 were used, 72, 83, 48, 79, 46, 91, 2, 90, 9, 23, 44, 85, 31, 38, 81, 76, 54, 71, 14, 3, 13, 62, 11, 39, 4, 95, 36, 20, 30, 75, 63 and 51. In set 6, genes 41, 89, 81, 29, 86, 95, 34, 42, 50, 9, 45, 21, 64, 84 were used. , 74, 91, 69, 98, 57, 79, 39, 87, 93, 63, 26, 82, 2, 59, 30, 71, 83, 38, 77, 24 and 73. In set 7, the genes were used 87, 60, 59, 98, 43, 38, 28, 64, 29, 92, 22, 27, 40, 33, 69, 71, 73, 79, 15, 70, 32 , 90, 76, 93, 6, 50, 55, 9, 49, 54, 36, 5, 48, 19 and 10. In set 8, the genes 100, 70, 98, 79, 91, 23 were used, 37, 29, 73, 65, 78, 31, 3, 11, 30, 51, 16, 40, 95, 94, 62, 38, 67, 39, 82, 72, 22, 5, 87, 57, 6, 75, 35, 99 and 46. In set 9, genes 46, 61, 59, 86, 29, 74, 56, 89, 52, 26, 54, 20, 84, 97, 33, 71, 14 were used. , 36, 38, 49, 28, 60, 19, 90, 11, 42, 87, 92, 82, 21, 94, 3, 22, 2 and 39. In set 10, genes 31, 76 were used, 77, 27, 72, 38, 42, 36, 53, 82, 61, 39, 98, 81, 34, 80, 22, 100, 8, 32, 17, 21, 28, 56, 59, 29, 55, 5, 62, 40, 90, 87, 24, 68 and 37. For 40 genes, set 1, the genes were used 64, 50, 46, 22, 51, 6, 47, 12, 2, 30, 45, 7 , 63, 55, 91, 90, 80, 49, 71, 8, 79, 82, 77, 76, 97, 5, 95, 11, 32, 70, 20, 62, 38, 26, 41, 58, 44, 87, 35 and 23. In the set 2, the genes were used 44, 26, 16, 12, 30, 45, 71, 90, 37, 68, 32, 70, 58, 43, 51, 6, 62, 92, 87, 20, 56, 5 , 47, 48, 86, 29, 98, 22, 59, 76, 8, 79, 64, 14, 50, 3, 54, 83, 96 and 80. In set 3, the genes 20, 34 were used, 57, 70, 39, 15, 25, 33, 78, 51, 87, 46, 67, 80, 28, 52, 66, 72, 22, 88, 97, 3, 90, 6, 82, 42, 41, 94, 85, 61, 54, 84, 14, 9, 81, 19, 7, 91, 23 and 40. In set 4, the genes 61, 46, 64, 71, 35, 58, 100, 23, 95, 17, 87, 68, 54, 8, 50, 4 were used, 27, 49, 47, 52, 53, 28, 24, 34, 45, 2, 89, 48, 3, 65, 42, 9, 92, 36, 6, 84, 51, 60, 77 and 94. In set 5, the genes 28, 97, 21, 43, 22, 89, 94, 87, 99, 5 were used, 4, 20, 13, 61, 37, 42, 72, 62, 7, 12, 31, 23, 60, 98, 48, 38, 53, 56, 29, 69, 26, 82, 24, 74, 86, 10, 67, 2, 47 and 46. In set 6, genes were used 12, 74, 96, 77, 78, 72, 53, 87, 47, 29, 40, 98, 52, 22, 69, 3 , 58, 97, 60, 48, 55, 80, 57, 39, 50, 89, 71, 9, 63, 51, 21, 23, 73, 32, 20, 19, 25, 5, 38 and 46. In In set 7, the genes 88, 79, 54, 44, 37, 36, 32, 91, 47, 50, 60, 92, 82, 80, 46, 19, 98, 20, 76, 29, 9 were used, 95, 2, 77, 97, 74, 90, 73, 100, 1, 34, 85, 24, 71, 57, 99, 68, 13, 43 and 53. In set 8, the genes 23, 39 were used , 7, 64, 20, 27, 69, 43, 38, 89, 50, 3, 16, 79, 83, 72, 65, 66, 32, 30, 100, 82, 28, 22, 54, 84, 53 , 75, 59, 37, 34, 49, 12, 86, 71, 97, 26, 88, 70 and 57.
In set 9, genes 74, 96, 80, 39, 40 were used, 82, 38, 56, 35, 93, 55, 73, 44, 17, 81, 27, 2, 83, 65, 89, 76, 8, 18, 45, 58, 77, 14, 49, 21, 6, 4, 92, 33, 13, 12, 88, 98, 24, 84 and 36. In set 10, the genes were used 35, 77, 48, 62, 26, 12, 41, 68, 81, 5, 37 , 70, 28, 72, 50, 83, 64, 99, 74, 57, 84, 76, 52, 14, 87, 97, 3, 31, 73, 58, 44, 24, 15, 66, 45, 91, 4, 32, 46 and 49. For 45 genes, set 1, the genes were used 52, 97, 84, 72, 96, 34, 18, 38, 88, 80, 91, 49, 71, 64, 93, 26, 62, 40, 68, 29, 67, 39, 60, 9, 13, 74, 95, 99, 27, 47, , 45, 31, 8, 69, 17, 75, 53, 51, 12, 23, 1, 6, 30 and 50. In set 2, the genes 97, 80, 55, 32, 94 were used, 84, 28, 3, 6, 48, 17, 41, 65, 37, 79, 34, 61, 83, 35, 49, 27, 38, 43, 2, 24, 77, 25, 71, 58, 14, 8, 30, 46, 98, 82, 75, 22, 72, 26, 74, 93, 66, 73, 1 and 53. In set 3, the genes 64, 45, 38, 92, 23, 74 were used , 66, 60, 100, 3, 82, 20, 54, 11, 19, 16, 80, 86, 14, 75, 62, 10, 52, 47, 13, "31, 35, 53, 41, 9, 79, 39, 17, 22, 99, 58, 46, 83, 43, 40, 44, 90, 95, 12 and 81. In set 4, the genes 20, 66, 9, 24, 16, 76 were used , 99, 42, 86, 58, 15, 93, 48, 28, 26, 50, 68, 12, 2, 37, 82, 36, 27, 57, 45, 41, 32, 1, 52, 54, 30, 39, 7, 100, 59, 23, 94, 75, 8, 60, '55, 34, 38, 29 and 87. In set 5, the genes 66, 88, 73, 53, 51, 69, 36, 87, 78, 40, 58, 76, 31, 65 were used, 56, 42, 100, 68, 5, 18, 17, 91, 45, 22, 74, 82, 1, 44, 67, 43, 10, 63, 79, 92, 6, 72, 80, 75, 9, 30, 19, 61, 99, 3 and 38. In set 6, genes 75, 66, 84, 59, 9, 70, 100, 27, 79, 41, 73, 67 were used , 23, 39, 28, 68, 21, 69, 38, 72, 86, 82, 36, 46, 77, 34, 47, 54, 13, 16, 7, 88, 22, 26, 4, 89, 55 , 24, 61, 12, 35, 50, 95, 92 and 80. In set 7, the genes 59, 86, 10, 29, 53, 88, 43, 64, 11, 13, 19, 17 were used, 36, 65, 73, 94, 20, 51, 80, 24, 66, 83, 44, 47, 21, 6, 52, 82, 69, 54, 100, 28, 18, 34, 35, 30, 74, 91, 49, 46, 60, 5, 38, 71 and 2. In set 8, the genes were used 77, 32, 55, 44, 6, 98, 94, 19, 10, 71, 72, 85, 67 , 75, 78, 88, 90, 58, 89, 27, 69, 42, 31, 47, 1, 37, 52, 7, 57, 45, 11, 83, 49, 46, 34, 64, 14, 24 , 87, 9, 56, 8, 20, 36 and 15. In set 9, genes 4, 27, 83, 61, 46, 15, 35, 26, 51, 54, 23, 38, 100 were used, 7, 42, 58, 44, 8, 22, 37, 20, 89, 56, 91, 70, 29, 11, 19, 87, 99, 21, 65, 72, 75, 49, 40, 45, 30, 43, 48, 63, 3, 18, 74 and 1. In set 10, the genes were used 68, 19, 90, 52, 55, 23, 17, 53, 3, 2, 74, 8 2, 26, 88, 48, 6, 8, 43, 15, 73, 57, 67, 85, 91, 13, 44, 81, 1, 75, 33, 51, 21, 4, 41, 77, 86, 40, 18, 31, 78, 92, 10, 64, 99 and 69. Classification of subsets of the 39 tumor types was performed with the use in random selections of tumor types from the group of 39. Expression levels of gene sequence sets as described herein were used to classify random combinations of tumor types. Different random sets of types of tumor used with each of the sets of 100, 74 and 90 gene sequences as described in these examples. Representative and non-limiting examples of randomized sets of 2 to 20 types of tumor are used as follows: from the set of 39 tumor types they were indexed from 1 to 39. For 2 types of tumor, set 1 used types 26 and 16. set 2 used types 8 and 5. Set 3 used types 39 and 8. Set 4 used types 27 and 23. Set 5 used types 8 and 19. Set 6 used 12 and 21. Set 7 used types 30 and 15. Set 8 used types 30 and 5. Set 9 used types 18 and 22. Set 10 used types 27 and 26. For 4 types of tumor, set 1 used types 20 , 35, 15 and 7. Set 2 used types 36, 1, 28 and 19. Set 3 used types 13, 4, 12 and 21. Set 4 used types 12, 33, 14 and 28. set 5 used types 6, 28, 5 and 37. Set 6 used types 5, 25, 36 and 15. Set 7 used types 12, 26, 21 and 19. Set 8 used the types 19, 3, 20 and 17. Set 9 used types 18, 10, 8 and 9. Set 10 used types 28, 20, 2 and 22. For 6 types of tumor, set 1 used types 27, 3 , 10, 39, 11 and 20. Set 2 used types 33, 10, 20, 32, 13 and 19. Set 3 used types 31, 27, 18, 39, 8 and 16. Set 4 used types 25, 28, 10, 12, 7 and 39. Set 5 used types 14, 13, 28, 24, 30 and 36. Set 6 used t Lpos 9, 24, 8, 17, 36 and 26. Set 7 used types 20, 1, 34, 26, 6 and 19. The set 8 I use types 12, 13, 3, 17, 34 and 22. Set 9 used types 7, 1, 17, 13, 20 and 34. Set 10 used types 5, 11, 25, 29, 28 and 35. For 8 tumor types, set 1 I use types 34, 33, 28, 3, 23, 25, 9 and 29. rl set 2 I use types 27, 8, 38, 28, 20, 14, 12 and 9 The set 3 used types 29, 21, 19, 1, 13, 26, 11 and 31. Set 4 used types 25, 1 /, 7, 20, 34, 8, 28 and 10. Fl set I use types 36, 28, 35, 26, 2, 8, 29 and 7. The set 6 I use types 10, 23, 2, 27, 33, 21, 25 and 35. Set 7 used types 10, 18, 38, 2, 6, 7, 19 and 32. Set 8 used types 11, 37, 6, 28, 3, 9, 2 and 16. Set 9 used types 22, 2, 10, 8, 17, 19 and 33. Set 10 used types 35, 39, 8, 10, 37, 4, 36 and 6. For 10 tumor types, set 1 used types 25, 10, 26, 2, 32, 31, 39, 23, 22 and 18. Set 2 used types 12, 35, 6, 16 , 20, 3, 39, 36, 11 and 2. Set 3 used types 34, 1, 15, 29, 5, 39, 2, 12, 25 and 18. Set 4 used types 10, 8, 14 , 18, 31, 19, 23, 20, 32 and 33. Fl set 5 util i / o types 10, 18, 37, 15, 4, 35, 33, 24, 39 and 20. Set 6 used the types 22, 16, 4, 3, 18, 21, 1, 25, 37 and 13. Set 7 used types 14, 6, 28, 18, 11, 13, 2, 32, 33 and 19. Set 8 used types 39, 2, 38, 4, 34, 8, 25, 6, 32 and 35. Set 9 used types 3, 10, 11, 16, 6, 15, 18, 14, 12 and 26. The set 10 used types 24, 25, 21, 9, 36, 29, 20, 39, 10 and 37. For 12 tumor types, set 1 used types 26, 20, 4, 12, 2, 31, 38, 18 , 16, 39, 3 and 33. Set 2 used types 25, 16, 4, 9, 29, 27, 14, 24, 21, 7, 23 and 2. Set 3 used types 31, 18, 23 , 13, 25, 1, 29, 21, 35, 10, 32 and 39. Set 4 used types 8, 34, 23, 9, 35, 14, 25, 21, 2, 33, 18 and 28. The set 5 used types 6, 11, 21, 8, 5, 7, 19, 32, 3, 13, 36 and 9. Set 6 used types 12, 33, 14, 26, 27, 15,, 2, 21, 36, 35, 9 and 39. Set 7 used types 26, 29, 32, 17 , 31, 19, 6, 5, 20, 34, 2 and 24. Set 8 used types 17, 12, 8, 22, 28, 9, 27, 29, 14, 35, 4 and 32. Set 9 used types 29, 9, 36, 23, 33, 18, 21, 35, 3, 6, 2 and 1. Set 10 used types 1, 3, 35, 29, 22, 27, 8, 23, 2, 36, 14 and 19. For 14 tumor types, set 1 used types 9, 26, 38, 25, 31, 3, 15, 14, 17, 33, 12, 35, 39 and 16.
Set 2 used types 1, 26, 16, 25, 20, 12, 14, 37, 38, 24, 23, 33, 27 and 35. Set 3 used types 11, 21, 35, 38, 32, 34, 27, 39, 16, 15, 4, 5, 13 and 18. The set 4 I use types 27, 5, 13, 28, 18, 17, 15, 20, 29, 37, 21, 36, 25 and 14. Set 5 I use types 5, 12, 17, 9, 25, 21, 33, 37, 8, 15, 24, 3, 34 and 28. The set 6 I use types 11, 19, 34, 26, 9, 6, 32, 14, 27, 29, 30, 16, 24 and 17. Set 7 used types 31, 26, 11, 18, 19, 20, 9, 8, 5, 36, 12, 6, 27 and 38. Set 8 used types 20, 17, 11, 5, 15, 9, 2, 39, 34, 24, 27, 26, 35 and 10. Set 9 used Types 1, 14, 39, 30, 17, 6, 10, 35, 31, 33, 15, 29, 32 and /. Set 10 used types 1, 19, 24, 28, 34, 12, 13, 18, 32, 11, 14, 21, 22 and 25. For 16 types of tumor, set 1 used types 27, 15, 8 , 12, 6, 20, 26, 19, 25, 2, 37, 38, 7, 39, 4 and 33. Set 2 used types 17, 18, 28, 5, 6, 31, 25, 13, 8, 20, 37, 36, 35, 9, 23 and 27. Set 3 used types 23, 37, 34, 14, 1 6, 27, 32, 33, 21, 38, 4, 30, 24 , 22, 17 and 25. Set 4 used types 7, 37, 38, 21, 34, 31, 32, 25, 10, 36, 19, 11, 6, 26, 18 and 35. Set 5 used types 9, 32, 12, 24, 20, 13, 38, 21, 39, 23, 36, 18, 37, 22, 5 and 3. Set 6 used types 14, 21, 5, 17, 6, 20, 18, 35, 22, 10, 3, 23, 13, 2, 34 and 26. The set 7 I use types l, 8, 19, 6, 9, 39, 28, 18, 13, 31, 14, 16, 37, 12, 3 and 25 Ll set 8 I use types 32, 36, 28, 38, 9 , 33, 2, 5, 4, 11, 19, 18, 13, 8, 12 and 3. Set 9 used types 9, 14, 10, 5, 28, 32, 23, 6, 39, 3, 17 , 8, 19, 1, 31 and 12. Set 10 used types 4, 34, 11, 6, 38, 19, 7, 20, 23, 3, 25, 37, 26, 1, 15 and 12. For 18 tumor types, set 1 used types 15, 24, 39, 35, 7 , 30, 16, 13, 20, 3, 26, 4, 12, 10, 34, 25, 21 and 28. Set 2 used types 21, 23, 29, 11, 10, 19, 13, 28, 4 , 20, 17, 24, 30, 12, 39, 34, 31 and 9. Set 3 used types 7, 17, 27, 6, 30, 8, 22, 2, 32, 26, 21, 14, 4, 38, 1, 35, 16 and 28. "1 set 4 I use types 17, 13, 20, 33 , 10, 3, 16, 22, 1, 38, 2, 9, 28, 5, 6, 19, 12 and 11. Set 5 used types 4, 35, 21, 25, 18, 17, 8, 14 , 31, 30, 9, 1, 2, 23, 36, 29, 32 and 37. Set 6 used types 17, 34, 2, 18, 19, 15, 16, 13, 4, 24, 5, 35 , 6, 22, 28, 37, 38 and 1. Set 7 used types 34, 26, 12, 25, 27, 3, 17, 7, 2, 32, 9, 36, 21, 19, 22, 8 , 20 and 29. IX set 8 useful i / o types 12, 34, 38, 25, 17, 22, 14, 39, 10, 7, 31, 2, 3, 11, 29, 30, 16 and 24. Set 9 used types 13, 26, 27, 14, 5, 10, 8, 7, 16, 30, 37, 4, 6, 35, 28, 1, 36 and 20. Set 10 used types 15, 2, 17, 23, 26, 28, 36, 38, 12, 6, 19, 37, 20, 14, 9, 39, 11 and 21. For 20 tumor types, set 1 used types 25, 13, 21 , 15, 37, 20, 12, 28, 9, 10, 26, 22, 14, 24, 16, 7, 39, 34, 33 and 4. Set 2 used types 20, 17, 10, 27, 19, 28, 5, 1, 23, 21, 38, 7, 13, 22, 32, 31, 9, 4, 3 and 24. Fl set 3 used types 17, 13, 7 , 20, 11, 38, 34, 3, 15, 12, 5, 39, 9, 10, 4, 35, 27, 6, 21 and 33. The set 4 I use types 6, 13, 17, 26, 1, 7, 33, 5, 10, 32, 3, 23, 35, 4, 14, 28, 12, 38, 8 and 27. Set 5 used the types 10, 23, 9, 38, 5, 29, 12, 27, 25, 6, 7, 26, 37, 31, 24, 36, 19, 15, 16 and 11. Set 6 used types 30, 24 , 21, 11, 23, 25, 8, 9, 7, 31, 27, 5, 14, 29, 1, 19, 16, 12, 22 and 17. Ll set / used types 26, 13, 23, 19 , 22, 11, 25, 21, 33, 20, 6, 17, 2, 10, 31, 34, 27, 37, 7 and 9. Set 8 used types 30, 1, 38, 7, 31, 37 , 11, 25, 6, 19, 28, 33, 17, 29, 10, 27, 16, 3, 14 and 15. Set 9 used the t Lpos 15, 19, 26, 24, 5, 33, 11, 2, 13, 18, 31, 22, 32, 20, 23, 6, 10, 25, 36 and 3. Set 10 used types 24, 25, 21, 29, 14, 18, 31, 2, 20, 39, 23, 9, 38, 12, 6, 32, 22, 26, 33 and 7. Example 4: Set of specified genes. A first set of 74 genes and a second set of 90 genes, where the two sets have 38 members in common, were used in the practice of the invention. Random subsets of approximately 5 to 49 members of the set of 74 expressed gene sequences were evaluated in a manner analogous to that described in Example 3. Again, the expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 49 (each combination shown 10 times) of the 74 expressed sequences are used with data of types of tumor and then were used to predict random sets of test samples of tumor (each shown 10 times) that varied from 2 to all 39 types. The resulting data is shown in Figures 4-6. The members of the 74 gene sequences were indexed from 1 to 74 and representative randomized sets used in the invention as follows: For 2 genes, set 1, genes 64 and 6 were used. For set 2, the 64 genes were used. and 13. For set 3, genes 67 and 51 were used. For set 4, genes 51 and 29 were used. For set 5, genes 46 and 12 were used. For set 6, the genes were used. genes 68 and 65. For set 7, genes 6 and 28 were used. For set 8, genes 9 and 55 were used. For set 9, genes 55 and 71 were used. For set 10, genes 9 and 55 were used. They used genes 63 and 39. For 5 genes, set 1, genes 8, 64, 50, 54 and 4 were used. In set 2, genes 39, 17, 45, 34 and 15 were used. In set 3, genes 10, 4, 61, 21 and 55 were used. In set 4, genes 59, 37, 21, 23 and 64 were used. In set 5, genes 69, 8, 25, 59 and 63 were used. the set 6, was used zaron genes 45, 71, 19, 59 and 38. In set 7, genes 21, 43, 14, 48 and 30 were used. In set 8, genes 73, 35, 36, 10 and 9 were used.
In set 9, genes 62, 28, 11, 70 and 64 were used. In set 10, genes 8, 16, 70, 18 and 59 were used. For 10 genes, set 1, genes 49, 72 were used, 38, 68, 52, 21, 1, 10, 2 and 40. In set 2, genes 54, 70, 28, 64, 68, 41, _ 44, 20, 7 and 2 were used. In set 3, genes 71, 49, 51, 11, 18, 53, 8, 42, 36 and 58 were used. In set 4, genes 72, 15, 35, 3, 23, 8, 2, 48, 22 and 65 were used. In set 5, genes 44, 19, 6, 22, 38, 5, 37, 9, 30 and 14 were used. In set 6, genes were used 15, 27, 3, 10, 31, 19, 44 , 39, 48 and 46. In set 7, we used genes 70, 30, 9, 33, 63, 71, 32, 34, 20 and 7. In set 8, we used genes 45, 29, 54, 58 , 15, 21, 68, 5, 42 and 62. In set 9, genes 74, 17, 66, 46, 10, 8, 63, 5, 24 and 2 were used. In set 10, genes 33 were used. , 2, 34, 19, 60, 71, 42, 51, 70 and 66. For 15 genes, set 1, genes were used 13, 22, 26, 67, 64, 40, 68, 71, 4, 28, 24 , 33, 46, 69 and 41. In set 2, genes 10, 1, 14, 70, 71, 64, 46, 67, 45, 48, 65, 74, 34, 49 and 37 were used. In set 3, genes were used. 58, 30, 44, 40, 51, 36, 33, 60, 39, 21, 54, 64, 25, 13 and 35. In set 4, genes 63, 70, 60, 32, 31, 16 were used, 49, 65, 38, 5, 72, 47, 40, 2 and 46. In set 5, genes were used 43, 6, 40, 13, 39, 72, 68,41, 27, 73, 36, 25, 33, 34 and 1. In set 6, they were used genes 68, 67, 71, 59, 73, 62, 31, 43, 7, 44, 21, 48, 54, 58 and 6. In set 7, genes were used 16, 50, 61, 62, 27, 2 , 21, 1, 41, 28, 68, 35, 17, 47 and 46. In set 8, genes were used 27, 18, 44, 66, 2, 20, 53, 64, 46, 70, 57, 7 , 51, 10 and 45. In set 9, genes 65, 8, 43, 23, 50, 46, 21, 41, 44, 3, 31, 17, 7, 66 and 70 were used. In set 10, genes were used 16, 14, 61, 51, 39, 33, 43, 31, 53, 65, 74, 42, 29, 9 and 11. For 20 genes, set 1, genes were used 14, 60, 6, 71 , 74, 16, 62, 39, 56, 44, 32, 72, 18, 42, 66, 49, 1, 9, 69 and 21. In set 2, genes 23, 1, 7, 27, 26 were used. , 71, 12, 4, 22, 69, 62, 44, 6, 25, 57, 28, 33, 9, 21 and 51. In set 3, genes 46, 48, 29, 54, 55, 69 were used , 73, 47, 6, 27, 24, 21, 15, 43, 45, 7, 62, 25, 22 and 74. In set 4, genes were used 12, 65, 24, 73, 45, 57, 49 , 63, 61, 1, 58, 10, 2, 18, 8, 51, 67, 69, 59 and 13. In set 5, genes 33, 43, 9, 52, 54, 38, 8, 16 were used , 48, 1 , 39, 60, 17, 6, 15, 66, 68, 63, 37 and 42. In the set 6, we used genes 43, 19, 44, 28, 56, 34, 66, 42, 73, 40, 65, 38, 54, 20, 51, 37, 30, 35, 53 and 61. In the set 7, genes were used 61, 6, 20, 4, 34, 53, 70, 38, 35, 46, 36, 16, 1, 23, 68, 12, 59, 71, 65 and 14. In set 8, genes were used 25, 68, 69, 3, 33, 49, 19, 56, 54, 4, 32, 6, 45, 16, 67, 52, 65, 14, 12 and 40. In set 9, they were used genes 47, 7, 36, 32, 61, 74, 14, 45, 26, 51, 69, 12, 41, 42, 64, 25, 27, 57, 23 and 58. In set 10, genes were used 27, 13, 3, 17, 51, 7, 37, 43, 20, 12, 52, 21, 25, 2, 5, 32, 62, 47, 4 and 26. For 25 genes, set 1, genes were used 57, 61, 31, 38, 3, 7, 72, 43, 32, 23, 28, 71, 48, 17, 2, 49, 10, 30, 66, 12, 69, 41, 20, 63 and 68. In set 2, we used genes 18, 54, 47, 57, 24, 42, 66, 46, 16, 58, 37, 60, 62, 9, 2, 27, 36, 52, 13, 32, 45, 6, 43, 21 and 56. In set 3, genes 47, 48, 52, 16 were used, 56, 54, 42, 37, 17, 41, 35, 21, 6, 9, 63, 10, 49, 68, 23, 25, 70, 3, 58, 2 and 31. In set 4, genes were used 50, 10, 25, 16, 68, 15, 29, 73, 27, 63, 3, 17, 28, 66, 19, 13, 4, 9, 36, 48, 23, 57, 59, 26 and 14. In set 5, genes were used 40, 39, 43, 49, 66, 15, 14, 29, 36, 21, 19, 44, 72, 58, 69, 12, 11, 9, 37, 46, 32, 51, 3, 24 and 6. In set 6, genes were used 42, 49, 44, 32, 46, 35, 70, 40, 3, 21, 11, 67, 25, 56, 37, 43, 60, 55, 16, 27, 30, 53, 63, 23 and 33. In set 7, They used genes 70, 27, 68, 17, 64, 65, 18, 69, 10, 67, 42, 23, 48, 14, 31, 11, 55, 25, 52, 34, 13, 45, 12, 29 and 47. In set 8, genes were used 48, 10, 17, 27, 25, 55, 12, 62, 30, 65, 15, 49, 70, 14, 54, 24, 33, 26, 50, 60, 6, 40, 67, 11 and 2. In set 9, genes were used 41, 47, 24, 59, 7, 44, 2, 67, 12, 19, 13, 17, 35, 56, 28, 14, 61, 15, 60, 58, 1, 64, 31, 45 and 23. In set 10, genes 42, 72, 41, 38, 57, 27, 4 were used, 13, 9, 43, 34, 28, 8, 62, 64, 46, 12, 70, 21, 66, 16, 7, 48, 3 and 54. For 30 genes, set 1, genes 16, 47 were used, 67, 9, 22, 10, 64, 72, 46, 6, 60, 74, 3, 68, 57, 63, 14, 54, 58, 30, 28, 18, 70, 73, 52, 39, 34, 61, 12, 21. In set 2, we used genes 18, 1, 44, 24, 68, 26, 62, 10, 47, 67, 37, 55, 32, 35, 34, 14, 49, 30, 17, 16, 51, 45, 74, 31, 9, 57, 66, 39, 53 and 8. In set 3, genes 58, 45, 55, 39, 22, 32, 9, 49, 31 were used, 13, 51, 56, 28, 12, 3, 59, 74, 35, 42, 6 /, 69, 47, 66, 18, 52, 57, 43, 5, 26 and 4. In set 4, they were used genes 45, 1, 74, 12, 18, 23, 59, 27, 38, 40, 72, 56, 50, 20, 52, 32, 5, 16, 9, 21, 60, 64, 49, 70, 30 , 61, 6, 10, 31 and 24. In set 5, genes were used 60, 53, 7, 32, 73, 25, 69, 48, 17, 45, 16, 3, 14, 9, 37, 41 , 72, 43, 68, 39, 20, 51, 59, 23, 6, 15, 74, 19, 31 and 66. In set 6, genes 47, 54, 9, 38, 60, 33, 40 were used , 12, 5 /, 45, 26, 56, 11, 27, 67, 25, 69, 59, 68, 7, 61, 72, 23, 21, 28, 48, 29, 6 5, 37 and 15. In the set /, genes were used 21, 42, 30, 57, 65, 59, 53, 74, 45, 66, 68, 41, 19, 24, 8, 10, 61, 43, 38, 67, 37, 47, 40, 22, 63, 35, 70, 72, 5 and 6. In set 8, genes were used 58, 11, 28, 36, 24, 34, 53, 9, 44, 23, 51, 70, 22, 17, 15, 59, 5, 60, 1, 64, 21, 50, 35, 52, 31, 43, 38, 39, 32 and 62. In set 9, genes were used 43, 30, 63, 7, 60, 40, 39, 1, 48, 17, 69, 57, 6, 62, 19, 38, 36, 13, eleven 66, 64, 25, 31, 65, 47, 27, 16, 53, 68, 37 and 41. In set 10, genes were used 22, 17, 4, 2, 37, 16, 49, 7, 63, 64, 14, 15, 74, 43, 25, 54, 46, 50, 53, 67, 39, 62, 59, 10, 55, 72, 65, 52, 58 and 19. For 35 genes, set 1, they used genes 4, 43, 55, 49, 13, 26, 32, 21, 18, 50, 14, 20, 65, 7, 24, 52, 58, 8, 30, 37, 54, 71, 2, 31, 44, 61, 66, 61, 28, 39, 10, 70, 17, 19 and 45. In set 2, genes 14, 13 were used, 67, 21, 48, 28, 69, 47, 50, 3, 68, 63, 22, 41, 60, 61, 5, 44, 56, 65, 7, 66, 15, 6, 45, 2, 36, 5, 30, 72, 34, 46, 24, 29 and 12. In set 3, genes were used 67, 25, 58, 11, 17, 16, 3, 69, 21, 1, 59, 26, 72, 41, 47, 2, 34, 24, 10, 19, 33, 5, 50, 9, 71, 20, 62, 8, 68, 61, 23, 37, 35, 60 and 32. In set 4, genes 5, 30, 14, 1, 59, 27, 28 were used, 51, 55, 61, 18, 37, 17, 73, 6, 44, 67, 12, 35, 11, 53, 72, 70, 25, 21, 7, 34, 13, 74, 43, 52, 39, 54, 2 and 19. In set 5, we used genes 56, 64, 58, 35, 1, 23, 43, 4, 73, 28, 54, 6, 51, 68, 49, 37, 16, 71, 3, 21, 48, 69, 70, 10, 26, 22, 50, 44, 2, 60, 38, 40, 66, 63 and 65. In set 6, genes 72, 49, 51, 44 were used, 19, 28, 1, 11, 3, 40, 33, 41, 70, 29, 48, 62, 50, 4, 47, 60, 68, 10, 61, 32, 20, 13, 22, 59, 65, 64, 67, 21, 35, 39 and 24. In set 7, we used genes 14, 35, 31, 20, 8, 59, 50, 15, 52, 62, 19, 30, 71, 68, 72, 47, 38, 74, 36, 49, 73, 22, 41, 25, 69, 16, 32, 24, 51, 43, 65, 3, 6, 53 and 29. In set 8, they used genes 22, 44, 23, 9, 26, 56, 72, 59, 35, 61, 51, 69, 64, 30, 53, 27, 11, 55, 39, 67, 48, 28, 14, 10, 8, 12, 40, 24, 57, 34, 50, 32, 42, 41 and 38. In set 9, genes were used 15, 7, 27, 6, 67, 9, 26, 57, 30, 37, 58, 23, 42, 11, 36, 52, 32, 29, 62, 21, 41, 61, 64, 18, 40, 35, 66, 1, 2, 56, 16, 3, 55, 10 and 51. In set 10, genes were used 9, 14, 71, 25, 44, 37, 49, 46, 66, 53, 7, 33, 22, 12, 73, 50, 27, 24, 13, 5, 41, 51, 61, 16, 28, 56, 23, 20, 10, 8, 70, 48, 42, 52 and 34. For 40 genes, set 1, we used genes 26, 36, 43, 30, 62, 19, 20, 51, 41, 71, 1, 63, 10, 56, 65, 17, , 50, 5, 35, 4, 54, 12, 70, 48, 31, 47, 37, 34, 8, 3, 69, 40, 44, 46, 59, 61, 74, 23, 27. In the set 2, genes were used 1, 4, 38, 24, 37, 69, 21, 52, 13, 2, 63, 51, 30, 16, 27, 58, 74, 20, 32, 53, 59, 31, 50, 10, 42, 8, 54, 36, 5, 47, 70, 41, 12, 46, 28, 19, 35, 9, 61 and 48. In set 3, genes 35, 48, 40 were used, 47, 20, 67, 57, 72, 15, 17, 46, 37, 9, 2, 60, 30, 65, 49, 29, 64, 16, 21, 7, 74, 61, 11, 58, 71, 62, 23, 24, 55, 3, 53, 52, 27, 18, 50, 25 and 66. In set 4, genes 35, 10, 59, 19, 27, 40, 30, 4, 9 were used, 52, 2, 29, 26, 41, 55, 17, 13, 53, 71, 63, 58, 44, 45, 62, 70, 16, 64, 48, 43, 8, 38, 72, 49, 37, 18, 36, 74, 42, 46 and 54. In set 5, genes were used 16, 61, 1, 10, 20, 51, 22, 6, 43, 65, 66, 24, 30, 9, 14, 40, 32, 74, 18, 71, 15, 28, 52, 31, 56, 55, 23, 4, 58, 36, 60, 54, 25, 63, 27, 64, 50, 29, 44 and 45. In set 6, genes were used 15, 30, 3, 50, 61, 47, 13, 48, 45, 17, 46, , 28, 37, 8, 54, 9, 5, 63, 18, 39, 49, 34, 68, 14, 23, 43, 11, 1, 51, 56, 67, 20, 57, 6, 19, 25, 31, 21 and 12. In set 7, genes 45, 73, 53, 29, 35, 56, 70 were used, 51, 30, 59, 49, 22, 6, 43, 28, 31, 40, 4, 66, 25, 37, 19, 12, 65, 26, 74, 46, 50, 23, 62, 17, 69, 36, 41, 34, 27, 67, 7, 24 and 13. In set 8, genes 62, 30, 38, 41 were used, 18, 13, 49, 71, 68, 47, 50, 70, 66, 5, 23, 33, 27, 56, 6, 7, 34, 28, 26, 58, 53, 46, 16, 52, 72, 42, 10, 54, 67, 64, 12, 8, 19, 57, 73 and 17. In set 9, genes were used 11, 32, 48, 54, 42, 67, 13, 53, 21, 44, 57, 22, 40, 12, 5, 29, 69, 37, 17, 39, 45, 73, 60, 26, 14, 72, 4, 59, 24, 46, 18, 51, 36, 61, 35, 9, 19, 16, 38 and 28. In the set 10, genes were used 58, 1, 55, 59, 11, 63, 3, 26, 49, 69, 34, 47, 65, 46, 14, 39, 5, 67, 16, 66, 64, 38, 44, 32, 15, 22, 19, 71, 23, 52, 45, 53, 48, 8, 60, 73, 9, 30, 25 and 37. For 45 genes, set 1, we used genes 26, 21, 17, 34, 19, 27, 6, 61, 24, 42, 3, 60, 70, 43, 54, 13, 9, 20, 28, 58, 12, 23, 33, 4, 63, 56, 67, 1, 11, 68, 41, 59, 45, 5, 48, 32, 10, 44, 16, 65, 51, 62, 22, 38 and 74. In set 2, genes 21, 41, 67, 5, 51, 53, 28 were used, 25, 31, 60, 52, 17, 50, 11, 29, 45, 2, 32, 71, 13, 68, 22, 74, 33, 48, 56, 62, 42, 26, 14, 61, 23, 9, 46, 66, 10, 64, 59, 54, 69, 27, 47, 44, 34 and 40. In set 3, I 14 they used genes 68, 48, 43, 74, 17, 4, 49, 34, 38, 60, 12, 42, 18, 5, 51, 32, 1, 57, 9, 11, 30, 13, 37, 15, 29, 33, 44, , 55, 70, 45, 41, 24, 56, 35, 52, 59, 7, 25, 2, 31, 64, 71, 22 and 39. In set 4, genes 44, 61, 51 were used, 69, 65, 72, 29, 57, 40, 62, 66, 63, 67, 55, 74, 14, 56, 11, 16, 58, 1, 15, 3, 48, 42, 7, 8, 30, 18, 19, 23, 60, 4, 10, 21, 43, 12, 37, 32, 25, 22, 50, 34, 59 and 2. In set 5, genes were used 67, 54, 33, 41, 5, 61, 3, 10, 2, 71, 73, 53, 25, 42, 44, 23, 9, 38, 45, 62, 32, 46, 40, 8, 66, 49, 16, 24, 68, 69, 21, 52, 20, 6, 48, 11, 57, 39, 22, 31, 63, 36, 34, 35 and 17. In set 6, we used genes 43, 45, 19, 17, 4, 58, 37, /, 42, 52, 2, 62, 25, 66, 24, 15, 22, 74, 68, 67, 8, 1, 33, / 0, 31, 50, 64, 14, 61, 51, 6, 38, 35, 39, 72, 5 , 27, 36, 11, 18, 12, 48, 46, 54 and 71. In set 7, genes were used 41, 45, 58, 11, 66, 26, 53, 13, 60, 4, 65, 18 , 67, 73, 28, 55, 56, 57, 29, 68, 23, 19, 42, 17, 22, 62, 61, 10, 43, 64, 38, 71, 7, 40, 16, 34, 74 , 12, 37, 8, 63, 44, 49, 47 and 3. Li Fl set 8, genes were used 47, 40, 59, 14, 50, 71, 1, 57, 19, 28, 6, 34, 68 , 4, 30, 20, 31, 33, 38, 39, 17, 41, 24, 65, 70, 61, 3, 35, 45, 11, 9, 8, 73, 42, 26, 23, 46, 72 , 25, 64, 16, 53, 62, 18 and 7. In set 9, genes were used 61, 5, 69, 22, 7, 17, 26, 13, 2, 30, 55, 33, 47, 14 , 59, 32, 9, 44 , 23, 45, 42, 25, 15, 57, 48, 50, 1, 68, 18, 72, 46, 73, 67, 36, 63, 60, 28, 21, 20, 8, 29, 35, 37 , 38 and 71. In set 10, genes 22, 31 were used, fifteen 58, 50, 64, 11, 17, 67, 41, 2, 21, 4, 61, 70, 54, 3, 71, 25, 40, 43, 69, 38, 9, 73, 45, 16, 34, 10, 7, 52, 35, 19, 66, 24, 5, 60, 18, 14, 59, 32, 68, 15, 56, 63 and 65. A similar experiment was performed with random subsets of approximately 5 to 49 members from the set of 90 expressed gene sequences. Again, the expression levels of random combinations of 5, 10, 15, 20, 25, 30, 35, 40, 45 and 49 (each combination shown 10 times) of the 90 expressed sequences were used with tumor types and then used to predict random sets of test samples of tumor (each shown 10 times) that varies from 2 to all 39 types. The resulting data are shown in Figures 7-9. The members of the 90 gene sequences were indexed from 1 to 90, and representative randomized sets used in the invention are as follows: For 2 genes, set 1, genes 30 and 72 were used. For set 2, genes were used. and 88. For set 3, genes / 6 and 88 were used. For set 4, genes 5 and 86 were used. For set 5, genes 30 and 32 were used. For set 6, genes 6 and 6 were used. 59. For set 7, genes 57 and 2 were used. For set 8, genes 49 and 28 were used. For set 9, genes 37 and 35 were used. For set 10, genes 34 and 18 were used.
For 5 genes, set 1, genes 1 were used, 83, 59, 36, 66 and 88. In set 2, genes were used 58, 13, 59, 22 and 64. In set 3, genes were used 46, 72, 51, 88 and 14. In set 4, genes 23, 74, 22, 27 and 20 were used. In set 5, genes were used. 58, 54, 78, 87 and 50. In set 6, genes were used 59, 6, 56, 78 and 9. In set 7, genes 30, 78, 69, 83 and 21 were used. In group 8, genes 5, 39, 54, 56 and 55 were used. set 9, genes 9, 70, 54, 67 and 43 were used. In set 10, genes 80, 81, 63, 90 and 53 were used. For 10 genes, set 1, genes were used 70, 17, 45, 5, 2, 37, 6, 76, 39 and 14. In set 2, genes 54, 16, 80, 26, 15, 45, 50, 8, 73 and 48 were used. In set 3, genes were used. 66, 87, 31, 74, 37, 45, 19, 1, 70 and 7. In set 4, genes 85, 17, 78, 61, 23, 59, 27, 18, 58 and 24 were used. set 5, genes 44, 89, 36, 76, 49, 3, 21, 24, 38 and 69 were used. In set 6, genes 32, 72, 55, 2, 86, 81, 53, 45 were used, 17 and 74. In set 7, genes 27, 55, 62, 33, 32, 84, 21, 45, 23 and 7 were used. In set 8, genes were used 62, 45, 68, 31, 69, 39, 33, 63, 19 and 22. In set 9, genes / l, 39, 11, 56, 88, 80, 37, 77, 62 and 35 were used. In set 10, they were used genes 38, 83, 41, 47, 66, 87, 10, 4, 88 and 22.
For 15 genes, set 1, 61 genes were used, 17, 64, 14, 1, 41, 72, 47, 69, 48, 49, 70, 12, 20 and 35. In set 2, genes 26, 49, 69, 31, 84, 42, 24 were used, 56, 82, 12, 29, 2, 21, 15 and 71. In set 3, genes 54, 62, 8, 32, 58, 65, 39, 44, 35, 22, 34 were used, 77, 43, 83 and 75. In set 4, genes 62, 50, 57, 80, 28, 83, 32, 56, 14, 2, 3, 48, 67, 79 and 72 were used. In set 5 , genes were used 55, 58, 77, 68, 90, 76, 17, 72, 85, 34, 43, 33, 62, 6 and 64. In set 6, genes were used 41, 63, 90, 9, 25, 35, 2, 14, 65, 87, 11, 36, 10, 79 and 17. In set 7, genes 69, 89, 77, 33, 71, 4, 6, 46, 72, 13, 68, 81, 31, 50 and 32 were used. In set 8 , genes were used 29, 69, 34, 47, 32, 52, 63, 73, 23, 25, 33, 10, 37, 17 and 55. In set 9, genes were used 24, 13, 45, 17, 51, 48, 20, 30, 29, 40, 53, 19, 88, 76 and 28. In set 10, genes were used 86, 33, 19, 4, 84, 25, 78, 29, 88, 10, 7, 67, 85, 45 and 8. For 20 genes, set 1, genes 57 were used, 78, 43, 50, 14, 71, 56, 25, 80, 31, 88, 4, 49, 13, 3, 38, 32, 8, 52 and 75. In set 2, genes 84, 46 were used. , 2. 3, 85, 55, 82, 56, 83, 48, 89, 8, 60, 21, 40, 20, 17, 87, 24, 34 and 39. In set 3, genes 72, 88, 53, 46 were used, 82, 9, 34, 21, 76, 24, 14, 35, 90, 31, 58, 30, 15, 41, 7 and 28. In set 4, genes 22, 62, 21, 3, 45 were used, 50, 58, 72, 69, 82, 49, 42, 47, 9, 15, 59, 17, 24, 40 and 52.
In set 5, genes 11, 18, 74, 53, 43, 75 were used, 76, 54, 63, 64, 10, 5, 90, 51, 31, 58, 28, 35, 70 and 23. In set 6, we used Lzaron genes /, 30, 77, 25, 17, 16, 35 , 68, 56, 37, 78, 87, 45, 8, 42, 82, 72, 23, 58 and 54. In set 7, genes 3, 58, 67, 5, 87, 62, 56, 88 were used , 73, 50, 22, 52, 10, 60, 57, 42, 46, 26, 7 and 82. In set 8, genes were used 63, 19, 22, 13, 82, 12, 44, 52, 8, 90, 35, 81, 79, 15, 83, 76, 51, 27, 45 and 56. In set 9, genes 65, 34, 76, 81, 58, 86, 83, 46 were used, 40, 55, 48, 42, 57, 70, 21, 72, 71, 17, 22 and 24. In set 10, genes 34, 74, 2, 53, 76, 73, 19, 72, 88 were used, 87, 44, 70, 40, 39, 22, 45, 83, 77, 30 and 46. For 25 genes, set 1, 13 genes were used, 77, 22, 85, 58, 8, 23, 2, 40, 81, 50, 31, 14, 41, 21, 52, 6, 74, 11, 17, 83, 7, 9, 19, 18. In the set 2, genes were used 3, 12, 8, 87, 34, 75, 31, 88, 77, 39, 40, 60, 54, 9, 37, 5, 51, 53, 32, 35, 66, 4, 26, 59 and 29. In set 3, genes were used 29, 41, 44, 56, 88, 72, 90, 6, 19, 63, 42, 24, 49, 70, 39, 1 /, 82, 13 , 9, 4, 51, 40, 22, 71 and 25. In set 4, genes were used / 0, 82, 55, 43, 40, 32, 16, 13, 22, 41, 7, 85, 46, 42, 73, 76, 14, 60, 50, 72, 5, 81, 67, 57 and 83. In set 5, genes 88, 83 were used, 53, 26, 29, 4, 38, 71, 11, 66, 14, 89, 39, 34, 84, 41, 7, 64, 87, 3, 67, 43, 50, 79 and 6. In set 6 , genes were used 88, 16, 83, 4, 7, 39, 56, 82, 10, 20, 87, 79, 3, 35, 76, 49, 43, 11, 74, 13, 48, 22, 64, 34 and 89. In set 7, genes were used 6, 64, 39, 50, 44, 46, 61, 28, 79, 43, 35, 85, 48, 9, 59, 47, 57, 5, 24, 33, 80, 11, 42, 20 and 26. In set 8, genes 59, 24, 46, 33, 50, 71 were used, 53, 21, 86, 10, 75, 23, 74, 60, 43, 22, 16, 62, 85, 79, 81, 34, 73, 2 and 1. In set 9, genes 68, 11 were used, 64, 54, 37, 28, 44, 73, 83, 89, 2, 41, 59, 75, 21, 23, 88, 71, 34, 29, 1, 47, 84, 60 and 72. In set 10 , genes were used 5, 12, 60, 84, 32, 58, 70, 2, 38, 42, 24, 13, 85, 10, 49, 90, 55, 81, 39, 27, 65, 56, 31, 34 and 57. For 30 genes, set 1, genes were used 24, 88, 10, 69, 64, 8, 19, 54, 80, 70, 11, 9, 29, 56, 36, 79, 30, 65, 2, 58, 23, 74, 41, 16, 77, 4, 78, 14, 85 and 32. In set 2, genes 73, 27, 19, 52, 87, 51, 63, 4 were used, 76, 64, 90, 81, 42, 47, 9, 62, 40, 65, 83, 30, 39, 59, 10, 11, 54, 44, 43, 6, 86 and 41. In set 3, they used genes 28, 47, 41, 8, 24, 54, 26, 49, 61, 17, 46, 64, 20, 16, 1, 33, 82, 79, 85, 5, 86, 69, 31, 65, 83, 7, 67, 35, 48 and 57. In set 4, genes were used 13, 21, 83, 35, 47, 57, 8, 66, 75, 17, 38, 70, 39, 23, 9, 1, 2, 28, 68, 81, 36, 80, 52, 22, 44, 37, 85, 15, 12 and 86. In set 5, genes 81, 20, 36, 89, 13, 14 were used, 46, 58, 59, 62, 28, 7, 1, 25, 35, 83, 26, 50, 51, 15, 16, 56, 71, 5, 47, 6, 78, 80, 85 and 84. In the set 6, genes were used 68, 74, 73, 89, 38, 72, 33, 35, 15, 79, 3, 3 /, 23, 67, 10, 62, 64, 77, 44, 60, 75, 7, 51, 12, 46, 76, 81, 26, 42 and 6. In set 7, genes 34, 55, 62, 40, 78, 35, 76 were used. 30, 21, 77, 46, 71, 66, 69, 63, 81, 51, 38, 84, 53, 82, 89, 29, 14, 36, 45, 60, 7, 52 and 27. In set 8 , genes were used 56, 12, 35, 79, 57, 4, 16, 9, 24, 58, 40, 72, 80, 67, 23, 76, 88, 69, 52, 78, 32, 47, 14, 46, 64, 83, 17, 59, 81 and 20. In set 9, 73 genes were used, 27, 12, 58, 54, 62, 48, 43, 16, 41, 49, 84, 9, 75, 13, 50, 19, 3, 76, 78, 56, 68, 71, 25, 24, 60, 18, 35, 45 and 51. In set 10, genes were used 82, 21, 24, 85, 51, 18, 72, 28, 89, 22, 34, 4, 53, 75, 83, 23, 50, 5, 42, 13, 88, 63, 40, 64, 38, 35, 39, 44, 59 and 70. For 35 genes, set l, genes were used 2, 69, 70, 89, 9, 11, 5, 17, 63, 18, 12, 59, 58, 85, 26, 71, 61, 10, 3, 1, 22, 79, 84, 30, 48, 82, 38, 44, 56, 42, 88, 6, 60, 14 and 28. In set 2, genes 84, 81, 88, 46, 12, 50, 38, 78 were used, 62, 48, 19, 43, 26, 66, 4, 20, 40, 58, 9, 52, 87, 47, 6, 55, 21, 75, 31, //, 5 /, 53, 45, 34, 30, 32 and 39. In set 3, genes were used 6, 3, 22, 89, 8, 78, 87, 71, 42, 63, 18, 40, 68, 11, 64, 88, 5, 58, 43, 72, 80, 10, 21, 56, 11, 59, 61, 2, 19, 76, 30, 20, 14, 69 and 35. In set 4, genes 55, 42, 89, 41 were used, 56, 33, 24, 28, 15, 61, 63, 18, 90, 60, 35, 76, 70, 52, 8, 1, 64, 23, 13, 39, 71, 31, 3, 81, 10, 34, 66, 44, 16, 7 and 78. In set 5, genes 59, 58, 12, 50, 47, 42, 28 were used, 22, 76, 54, 1, 18, 7, 53, 68, 73, 20, 67, 14, 72, 23, 13, 39, 10, 70, 55, 45, 17, 31, 51, 80, 3, 24, 30 and 46. In set 6, genes were used 53, 66, 26, 3, 73, 47, 61, 63, 51, 41, 29, 5, 19, 10, 57, 22, 64, 11, 34, 89, 43, 24, 31, 60, 27, 76, 17, 86, 70, 81, 50, 46, 36, 14 and 45. In set 7, genes 18, 88, 90, 13 were used, 73, 81, 64, 56, 84, 2, 4, 22, 3, 25, 35, 54, 89, 86, 27, 41, 6, 34, 38, 14, 74, 36, 59, 8, 40, 55, 42, 83, 39, 44 and 60. In set 8, genes 46, 32, 22, 15, 67, 89, 14 were used, , 70, 39, 49, 9, 84, 71, 12, 78, 27, 86, 26, 57, 20, 43, 58, 87, 42, 8, 31, 1, 54, 62, 69, 40, 29, 52 and 64. In set 9, genes were used 3, 39, 55, 25, 90, 10, 9, 77, 62, 78, 18, 12, 58, 51, 22, 67, 7, 61, 59, 35, 52, 4, 65, 38, 32, 71, 87, 88, 63, 50, 73, 70, 44, 45 and 84. In set 10, genes were used 65, 54, 51, 38, 40, 5, 43, 71, 34, 30, 22, 6, 36, 64, 63, 13, 70, 85, 21, 88, 77, 86, 79, 66, 25, 18, 26, 19, 76, 56, 23, 60, 75, 2 and 49. For 40 genes, set 1, genes were used 81, 80, 68, 77, 17, 71, 34, 33, 48, 88, 90, 32, 23, 2, 38, 59, 75, 82, 50, 56, 12, 36, 6, 87, 72, 37, 26, 15, 35, 66, 13, 76, 55, 3, 78, 18, 52, 4 /, 73 and 20. In set 2, genes were used 11, 65, 27, 44, 88, 49, 55, 57, 1, 72, 9, 28 , 56, 67, 13, 58, 42, 36, 8, 31, 40, 14, 26, 35, 62, 22, 19, 84, 78, 21, 2, 41, 74, 11, 52, 30, 25, 76, 85 and 63. In set 3, genes 50, 22, 10, 54, 9, 51, 15 were used, 34, 29, 35, 76, 89, 33, 6, 88, 56, 36, 70, 87, 40, 83, 62, 1, 42, 25, 78, 30, 26, 44, 60, 69, 47, 49, 31, 18, 59, 37, 52, 61 and 17. In set 4, we used genes 27, 33, 7, 89, 36, 59, 48, 42, 66, 39, 90, 52, 2, 14, 30, 80, 9, 56, 21, 87, 65, 67, 41, 73, 82, 20, 4, 46, 5, 84, 88, 15, 44, 58, 78, 85, 3, 64, 6 and 8. In set 5, we used genes 43, 24, 86, 29, 46, 90, 40, 1, 71, 5 /, 12, 84, 69, 19, 42, 62, 28, , 5, 63, 52, 17, 39, 4, 67, 81, 50, 47, 61, 54, 87, 70, 77, 6, 10, 38, 37, 79, 31 and 36. In set 6 , genes were used 28, 5, 78, 85, 16, 20, 36, 52, 43, 29, 67, 83, 12, 79, 84, 8, 81, 46, 11, 3, 54, 86, 10, 60, 71, 51, 39, 53, 59, 69, 44, 61, 7, 56, 27, 50, 66, 70, 1 and 25. In set 7, genes 39, 47, 48, 24 were used, 25, 3, 41, 16, 65, 73, 63, 14, 70, 57, 12, 64, 90, 23, 27, 38, 66, 71, 54, 21, 83, 28, 72, 53, 11, 30, 80, 15, 6, 88, 89, 85, 81, 61, 78 and 34. In set 8, genes 61, 8, 57, 16, 24, 64, 48 were used, 36, 58, 28, 27, 40, 70, 77, 25, 76, 52, 35, 62, 4, 60, 7, 54, 37, 11, 20, 72, 34, 56, 78, 10, 86, 51, 29, 84, 47, 30, 21, 59 and 67. In set 9, genes 67, 3, 83, 33 were used, 35, 26, 25, 79, 68, 19, 18, 84, 14, 58, 66, 57, 1, 2, 27, 64, 23, 24, 76, 81, 17, 37, 38, 30, 45, 75, 49, 39, 5, 53, 43, , 51, 40, 69 and 12. In set 10, genes were used 39, 77, 29, 70, 85, 45, 54, 79, 31, 43, 15, 11, 47, 83, 76, 21, 67, 14, 4, 19, 49, 42, 18, 13, 12, 7, 88, 8, 3, 35, 81, 55, 71, 60, 72, 57, 46, 40, 56 and 32.
For 45 genes, set 1, genes 7 were used, 63, 45, 87, 19, 55, 36, 42, 9, 4, 79, 68, 46, 35, 40, 80, 59, 58, 38, 17, 50, 30, 13, 39, 33, 84, 34, 64, 2, 57, 24, 88, 65, 16, 53, 18, 28, 8, 60, 15, 43, 73, 77, 20 and 78. In set 2, genes were used 70, 19, 81, 68, 38, 35, 48, 9, 53, 11, 73, 42, 54, 28, 32, 40, 60, 88, 25, 7, 67, 17, 36, 51, 44, 46, 10, 89, 14, 80, 39, 41, 27, 8, 75, 47, 61, 57, 59, 76, 86, 65, 63, 74 and 77. In set 3, genes were used 55, 24, 63, 17, 32, 81, 2, 67, 51, 85, 27, 46, 60, 90, 25, 35, 58. 11, 47, 33, 73, 3, 74, 52, 15, 86, 6, 78, 36, 66, 57, 13, 49, 28, 75, 70, 4, 77, 43, 26, 61, 64, 20, I and 23. In set 4, genes were used 49, 72, 13, 51, 55, 11, 29, 5, 43, 44, 40, 6, 38, 67, 47, 35, 36, 28, 81, 24, 80, 32, 16, 88, 63, 87, 86, 79, 21, 1, 30, 10, 62, 58, 23, 12, 78, 26, 69, 56, 85, 42, 17, 84 and 39. In set 5, genes were used 53, 33, 18, 65, 22, 83, 50, 88, 76, 40, 82, 68, 85, 5, 63, 45, 78, 16, 42, 54, 27, 66, 70, 74, 7, 51, 89, 64, 49, 37, 84, 86, 34, 39, 80, 31, 61, 87, 69, 4, 81, 30, 14, 41 and 29. In set 6, genes 7, 60, 38 were used, 14, 73, 9, 79, 81, 22, 10, 85, 51, 40, 87, 3, 26, 57, 56. 12, 72, 39, 59, 63, 28, 64, 71, 69, 21, 67, 48, 50, 66, 46, 88, 11, 13, 24, 8, 58, 75, 2, 41, 5, 44 and 55. In set 7, genes were used 1.5, 65, 31, 19, 11, 38, 2, 9, 64, 66, 22, 35, 49, 3, 77, 43, 32, 56, 39, 54, 80, 21, 6, 40, 27, 86, 10, 16, 70, 30, 85, 23, 26, 4, 55, 73, 42, 13, 41, 68, 29, 57, 28, 72 and 58. In set 8, genes were used 83, 27, 9, 62, 84, 78, 13, 5, 74, 55, 12, 34, 58, 3, 67, 57, 24, 45, 42, 47, 75, 25, 29, 44, 46, 61, 56, 70, 86, 37, 14, 49, 60, 89, 28, 72, 59, 38, 2, 81, 50, 7, 6, 21 and 82. In set 9, genes 7, 10, 35, 14, 79, 66, 33, 52, 16, 55 were used, 68, 59, 57, 19, 11, 47, 22, 38, 61, 30, 71, 50, 63, 88, 53, 80, 6, 54, 77, 21, 37, 84, 9, 65, 12, 49, 40, 73, 76, 2, 28, 29, 3, 72 and 18. In set 10, genes were used 12, 19, 9, 80, 84, 15, 7, 2, 39, 21, 48, 40, 51, 69, 74, 83, 5, 66, 27, 26, 89, 60, 4, 86, 41, 44, 35, 10, 76, 53, 63, 16, 37, 79, 11, 42, 68, 3, 59, 82, 77, 13, 85, 67 and 14. For 49 genes, set 1, genes were used 84, 47, 56, 1, 18, 21, 57, 54, 27, 89, 44, 85, 64, 10, 77, 34, 65, 66, 80, 70, 46, 23, 53, 61, 24, 81, 43, 35, 30, 74, 83, 51, 20, 17, 72, 4, 49, 68, 60, 28, 67, 19, 42, 55, 73, 36, 7, 39 and 33. In set 2, genes were used 47, 29, 58, 36, 21, 53, 40, 7, 83, 77, 24, 89, 71 , 64, 60, 4, 37, 86, 27, 57, 62, 63, 72, 1, 88, 78, 68, 17, 51, 16, 82, 42, 81, 18, 32, 49, 55, 10 , 1 1, 66, 35, 23, 70, 20, 61, 25, 48, 43 and 54. In set 3, genes were used 54, 2, 62, 67, 44, 25, 8, 53, 86, 33, 75, 32, 45, 76, 43, 65, 59, 58, 42, 64, 47, 78, 3, 57, 71, 88, 14, 23, 51, 83, 1, 41, 7, 56, 40, 20, 39, 72, 70, 19, 5, 35, 50, 82, 37, 48, 15, 31 and 16. In set 4, genes 35, 65, 48, 43, 69, 62 were used, 64 , 74, 82, 39, 37, 1, 88, 45, 66, 12, 79, 55, 38, 84, 17, 30, , 26, 89, 56, 28, 57, 59, 34, 85, 14, 47, 44, 41, 19, 60, 20, 73, 2, 63, 75, 49, 80, 58, 77, 27, 54 and 29. In set 5, genes were used 64, 51, 36, 12, 84, 24, 65, 47, 88, 26, 10, 19, 73, 90, 35, 53, 18, 55, 80, 70, 79, 82, 87, 77, 15, 85, 83, 7, 72, 1, 6, 57, 38, 45, 74, 33, 62, 86, 31, 69, 27, 14, 4, 29, 54, 44, 63, 78 and 42. In set 6, genes were used 24, 39, 85, 42, 88, 32, 65, 23, 6, 75, 53, 77, 64, 90, 13, 82, 47, 31, 48, 8, 78, 67, 63, 44, 26, 40, 14, 34, 18, 59, 2, 17, 20, 56, 83, 68, 86, 9, 38, 73, 89, 55, 29, 69, 72, 16, 28, 51 and 81. In set 7, genes 32, 70, 57, 67, 1, 12, 52, 38, 65, 83, 5, 40, 49 were used, 31, 66, 85, 6, 82, 12, 48, 89, 3, 19, 41, 62, 16, 46, 61, 24, 18, 55, 30, 33, 56, 68, 20, 81, 1 0 , 86, 9, 15, 63, 78, 22, 75, 14, 13, 43 and 77. In set 8, genes were used 17, 30, 47, 85, 7, 3, 6, 35, 76, 77 , 25, 86, 36, 75, 44, 29, 69, 60, 63, 64, 82, 51, 19, 68, 41, 28, 73, 18, 10, 26, 42, 78, 67, 12, 80, 33, 13, 57, 38, 87, 49, 59, 74, 50, 90, 46, 8, 81 and 4. In set 9, genes 20 were used, 76, 42, 36, 66, 21, 8, 28, 22, 15, 56, 5, 2, 86, 17, 62, 23, 1, 80, 73, 52, 83, 32, 65, 44, 82, 35, 60, 47, 90, 74, 9, 84, 50, 4, 77, 55, 57, 19, 71, 25, 48, 81, 53, 34, 38, 3, 37 and 16. In set 10, genes 84, 87, 3, 41, 36 were used, 71, 33, 57, 85, 26, 53, 22, 82, 31, 2, 45, 24, 18, 37, 35, 77, 20, 63, 25, 6, 17, 58, 7, 9, 49, 28, 76, 79, 67, 13, 80, 66, 5, 43, 4, 74, 75, 21, 86, 23, 39, 42, 27 and 54.
Example 5: PCR-based detection As mentioned above, the determination or measurement of gene expression can be performed by PCR, such as by the use of quantitative PCR. The detection expression of approximately 5 to 49 sequences expressed in the human genome can be used in such modalities of the invention. Additionally, the expression levels of 5 to 49 gene sequences in the set of 74, the set of 90, or a combination set of the two (with a total of 126 gene sequences given the presence of 38 sequences of gene in common between the two sets) can also be used. The invention contemplates the use of quantitative PCR to measure the levels of expression, as described in the above Approx. 5 to 49 of 87 gene sequences, all of which are present in either the set of 74 or the set of 90. Of the 87 gene sequences, 60 are present in the set of 74 and 63 are present in the set of 90 The identifier / access numbers of the 87 gene sequences are AA456140, AA745593, AA / 6559 /, AA / 82845, AA865917, AA946776, AA993639, AB038160, Al 104032, Al 13358 /, AF301598, AF332224, AI041545, AI147926 , A1309080, A13413 / 8, A1457360, AI620495, AI632869, A1683181, AI685931, A1802118, A1804 / 45, AI952953, AI985118, AJ000388, AK025181, AK027147, AK054605, AL023657, AL039118, AL110274, AL15 / 4/5, AWU8445, A 194680, A 291189, AW298545, AW445220, AW473119, AY033998, BC000045, BC001293, BCOO 1504, BCOO 1639, BC002551, BC004331, BC004453, BC005364, BC006537, BC006811, BC006819, BC008764, BC008765, BC009084, BC009237, BC010626, BC011949, BC012926, BC013U7, BC015754, BC017586, BE552004, BE962007, BF224381, BF437393, BF446419, BF592799, B1493248, 1105388, 1107885, 1109748, M95585, N64339, NM_000065, NM_001337, NM_003914, NM_004062, NM_004063, NM_004496, NM_006115, NM_019894, NM_033229, R15881, R45389, R61469, X69699 and X96757. The use of approximately 5 to 49 of these sequences in the practice of the invention may include the use of expression levels medLdo for reference gene sequences described herein. In some embodiments, the reference gene sequences and one or more of the 8 disclosed herein. The invention contemplates the use of one or more of the reference sequences identified by AF308803, AL13772 /, BC003043, BC006091 and BC016680 in PCR or QPCR based on the modalities of the invention. Of course all 5 of these reference sequences can also be used in combination. All references cited herein, including patents, patent applications and publications, are incorporated herein by reference in their entireties, whether previously incorporated specifically or not incorporated.
Having now fully described this invention, it will be appreciated by those skilled in the art that it can be performed with a wide range of equivalent parameters, concentrations and conditions without departing from the spirit and scope of the invention and without undue experimentation. While this invention has been described in relation to specific embodiments thereof, it will be understood that it is capable of further modifications. This application is proposed to cover any of the variations, uses or adaptations of the invention following, in general, the principles of the invention and including such deviations from the present description as come within the known or usual practice within the art to the which the invention belongs to and how it can be applied to the essential features set forth hereinbefore.
Appendix of mRNA sequences (List of Sequences) > Hs.73995_mRNA_l gi | 190403 | gb | M60502.1 | HUPROFILE Human profilaggrin mRNA, 3 'end polyA = l GGCCACTCTGCAGACAGCTCCAGACAATCAGGCACTCGTCACACAGAGTCTTCCTCTCGT GGACAGGCTGCGTCATCCCATGAACAGGCAAGATCAAGTGCAGGAGAAAGACATGGATCC CACCACCAGCAGTCAGCAGACAGCTCCAGACACGCAGGCATTGGGCACGGACAAGCTTCA TCTGCAGTCAGAGACAGTGGACACCGAGGGTACAGAGGTAGTCAGGCCACTGACAGTGAG GGACATTCAGAAGACTCAGACACACAGTCAGTGTCAGCACAGGGACAAGCTGGGCCCCAT CAGCAGAGCCACCAAGAGTCCGCACGTGGCCAGTCAGGGGAAAGCTCTGGACGTTCAGGG TCTTTCCTCTACCAGGTGAGCACTCATGAACAGTCTGAGTCCACCCATGGACAGTCTGTG CCCAGCACTGGAGGAAGACAAGGATCCCACCATGATCAGGCACAAGACAGCTCCAGGCAC TCAGCATCCCAAGAGGGTCAGGACACCATTCGTGGACACCCGGGGCCAAGCAGAGGAGGA AGACAGGGGTCCCACCACGAGCAATCGGTAGATAGGTCTGGACACTCAGGGTCCCATCAC AGCCACACCACATCCCAGGGAAGGTCTGATGCCTCCCGTGGGCAGTCAGGATCCAGAAGT GCAAGCAGACAAACACATGACCAGGAACAATCAGGAGACGGCTCTAGGCACTCAGGGTCG CGTCATCAGGAAGCTTCCTCTTGGGCCGACAGCTCTAGACACTCACAGGCAGTCCAGGGA CAATCAGAGGGGTCCAGGACAAGCAGGCGCCAGGGATCCAGTGTTAGCCAGGACAGTGAC AGTCAGGGACACTCAGAAGACTCTGAGAGGCGGTCTGGGTCTGCTTCCAGAAACCATCGT GGATCTGCTCAGGAGCAGTCAAGAGATGGCTCCAGACACCCCAGGTCCCATCACGAAGAC AGAGCCGGTCACGGGGACTCTGCAGAGAGCTCCAGACAATCAGGCACTCATCATGCAGAG AATTCCTCTGGTGGACAGGCTGCATCATCCCATGAACAGGCAAGATCAAGTGCAGGAGAG AGACATGGATCCCACTACCAGCAGTCAGCAGACAGCTCCAGACACTCAGGCATTGGGCAC GGACAAGCTTCATCTGCAGTCAGAGACAGTGGACACCGAGGGTCCAGTGGTAGTCAGGCC AGTGACAATGAGGGACATTCAGAAGACTCAGACACACAGTCAGTGTCAGCCCACCGACAG GCTGGGCGCCATCACGAGAGCCACCAAGAGTCCACACGTGGCCGGTCACGAGGAAGGTCT GGACGTTCAGGGTCTTTCCTCTACCAGGTGAGCACTCATGAACAGTCTGAGTCTGCCCAT GGACGGGCTGGGCCCAGTACTGGAGGAAGACAAGGATCCCGCCACGAGCAGGCACGAGAC AGCTCCAGGCACTCAGCGTCCCAAGAGGGTCAGGACACCATTCGTGGACACCCGGGGTCA AGGAGAGGAGGAAGACAGGGATCCTACCACGAGCAATCGGTAGATAGGTCTGGACACTCA GGGTCCCATCACAGCCACACCACATCCCAGGGAAGGTCTGATGCCTCCCATGGGCAGTCA GGATCCAGAAGTGCAAGCAGAGAAACACGTAATGAGGAACAGTCAGGAGACGGCTCCAGG CACTCAGGGTCGCGTCACCATGAAGCTTCCACTCAGGCTGACAGCTCTAGACACTCACAG TCCGGCCAGGGTGAATCAGCGGGGTCCAGGAGAAGCAGGCGCCAGGGATCCAGTGTTAGC CAGGACAGTGACAGTGAGGCATACCCAGAGGACTCTGAGAGGCGATCTGAGTCTGCTTCC AGAAACCATCATGGATCTTCTCGGGAGCAGTCAAGAGATGGCTCCAGACACCCCGGATCC TCTCACCGCGATACAGCCAGTCATGTACAGTCTTCACCTGTACAGTCAGACTCTAGTACC GCTAAGGAACATGGTCACTTTAGTAGTCTTTCACAAGATTCTGCGTATCACTCAGGAATA CAGTCACGTGGCAGTCCTCACAGT TCTAGTTCTTATCATTATCAATCTGAGGGCACTGAA AGGCAAAAAGGTCAATCAGGTTTAGTTTGGAGACATGGCAGCTATGGTAGTGCAGATTAT GATTATGGTGAATCCGGGTTTAGACACTCTCAGCACGGAAGTGTTAGTTACAATTCCAAT CCTGTTCTTTTCAAGGAAAGATCTGATATCTGTAAAGCAAGTGCGTTTGGTAAAGATCAT CCAAGGTATTATGCAACGTATATTAATAAGGACCCAGGTTTATGTGGCCATTCTAGTGAT ATATCGAAACAACTGGGATTTAGTCAGTCACAGAGATACTATTACTATGAGTAAGAAATT 'AATGGCAAAGGAATTAATCCAAGAATAGAAGAATGAAGCAAGTTCACTTTCAATCAAGAA ACTTCATAATACTTTCAGGGAAGTTATCTTTTCCTGTCAATCTGTTTAAAATATGCTATA GTATTTCATTAGTTTGGTGGTAACTTATTTTTATTGTGTAATGATCTTTAAACGCTATAT TTCAGAAATATTAAATGGAAGAAATCAATATCATGGAGAGCTAACTTTAGAAAACTAGCT GGAGTATTTTAGGAGATTCTGGGTCAAGTAATGTTTTATGTTTTTGAAAGTTTAAGTTTT AGACACTCCCCAAATTTCTAAATTAATCTTTTTCAGAAATATCGAAGGAGCCAAAAATAT AAACAGTTCTGATATCCAAAGTGGCTATATCAACATCAGGGCTAGCACATCTTTCTCTA TTATCCTTCTATTGGAATTCTAGTATTCTGTATTCAAAAAATCATCTTGGACATAATTAA TATTTTAGTAAGCTGCATCTAAATTAAAAATAAACTATTCATCATATAAT > Hs.75236_mRNA_4 gi | 14280328 | gb | AY033998.1 | Homo sapiens polyA = 3 TAGAATCGGGGGTTTCAGCTCACTGCTCCTTTTCTTTTTTTTCTTTCTCTCCCCCGCCCA CCCCCCCAAAAATAATTGATTTGCTTTACAATCATCCACACTGTGTTTTGTGGATCTTTA ATTATATATAACAATAGTAGTCATTTTAAATATATATTCTGAAATCTTTGCAAATTTTAA CAGAAGAGTCGAAGCTCTGCGAGACCCAATATTTGCCAATAAGAATGGTTATGATAATTA GCACCATGGAGCCTCAGGTGTCAAATGGTCCGACATCCAATACAAGCAATGGACCCTCCA GCAACAACAGAAACTGTCCTTCTCCCATGCAAACAGGGGCAACCACAGATGACAGCAAAA CCAACCTCATCGTCAACTATTTACCCCAGAATATGACCCAAGAAGAATTCAGGAGTCTCT TCGGGAGCATTGGTGAAATAGAATCCTGCAAACTTGTGAGAGACAAAATTACAGGACAOA GTTTAGGGTATGGATTTGTTAACTATATTGATCCAAAGGATGCAGAGAAAGCCATCAACA CTTTAAATGGACTCAGACTCCAGACCAAAACCATAAAGGTCTCATATGCCCGTCCGAGCT CTGCCTCAATCAGGGATGCTAACCTCTATGTTAGCGGCCTTCCCAAAACCATGACCCAGA AGGAACTGGAGCAACTTTTCTCGCAATACGGCCGTATCATCACCTCACGAATCCTGGTTG ATCAAGTCACAGGAGTGTCCAGAGGGGTGGGATTCATCCGCTTTGATAAGAGGATTGAGG CAGAAGAAGCCATCAAAGGGCTGAATGGCCAGAAGCCCAGCGGTGCTACGGAACCGATTA CTGTGAAGTTTGCCAACAACCCCAGCCAGAAGTCCAGCCAGGCCCTGCTCTCCCAGCTCT ACCAGTCCCCTAACCGGCGCTACCCAGGTCCACTTCACCACCAGGCTCAGAGGTTCAGGC TGGACAATTTGCTTAATATGGCCTATGGCGTAAAGAGACTGATGTCTGGACCAGTCCCCC CTTCTGCTTGTTCCCCCAGGTTCTCCCCAATTACCATTGATGGAATGACAAGCCTTGTGG GAATGAACATCCCTGGTCACACAGGAACTGGGTGGTGCATCTTTGTCTACAACCTGTCCC CCGATTCCGATGAGAGTGTCCTCTGGCAGCTCTTTGGCCCCTTTGGAGCAGTGAACAACG TAAAGGTGATTCGTGACTTCAACACCAACAAGTGCAAGGGATTCGGCTTTGTCACCATGA CCAACTATGATGAGGCGGCCATGGCCATCGCCAGCCTCAACGGGTACCGCCTGGGAGACA GAGTGTTGCAAGTTTCCTTTAAAACCAACAAAGCCCACAAGTCCTGAATTTCCCATTCTT ACTTACTAAAATATATATAGAAATATATACGAACAAAACACACGCGCGCACACACACACA TACACGAAAGAGAGAGAAACAAACTTTTCAAGGCTTATATTCAACCATGGACTTTATAAG ATAATGCTTAGAAAAAAAAAAAAAAAAAAAA >CCAGTGTTGCCTAAGTATTAAAACATTGGATTATCCTGAGGTGTACCAGGAAAGGATTTT; Hs.299867_ RNA_l gi | 4758533 | ref | NM_004496.1 | Homo sapiens hepatocyte nuclear factor 3, alpha (HNF3A), mRNA polyA = 3 TCCAGGAATCGATAGTGCATTCGTGCGCGCGGCCGCCCGTCGCTTCGCACAGGGCTGGAT GGTTGTATTGGGCAGGGTGGCTCCAGGATGTTAGGAACTGTGAAGATGGAAGGGCATGAA ACCAGCGACTGGAACAGCTACTACGCAGACACGCAGGAGGCCTACTCCTCGGTCCCGGTC AGCAACATGAACTCAGGCCTGGGCTCCATGAACTCCATGAACACCTACATGACCATGAAC ACCATGACTACGAGCGGCAACATGACCCCGGCGTCCTTCAACATGTCCTATGCCAACCCG GCCTTAGGGGCCGGCCTGAGTCCCGGCGCAGTAGCCGGCATGCCGGGGGGCTCGGCGGGC GCCATGAACAGCATGACTGCGGCCGGCGTGACGGCCATGGGTACGGCGCTGAGCCCGAGC GGCATGGGCGCCATGGGTGCGCAGCAGGCGGCCTCCATGATGAATGGCCTGGGCCCCTAC GCGGCCGCCATGAACCCGTGCATGAGCCCCATGGCGTACGCGCCGTCCAACCTGGGCCGC AGCCGCGCGGGCGGCGGCGGCGACGCCAAGACGTTCAAGCGCAGTTACCCGCACGCCAAG CCGCCCTACTCGTACATCTCGCTCATCACCATGGCCATCCAGCGGGCGCCCAGCAAGATG CTCACGCTGAGCGAGATCTACCAGTGGATCATGGACCTCTTCCCCTATTACCGGCAGAAC CAGCAGCGCTGGCAGAACTCCATCCGCCACTCGCTGTCCTTCAATGACTGCTTCGTCAAG GTGGCACGCTCCCCGGACAAGCCGGGCAAGGGCTCCTACTGGACGCTGCACCCGGACTCC GGCAACATGTTCGAGAACGGCTGCTACTTGCGCCGCCAGAAGCGCTTCAAGTGCGAGAAG CAGCCGGGGGCCG GCGGCGGGGGCGGGAGCGGAAGCGGGGGCAGCGGCGCCAAGGGCGGC CCTGAGAGCCGCAAGGACCCCTCTGGCGCCTCTAACCCCAGCGCCGACTCGCCCCTCCAT CGGGGTGTGCACGGGAAGACCGGCCAGCTAGAGGGCGCGCCGGCCCCGGGCCCGGCCGCC AGCCCCCAGACTCTGGACCACAGTGGGGCGACGGCGACAGGGGGCGCCTCGGAGTTGAAG ACTCCAGCCTCCTCAACTGCGCCCCCCATAAGCTCCGGGCCCGGGGCGCTGGCCTCTGTG CCCGCCTCTCACCCGGCACACGGCTTGGCACCCCACGAGTCCCAGCTGCACCTGAAAGGG GACCCCCACTACTCCTTCAACCACCCGTTCTCCATCAACAACCTCATGTCCTCCTCGGAG CAGCAGCATAAGCTGGACTTCAAGGCATACGAACAGGCACTGCAATACTCGCCTTACGGC TCTACGTTGCCCGCCAGCCTGCCTCTAGGCAGCGCCTCGGTGACCACCAGGAGCCCCATC GAGCCCTCAGCCCTGGAGCCGGCGTACTACCAAGGTGTGTATTCCAGACCCGTCCTAAAC ACTTCCTAGCTCCCGGGACTGGGGGGTTTGTCTGGCATAGCCATGCTGGTAGCAAGAGAG AAAAAATCAACAGCAAACAAAACCACACAAACCAAACCGTCAACAGCATAATAAAATCCA ACAACTATTTTTATTTCATTTTTCATGCACAACCTTGCCCCCAGTGCAAAAGACTGTTAC TTTATTATTGTATTCAAAATTCATTGTGTATATTACTACAAAGACGGCCCCAAACCAATT TTTTTCCTGCGAAGTTTAATGATCCACAAGTGTATATATGAAATTCTCCTCCTTCCTTGC CCCCCTCTCTTTCTTCCCTCTTGGCCCTCCAGACATTCTAGTTTGTGGAGGGTTATTTAA AAAACAAAAAGGAAGATGGTCAAGTTTGTAAAATATT TGTTTGTGCTTTTCCCCCCTCCT TACCTGACCCCCTACGAGTTTACAGGCTTGTGGCAATACTCTTAACCATAAGAATTGAAA TGGTGAAGAAACAAGTATACACTAGAGGCTCTTAAAAGTATTGAAAAGACAATACTGCTG TTATATAGCAAGACATAAACAGATTATAAACATCAGAGCCATTTGCTTCTCAGTTTACAT TTCTGATACATGCAGATAGCAGATGTCTTTAAATGAAATACATGTATATTGTGTATGGAC TTAATTATGCACATGCTCAGATGTGTAGACATCCTCCGTATATTTACATAACATATAGAG GTAATAGATAGGTGATATACGTGATACGTTCTCAAGAGTTGCTTGACCGAAAGTTACAAG GACCCCAACCCCTTTGCTCTCTACCCACAGATGGCCCTGGGAACAATCCTCAGGAATTGC CCTCAAGAACTCGCTTCTTTGCTTTGAGAGTGCCATGGTCATGTCATTCTGAGGTACATA ACACATAAATTAGTTTCTATGAGTGTATACCATTTAAAGATTTTTTCAGTAAAGGGAATA TTACATGTTGGGAGGAGGAGATAAGTTATAGGGAGCTGGATTTCAAACGGTGGTCCAAGA TTCAAAAATCCTATTGATAGTGGCCATTTTAATCATTGCCATCGTGTGCTTGTTTCATCC AGTGTTATGCACTTTCCACAGTTGGTGTTAGTATAGCCAGAGGGTTTCATTATTATTTCT CTTTGCTTTCTCAATGTTAATTTATTGCATGGTTTATTCTTTTTCTTTACAGCTGAAATT GCTTTAAATGATGGTTAAAATTACAAATTAAATTGGGAATTTTTATCAATGTGATTGTAA TTAAAAATATTTTGATTTAAATAACAAAAATAATACCAGATTTTAAGCCGCGGAAAATGT TCTTGATCATTTGCAGTTAAGGACTTTAAATAAATCAAATGTTAACAAAAAA > Hs.285401_contigl AI147926 | AI880620 | AA768316 | AA761543 | AA279147 | AI216016 | AI738663 | N79248 | AI 684489 | AA960845 | AI718599 | AI379138 | N29366 | BF002507 | AW044269 | R34339 | R66326 | H04648 | R67467 | AI523112 | BF941500 polyA = 2 polyA = 3 TGTTTTTCTAGTTCATTTTGTGTTTCCAACTTTTCATGTAAAATTTTAATTATTTTTGAA TGTGTGGATGTGAGACTGAGGTGCCTTTTGGTACTGAAATTCTTTTTCCATGTACCTGAA GTGTTACTTTTGTGATATAGGAAATCCTTGTATATATACTTTATTGGTCCCTAGGCTTCC TATTTTGTTACCTTGCTTTCTCTATGGCATCCACCATTTTGATTGTTCTACTTTTATGAT ATGTTTTCATAAGTGGTTAAGCAAGTATTCTCGTTACTTTTGCTCTTAAATCCCTATTCA TTACAGCAATGTTGGTGGTCAAAGAAAATGATAAACAACTTGAATGTTCAATGGTCCTGA AATACATAACAACATTTTAGTACATTGTAAAGTAGAATCCTCTGTTCATAATGAACAAGA TGAACCAATGTGGATTAGAAAGAAGTCCGAGATATTAATTCCAAAATATCCAGACATTGT TAAAGGGAAAAAATTGCAATAAAATATTTGTAACATAAAAAAAAAAAAAAAAAAAAAAAA > Hs.l82507_mRNA_l gi | 15431324 | ref | NM_002283.2 | Homo sapiens keratin, hair, basic, 5 (KRTHB5), mRNA polyA = 3 AGCTCTCCCCACCAATAAAAGGACCAGGGAGGATCAGAGAGAGCAGAAGGATCCTGAGCC TCGCACTCTGCCGCCCGCACCACCTTCCGCTGCCTCTCAGACTCTGCTCAGCCTCACACG ATGTCGTGCCGCTCCTACAGGATCAGCTCAGGATGCGGGGTCACCAGGAACTTCAGCTCC TGCTCAGCTGTGGCCCCCAAAACTGGCAACCGCTGCTGCATCAGCGCCGCCCCCTACCGA GGGGTGTCCTGCTACCGAGGGCTGACGGGCTTCGGCAGCCGCAGCCTCTGCAACCTGGGC TCCTGCGGGCCCCGGATAGCTGTAGGTGGCTTCCGAGCCGGCTCCTGCGGACGCAGCTTC GGCTACCGCTCCGGGGGCGTGTGCGGACCCAGCCCCCCATGCATCACTACCGTGTCGGTC AACGAGAGCCTCCTCACGCCCCTCAACCTGGAGATCGACCCCAACGCACAGTGCGTGAAG CAGGAGGAGAAGGAGCAGATCAAGTCCCTCAACAGCAGGTTCGCGGCCTTCATCGACAAG GTGCGCTTCCTGGAGCAGCAGAACAAGCTGCTGGAGACCAAGTGGCAGTTCTACCAGAAC CAGCGCTGCTGCGAGAGCAACCTGGAGCCACTGTTCAGTGGCTACATCGAGACTCTGCGG CGGGAGGCCGAGTGCGTGGAGGCCGACAGCGGGAGGCTGGCCTCAGAGCTCAACCATGTG CAGGAGGTGCTGGAGGGCTACAAGAAGAAGTATGAAGAGGAGGTGGCCCTGAGAGCCACA GCAGAGAATGAGTTTGTCGTTCTAAAGAAGGACGTGGACTGTGCCTACCTGCGGAAATCA GACCTGGAGGCCAATGTGGAGGCCCTGGTGGAGGAGTCTAGCTTCCTGAGGCGCCTCTAT GAAGAGGAGATCCGCGTTCTCCAAGCCCACATCTCAGACACCTCGGTCATAGTCAAGATG GACAACAGCCGAGACCTGAACATGGACTGCATCATCGCTGAGATCAAGGCTCAGTATGAC GATGTTGCCAGCCGCAGCCGGGCCGAGGCTGAGTCCTGGTACCGTAGCAAGTGTGAGGAG ATGAAGGCCACGGTGATCAGGCATGGGGAGACCCTGCGCCGCACCAAGGAGGAGATCAAC GAGCTGAACCGCATGATCCAGAGGCTGACGGCCGAGATTGAGAATGCCAAGTGCCAGCGT GCCAAGCTGGAGGCTGCTGTGGCTGAGGCAGAGCAGCAGGGTGAGGCGGCCCTCAGCGAT GCCCGCTGCAAGCTGGCTGAGCTGGAGGGCGCCCTGCAGAAGGCCAAGCAGGACATGGCC TGCCTGCTCAAGGAGTACCAGGAGGTGATGAACTCCAAGCTGGGCCTGGACATCGAGATC GCCACCTACAGGCGCCTGCTGGAGGGCGAGGAACACAGGCTGTGTGAAGGTGTGGGCTCT GTGAATGTCTGTGTCAGCAGCTCC CGTGGTGGAGTCTCCTGTGGGGGCCTCTCCTACAGC ACCACCCCAGGGCGCCAGATCACTTCTGGCCCCTCAGCCATAGGCGGCAGCATCACGGTG GTGGCCCCTGACTCCTGTGCCCCCTGCCAGCCTCGTTCCTCCAGCTTCAGCTGCGGGAGT AGCCGGTCGGTCCGCTTTGCCTAGTAGAGTCATGGAGCCAGGGCTTCCTGCCAAGCACCT GCCTGCCTGCATCACTGCACTGAATGGCATGTGAATGGAAAATGTGTGCTTGCTTCCAGA ATCTTCTGGATGTTCCTACAGAGGGAAAGACCTACAGAGGGAAAGACCCTCGGGCCGCTC CCCTGCGCCTTTTCATGCTAGGGAGATGCATCCTAGTTGTCCTCCTGGCAGCTGTTTTCA GAGGCATTCCCAGCCCTTCACTTAACTCCTACTTAGCTCCAAAATACCTGTATCCAATTT GTATTATTCCCCCAGCTCTCAGGGACAAGACCAGTCCCCCAGCGTGGTGGTCAGCACGGA AGCTCCACCTTCTGGGTGGAGGCGCCATCCTAACCATCCAGCCAGGCCACCCACAACCCG AGAATCAGGGAGAAAGTCCCTCCCCAGCAGCCCCCTCCTCCTGGCTGGGAAGAATGGTCC CCCAGCAAGCACTTGCCTGTTCATTCCCGTTCATGTTTTGCTTCTCTCTCAGACTGCCTT CCTGCTTCTGGGCTAACCTGTTCCAGCCAGGCTCCTCATGTGACCTCGCAGTTGAGAAGC CCATTATCGTGGGGCATCCTTTTGCCTACAGCCCCTGGTTAGGGCACTTTGGACAGGTCT TGCTATTCAGTGAACCTTTGTACATTTCAAAGAAGACTCCATGGCTGCTCCAGATGCCCC CTTGCTGGGTGCAGGTGGGGACTGTCCAATGCAGAGCTGGCGGGACAGAGAGTTAAGCCA CTGTGTTTCAATAAATGCCGCTGCAATGCAAAAAAAAAAAAAAAAAAA >CTTCCTGGGTCTCCTTCTTATGACTGTCTATGGGTGCATTGCCTTCTGGGTTGTCTCGAT; Hs .292653_contigl AI200660 | AW014007 | AI341199 | AI692279 | AI393765 | AI378686 | AI695373 | AW292108 | T10352¡R44346 | A 470408 | AI380925 | BF938983 | AW003704 | H08077 | F03856 | H08075 | F s 08,895 | AW468398 | AI865976 | H22568 | AI858374 | AI216499 polyA polyA = 2 = 3 CAATCAGTGAAAATTCTATATTCCTTTGGCATTTTTGTGACATATTCAATTCAGTTNTAT GTTCCAGCAGAGATCATTATCCCTGGGATCACATCCAAATTTCATACTAAATGGAAGCAA ATCTGTGAATTTGGGATAAGATCCTTCTTGGTTAGTATTACTTGCGCCGGAGCAATGTCT TATTCCTCGTTTAGACATTGTGATTTCCTTCGTTGGAGCTGTGAGCAGCAGCACATTGGC CCTAATCCTGCCACCTTTGGTTGAAATTCTTACATTTTCGAAGGAACATTATAATATATG GATGGTCCTGAAAAATATTTCTATAGCATTCACTGGAGTTGTTGGCTTCTTATTAGGTAC ATATATAACTGTTGAAGAAATTATTTATCCTACTCCCAAAGTTGTAGCTGGCACTCCACA GAGTCCTTTTCTAAATTTGAATTCAACATGCTTAACATCTGGTTTGAAATAGTAAAAGCA GAATCATGAGTCTTCTATTTTTGTCCCATTTCTGAAAATTATCAAGATAACTAGTAAAAT ACATTGCTATATACATAAAAATGGTAACAAACTCTGTTTTCTTTGGCACGATATTAATAT TTTGGAAGTAATCATAACTCTTTACCAGTAGTGGTAAACCTATGAAAAATCCTTGCTTTT AAGTGTTAGCAATAGTTCAAAAAATTAAGTTCTGAAAATTGAAAAAATTAAAATGTAAAA 0 AAATTAAAGAATAAAAATACTTCTATTATTCTTTTATCTCAGTAAGAAATACCTTAACCA AGATATCTCTCTTTTATGCTACTCTTTTGCCACTCACTTGAGAACAGAATAGGATTTCAA CAATAAGAGAATAAAATAAGAACATGTATAACAAAAAGCTCTCTCCAGATCATCCCTGTG AATGCCAAAGTAAACTTTATGTACAGTGTAAAAAAAAAAAAATCTCAGTTATGTTTTTAT TAGCCAAATTCTAATGATTGGCTCCTGGAAGTATAGAAAACTCCCATTAACATAATATAA GCATCAGAAAATTGCAAACACTAGAATTAATTTTACACTCTAATGGTAGTTGATCTTCAT AGTCAAGAGGCACTGTTCAAGATCATGACTTAGTGTTTCAATGAAATTTGAAAAGGGACT TTAAAACTTATCCAGTGCAACTCCCTTGTTTTTCGTCAGAGGAAAAGsAGGCCTAGAAAG GTTAAGTAACTTGGTCGAGACCACTCAGCCTTGAGATCAAGAAAACCTAATCTTCTGACT CCCAGGCCAGGATGTTTTATTTCTCACATCATGTCCAAGAAAAAGAATAAATTATGTTCA GCTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > Hs.97616_mRNA_3 gi 112654852 | gb | BC001270.1 | BC001270 Homo sapiens clone 5 MGC: 5069 IMAGE: 3458016 polyA = 3 CGGAGGCGGCGCCGACGGGGACTGCTGAGGCGCGCAGAGGGTCGGCGGCGCCCGGGAGCC TGTCGCTGGCGCGGTCCGGGCGGGAGGCTCGGCGGCGGGCGGCAGCATGTCGGTGGCGGG GCTGAAGAAGCAGTTCTACAAGGCGAGCCAGCTGGTCAGTGAGAAGGTCGGAGGGGCCGA GGGGACCAAGCTGGATGATGACTTCAAAGAGATGGAGAAGAAGGTGGATGTCACCAGCAA GGCGGTGACAGAAGTGCTGGCCAGGACCATCGAGTACCTGCAGCCCAACCCAGCCTCGCG GGCTAAGCTGACCATGCTCAACACGGTGTCCAAGATCCGGGGCCAGGTGAAGAACCCCGG CTACCCGCAGTCGGAGGGGCTTCTGGGCGAGTGCATGATCCGCCACGGGAAGGAGCTGGG CGGCGAGTCCAACTTTGGTGACGCATTGCTGGATGCCGGCGAGTCCATGAAGCGCCTGGC AGAGGTGAAGGACTCCCTGGACATCGAGGTCAAGCAGAACTTCATTGACCCCCTCCAGAA CCTGTGCGAGAAAGACCTGAAGGAGATCCAGCACCACCTGAAGAAACTGGAGGGCCGCCG CCTGGACTTTGACTACAAGAAGAAGCGGCAGGGCAAGATCCCCGATGAGGAGCTACGCCA GGCGCTGGAGAAGTTCGAGGAGTCCAAGGAGGTGGCAGAAACCAGCATGCACAACCTCCT "GGAGACTGACATCGAGCAGGTGAGTCAGCTCTCGGCCCTGGTGGATGCACAGCTGGACTA CCACCGGCAGGCCGTGCAGATCCTGGACGAGCTGGCGGAGAAGCTCAAGCGCAGGATGCG GGAAGCTTCCTCACGCCCTAAGCGGGAGTATAAG CCGAAGCCCCGGGAGCCCTTTGACCT TGGAGAGCCTGAGCAGTCCAACGGGGGCTTCCCCTGCACCACAGCCCCCAAGATCGCAGC TTCATCGTCTTTCCGATCTTCCGACAAGCCCATCCGGACCCCTAGCCGGAGCATGCCGCC CCTGGACCAGCCGAGCTGCAAGGCGCTGTACGACTTCGAGCCCGAGAACGACGGGGAGCT GGGCTTCCATGAGGGCGACGTCATCACGCTGACCAACCAGATCGATGAGAACTGGTACGA GGGCATGCTGGACGGCCAGTCGGGCTTCTTCCCGCTCAGCTACGTGGAGGTGCTTGTGCC CCTGCCGCAGTGACTCACCCGTGTCCCCGCCCCGCCCCTCCGTCCACACTGGCCGGCACC CCCTGCTGGGTCTCCTGCATTCCACGGAGCCCCTGCTGCCAGGGCGGTGTCTGAGCCTGC CGGCGCCACCTGGGCCCCGGCCCTTGAGGTACTCCCTGAGCAGGACCCCACACTTGGGTG GGGGGGCTTATCTGGGTGGGTGGGGATGCCTGTTTACACTAGCGCTGACTCCCAACGGTG 5 ACGGCTCCCTTCCCCACTCCATGGCGCCAGCCTCCTCGCCCGCTCCCCAACTTCTCGCCC AGCTGGCCGAGGCGGGGCAACACTAAGGTGCTCTTAGAAACACTAATGTTCCTCTGGGGC AGCCCCCACCTCCGTCCTGACCCGACGGGGGCCCGGCCCACTGCCTACCCTCGAGTCCCG CAGCCTTAACAGGATGGGATCGAGGGTCCCCATGGGGTGGCTCAGAGATAGGACCCTGGT TTTAAATCCCTCCCAGCCTGGTGCTGGTGATGGGCCCTGGCCCTACTCCAGGGCCAATGC ACCCCCGCCTCACACACGCACTCCTTCTCCTCAAGGCCAGGGCAGAGGGCCTCACCGCCT CCCGGGCCTGCTGTCAGCTTGCAGCCCGGGGACAGAGGCCAGCTGGGATCTGCCTGAGGA CAGAGAACATGGTCTCCTGCAGGGCCCTGCCTCCCAAGCCCCGCCCTCAGAAAGCCAAGT ACCTTTTCAGCTTTTTAACTGCCCCCATCCCAACCCAGGGAGGCCTGTGTCACTCTGGCA CAAGCTGCCACCACCAGCCACCCACACCCACCCCAGCACACCTCACACGGGACCACAGCC GCGCTGCCGAGGGCCAAGCACAAAGGTTCCAGTGAGCGCATGTCCCAGCCCCTGGTGGCC AGGCTCCCCTTGCTGAGCCGCTGCCACTTCACCCTGTGGGAAGTGGCCCCAGCCATCTCC TCTAGACCAAGGCAGGCAGCCCCGACATCTGCTTCCTCTATCGCCCAATGCAAAATCGAT GAAATGGGGAGTTCTCTGGGCCAGGCCACATTCACATTCCCCTCCCCCTGTGGTCCAGTG AAGCCTCCGGACCCCAGGCTCTGCTCTGCCCTGCCCTGCACCCCCCTCGTCAGAAGTACA TGAGGGGCGCAGAGATGAGCACACAGCTTTGGGCACGGTCCAGGGCAAACTGAAATGTAC sCCTGAATTTTGTAAACAGAAGTATTAAATGTCTCTTTCTACAAAAAAAAAAAAAAAAAA > Hs-123078_mRNA_3 gi | 14328043 | b | BC009237.1 | BC009237 Homo sapiens clone MGC: 2216 IMAGE: 2989823 polyA = 3 GGCACGAGGGAGGTGCAGAGCTGAGAATGAGGCGATTTCGGAGGATGGAGAAATAGCCCC GAGTCCCGTGGAAAATGAGGCCGGCGGACTTGCTGCAGCTGGTGCTGCTGCTCGACCTGC CCAGGGACCTGGGCGGAATGGGGTGTTCGTCTCCACCCTGCGAGTGCCATCAGGAGGAGG ACTTCAGAGTCACCTGCAAGGATATTCAACGCATCCCCAGCTTACCGCCCAGTACGCAGA CTCTGAAGCTTATTGAGACTCACCTGAGAACTATTCCAAGTCATGCATTTTCTAATCTGC CCAATATTTCCAGAATCTACGTATCTATAGATGTGACTCTGCAGCAGCTGGAATCACACT CCTTCTACAATTTGAGTAAAGTGACTCACATAGAAATTCGGAATACCAGGAACTTAACTT ACATAGACCCTGATGCCCTCAAAGAGCTCCCCCTCCTAAAGTTCCTTGGCATTTTCAACA CTGGACTTAAAATGTTCCCTGACCTGACCAAAGTTTATTCCACTGATATATTCTTTATAC TTGAAATTACAGACAACCCTTACATGACGTCAATCCCTGTGAATGCTTTTCAGGGACTAT GCAATGAAACCTTGACACTGAAGCTGTACAACAATGGCTTTACTTCAGTCCAAGGATATG CTTTCAATGGGACAAAGCTGGATGCTGTTTACCTAAACAAGAATAAATACCTGACAGTTA TTGACAAAGATGCATTTGGAGGAGTATACAGTGGACCAAGCTTGCTGCTGCCTCTTGGAA GAAAGTCCTTGTCCTTTGAGACTCAGAAGGCCCCAAGCTCCAGTATGCCATCATGATGCC TGCTAAGGCAGCCACCTTGGTGTACATGCTCACAGAGGCTCTGTTCATGGAGCAGCTGCT GTTTGAAAAATTTTGAAATGCAA GATCCACAACTAGATGGAAGGCACTCTAGTCTTTGCA GAAAAAAATGTACCTGAATGTACATTGCACAATGCCTGGCACAAAGAAGGAAGAATATAA ATGATAGTTCGACTCGTCTGTGGAAGAACTTACAATCATGGGGAAAGATGGAATAAAAAC ATTTTTTAAACAGCAAAAAAAAAAAAAAAAAA > Hs.285508_contigl AW194680 | BF939744 | BF516467 polyA polyA = l = l CCCCAGCCCCACTCACCCACCCTCCTTCCCACCAGCCTGCTCTCCGCAGGCCCACTGTCT TTGGGTTTAATGACGTCTCTTCTCTGTGGAACTTCACGATTCCTTCCCACGGTCAACTCG GGACCTCCCAGCGACCACTGCAGCCTGCGGACGAGGCCGGGACTTGGCCGAGCGGATCCT AATAAGGGGAAAATGGTAAATGCAAACGTCCCGTTACAATTTTACCGCCAGTGTGCTGTC GTTCCCCCTCCCCCTCXCCGAGTCCTCGTGGGGACACGGCGGGGTCTGTAGGAAGTTGGG CCGGGTTGGGGGTTGCTAGAAGGCGCTGGTGTTTTGCTCTGAGTTTTAAGAGATCCCTTC CTTCCTCTTCGGTGAATGCAGGTTATTTAAACTTTGGGAAATGTACTTTTAGTCTGTCAT ATCAAGGCATGAGTCACTGTCTTTTTTTGTGTGAATAAATGGTTTCTAGTACAATGGA > Hs .183274_contigl BF437393 | BF064008 | BF509951 | AW134603 | AI277015 | AI803254 | AA887915 | BF054958 | AI004413 AI393911 jAI278517 | A 612644 | AI492162 AI309226 AI863671 | AA448864 j AI640165 | AA479926¡AA461188 ¡AA780161 ¡BF591180 ¡AI918020 ¡AI758226 ¡AI291375 | BF001845¡BF003064 ¡AI337393 | AI522206 ¡BE856784 | BF001760 | AI280300 polyA FLAG = 1 = 2 WARN polyA = 3 GCGGCCGCCCGCACGTCCGCGGGTCCCGGCCGCGCCGCCGCCGCGCGCCCCTGCCCGAGA GAGCTCTGGCCCCGCTAGCGGGGCCAGGAGCCGGGCCTCCCACCGCAGCGTCCCCCGCCG CGCCAGTCCCCGCTAGTGGTAGTATCTCGTAATAGCTTCTGTGTGTGAGCTACCGTGGAT CTCCTTCCCTTCTCTTGGGGGCCGGGGGGAAAGAAAAGGATTTAAGCAAAGGCTCCCTCG CCCTGTGAGGGCGAOCGGCAAAGGCCCGGCTGAGCCCCCCATGCCCCTCCCCTCCCCGTG TAAAAAGCCTCCTTGTGCAATTGTCTTTTTTTTCCTTTGAACGTGCTTCTTTGTAATGAC CAAGGTACCGATTTCTGCTAAGTTCTCCCAACAACATGAAACTGCCTATTCACGCCGTAA TTCTTTCTGTCTCCCTTCTCTCTCTCTCTCTCGCTCGCTCGCTCTCGCTCTCGCTCTCTC TCGCTGCGTCCTCATTTCCCCTCCCAATCCTCTCTCCCCTCTGCAACCCCCCAGCTCGCT GGCTTTCTCTCTGGCTTCTCTCTTTTCCTCCTCCACCCACCCCCTTTGGTTTGACAATTT TGTCTTAAGTGTTTCTCAAAAGAGGTTACTTTAGTTAGCATGCGCGCTGTGGGCAATTGT TACAAGTGTTCTTAGGTTTACTGTGAAGAGAATGTATTCTGTATCCGTGAATTGCTTTAT GGGGGGGAGGGAGGGCTAATTATATATTTTGTTGTTCCTCTATACTTTGTTCTGTTGTCT GCGCCTGAAAAGGGCGGAAGAGTTACAATAAAGTTTACAAGCGAGAACCCGAAAAAAAAA AAAAA Hs.3348 1_mRNA_3 gi | 14290606 | gb | BC009084.1 | BC009084 Homo sapiens clone MGC: 9270 IMAGE: 3853674 polyA = 3 CACCAGCACAGCAAACCCGCCGGGATCAAAGTGTACCAGTCGGCAGCATGGCTACGAAAT GTGGGAATTGTGGACCCGGCTACTCCACCCCTCTGGAGGCCATGAAAGGACCCAGGGAAG AGATCGTCTACCTGCCCTGCATTTACCGAAACACAGGCACTGAGGCCCCAGATTATCTGG CCACTGTGGATGTTGACCCCAAGTCTCCCCAGTATTGCCAGGTCATCCACCGGCTGCCCA TGCCCAACCTGAAGGACGAGCTGCATCACTCAGGATGGAACACCTGCAGCAGCTGCTTCG GTGATAGCACCAAGTCGCGCACCAAGCTGGTGCTGCCCAGTCTCATCTCCTCTCGCATCT ATGTGGTGGACGTGGGCTCTGAGCCCCGGGCCCCAAAGCTGCACAAGGTCATTGAGCCCA AGGACATCCATGCCAAGTGCGAACTGGCCTTTCTCCACACCAGCCACTGCCTGGCCAGCG GGGAAGTGATGATCAGCTCCCTGGGAGACGTCAAGGGCAATGGCAAAGGGGGTTTTGTGC TGCTGGATGGGGAGACGTTCGAGGTGAAGGGGACATGGGAGAGACCTGGGGGTGCTGCAC CGTTGGGCTATGACTTCTGGTACCAGCCTCGACACAATGTCATGATCAGCACTGAGTGGG CAGCTCCCAATGTCTTACGAGATGGCTTCAACCCCGCTGATGTGGAGGCTGGACTGTACG GGAGCCACTTATATGTATGGGACTGGCAGCGCCATGAGATTGTGCAGACCCTGTCTCTAA AAGATGGGCTTATTCCCTTGGAGATCCGCTTCCTGCACAACCCAGACGCTGCCCAAGGCT TTGTGGGCTGCGCACTCAGCTCCACCATCCAGCGCTTCTACAAGAACGAGGGAGGTACAT GGTCAGTGGAGAAGGTGATCCA GGTGCC'CCCCAAGAAAGTGAAGGGCTGGCTGCTGCCCG AAATGCCAGGCCTGATCACCGACATCCTGCTCTCCCTGGACGACCGCTTCCTCTACTTCA GCAACTGGCTGCATGGGGACCTGAGGCAGTATGACATCTCTGACCCACAGAGACCCCGCC TCACAGGACAGCTCTTCCTCGGAGGCAGCATTGTTAAGGGAGGCCCTGTGCAAGTGCTGG AGGACGAGGAACTAAAGTCCCAGCCAGAGCCCCTAGTGGTCAAGGGAAAACGGGTGGCTG GAGGCCCTCAGATGATCCAGCTCAGCCTGGATGGGAAGCGCCTCTACATCACCACGTCGC TGTACAGTGCCTGGGACAAGCAGTTTTACCCTGATCTCATCAGGGAAGGCTCTGTGATGC TGCAGGTTGATGTAGACACAGTAAAAGGAGGGCTGAAGTTGAACCCCAACTTCCTGGTGG ACTTCGGGAAGGAGCCCCTTGGCCCAGCCCTTGCCCATGAGCTCCGCTACCCTGGGGGCG ATTGTAGCTCTGACATCTGGATTTGAACTCCACCCTCATCACCCACACTCCCTATTTTGG GCCCTCACTTCCTTGGGGACCTGGCTTCATTCTGCTCTCTCTTGGCACCCGACCCTTGGC AGCATGTACCACACAGCCAAGCTGAGACTGTGGCAATGTGTTGAGTCATATACATTTACT AATAAACTCGTAACCCTGTCCTTCAAAAAAAAAAAAAAAAA >GACCACTGTTGCTTGTTGCTCACTGTGCTGCTTTTCCATGAGCTCTTGGAGGCACCAAGA; Hs .3321__contigl AI804745 | AI492375 | AA594799 | BE67261l | AA814147 | AA722404 | AW170088 | D11718 BG- 153444 | AI680648 | AA06356l | BE219054 | AI590287 | R55185 | AI47916 AI796872 | AI01 8324 JAI701122JBE218203 | AA905336 | AI681917 | BI084742 AI480008 AI217994 AI40 1468 polyA = 2 polyA = 3 CCGGAGATAACTTGAGGGCTATAGAGGACCGGCTAATACTGGTCCTGAATTTGGCTTCAG GCCTCACCAACCAAGTGGCCGTGGCCTTGCCGTCTTGCCCGTCGGCCCCCGGTGAGGCCT GGACCCCTGGGGTCCCGGCACCAGGCCCCGGCTTCCGACCCTGGCAGAAGCCCAAGATCT GGTCCCTCGCGGAGACTGCCACAAGCCCCGGACACCCGCGCCGGCTCGCCTCCCGGCGCG GGGGGGTCTCCACCGGGGGGCAACGGTCGCGCCTTTCCGCCCTGCAGCTCTCTCCGGGCC GCCGCCGCCGCCGCCGCTCACAGACTGGTCTCAGCGCCGCTGGGCAAGTTCCCGGCTTGG ACCAACCGGCCGTTTCCAGGCCCACCGCCCGGCCCCCGCCCGCACCCGCTCTCCCTGCTG GGCTCTGCCCCTCCGCACCTGCTGGGACTTCCCGGAGCCGCGGGCCACCCGGCTGCCGCC GCCGCCTTCGCTCGGCCAGCGGAGCCCGAAGGCGGAACAGATCGCTGTAGTGCCTTGGAA GTGGAGAAAAAGTTACTCAAGACAGCTTTCCATCCCGTGCCCAGGCGGCCCCAGAACCAT CTGGACGCCGCCCTGGTCTTATCGGCTCTCTCCTCATCCTAGTTCTTTAAAAAAAAACAA AAAAACAAAAAAAACTTTTTTTAATCGTTGTAATAATTGTATAAAAAAAATCGCTCTGTA TAGTTACAACTTGTAAGCATGTCCGTGTATAAATACCTAAAAGCAAAACTAAACAAAGAA AGTAAGAAAA AGAAATAAAACCAGTCCTCCTCAGCCCTCCCCAAGTCGCTTCTGTGGCAC CCCGCATTCGCTGTGAGGTTTGTTTGTCCGGTTGATTTTGGGGGGTGGAGTTTCAGTGAG AATAAACGTGTCTGCCTTTGTGTGTGTGTATATATACAGAGAAATGTACATATGTGTGAA CCAAATTGTACGAGAAAGTATCTATTTTTGGCTAAATAAATGAGCTGCTGCCACTTTGAC TATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > Hs.306216_singletl AW083022 polyA = l polyA = 2 TATGAGCACCTTCACATGGATCCACTTGAGGAAAGAAGGTGGACCGAATTTGTAAACGGT GTGCAGCAATATATATCAATTCGTTCTGAGATAATCGCCACTTACGCTCTCTGTGGTTTT GCCAATATCGGGTCCCTAGGAATCGTGATCGGCGGACTACACATCCATGGCTCCTTCCAGA AAGCGTGATATCGCCTCGGGGGCAGTGAGAGCTCTGATTGCGGGGACCGTGGCCTGCTTC ATGACAGCCTGCATCGCAGGCATACTCTCCAGCACTCCTGTGGACATCAACTGCCATCAC GTTTTAGAGAATGCCTTCAACTCCACTTTCCCTGGAACCCCAACCAAGGGTGATAGCTTG TTGCCAAAGTCTGTTGAGCAGCCCTGTTGCCCAGGGTCCTGGTGAAGTCATCCCAGGAGG AAACCCCAGTCTGTATTCTTTGAAGGGCTGCTGCACATTGTTGAATCCATCGACCTTTAG CTGCAATGGGATCTCTAATACATTTTGAGGTCAGCCACTTCTCCAGTGGAACTCTGAAGT ACAGATGCTGAATTTTCTGCTTTGGAAAGAAAAAAAA > Hs.99235_contigl AA456140 | AI167259 | AA450056 polyA = 2 polyA = 3 May ACTCGGCATGTGATGAACACCCATAGTTAAGAAACCATGGAGCAAGAAAGCTTGTGGAAA GTCTCTCTCCTTCCTCATAAGACATGCACACTAATACACATACACACCAAAAAATTACAC ATTTTAAAACTGCTAAGCTTGGATTTAACTGAATCATATATCTTTTATCATGTTATCCTA AAAGTGAGAAGACATAACCAAGACATGGAAATAAATGTGAAAGCTGGAGCCGAAGAGTCA AAGAGCTAAAAAATTAAGTCTAGAACATTCTATGAGGATAGTATAAATAAAAAGAAATAC AGTCTAGACATGCTGCAAGGAAAGAAGATTCTAAAGTCCGTTTATGGAGGCAATTCCATA TCCTTTCTTGAACGCACATTCAGCTTACCCCAGAGAGCAAGTGAGGCAATCTGGCAAAAG ATTAATAAAGATGTAAACCCCTGGAAAAAAAAAAAA > Hs .169172_mRNA_2 gi | 2274961 | emb | AJ000388.1 | HSCANPX Homo sapiens mRNA for calpain-like protease CANPX polyA = 3 GAATTCGGCACGAGATAGTTTTCAGGTTAAGAAAGCCAGAATCTTTGTTCAGCCACACTG ACTGAACAGACTTTTAGTGGGGTTACCTGGCTAACAGCAGCAGCGGCAACGGCAGCAGCA 10 GCAGCAGCAGCAGCAGCAGCAGCAGCAGGGCTCCTGGGATAACTCAGGCATAGTTCAACA CTATGGGTCCTCCTCTGAAGCTCTTCAAAAACCAGAAATACCAGGAACTGAAGCAGGAAT GCATCAAAGACAGCAGACTTTTCTGTGATCCAACATTTCTGCCTGAGAATGATTCTCTTT TCTACTTCCGACTGCTTCCTGGAAAGGTGGTGTGGAAACGTCCCCAGGACATCTGTGATG ACCCCCATCTGATTGTGGGCAACATTAGCAACCACCAGCTGACCCAAGGGAGACTGGGGC ACAAGCCAATGGTTTCTGCATTTTCCTGTTTGGCTGTTCAGGAGTCTCATTGGACAAAGA CAATTCCCAACCATAAGGAACAGGAATGGGACCCTCAAAAAACAGAAAAATACGCTGGGA TATTTCACTTTCGTTTCTGGCATTTTGGAGAATGGACTGAAGTGGTGATTGATGACTTGT TGCCCACCATTAACGGAGATCTGGTCTTCTCTTTCTCCACTTCCATGAATGAGTTTTGGA ATGCTCTGCTGGAAAAAGCTTATGCAAAGCTGCTAGGCTGTTATGAGGCCCTGGATGGTT TGACCATCACTGATATTATTGTGGACTTCACGGGCACATTGGCTGAAACTGTTGACATGC AGAAAGGAAGATACACTGAGCTTGTTGAGGAGAAGTACAAGCTATTCGGAGAACTGTACA | 5 AAACATTTACCAAAGGTGGTCTGATCTGCTGTTCCATTGAGTCTCCCAATCAGGAGGAGC AAGAAGTTGAAACTGATTGGGGTCTGCTGAAGGGCCATACCTATACCATGACTGATATTC GCAAAATTCGTCTTGGAGAGAGACTTGTGGAAGTCTTCAGTGCTGAGAAGGTGTATATGG TTCGCCTGAGAAACCCCTTGGGAAGACAGGAATGGAGTGGCCCCTGGAGTGAAATTTCTG AAGAGTGGCAGCAACTGACTGCATCAGATCGCAAGAACCTGGGGCTTGTTATGTCTGATG ATGGAGAGTTTTGGATGAGCTTGGAGGACTTTTGCCGCAACTTTCACAAACTGAATGTCT GCCGCAATGTGAACAACCCTATTTTTGGCCGAAAGGAGCTGGAATCGGTGTTGGGATGCT GGACTGTGGATGATGATCCCCTGATGAACCGCTCAGGAGGCTGCTATAACAACCGTGATA CCTTCCTGCAGAATCCCCAGTACATCTTCACTGTGCCTGAGGATGGGCACAAGGTCATTA TGTCACTGCAGCAGAAGGACCTGCGCACTTACCGCCGAATGGGAAGACCTGACAATTACA TCATTGGCTTTGAGCTCTTCAAGGTGGAGATGAACCGCAAATTCCGCCTCCACCACCTCT ACATCCAGGAGCGTGCTGGGACTTCCACCTATATTGACACCCGCACAGTGTTTCTGAGCA 9Q AGTACCTGAAGAAGGGCAACTATGTGCTTGTCCCAACCATGTTCCAGCATGGTCGCACCA GCGAGTTTCTCCTGAGAATCTTCTCTGAAGTGCCTGTCCAGCTCAGGGAACTGACTCTGG ACATGCCCAAAATGTCCTGCTGGAACCTGGCTCGTGGCTACCCGAAAGTAGTTACTCAGA TCACTGTTCACAGTGCTGAGGACCTGGAGAAGAAGTATGCCAATGAAACTGTAAACCCAT ATTTGGTCATCAAATG TGGAAAGGAGGAAGTCCGTTCTCCTGTCCAGAAGAATACAGTTC ATGCCATTTTTGACACCCAGGCCATTTTCTACAGAAGGACCACTGACATTCCTATTATAG TACAGGTCTGGAACAGCCGAAAATTCTGTGATCAGTTCTTGGGGCAGGTTACTCTGGATG CTGACCCCAGCGACTGCCGTGATCTGAAGTCTCTGTACCTGCGTAAGAAGGGTGGTCCAA CTGCCAAAGTCAAGCAAGGCCACATCAGCTTCAAGGTTATTTCCAGCGATGATCTCACTG AGCTCTAAATCTGCAATCCCAGAGAATCCTGACAAAGCGTGCCACCCTTTTATTTTCCGT CAGGTGCCAGGTCTTAGTTAAGATTCACAATCTTTAGAAAGAATGAGATTCACAATAATT AACTCTTCCTCTCTTCTGATAAATTCCCCATACCTCCCAATCCAAGTAGCATCTGTAGCT ACATAACCTATATACCTCCAGCAGCTGGACATGGGGAGCGACAGTCCTATCTAGACATCA 25 TACACATTTGCCAAGAAAGGATCTCTGGGGCTTCCGGGGGTGAGATTCAAGCAGGACAAT AACAAGAGGCTGGACACCCTACAGATGTCTTTGATGTTTTCAGTTGTTTGATATATCTCC CCTGTAGGGCATGTTGAGGAAGGAGGAGGGCTGATCAAGGCCAAGCTGGTCTAGCCTGAC ATCCTAGCTCCTGACTGAACACTATAGACTTCCCAGCAGCATTTTCACCCAGCAGCCAGA GCCGGCTTTAAGTCCCCAACCCTTACAGACACCACTGCCACCACCACCAACCACGACCAC CACCACCACCACCACTCACCACCATCATCACCTCCGGAAAGTGTAGTCCTGCCCTAACCC TAACCCCAAGTCACCCCCCACAGTAAATTTTACCTTCATGTTGAGAAAGCTTCCTGGTGC TTAATCAAGAGCTGGAGTTCAATGAGTCCTAGACAGTGAGAGGGGCCTGAGCTTCAGCTC AATGGAAGCCTGCTGTGTGCTCACAAGACGGAAAAGTGGAAGAAGCTGCAGTGGGAGACA AAGCCTCGGTCCCCCACCCATCCACACACACCTACACTCACACACGCGCACATGGGCGCG CAACGGAACTACCATTTCAGGCAGTCAGTGGGCAAGAGGAAAGATAAGTAAGTACCATAC ACACCTTAAAAGATGAGGAGAATTCATCCAGACATATTACAGCCAGTTTGGGGCCCCTGA CTTGCAATGTGAAACCTCTTCGCTTGCTGCTAGGTTTACAAACAAGCCCATTGTTCCTGT GCCTCCTAATATTCATTTGTTACTGAAGGACCCCATCTGGGGACTTGAGACTTTGGTCCC AGCCCAGACGCCTCAGACTGGTCTCAAAGTCAAGCAAGGCTTCACATCAGCTGCAAGTGT TAGTTTGCCAGCGCATGATCTCACTGAGCTTCTACAGAATCTGCAATCCCAGAGTCAATC ATGACGAAATGTACGTCCCACCATCTTAACCTATCAACTTTCTGCCCCTCCTTCAAGGCC CAGTATAAATGCCACCTCCTCCATGAAGCCTTCCCTAATTCCACCCCAAACCCCCACCTT CAACAATATTTCAACsCTTCTGCAATGATGAAAAAGAAACATAGTTGTAGTACTTAGCCT ACCTAGACCAGCAAGCATTCATTTTTAGCTCGCTCATTTTTTACCATGTTTTCCAGTCTG TTTAACTTCTGCAGTGCCTTCACTACACTGCCTTACATAAACCAAATCACAATAAAGTTC ATATTCAGTACAATTAAAAAAAAAAAAA > Hs.351486_mRNA_l gi | 16549178 | dbj | AK0S4605.1 | A 054605 Homo sapiens cDNA FLJ30043 fis, clone 3NB692001548 polyA = 0 TATGCAAGTGTTTAACAGATGCTTCACTATTAAAATATTTTCCCCCCAAGTCTCAAATAT TGAAGAATCTCTAACCAGGGACACCAGTCCCTACGAAGACCTTGGGCGATTTTGAAGTGC GGGCACCTCGATTCCCCGAATCTGTAGTGTGGCTGGTATCGGTGTTCCCCTGGTTTAACT AGCCTGTTTGAAGGCACAGATCATTCATGGGGAAGTATAACCGAATCCAGTCCTCTCCAC CGCCTGGGGATCTTCACTTTCGCAGTCTACGACTGCCTGTGACTCCAGAAAGACAAACTG CAGATTGGCCAAGATGGGGAAATTGAGGCAGAGAAGCCAAGACATGTGCTAAAGGTCATG CAGGCTATGAATGGAGCTGGAATGTGAACGCAGGCCATATGACCCCAGAGCCCATGTTCT TGAACCCTTAGAAAGACAGCAGCAACACACCTGGTGCAGCAGCTGCTTAGTTGGAGTGGC TGACAAGGAGAGAATGATTTCCAGGAAGAGCGGAACACATATGGAAGGCCTTAGCTTATC TTTAGCGCCTCATACACCCGTTCTGGACTTCAGAAAGGCCAGTGAGTGGGATTAGGCCTC AGAGATAGGATGTCAGTCCCAGTGAGGGATGGCCTAGAGCATTCTTTAATTCTTTCCTTT GGGTCACACATAAGAAACAATTTTCCAGCACTGATGAGTGTTATTAACAATGAGATGGGA TAGAATTTAGTTTTCCCTATGGCTGTGCTTCAAAAATAGAAAAGCTGTCTTTTCTCTGGA ATGATTGAATGAAGCTCTGGGGAGGAAAAGGTGGATTGGCAGATCTCTTAAAGGAAGCTT CTCCTTCTAGGCACTATTCTAAGGCTTAATATTTTAACTCCCTATATTAACCTAGTTCAA CTAAACAGTGATCTGAGTAATTTTATTTTTATTAAAGCTCAGATCAAAATGCCATTAACA TtGATTGAGAAAATCAAAGGAATCTTTGATGTGAGTGGTTAAATTGCTGAATTATTTCAG TCCCATACCCTCACAGCATGAGTACCTGATCTGATAGACTTCTTTGGAATTCCTTTTTTG TTTGAGACAGAGTCTTGCTCTGTCGCCCAGGCTGGAGTGCAGCGGTGTGATCTCAACCAT TGCAACCTCCACCTCCCAGGTTCAGGTGATTCTCATGCCTCAGCCTCCTGAGTAGCTGGG ATTACAGATGTGCACCACCATGCCCGGCTAATTATTTTGTATCTTTAGTAGAGATGAAGT TTTGCCATGTGGGCCAGGCTGTTCTCAAACTACTGGCCTCAAGTGATCTGCCCGCCTCGG CCTCCCAGACTGCTGGGATTACAGGCGTGAGGCACCGTGCCTGGCTGGGATTCCATAATA AATCCCTCTGTGTCTATTTCTTTTTTCAAATATAATTTTCTTCATTTCCAAACATCATCT TTAAGACTCCAAGGATTTTTCCAGGCACAGTGGCTCATACCTGTAATCCCATTGCTTGGA GAGGCCAAGGTGGAAGTTCATTTGAGGCCAGGAGTTCGAGACCAGGTGGGCAACATAGTG AAACCTTGTCTCTACAACAT > Hs .153504_contig2 BE962007 AW016349 | A 016358 | AW139144 | AA932969 | AI025620 | AI688744 | I865632 | AA854291 AA932970 | AU156702 | AI634439 | AA152496JAI539557 | AI123490 | AI613215 | AI318363 AW105672 | AA843483 AI366889 j AW181938 j AI813801 AI433695 j AA934772 | N72230 | AI760632 BE858965 | AW058302 | AI760087 | AI682077 | AA88667 | AI350384 | AW 243848¡AW300574 BE466359 AI859529 | AI921588 BF06 899 | BE85559 | BE617708 polyA = 2 polyA = 3 TGTTTATATAACTGTGTTCGTTTTTGTTGTTCCGTCCCGTCGTCCTTGTAGACTCTCATC CTCGTGTGTTTTGGACCCTCCAGGGGTGACATCGGGTCTTGTGTTCAGCTCTCCTGGACT GTTATTCCTTGTCCGCGTGTTCGTGTTAGACATTGTCCACGATCTGTATCATGCCTATGT CTCACTTTGGTCTCTTATTTCAGCGTGAACACTATAGTTCCAAGTTTGTTCGGATAATTC TGATTCTTGTCACCAGCGTGAGATTTCAACAGAACTTGTTTGGAACAAATACTCACTTAA AACTTCAGCAGAAGAAAAATTACTTAGTCCTTAGGCCAACCAATTTAACTGCAGTGTCAT GTTTCACAGGCCTTCCTACATTTAGAAATCGTCACACAGCTGTGATAAGAGTAGATTATT TTACTATGAAATAATTCTGAATAGATGAAAGCATAAAATGTGAGAAACTGAATGTATTAT TCAGGAAGAATACTGAGTGCCTTCATTTAACTAAAGTTGAATGTAAAAGTCAATTTGCAC TTCTTTATAATCCTCTGGTTTAGAATTATAAATTGTTAAAACCTTGATAATTGTCATTTA ATTATATTTCAGGTGTCCTGAACAGGTCACTAGACTCTACATTGGGCAGCCTTTAAATAT GATTCTTTGTAATGCTAAATAGCCTTTTTTTCTCTTTTTACTGCAACTTAATATTTCTAT CTATTAAAATAAAAAAAAAAAAAAAAAAA >TTAGAACACAGAAAATGAAAATATTTAGAATAAGTTGTACATTTGATGACAAATAAATCA; Hs.l99354_singletl AI669760 polyA = l polyA = 2 AGGAACCCCTGTGGGAAAGGTTTAAACCTAAAACAGTGCCCCCTTTGGCTCCTCCTCCCT TGGCGGAATGGGTTCCTGGACCATGTGCATTTCANTGGGCCATGGGATTTACATTTCCTT GCATCCCCAGGTGGTTTGATCCCTGCCAGGGCCCCTTCCTTCCTGCTCATGGTTTTCAGG GGGCCTGATCATGGAAAGTAAGGGGGTTGGGCCTTCCCTTTTGGGGGTGAACCCTGACTC CATCCCCCTATTGCCCCCCTAACCAATCATGCAAACTTTTCCCCCCCTGGGGTAATTCAC CAGTTAAAAAAAGCTTTTTTTAAATGTTTTGTTTTGGGGGGGGGGCAGGGCCCCCTTTTT GTTTTTTTAAGGAGTTGGTTTTGGTTTTTGGCTGATGTTTTGTTTTTTAACATGCCCCCA GTTTGTAAGGCCAAAGGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAA > Hs.l62020_contigl AW291189 | AA505872 polyA = 2 polyA = 3 TAAGCTTTAAAGGCTCTGTGTTAGGGCATAGTCTAGAAACATGGGGCCCAAGGGCACCGG GAAAACTTACAAAGGGAAGAGATGGAACTGGGAGGGTTCAAGCTACCAGTTCCATCTCTC CATGTTTTAGAGAATTGGGGCACTAAGTCAGCCAGGTAAGGTCAGGTCAGAGGAGGGCCC GGATGAAGCATGAGATGCAGAGGGACAGTGCGTGAATGGAGACCTTGGGTAGCACCAACG TGTAGCGGCAGAGGTGGGGTGGATGTGGCTGATGTCAGGGAGAGAATGGGGAGCATGCAC AGGGCTCAGTCTTATACÁTACATTGAAAATCCTTTAGCCTTTCAAAGATTATTAACCCAA ATCACCTTTCTTGCTTACTCCAGATGCCTCAGCCTCTGATATAATTGCTAAGTATCTGCC GTGTTAAAAATAAACATTTGAGAATCAAAAAAAAAAAAAAAAA > Hs.30743_mRNA_3 gi | 18201906 | ref | NM_006115.2 | Homo sapiens melanoma antigen preferentially Expressed in (PRAME), mRNA polyA = 3 GCTTCAGGGTACAGCTCCCCCGCAGCCAGAAGCCGGGCCTGCAGCGCCTCAGCACCGCTC CGGGACACCCCACCCGCTTCCCAGGCGTGACCTGTCAACAGCAACTTCGCGGTGTGGTGA ACTCTCTGAGGAAAAACCATTTTGATTATTACTCTCAGACGTGCGTGGCAACAAGTGACT GAGACCTAGAAATCCAAGCGTTGGAGGTCCTGAGGCCAGCCTAAGTCGCTTCAAAATGGA ACGAAGGCGTTTGTGGGGTTCCATTCAGAGCCGATACATCAGCATGAGTGTGTGGACAAG CCCACGGAGACTTGTGGAGCTGGCAGGGCAGAGCCTGCTGAAGGATGAGGCCCTGGCCAT TGCCGCCCTGGAGTTGCTGCCCAGGGAGCTCTTCCCGCCACTCTTCATGGCAGCCTTTGA CGGGAGACACAGCCAGACCCTGAAGGCAATGGTGCAGGCCTGGCCCTTCACCTGCCTCCC TCTGGGAGTGCTGATGAAGGGACAACATCTTCACCTGGAGACCTTCAAAGCTGTGCTTGA TGGACTTGATGTGCTCCTTGCCCAGGAGGTTCGCCCCAGGAGGTGGAAACTTCAAGTGCT GGATTTACGGAAGAACTCTCATCAGGACXTCTGGACTGTATGGTCTGGAAACAGGGCCAG TCTGTACTCATTTCCAGAGCCAGAAGCAGCTCAGCCCATGACAAAGAAGCGAAAAGTAGA TGGTTTGAGCACAGAGGCAGAGCAGCCCTTCATTCCAGTAGAGGTGCTCGTAGACCTGTT CCTCAAGGAAGGTGCCTGTGATGAATTGTTCTCCTACCTCATTGAGAAAGTGAAGCGAAA GAAAAATGTACTACGCCTGTGCTGTAAGAAGCTGAAGATTTTTGCAATGCCCATGCAGGA TATC AAGATGATCCTGAAAATGGTGCAGCTGGACTCTATTGAAGATTTGGAAGTGACTTG TACCTGGAAGCTACCCACCTTGGCGAAATTTTCTCCTTACCTGGGCCAGATGATTAATCT GCGTAGACTCCTCCTCTCCCACATCCATGCATCTTCCTACATTTCCCCGGAGAAGGAAGA GCAGTATATCGCCCAGTTCACCTCTCAGTTCCTCAGTCTGCAGTGCCTGCAGGCTCTCTA TGTGGACTCTTTATTTTTCCTTAGAGGCCGCCTGGATCAGTTGCTCAGGCACGTGATGAA CCCCTTGGAAACCCTCTCAATAACTAACTGCCGGCTTTCGGAAGGGGATGTGATGCATCT GTCCCAGAGTCCCAGCGTCAGTCAGCTAAGTGTCCTGAGTCTAAGTGGGGTCATGCTGAC CGATGTAAGTCCCGAGCCCCTCCAAGCTCTGCTGGAGAGAGCCTCTGCCACCCTCCAGGA CCTGGTCTTTGATGAGTGTGGGATCACGGATGATCAGCTCCTTGCCCTCCTGCCTTCCCT GAGCCACTGCTCCCAGCTTACAACCTTAAGCTTCTACGGGAATTCCATCTCCATATCTGC CTTGCAGAGTCTCCTGCAGCACCTCATCGGGCTGAGCAATCTGACCCACGTGCTGTATCC TGTCCCCCTGGAGAGTTATGAGGACATCCATGGTACCCTCCACCTGGAGAGGCTTGCCTA TCTGCATGCCAGGCTCAGGGAGTTGCTGTGTGAGTTGGGGCGGCCCAGCATGGTCTGGCT TAGTGCCAACCCCTGTCCTCACTGTGGGGACAGAACCTTCTATGACCCGGAGCCCATCCT GTGCCCCTGTTTCATGCCTAACTAGCTGGGTGCACATATCAAATGCTTCATTCTGCATAC TTGGACACTAAAGCCAGGATGTGCATGCATCTTGAAGCAACAAAGCAGCCACAGTTTCAG ACAAATGTTCAGTGTGAGTGAGGAAAACATGTTCAGTGAGGAAAAAACATTCAGACAAAT GTTCAGTGAGGAAAAAAAGGGGAAGTTGGGGATAGGCAGATGTTGACTTGAGGAGTTAAT GTGATCTTTGGGGAGATACATCTTATAGAGTTAGAAATAGAATCTGAATTTCTAAAGGGA GATTCTGGCTTGGGAAGTACATGTAGGAGTTAATCCCTGTGTAGACTGTTGTAAAGAAAC TGTTGAAAATAAAGAGAAGCAATGTGAAGCAAAAAAAAAAAAAAAAAA Hs.271580_contigl AI632869 | AW338882 | AW338875 | AW613773 | AI982899 | AW193151 | BE206353 | BE20820? | AI811548 | AW264021 polyA = 2 polyA = 3 AACACAGCCCTACCAANCAATGATGACCAGTGGAAAACAATGAAGTCACCAAACCCTGGA CAGGGCTCATGCTCCAGGACAANTTGCTGTGGCGTAAATGGTCCATCAGACTGGCAAAAA TACACATCTGCCTTCCGGACTGAGAATAATGATGCTGACTATCCCTGGCCTCGTCAATGC TGTGTTATGAACAATCTTAAAGAACCTCTCAACCTGGAGGCTTGTAAACTAGGCGTGCCT GGTTTTTATCACAATCAGGGCTGCTATGAACTGATCTCTGGTCCAATGAACCGACACGCC TGGGGGGTTGCCTGGTTTGGATTTGCCATTCTCTGCTGGACTTTTTGGGTTCTCCTGGGT ACCATGTTCTACTGGAGCAGAATTGAATATTAAGCATAAAGTGTTGCCACCATACCTCCT TCCCCGAGTGACTCTGGATTTGGTGCTGGAACCAGCTCTCTCCTAATATTCCACGTTTGT GCCCCACACTAACGTGTGTGTCTTACATTGCCAAGTCAGATGGTACGGACTTCCTTTAGG ATCTCAGGCTTCTGCAGTTCTCATGACTCCTACTTTTCATCCTAGTCTAGCATTCTGCAA CATTTATATAGACTGTTGAAAGGAGAATTTGAAAAATGCATAATAACTACTTCCATCCCT GCTTATTTTTAATTTGGGAAAATAAATACATTCGAAGGAAAAAAAAA > Hs.69360_mRNA_2 gi | 14250609 | b | BC008764.1 | BC008764 Homo sapiens clone MGC: 1266 IMAGE: 3347571 Lya p = 3 GGCACGAGGGCGAAATTGAGGTTTCTTGGTATTGCGCGTTTCTCTTCCTTGCTGACTCTC CGAATGGCCATGGACTCGTCGCTTCAGGCCCGCCTGTTTCCCGGTCTCGCTATCAAGATC CAACGCAGTAATGGTTTAATTCACAGTGCCAATGTAAGGACTGTGAACTTGGAGAAATCC TGTGTTTCAGTGGAATGGGCAGAAGGAGGTGCCACAAAGGGCAAAGAGATTGATTTTGAT GATGTGGCTGCAATAAACCCAGAACTCTTACAGCTTCTTCCCTTACATCCGAAGGACAAT CTGCCCTTGCAGGAAAATGTAACAATCCAGAAACAAAAACGGAGATCCGTCAACTCCAAA ATTCCTGCTCCAAAAGAAAGTCTTCGAAGCCGCTCCACTCGCATGTCCACTGTCTCAGAG CTTCGCATCACGGCTCAGGAGAATGACATGGAGGTGGAGCTGCCTGCAGCTGCAAACTCC CGCAAGCAGTTTTCAGTTCCTCCTGCCCCCACTAGGCCTTCCTGCCCTGCAGTGGCTGAA ATACCATTGAGGATGGTCAGCGAGGAGATGGAAGAGCAAGTCCATTCCATCCGAGGCAGC TCTTCTGCAAACCCTGTGAACTCAGTTCGGAGGAAATCATGTCTTGTGAAGGAAGTGGAA AAAATGAAGAACAAGCGAGAAGAGAAGAAGGCCCAGAACTCTGAAATGAGAATGAAGAGA GCTCAGGAGTATGACAGTAGTTTTCCAAACTGGGAATTTGCCCGAATGATTAAAGAATTT CGGGCTACTTTGGAATGTCATCCACTTACTATGACTGATCCTATCGAAGAGCACAGAATA TGTGTCTGTGTTAGGAAACGCCCACTGAATAAGCAAGAATTGGCCAAGAAAGAAATTGAT GTGATTTCCATTCGTAGCAAGTG TCTCCTCTTGGTACATGAACCCAAGTTGAAAGTGGAC TTAACAAAGTATCTGGAGAACCAAGCATTCTGCTTTGACTTTGCATTTGATGAAACAGCT TCGAATGAAGTTGTCTACAGGTTCACAGCAAGGCCACTGGTACAGACAATCTTTGAAGGT GGAAAAGCAACTTGTTTTGCATATGGCCAGACAGGAAGTGGCAAGACACATACTATGGGC GGAGACCTCTCTGGGAAAGCCCAGAATGCATCCAAAGGGATCTATGCCATGGCCTCCCGG GACGTCTTCCTCCTGAAGAATCAACCCTGCTACCGGAAGTTGGGCCTGGAAGTCTATGTG ACATTCTTCGAGATCTACAATGGGAAGCTGTTTGACCTGCTCAACAAGAAGGCCAAGCTG CGCGTGCTGGAGGACGGCAAGCAACAGGTGCAAGTGGTGGGGCTGCAGGAGCATCTGGTT AACTCTGCTGATGATGTCATCAAGATGATCGACATGGGCAGCGCCTGCAGAACCTCTGGG CAGACATTTGCCAACTCCAATTCCTCCCGCTCCCACGCGTGCTTCCAAATTATTCTTCGA GCTAAAGGGAGAATGCATGGCAAGTTCTCTTTGGTAGATCTGGCAGGGAATGAGCGAGGC GCGGACACTTCCAGTGCTGACCGGCAGACCCGCATGGAGGGCGCAGAAATCAACAAGAGT CTCTTAGCCCTGAAGGAGTGCATCAGGGCCCTGGGACAGAACAAGGCTCACACCCCGTTC CGTGAGAGCAAGCTGACACAGGTGCTGAGGGACTCCTTCATTGGGGAGAACTCTAGGACT TGCATGATTGCCACGATCTCACCAGGCATAAGCTCCTGTGAATATACTTTAAACACCCTG AGATATGCAGACAGGGTCAAGGAGCTGAGCCCCCACAGTGGGCCCAGXGGAGAGCAGTTG ATTCAAATGGAAACAGAAGAGATGGAAGCCTGCTCTAACGGGGCGCT GATTCCAGGCAAT TTATCCAAGGAAGAGGAGGAACTGTCTTCCCAGATGTCCAGCTTTAACGAAGCCATGACT CAGATCAGGGAGCTGGAGGAGAAGGCTATGGAAGAGCTCAAGGAGATCATACAGCAAGGA CCAGACTGGCTTGAGCTCTCTGAGATGACCGAGCAGCCAGACTATGACCTGGAGACCTTT GTGAACAAAGCGGAATCTGCTCTGGCCCAGCAAGCCAAGCATTTCTCAGCCCTGCCAGAT GTCATCAAGGCCTTGCGCCTGGCCATGCAGCTGGAAGAGCAGGCTAGCAGACAAATAAGC AGCAAGAAACGGCCCCAGTGACGACTGCAAATAAAAATCTGTTTGGTTTGACACCCAGCC TCTTCCCTGGCCCTCCCCAGAGAACTTTGGGTACCTGGTGGGTCTAGGCAGGGTCTGAGC TGGGACAGGTTCTGGTAAATGCCAAGTATGGGGGCATCTGGGCCCAGGGCAGCTGGGGAG GGGGTCAGAGTGACATGGGACACTCCTTTTCTGTTCCTCAGTTGTCGCCCTCACGAGAGG AAGGAGCTCTTAGTTACCCTTTTGTGTTGCCCTTCTTTCCATCAAGGGGAATGTTCTCAG CATAGAGCTTTCTCCGCAGCATCCTGCCTGCGTGGACTGGCTGCTAATGGAGAGCTCCCT GGGGTTGTCCTGGCTCTGGGGAGAGAGACGGAGCCTTTAGTACAGCTATCTGCTGGCTCT AAACCTTCTACGCCTTTGGGCCGAGCACTGAATGTCTTGTACTTTAAAAAAATGTTTCTG AGACCTCTTTCTACTTTACTGTCTCCCTAGAGATCCTAGAGGATCCCTACTGTTTTCTGT TTTATGTGTTTATACATTGTATGTAACAATAAAGAGAAAAAATAAAAAAAAAAAAAAAAA AAAAAAAAAAAA > Hs.30827_C? Ntigl H07885 | N39347 | W85913 | AA583408 | W86449 polyA = 2 polyA = 3 ATCGGACTTCGGTNAACTNTGGCAAGGATTGGACAGNCTAGGTAGGCTAAATGTGTGCTC TGTCCCTGTTTGCTTCAACAGAGGAGCAAGCCTCAGCTGAGAAGGAGGGCACNTGGAACA CCTAGCTCCTCCCGTGATTCCCCAAACCCATAACATTCTTCCATAGGGCTGGAACCAGTG CCCCGTCCTGACAGGGATGAAAAGTGAACCCCTCAGGTCAGGAGAGGCCAGAGTTGAGGT TCTGCCACTTCCTGTCCCTGGGGAGCCACTCAAGTTACCAGGGCTACCGGCTGAAATAAA TCTTTTCCGGGTAGGGTCAAGGGCAGTGTGTTCCAAGGCAACTGATGTAGGCCAGTTGCG TGACTCCAGGTTTGTCCTGGTACTCAGTGGGTCCAATCACCTGGCATTGATCACCTGGCA TTGATCAGCACCCACCCCACCCCTGAGGCTTGCCCAGCCCCCAGGCCCTCAGATCCCTGC TCTTCCTGCCTTTCCTGCCCATGTGTCACCCAGCACCCAAGGTTCAGTGACACAGGGTGG TTTGGAGCTGGTCACTGTCATAGCAGCTGTGATTTCACAAGGAAGGGTGCTGCAGGGGGA CCTGGTTGATGGGGAGTGGGAAGGGGAAGGAATAAAGAGATCTTCCTCAGGTAAAAAAAA AAAAAAAAAA 0 > Hs.211593_contig2 BF592799 | AI570478 | AA234440 | R40214 | BE501078 | AW593784 | AI184050 | AI284161 | W7 2149 | AW780437 | AI24798l | AW241273 | H60824 polyA = 2 polyA = 3 ACCTCGTTTGCTCCCAGTTACTTCTTATCTGGAGCAGTAATGTAGTCCACTTCACTCATG CCTACCCCGCGTGTCTCGTCTCCTGACATGTCTCACAGACGCTCCTGAAGTTAGGTCATT ACCTAACCCATAGTTATTTACCTTGAAAGATGGGTCTCCGCACTTGGAAAGGTTTCAAGA CTTGATACTGCAATAAATTATGGCTCTTCACCTGGGCGCCAACTGCTGATCAACGAAATG CTTGTTGAATCAGGGGCAAACGGAGTACAGACGTCTCAAGACTGAAACGGCCCCATTGCC TGGTCTAGTAGCGGATCTCACTCAGCCGCAGACAAGTAATCACTAACCCGTTTTTATTCTA TTCCTATCTGTGGATGTGTAAATGGCTGGGGGGCCAGCCCTGGATAGGTTTTTATGGGAA TTCTT ACAATAAACATAGCTTGTAACTTGAGATCTACAAATCCATTCATCCTGATTGGG CATGAAATCCATGGTCAAGAGGACAAGTGGAAAGTGAGAGGGAAGGTTTGCTAGACACCT | 5 TCGCTTGTTATCTTGTCAAGATAGAAAAGATAGTATCATTTCACCCTTGCCAGTAAAAAC CTTTCCATCCACCCATTCTCAGCAGACTCCAGTATTGGCACAGTCACTCACTGCCATTCT CACACTATAACAAGAAAAGAAATGAAGTGCATAAGTCTCCTGGGAAAAGAACCTTAACCC CTTCTCGTGCCATGACTGGTGATTTCATGACTCATAAGCCCCTCCGTAGGCATCATTCAA GATCAATGGCCCATGCATGCTGTTTGCAGCAGTCAATTGAGTTOAATTAGAATTCCAAeC ATACATTTTAAAGGTATTTGTGCTGTGTGTATATTTTGATAAAATGTTGTGACTTCATGG CAAACAGGTGGATGTGTAAAAATGGAATAAAAAAAAAAAAAGAGTCAAAAAAAAAAAAAA AATT > Hs.l55097_mRNA_l gi | 15080385 | gb | BC011949.1 | BC011949 Homo sapiens clone MGC: 9006 IMAGE: 3863603 polyA = 3 GGCGCCCAAGCCGCCGCCGCCAGATCGGTGCCGATTCCTGCCCTGCCCCGACCGCCAGCG CGACCATGTCCCATCACTGGGGGTACGGCAAACACAACGGACCTGAGCACTGGCATAAGG _ "ACTTCCCCATTGCCAAGGGAGAGCGCCAGTCCCCTGTTGACATCGACACTCATACAGCCA AGTATGACCCTTCCCTGAAGCCCCTGTCTGTTTCCTATGATCAAGCAACTTCCCTGAGGA TCCTCAACAATGGTCATGCTTTCAACGTGGAGTTTGATGACTCTCAGGACAAAGCAGTGC TCAAGGGAGGACCCCTGGATGGCACTTACAGATTGATTCAGTTTCACTTTCACTGGGGTT CACTTGATGGACAAGGTTCAGAGCATACTGTGGATAAAAAGAAATATGCTGCAGAACTTC ACTTGGTTCACTGGAACACCAAATATGGGGATTTTGGGAAAGCTGTGCAGCAACCTGATG GACTGGCCGTTCTAGGTATTTTTTTGAAGGTTGGCAGCGCTAAACCGGGCCTTCAGAAAG TTGTTGATGTGCTGGATTCCATTAAAACAAAGGGCAAGAGTGCTGACTTCACAAACTTTG CAGCTCGTGGCCTCCTTCCTGAATCCCTGGATTACTGGACCTACCCAGGCTCACTGACCA CCCCTCCTCTTCTGGAATGTGTGACCTGGATTGTGCTCAAGGAACCCATCAGCGTCAGCA GCGAGCAGGTGTTGAAATTCCGTAAACTTAACTTCAATGGGGAGGGTGAACCCGAAGAAC TGATGGTGGACAACTGGCGCCCAGCTCAGCCACTGAAGAACAGGCAAATCAAAGCTTCCT TCAAATAAGATGGTCCCATAGTCTGTATCCAAATAATGAATCTTCGGGTGTTTCCCTTTA 25 GCTAAGCACAG ATCTACCTTGGTGATTTGGACCCTGGTTGCTTTGTGTCTAGTTTTCTAG ACCCTTCATCTCTTACTTGATAGACTTACTAATAAAATGTGAAGACTAGACCAATTGTCA TGCTTGACACAACTGCTGTGGCTGGTTGGTGCTTTGTTTATGGTAGTAGTTTTTCTGTAA CACAGAATATAGGATAAGAAATAAGAATAAAGTACCTTGACTTTGTTCACAGCATGTAGG GTGATGAGCACTCACAATTGTTGACTAAAATGCTGCCTTTAAAACATAGGAAAGTAGAAT GGTTGAGTGCAAATCCATAGCACAAGATAAATTGAGCTAGTTAAGGCAAATCAGGTAAAA TAGTCATGATTCTATGTAATGTAAACCAGAAAAAATAAATGTTCATGATTTCAAGATGTT ATATTAAAsAAAAACTTTAAAAATTATTATATATTTATAGCAAAGTTATCTTAAATATGA ATTCTGTTGTAATTTAATGACTTTTGAATTACAGAGATATAAATGAAGTATTATCTGTAA AAATTGTTATAATTAGAGTTGTGATACAGAGTATATTTCCATTCAGACAATATATCATAA CTTAATAAATATTGTATTTTAGATATATTCTCTAATAAAATTCAGAATTCTAAAAAAAAA, AAAAAAAA > Hs.5163_mRNA_l gi | 15990433 | gb | BC015582.1 | BC015582 Homo sapiens clone MGC.-23280 IMAGE: 4637504 polyA = 3 GGCACGAGGCATGGAGGCGCTGCTGCTGGGCGCGGGGTTGCTGCTGGGCGCTTACGTGCT TGTCTACTACAACCTGGTGAAGGCCCCGCCGTGCGGCGGCATGGGCAACCTGCGGGGCCG CACGGCCGTGGTCACGGGTGAGTGCGGAGGCGGGTGAGTGCGAGCTGGCGGGGCGCGCGG AGAGGAGGCCGGGCCGGCGGTAGCAGCGGCCCGCCGGGCTCAGCTCAGCTCGGCTCCCGC CCGCGGTCCGCAGGCGCCAACAGCGGCATCGGAAAGATGACGGCGCTGGAGCTGGCGCGC CGGGGAGCGCGCGTGGTGCTGGCCTGCCGCAGCCAGGAGCGCGGGGAGGCGGCTGCCTTC GACCTCCGCCAGGAGAGTGGGAACAATGAGGTCATCTTCATGGCCTTGGACTTGGCCAGT CTGGCCTCGGTGCGGGCCTTTGCCACTGCCTTTCTGAGCTCTGAGCCACGGTTGGACATC CTCATCCACAATGCCGGTATCAGTTCCTGTGGCCGGACCCGTGAGGCGTTTAACCTGCTG CTTCGGGTGAACCATATCGGTCCCTTTCTGCTGACACATCTGCTGCTGCCTTGCCTGAAG 10 GCATGTGCCCCTAGCCGCGTGGTGGTGGTAGCCTCAGCTGCCCACTGTCGGGGACGTCTT GACTTCAAACGCCTGGACCGCCCAGTGGTGGGCTGGCGGCAGGAGCTGCGGGCATATGCT GACACTAAGCTGGCTAATGTACTGTTTGCCCGGGAGCTCGCCAACCAGCTTGAGGCCACT GGCGTCACCTGCTATGCAGCCCACCCAGGGCCTGTGAACTCGGAGCTGTTCCTGCGCCAT GTTCCTGGATGGCTGCGCCCACTTTTGCGCCCATTGGCTTGGCTGGTGCTCCGGGCACCA AGAGGGGGTGCCCAGACACCCCTGTATTGTGCTCTACAAGAGGGCATCGAGCCCCTCAGT GGGAGATATTTTGCCAACTGCCATGTGGAAGAGGTGCCTCCAGCTGCCCGAGACGACCGG GCAGCCCATCGGCTATGGGAGGCCAGCAAGAGGCTGGCAGGGCTTGGGCCTGGGGAGGAT GCTGAACCCGATGAAGACCCCCAGTCTGAGGACTCAGAGGCCCCATCTTCTCTAAGCACC CCCCACCCTGAGGAGCCCACAGTTTCTCAACCTTACCCCAGCCCTCAGAGCTCACCAGAT TTGTCTAAGATGACGCACCGAATTCAGGCTAAAGTTGAGCCTGAGATCCAGCTCTCCTAA CCCTCAGGCCAGGATGCTTGCCATGGCACTTCATGGTCCTTGAAAACCTCGGATGTGTGC 15 GAGGCCATGCCCTGGACACTGACGGGTTTGTGATCTTGACCTCCGTGGTTACTTTCTGGG GCCCCAAGCTGTGCCCTGGACATCTCTTTTCCTGGTTGAAGGAATAATGGGTGATTATTT CTTCCTGAGAGTGACAGTAACCCCAGATGGAGAGATAGGGGTATGCTAGACACTGTGCTT CTCGGAAATTTGGA TGTAGTATTTTCAGGCCCCACCCTTATTGATTCTGATCAGCTCTGG AGCAGAGGCAGGGAGTTTGCAATGTGATGCACTGCCAACATTGAGAATTAGTGAACTGAT CCCTTTGCAACCGTCTAGCTAGGTAGTTAAATTACCCCCATGTTAATGAAGCGGAATTAG GCTCCCGAGCTAAGGGACTCGCCTAGGGTCTCACAGTGAGTAGGAGGAGGGCCTGGGATC TGAACCCAAGGGTCTGAGGCCAGGGCCGACTGCCGTAAGATGGGTGCTGAGAAGTGAGTC AGGGCAGGGCAGCTGGTATCGAGGTGCCCCATGGGAGTAAGGGGACGCCTTCCGGGCGGA TGCAGGGCTGGGGTCATCTGTATCTGAAGCCCCTCGGAATAAAGCGCGTTGACCGCCAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > Hs.55150_mRNA_l gi | 17068414 | gb | BC017586.1 (BC017586 Homo sapiens clone MGC: 26610 IMAGE: 4837506 polyA = 3 _U AGCGGTGGAGAAAAGGCAGAACCAGAGTAGAGATTGACAGTGAGCTGAGCCAATCAGGCT GTGAATCTGCAGCAGTGATCCCAGGTCCTCCAATTAATACTAAGAGAGTGGACCAGGGCC CCTGAGGAAGACAGATGGCAGGGACAGCGCGCCATGACCGAGAGATGGCGATCCAGGCCA AGAAAAAGCTCACCACGGCCACCAACCCCATTGAAAGACTCCGACTGCAGTGCCTGGCCA GGGGCTCTGCTGGGATCAAAGGACTTGGCAGAGTGTTTAGAATTATGGATGACGATAATA ATCGAACCCTTGATTTTAAAGAATTTATGAAAGGGTTAAATGATTATGCTGTGGTCATGG AAAAAGAAGAGGTGGAAGAACTTTTCCGGAGGTTTGATAAAGATGGAAATGGAACAATAG ACTTCAATGAATTTCTTCTCACATTAAGACCTCCAATGTCCAGAGCCAGAAAAGAGGTAA TCATGCAAGCTTTTAGAAAGTTAGACAAGACTGGAGATGGTGTTATAACAATCGAAGACC TTCGTGAAGTATATAATGCAAAACACCACCCAAAGTACCAGAATGGGGAATGGAGTGAGG AACAAGTATTTAGGAAATTTCTGGATAACTTTGATTCACCCTATGACAAAGATGGATTGG TGACCCCTGAGGAGTTCATGAACTACTATGCAGGTGTGAGCGCATCCATTGACACTGATG 25 TGTACTTCATCATCATGATGAGAACCGCCTGGAAGCTTTAAGCACATGACCTGGGGACCA GGCCCTGGGACAGCCATGTGGCTCCAAATGACTAAATGTCAGCTCAAAAACCAGAATCGT ATTTGATTTCACACTCATCCTAATGTTTTTTTCTGTGTCAAAATATTGCATTTTCTGGGG CCAAAAAACAGGCAGAAATAAAAGACATTGAGTAGTCAAAAAAAAAAAAAAAA > Hs .170177_contig3 AI620495 | AW291989 | AA780896 | AA976262 | I298326 | BF111862 | AW591523 | I922518 | AI480280¡BF589437 AA600354 | AI886238 | AA035599 | H90049 | BF112011 | N52601 | AI57 0965 | AI565367 | AW768847 | H90073 | BE504361 | N45292 AI632075 | AA679729 | AW168052 | AI978827 | AI968410 | AI669255 | N45300 | AI651256 | AI698970 | AI521256 | AW078614 | A I802070 | AI885947 | AI342534 | AI653624 | AW243936¡T16586 | R15989 | AI289789 | AI871 636 | AI718785 | AW148847 polyA = 2 polyA = 3 May TAGAGCATTAAAATAACTATCAGGCAGAAGAATCTTTCTTCTCGCCTAGGATTTCAGCCA TGCGCGCGCTCTCTCTCTTTCTCTCTCTTTTCCTCTCTCTCCCTCTTTCTAGCCTGGGGC TTGAATTTGCATGTCTAATTCATTTACTCACCATATTTGAATTGGCCTGAACAGATGTAA ATCGGGAAGGATGGGAAAAACTGCAGTCATCAACAATGATTAATCAGCTGTTGCAGGCAG TGTCTTAAGGAGACTGGTAGGAGGAGGCATGGAAACCAAAAGGCCGTGTGTTTAsAAGCC TAATTGTCACATCAAGCATCÁTTGTCCCCATGCAACAACCACCACCTTATACATCACTTC CTGTTTTAAGCAGCTCTAAAACATAGACTGAAGATTTATTTTTAATATGTTGACTTTATT TCTGAGCAAAGCATCGGTCATGTGTGTATTTTTTCATAGTCCCACCTTGGAGCATTTATG TAGACATTGTAAATAAATTTTGTGCAAAAAGGACTGGAAAAATGAACTGTATTATTGCAA TTTTTTTTTGTAAAAGTAGCAGTTTGGTATGAGTTGGCATGCATACAAGATTTACTAAGT GGGATAAGCTAATTATACTTTTTGTTGTGGATAAACAAATGCTTGTTGATAGCCTTTTTC TATCAAGAAACCAAGGAGCTAATTATTAATAACAATCATTGCACACTGAGTCTTAGCGTT TCTGATGGAAACAGTTTGGATTGTATAATAACGCCAAGCCCAGTTGTAGTCGTTTGAGTG 1 CAGTAATGAAATCTGAATCTAAAATAAAAACAAGATTATTTTTGTCAAAAAAAAAAAAAA AAAAAAAAA A >; Hs.l84601_mRNA_5 gi | 4426639 | b | AF104032.1 AF104032 Homo sapiens polyA = 2 GCGGCGCGCACACTGCTCGCTGGGCCGCGGCTCCCGGGTGTCCCAGGCCCGGCCGGTGCG CAGAGCATGGCGGGTGCGGGCCCGAAGCGGCGCGCGCTAGCGGCGCCGGCGGCCGAGGAG AAGGAAGAGGCGCGGGAGAAGATGCTGGCCGCCAAGAGCGCGGACGGCTCGGCGCCGGCA GGCGAGGGCGAGGGCGTGACCCTGCAGCGGAACATCACGCTGCTCAACGGCGTGGCCATC ATCGTGGGGACCATTATCGGCTCGGGCATCTTCGTGACGCCCACGGGCGTGCTCAAGGAG GCAGGCTCGCCGGGGCTGGCGCTGGTGGTGTGGGCCGCGTGCGGCGTCTTCTCCATCGTG GGCGCGCTCTGCTACGCGGAGCTCGGCACCACCATCTCCAAATCGGGCGGCGACTACGCC TACATGCTGGAGGTCTACGGCTCGCTGCCCGCCTTCCTCAAGCTCTGGATCGAGCTGCTC ATCATCCGGCCTTCATCGCAGTACATCGTGGCCCTGGTCTTCGCCACCTACCTGCTCAAG 15 CCGCTCTTCCCCACCTGCCCGGTGCCCGAGGAGGCAGCCAAGCTCGTGGCCTGCCTCTGC GTGCTGCTGCTCACGGCCGTGAACTGCTACAGCGTGAAGGCCGCCACCCGGGTCCAGGAT GCCTTTGCCGCCGCCAAGCTCCTGGCCCTGGCCCTGATCATCCTGCTGGGCTTCGTCCAG ATCGGGAAGGGTGATGTGTCCAATCTAGATCCCAACTTCTCATTTGAAGGCACCAAACTG GATGTGGGGAACATTGTGCTGGCATTATACAGCGGCCTCTTTGCCTATGGAGGATGGAAT TACTTGAATTTCGTCACAGAGGAAATGATCAACCCCTACAGAAACCTGCCCCTGGCCATC ATCATCTCCCTGCCCATCGTGACGCTGGTGTACG TGCTGACCAACCTGGCCTACTTCACC ACCCTGTCCACCGAGCAGATGCTGTCGTCCGAGGCCGTGGCCGTGGACTTCGGGAACTAT CACCTGGGCGTCATGTCCTGGATCATCCCCGTCTTCGTGGGCCTGTCCTGCTTCGGCTCC GTCAATGGGTCCCTGTTCACATCCTCCAGGCTCTTCTTCGTGGGGTCCCGGGAAGGCCAC CTGCCCTCCATCCTCTCCATGATCCACCCACAGCTCCTCACCCCCGTGCCGTCCCTCGTG TTCACGTGTGTGATGACGCTGCTCTACGCCTTCTCCAAGGACATCTTCTCCGTCATCAAC "" TTCTTCAGCTTCTTCAACTGGCTCTGCGTGGCCCTGGCCATCATCGGCATGATCTGGCTG CGCCACAGAAAGCCTGAGCTTGAGCGGCCCATCAAGGTGAACCTGGCCCTGCCTGTGTTC TTCATCCTGGCCTGCCTCTTCCTGATCGCCGTCTCCTTCTGGAAGACACCCGTGGAGTGT GGCATCGGCTTCACCATCATCCTCAGCGGGCTGCCCGTCTACTTCTTCGGGGTCTGGTGG AAAAACAAGCCCAAGTGGCTCCTCCAGGGCATCTTCTCCACGACCGTCCTGTGTCAGAAG CTCATGCAGGTGGTCCCCCAGGAGACATAGCCAGGAGGCCGAGTGGCTGCCGGAGGAGCA TGCGCAGAGGCCAGTTAAAGTAGATCACCTCCTCGAACCCACTCCGGTTCCCCGCAACCC ACAGCTCAGCTGCCCATCCCAGTCCCTCGCCGTCCCTCCCAGGTCGGGCAGTGGAGGCTG CTGTGAAAACTCTGGTACGAATCTCATCCCTCAACTGAGGGCCAGGGACCCAGGTGTGCC TGTGCTCCTGCCCAGGAGCAGCTTTTGGTCTCCTTGGGCCCTTTTTCCCTTCCCTCCTTT GTTTACTTATATATATATTTTTTTTAAACTTAAATTTTGGGTCAACTTG ACACCACTAAG ATGATTTTTTAAGGAGCTGGGGGAAGGCAGGAGCCTTCCTTTCTCCTGCCCCAAGGGCCC AGACCCTGGGCAAACAGAGCTACTGAGACTTGGAACCTCATTGCTACGACAGACTTGCAC 25 TGAAGCCGGACAGCTGCCCAGACACATGGGCTTGTGACATTCGTGAAAACCAACCCTGTG GGCTTATGTCTCTGCCTTAGGGTTTGCAGAGTGGAAACTCAGCCGTAGGGTGGCACTGGG AGGGGGTGGGGGATCTGGGCAAGGTGGGTGATTCCTCTCAGGAGGTGCTTGAGGCCCCGA TGGACTCCTGACCATAATCCTAGCCCTGAGACACCATCCTGAGCCAGGGAACAGCCCCAG GGTTGGGGGGTGCCGGCATCTCCCCTAGCTCACCAGGCCTGGCCTCTGGGCAGTGTGGCC TCTTGGCTATTTCTGTGTCCAGTTTTGGAGGCTGAGTTCTGGTTCATGCAGACAAAGCCC TGTCCTTCAGTCTTCTAGAAACAGAGACAAGAAAGGCAGACACACCGCGGCCAGGCACCC ATGTGGGCGCCCACCCTGGGCTCCACACAGCAGTGTCCCCTGCCCCAGAGGTCGCAGCTA CCCTCAGCCTCCAATGCATTGGCCTCTGTACCGCCCGGCAGCCCCTTCTGGCCGGTGCTG GGTTCCCACTCCCGGCCTAGGCACCTCCCCGCTCTCCCTGTCACGCTCATGTCCTGTCCT GGTCCTGATGCCCGTTGTCTAGGAGACAGAGCCAAGCACTGCTCACGTCTCTGCCGCCTG CGTTTGGAGGCCCCTGGGCTCTCACCCAGTCCCCACCCGCCTGCAGAGAGGGAACTAGGG CACCCCTTGTTTCTGTTGTTCCCGTGAATTTTTTTCGCTATGGGAGGCAGCCGAGGCCTG GCCAATGCGGCCCACTTTCCTGAGCTGTCGCTGCCTCCATGGCAGCAGCCAAGGACCCCC AGAACAAGAAGACCCCCCCGCAGGATCCCTCCTGAGCTCGGGGGGCTCTGCCTTCTCAGG CCCCGGGCTTCCCTTCTCCCCAGCCAGAGGTGGAGCCAAGTGGTCCAGCGTCACTCCAGT GCTCAGCTGTGGCTGGAGGAGCTGGCCTGTGGCACAGCCCTGAGTGTCCCAAGCCGGGAG CCAACGAAGCCGGACACGGCTTCA CTGACCAGCGGCTGCTCAAGCCGCAAGCTCTCAGCA AGTGCCCAGCGGAGCCTGCCGCCCCCACCTGGGCACCGGGACCCCCTCACCATCCAGTGG GCCCGGAGAAACCTGATGAACAGTTTGGGGACTCAGGACCAGATGTCCGTCTCTCTTGCT TGAGGAATGAAGACCTTTATTCACCCCTGCCCCGTTGCTTCCCGCTGCACATGGACAGAC TTCACAGCGTCTGCTCATAGGACCTGCATCCTTCCTGGGGACGAATTCCACTCGTCCAAG GGACAGCCCACGGTCTGGAGGCCGAGGACCACCAGCAGGCAGGTGGACTGACTGTGTTGG GCAAGACCTCTTCCCTCTGGGCCTGTTCTCTTGGCTGCAAATAAGGACAGCAGCTGGTGC CCCACCTGCCTGGTGCATTGCTGTGTGAATCCAGGAGGCAGTGGACATCGTAGGCAGCCA CGGCCCCGGGTCCAGGAGAAGTGCTCCCTGGAGGCACGCACCACTGCTTCCCACTGGGGC CGGCGGGGCCCACGCACGACGTCAGCCTCTTACCTTCCCGCCTCGGCTAGGGGTCCTCGG GATGCCGTTCTGTTCCAACCTCCTGCTCTGGGACGTGGACATGCCTCAAGGATACAGGGA GCCGGCGGCCTCTCGACGGCACGCACTTGCCTGTTGGCTGCTGCGGCTGTGGGCGAGCAT GGGGGCTGCCAGCGTCTGTTGTGGAAAGTAGCTGCTAGTGAAATGGCTGGGGCCGCTGGG GTCCGTCTTCACACTGCGCAGGTCTCTTCTGGGCGTCTGAGCTGGGGTGGGAGCTCCTCC GCAGAAGGTTGGTGGGGGGTCCAGTCTGTGATCCTTGGTGCTGTGTGCCCCACTCCAGCC TGGGGACCCCACTTCAGAAGGTAGGGGCCGTGTCCCGCGGTGCTGACTGAGGCCTGCTTC CCCCTCCCCCTCCTGCTGTGCTGGAATTCCACAGGGACCAGGGCCACC GCAGGGGACTGT CTCAGAAGACTTGATTTTTCCGTCCCTTTTTCTCCACACTCCACTGACAAACGTCCCCAG CGGTTTCCACTTGTGGGCTTCAGGTGTTTTCAAGCACAACCCACCACAACAAGCAAGTGC ATTTTCAGTCGTTGTGCTTTTTTGTTTTGTGCTAACGTCTTACTAATTTAAAGATGCTGT CGGCACCATGTTTATTTATTTCCAGTGGTCATGCTCAGCCTTGCTGCTCTGCGTGGCGCA GGTGCCATGCCTGCTCCCTGTCTGTGTCCCAGCCACGCAGGGCCATCCACTGTGACGTCG GCCGACCAGGCTGGACACCCTCTGCCGAGTAATGACGTGTGTGGCTGGGACCTTCTTTAT TCTGTGTTAATGGCTAACCTGTTACACTGGGCTGGGTTGGGTAGGGTGTTCTGGCTTTTT TGTGGGGTTTTTATTTTTAAAGAAACACTCAATCATCCTAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > Hs.351972_singletl AA865917 polyA = 2 polyA = 3 GGGACTTGGAAAGGGGAACTGGGATTTGGGGAGGGGCTGGAGGACTTCCGCACGCTTCCA CCTCCTTCGACCTCCACTGCGCCCCACCTCCCTGCCTGTGTGTGTTATTTCAAAGGAAAA GAACAAAAGGAATAAATTTTCTAAGCTCTTTAAAAAAAAAAAAAAAAAAAAAAAAA > Hs.5366_mRNA_2 gi | 15277845 | gb | BC012926.1 | BC012926 Homo sapiens clone MGC: 16817 IMAGE: 3853503 polyA = 3 GCAGGCTCTGCCTGTGGCCACTAGCAGAGAAGCTGCTGTCCTTCCACCACCAGCACCGGA ' CCACCTGCTCCAAGACCAGCCTCCTGGGGGGACCAGGCACCCGGCCTTCACTGGCACCCA GGGAGCCGTCCTCAGCAGCGTCAACATGTCAAGGCCCAGCAGCAGAGCCATTTACTTGCA CCGGAAGGAGTACTCCCAGAACCTCACCTCAGAGCCCACCCTCCTGCAGCACAGGGTGGA GCACTTGATGACATGCAAGCAGGGGAGTCAGAGAGTCCAGGGGCCCGAGGATGCCTTGCA GAAGCTGTTCGAGATGGATGCACAGGGCCGGGTGTGGAGCCAAGACTTGATCCTGCAGGT CAGGGACGGCTGGCTGCAGCTGCTGGACATTGAGACCAAGGAGGAGCTGGACTCTTACCG CCTAGACAGCATCCAGGCCATGAATGTGGCGCTCAACACATGTTCCTACAACTCCATCCT GTCCATCACCGTGCAGGAGCCGGGCCTGCCAGGCACTAGCACTCTGCTCTTCCAGTGCCA GGAAGTGGGGGCAGAGCGACTGAAGACCAGCCTGCAGAAGGCTCTGGAGGAAGAGCTGGA GCAAAGCAGACCTCGACTTGGAGGCCTTCAGCCAGGCCAGGACAGATGGAGGGGGCCTGC TATGGAAAGGCCGCTCCCTATGGAGCAGGCACGCTATCTGGAGCCGGGGATCCCTCCAGA ACAGCCCCACCAGAGGACCCTAGAGCACAGCCTCCCACCATCCCCAAGGCCCCTGCCACG CCACACCAGTGCCCGAGAACCAAGTGCCTTTACTCTGCCTCCTCCAAGGCGGTCCTCTTC CCCCGAGGACCCAGAGAGGGACGAGGAAGTGCTGAACCATGTCCTAAGGGACATTGAGCT GTTCATGGGAAAGCTGGAGAAGGCCCAGGCAAAGACCAGCAGGAAGAAGAAATTTGGGAA AAAAAACAAGGACCAGGGAGGTCTCACCCAGGCACAGTACATTGACTGCTTCCAGAAGAT CAAGTACAGCTTCAACCTCCTGGGAAGGCTGGCCACCTGGCTGAAGGAGACAAGTGCCCC TGAGCTCGTACACATCCTCTTCAAGTCCCTGAACTTCATCCTGGCCAGGTGCCCTGAGGC TGGCCTAGCAGCCCAAGTGATCTCACCCCTCCTCACCCCTAAAGCTATCAACCTGCTACA GTCCTGTCTAAGCCCACCTGAGAGTAACCTTTGGATGGGGTTGGGCCCAGCCTGGACCAC TAGCCGGGCCGACTGGACAGGCGATGAGCCCCTGCCCTACCAACCCACATTCTCGGATGA CTGGCAACTTCCAGAGCCCTCCAGCCAAGCACCCTTAGGATACCAGGACCCTGTTTCCCT ^ TCGGCGGGGAAGTCATAGGTTAGGGAGCACCTCACACTTTCCTCAGGAGAAGACACACAA CCATGACCCTCAGCCTGGGGACCCCAACTCCAGGCCCTCCAGCCCCAAACCTGCCCAGCC AGCCCTGAAAATGCAAGTCTTGTACGAGTTTGAAGCTAGGAACCCACGGGAACTGACTGT GGTCCAGGGAGAGAAGCTGGAGGTTCTGGACCACAGCAAGCGGTGGTGGCTGGTGAAGAA TGAGGCGGGACGGAGCGGCTACATTCCAAGCAACATCCTGGAGCCCCTACAGCCGGGGAC CCCTGGGACCCAGGGCCAGTCACCCTCTCGGGTTCCAATGCTTCGACTTAGCTCGAGGCC TGAAGAGGTCACAGACTGGCTGCAGGCAGAGAACTTCTCCACTGCCACGGTGAGGACACT TGGGTCCCTGACGGGGAGCCAGCTACTTCGCATAAGACCTGGGGAGCTACAGATGCTATG TCCACAGGAGGCCCCACGAATCCTGTCCCGGCTGGAGGCTGTCAGAAGGATGCTGGGGAT AAGCCCTTAGGCACCAGCTTAGACACCTCCAAGAACCAGGCCCCGCTGATGCAAGATGGC AGATCTGATACCCATTAGAG CCCCGAGAATTCCTCTTCTGGATCCCAGXTTGCAGCAAAC CCCACACCCCAGCTCACACAGCAAAAACAATGGACAGGCCCAGAGGGTGAAGCAAACAGT 0 >GTCCCTTCTGGCTGTGTTGGAGCCTCCCCAGTAACCACCTATTTATTTTACCTCTTTCCC AAACCTGGAGCATTTATGCCTAGGCTTGTCAAGAATCTGTTCAGTCCCTCTCCTTCTCAA TAAAAGCATCTTCAAGCTTGAAAAAAAAAAAAAAA; Hs .18140_contigl AI68593l | AA410954 | T97707 | AA706873 | AI911572 | AW614616 | AA548520 | AW027764 | BF 51125l | AI914294 | AW151688 polyA polyA = l = l CCTTCCATTGAATTCCACCAGACACATTCAGGTTANCTTCGTAATGTCTTCATATGAGTA TCAATCAACACCTTCCCCAACTCAATTGTACTAGGTTGTAGAGCACAAGGATGGTCTCGT GCTGCTCTGTGGCACCTGTGCCTACACTGCTCTGAGCTTTGAGGAGGCTGCTCTCTTTGC TGACCCCATGATCTTTTCTGCCCTTCTGTTAAGGGCATTGGCCACAGCAACGGGGCAAAT GCCCCAAGCTGGCTGTAAGTGACCCATCCCTTTGGCTCCCATGATTAGACCAAGGAGAGG CATGGGGTCCAGCTGAGCCATTCAGAACCATTCCTTAGCATTTTCCACTCAAAGGTTAGA] GATGAGATTTTCTCTTCCCAAGGCTACCTCTGGCCATGGTTCCAGCTTCATGGGGGCAAT GGGATTAGGAAAATGAGGTCAACCTGCAAAGGAAAGCAGATGCAAGAGATGGAGACAGAA TGGGGGTGTCCTGGGGATCTTGGAGCCTGAATTCATTGGCACAAAAGGCAGCAGCATCCT CACTGTATCTGCAGTCCATTTGGACTCAATAAAAACTTTGAAAGTCACATGTGTTATGGA ATTCCTTCTCAGTGACACATTCATCTGTGCTCAGTTGTCCCAGCAAGGGTCAGCCCCTCA TACCCCTGCAGCATCCGCTGCTATGAAGCAGAGCTGTAAACGCCCTCCCTGTGTATAGGA AAAGCTACATGGAGCAAATCCTCCTGCCTGAAGAAGTGCATCTCAGCATCACTTCAGCTG TCGGGGCATTTGTGGGGAGAACCAGACCACCTCTGCGGAAGGCAGCAGACCCTCTTCCAG CCATGGATGGAGTTGAATTCTCTATAAACGGTTCACCAGCAAACCACCAATACATTCCAT TGTTTG CCTAGAGAGAAATTTAAAAATAAATAAATGTTCACTTAT > Hs .133196_contig2 BF22438l | BE467992 | AW137689 | AI695045 | AW207361 | BF445141 |? AA40 473 WARN polyA polyA = 2 = March 20 TGCGGCCGCGGCATGAAAGGCGGCGAGGAGAGGCAGCACTGCTGCTCTTGACTTCTGAGC AGGGCTTAGAGAGCCTGCCCCGGCTTAAGCCGAGCTGCTGGTGCTGACCCTGAGCGCCGA GTCCGCGAGCTCTGAGTCCGGAGCCTCCCAGCCGTGGAGCCGTGGGATGAGGGGGGCGTT GGGGGACAGGGCAAAGTCGATCTTGGTTGTACAGCCGCCCGATCCTAGCGCGGAGCTGCG AGCCTGACCGGCCGCGTCTGGCATGGTCAGAGAAAGAATTTTCTTTTCCCAACTCCGGCT TTTGGTTTTGTGTGTCCACCTTGCGCAACTCCGGAGCCAGCCGACCCCACATGGATTCTC AACAGGTGGCCGGCACATCTTCTGAGCCTCGCTCTCTCATCTGAAAGTGGAGTGTAAGTC CAAGAAGATTCATTTAGACAAAGAAGGTGGAAAAAAAGGACTTTCTGGGCCAGCAAGTCG GATGACCACCCTCCAAGGGGCAGAGGAGGGCCCATTTTGTGAAGAAGAAATCAACTACCC GGAAAACGCCACAGGAGGACATGTTTCTGCAGATGTAGTTGCCCTAGAAACAGAAGAGTA TGGGGGTGTGAATGTCTTCTCTTTTGGGGGCAAACACTATGTCCTTTTCTTTTTCTAGAT ACAGTTAATTCCTGGAAATTTTAGCGAGTTTGTTCTTGTGGATATTTTGAACAATAAAGA 25 GTGAAAATCAAAAAAA > Hs.63325_mRNA_5 gi | 15451939 j ef | NM_019894.1 | Homo sapiens transmembrane protease, serine 4 (TMPRSS4), mRNA polyA = 3 CCCAATCACTCCTGGAATACACAGAGAGAGGCAGCAGCTTGCTCAGCGGACAAGGATGCT GGGCGTGAGGGACCAAGGCCTGCCCTGCACTCGGGCCTCCTCCAGCCAGTGCTGACCAGG GACTTCTGACCTGCTGGCCAGCCAGGACCTGTGTGGGGAGGCCCTCCTGCTGCCTTGGGG TGACAATCTCAGCTCCAGGCTACAGGGAGACCGGGAGGATCACAGAGCCAGCATGTTACA GGATCCTGACAGTGATCAACCTCTGAACAGCCTCGATGTCAAACCCCTGCGCAAACCCCG TATCCCCATGGAGACCTTCAGAAAGGTGGGGATCCCCATCATCATAGCACTACTGAGCCT GGCGAGTATCATCATTGTGGTTGTCCTCATCAAGGTGATTCTGGATAAATACTACTTCCT CTGCGGGCAGCCTCTCCACTTCATCCCGAGGAAGCAGCTGTGTGACGGAGAGCTGGACTG - TCCCTTGGGGGAGGACGAGGAGCACTGTGTCAAGAGCTTCCCCGAAGGGCCTGCAGTGGC AGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCACAGGGAACTG GTTCTCTGCCTGTTTCGACAACTTCACAGAAGCTCTCGCTGAGACAGCCTGTAGGCAGAT GGGCTACAGCAGCAAACCCACTTTCAGAGCTGTGGAGATTGGCCCAGACCAGGATCTGGA TGTTGTTGAAATCACAGAAAACAGCCAGGAGCTTCGCATGCGGAACTCAAGTGGGCCCTG TCTCTCAGGCTCCCTGGTCTCCCTGCACTGTCTTGCCTGTGGGAAGAGCCTGAAGACCCC CCGTGTGGTGGGTGGGGAGGAGGCCTCTGTGGATTCTTGGCCTTGGCAGGTCAGCATCCA GTACGACAAA CAGCACGTCTGTGGAGGGAGCATCCTGGACCCCCACTGGGTCCTCACGGC AGCCCACTGCTTCAGGAAACATACCGATGTGTTCAACTGGAAGGTGCGGGCAGGCTCAGA CAAACTGGGCAGCTTCCCATCCCTGGCTGTGGCCAAGATCATCATCATTGAATTCAACCC CATGTACCCCAAAGACAATGACATCGCCCTCATGAAGCTGCAGTTCCCACTCACTTTCTC AGGCACAGTCAGGCCCATCTGTCTGCCCTTCTTTGATGAGGAGCTCACTCCAGCCACCCC ACTCTGGATCATTGGATGGGGCTTTACGAAGCAGAATGGAGGGAAGATGTCTGACATACT ° GCTGCAGGCGTGAGTCCAGGTCATTGACAGCACACGGTGCAATGCAGACGATGCGTACCA GGGGGAAGTCACCGAGAAGATGATGTGTGCAGGCATCCCGGAAGGGGGTGTGGACACCTG CCAGGGTGACAGTGGTGGGCCCCTGATGTACCAATCTGACCAGTGGCATGTGGTGGGCAT CGTTAGCTGGGGCTATGGCTGCGGGGGCCCGAGCACCCCAGGAGTATACACCAAGGTCTC AGCCTATCTCAACTGGATCTACAATGTCTGGAAGGCTGAGCTGTAATGCTGCTGCCCCTT TGCAGTGCTGGGAGCCGCTTCCTTCCTGCCCTGCCCACCTGGGGATCCCCCAAAGTCAGA CACAGAGCAAGAGTCCCCTTGGGTACACCCCTCTGCCCACAGCCTCAGCATTTCTTGGAG CAGCAAAGGGCCTCAATTCCTGTAAGAGACCCTCGCAGCCCAGAGGCGCCCAGAGGAAGT CAGCAGCCCTAGCTCGGCCACACTTGGTGCTCCCAGCATCCCAGGGAGAGACACAGCCCA CTGAACAAGGTCTCAGGGGTATTGCTAAGCCAAGAAGGAACTTTCCCACACTACTGAATG GAAGCAGGCTGTCTTGTAAAAGCCCAGATC ACTGTGGGCTGGAGAGGAGAAGGAAAGGGT CTGCGCCAGCCCTGTCCGTCTTCACCCATCCCCAAGCCTACTAGAGCAAGAAACCAGTTG 5 TAATATAAAATGCACTGCCCTACTGTTGGTATGACTACCGTTACCTACTGTTGTCATTGT TATTACAGCTATGGCCACTATTATTAAAGAGCTGTGTAACATCAAAAAAAAAAAAAAAAA AAAA > Hs.250692_mRNA_2 gi | 184223 | gb | M95585.1 | Human hepatic leukemia factor HUMHLF (HLF) mRNA, complete cds polyA = 3 TTTTTCAATTTTGAACATTTTGCAAAACGAGGGGTTCGAGGCAGGTGAGAGCATCCTGCA CGTCGCCGGGGAGCCCGCGGGCACTTGGCGCGCTCTCCTGGGACCGTCTGCACTGGAAAC CCGAAAGTTTTTTTTTAATATATATTTTTATGCAGATGTATTTATAAAGATATAAGTAAT TTTTTTCTTCCCTTTTCTCCACCGCCTTGAGAGCGAGTACTTTTGGCAAAGGACGGAGGA AAAGCTCAGCAACATXTTAGGGGGCGGTTGTTTCTTTCTTTCTTATTTCTTTTTTAAGGG GAAAAAATTTGAGTGCATCGCGATGGAGAAAATGTCCCGACCGCTCCCCCTGAATCCCAC CTTTATCCCGCCTCCCTACGGCGTGCTCAGGTCCCTGCTGGAGAACCCGCTGAAGCTCCC 0 CCTTCACCACGAAGACGCATTTAGTAAAGATAAAGACAAAGAAAAGAAGCTGGATGATGA GAGTAACAGCCCGACGGTCCCCCAGTCGGCATTCCTGGGGCCTACCTTATGGGACAAAAC CCTTCCCTATGACGaAGATACTTTCCAGTTGGAATACATGGACCTGGAGGAGTTTTTGTC AGAAAATGGCATTCCCCCCAGCCCATCTCAGCATGACCACAGCCCTCACCCTCCTGGGCT GCAGCCAGCTTCCTCGGCTGCCCCCTCGGTCATGGACCTCAGCAGCCGGGCCTCTGCACC CCTTCACCCTGGCATCCCATCTCCGAACTGTATGCAGAGCCCCATCAGACCAGGTCAGCT GTTGCCAGCAAACCGCAATACACCAAGTCCCATTGATCCTGACACCATCCAGGTCCCAGT GGGTTATGAGCCAGACCCAGCAGATCTTGCCCTTTCCAGCATCCCTGGCCAGGAAATGTT TGACCCTCGC AAACGCAAGTTCTCTGAGGAAGAACTGAAGCCACAGCCCATGATCAAGAA AGCTCGCAAAGTCTTCATCCCTGATGACCTGAAGGATGACAAGTACTGGGCAAGGCGCAG AAAGAACAACATGGCAGCCAAGCGCTCCCGCGACGCCCGGAGGCTGAAAGAGAACCAGAT CGCCATCCGGGCCTCGTTCCTGGAGAAGGAGAACTCGGCCCTCCGCCAGGAGGTGGCTGA 5 CTTGAGGAAGGAGCTGGGCAAATGCAAGAACATACTTGCCAAGTATGAGGCCAGGCACGG GCCCCTGTAGGATGGCATTTTTGCAGGCTGGCTTTGGAATAGATGGACAGTTTGTTTCCT GTCTGATAGCACCACACGCAAACCAACCTTTCTGACATCAGCACTTTACCAGAGGCATAA ACACAACTGACTCCCATTTTGGTGTGCATCTGTGTGTGTGTGCGTGTATATGTGCTTGTG CTCATGTGTGTGGTCAGCGGTATGTGCGTGTGCGTGTTCCTTTGCTCTTGCCATTTTAAG GTAGCCCTCTCATCGTCTTTTAGTTCCAACAAAGAAAGGTGCCATGTCTTTACTAGACTG AGGAGCCCTCTCGCGGGTCTCCCATCCCCTCCCTCCTTCACTCCTGCCTCCTCAGCTTTG CTTCATGTTCGAGCTTACCTACTCTTCCAGGACTCTCTGCTTGGATTCACTAAAAAGGGC CCTGGTAAAATAGTGGATCTCAGTTTTTAAGAGTACAAGCTCTTGTTTCTGTTTAGTCCG TAAGTTACCATGCTAATGAGGTGCACACAATAACTTAGCACTACTCCGCAGCTCTAGTCC TTTATAAGTTGCTTTCCTCTTACTTTCAGTTTTGGTGATAATCGTCTTCAAATTAAAGTG CTGTTTAGATTTATTAGATCCCATATTTACTTACTGCTATCTACTAAGTTTCCTTTTAAT - TCTACCAACCCCAGATAAGTAAGAGTACTATTAATAGAACACAGAGTGTGTTTTTGCACT GTCTGTACCTAAAGCAATAATCCTATTGTACGCTAGAGCATGCTGCCTGAGTATTACTAG TGGACGTAGGATATTTTCCCTACCTAAGAATTTCACTGTCTTTTAAAAAACAAAAAGTAA AGTAATGCATTTGAGCATGGCCAGACTATTCCCTAGGACAAGGAAGCAGAGGGAAATGGG AGGTCTAAGGATGAGGGGTTAATTTATCAGTACATGAGCCAAAAACTGCGTCTTGGATTA GCCTTTGACATTGATGTGTTCGGTTTTGTTGTTCCCCTTCCCTCACACCCTGCCTCGCCC CCACTTTTCTAGTTAACTTTTTCCATATCCCTCTTGACATTCAAAACAGTTACTTAAGAT TCAGTTTTCCCACTTTTTGGTAATATATATATTTTTGTGAATTATACTTTGTTGTTTTTA AAAAGAAAATCAGTTGATTAAGTTAATAAGTTGATGTTTTCTAAGGCCCTTTTTCCTAGT GGTGTCATTTTTGAATGCCTCATAAATTAATGATTCTGAAGCTTATGTTTCTTATTCTCT GTTTGCTTTTGAACGTATGTGCTCTTATAAAGTGGACTTCTGAAAAATGAATGTAAAAGA CACTGGTGTATCTCAGAAGGGGATGGTGTTGTCACAAACTGTGGTTAATCCAATCAATTT AAATGTTTACTATAGACCAA AAGGAGAGATTATTAAATCGTTTAATGTTTATACAGAGTA I O ATTATAGGAAGTTCTTTTTTGTACAGTATTTTTCAGATATAAATACXGACAATGTATTTT GGAAGACATATATTATATATAGAAAAGAGGAGAGGAAAACTATTCCATGTTTTAAAATTA TATAGCAAAGATATATATTCACCAATGTTGTACAGAGAAGAAGTGCTTGGGGGTTTTTGA AGTCTTTAATATTTTAAGCCCTATCACTGACACATCAGCATGTTTTCTGCTTTAAATTAA AATTTTATGACAGTATCGAGGCTTGTGATGACGAATCCTGCTCTAAAATACACAAGGAGC TTTCTTGTTTCTTATTAGGCCTCAGAAAGAAGTCAGTTAACGTCACCCAAAAGCACAAAA TGGATTTTAGTCAAATATTTATTGGATGATACAGTGTTTTTTAGGAAAAGCATCTGCCAC AAAAATGTTCACTTCGAAATTCTGAGTTCCTGGAATGGCACGTTGCTGCCAGTGCCCCAG ACAGTTCTTTTCTACCCTGCGGGCCCGCACGTTTTATGAGGTTGATATCGGTGCTATGTG TTTGGTTTATAATTTGATAGATGTTTGACTTTAAAGATGATTGTTCTTTTGTTTCATTAA GTTGTAAAATGTCAAGAAATTCTGCTGTTACGACAAAGAAACATTTTACGCTAGATTAAA ATATCCTTTCATCAATGGGATTTTCTAGTTTCCTGCCTTCAGAGTATCTAATCCTTTAAT 15 GATCTGGTGGTCTCCTCGTCAATCCATCAGCAATGCTTCTCTCATAGTGTCATAGACTTG GGAAACCCAACCAGTAGGATATTTCTACAAGGTGTTCATTTTGTCACAAGCTGTAGATAA CAGCAAGAGATGGGGGTGTATTGGAATTGCAATACATTGTTCAGGTGAATAATAAAATCA AAAACTTTTGCAATCTTAAGCAGAGATAAATAAAAGATAGCAATATGAGACACAGGTGGA CGTAGAGTTGGCCTT TTTACAGGCAAAGAGGCGAATTGTAGAATTGTTAGATGGCAATAG TCATTAAAAACATAGAAAAATGATGTCTTTAAGTGGAGAATTGTGGAAGGATTGTAACAT GGACCATCCAAATTTATGGCCGTATCAAATGGTAGCTGAAAAAACTATATTTGAGCACTG GTCTCTCTTGGAATTAGATGTTTATATCAAATGAGCATCTCAAATGTTTTCTGCAGAAAA AAATAAAAAGATTCTAATAAAAAAA > Hs.250726_singlet4 AW298545 polyA = 2 polyA = 3 TTCCTTCCCTCCCTCCNTTCCTCAGGAGCCGCCAGTCCCCAAGTTGGCTGTGGTTGGGCA CCTGGTTTGGGTCCTGCAGAGCTGGGCTCAGGCCCTGGGCTCTGAACCTGTGAACCCTTG f) CTGTGTTACGAAACTTTCCTTCCTCTGAGGGCCTTGAACCCTCTCCTTTTCTTCTTTTGG GGGTGGGGGTTAACTTTATTTTCTCTTCCCTGTATCTGCCTCTCCCTTCCCTCAATTTCC TGTTTTAAAACTGAATGGCACGAAATTGTTTTCCTCAACTCGGAGATTCCTGTATGGAGA GAATCAATTTCTATATTTGCAATAAATTTCTTATTTAAAGCTAAAAAAAAAAAAAAAAA > Hs.79217_mRNA_2 gi | 16306657 | gb | BC001504.1 | BC001504 Homo sapiens clone MGC: 2273 IMAGE: 3505512 polyA = 3 GGCACGAGGGCCATCTGTGGGGGCTTTGGGCCAGGGGTCTCCGGACAGCATGAGCGTGGG CTTCATCGGCGCTGGCCAGCTGGCTTTTGCCCTGGCCAAGGGCTTCACAGCAGCAGGCGT CTTGGCTGCCCACAAGATAATGGCTAGCTCCCCAGACATGGACCTGGCCACAGTTTCTGC TCTCAGGAAGATGGGGGTGAAGTTGACACCCCACAACAAGGAGACGGTGCAGCACAGTGA TGTGCTCTTCCTGGCTGTGAAGCCACACATCATCCCCTTCATCCTGGATGAAATAGGCGC CGACATTGAGGACAGACACATTGTGGTGTCCTGCGCGGCCGGCGTCACCATCAGCTCCAT TGAGAAGAAGCTGTCAGCGTTTCGGCCAGCCCCCAGGGTCATCCGCTGCATGACCAACAC 25 TCCAGTCGTGGTGCGGGAGGGGGCCACCGTGTATGCCACAGGCACGCACGCCCAGGTGGA GsACGGGAGGCTCATGGAGCAsCTGCTGAGCAGCGTGGGCTTCTGCACGGAGGTGsAAGA GGACCTGATTGATGCCGTCACGGGGCTCAGTGGCAGCGGCCCCGCCTACGCATTCACAGC CCTGGATGCCCTGGCTGATGGGGGCGTGAAGATGGGACTTCCAAGGCGCCTGGCAGTCCG CCTCGGGGCCCAGGCCCTCCTGGGGGCTGCCAAGATGCTGCTGCACTCAGAACAGCACCC AGGCCAGCTCAAGGACAACGTCAGCTCTCCTGGTGGGGCCACCATCCATGCCTTGCATGT GCTGGAGAGTGGGGGCTTCCGCTCCCTGCTCATCAACGCTGTGGAGGCCTCCTGCATCCG CACACGGGAGCTGCAGTCCATGGCTGACCAGGAGCAGGTGTCACCAGCCGCCATCAAGAA GACCATCCTGGACAAGGTGAAGCTGGACTCCCCTGCAGGGACCGCTCTGTCGCCTTCTGG CCACACCAAGCTGCTCCCCCGCAGCCTGGCCCCAGCGGGCAAGGATTGACACGTCCTGCC TGACCACCATCCTGCCACCACCTTCTCTTCTCTTGTCACTAGGGGGACTAGGGGGTCCCC AAAGTGGCCCACTTTCTGTGGCTCTGATCAGCGCAGGGGCCAGCCAGGGACATAGCCAGG GAGGGGCCACATCACTTCCCACTGGAAATCTCTGTGGTCTGCAAGTGCTTCCCAGCCCAG AACAGGGGTGGATTCCCCAACCTCAACCTCCTTTCTTCTCTGCTCCCAAACCATGTCAGG ACCACCTTCCTCTAGAGCTCGGGAGCCCGGAGGGTCTTCACCCACTCCTACTCCAGTATC AGCTGGCACGGGCTCCTTCCTGAGAGCAAAGGTCAAGGACCCCCTCTGTGAAGGCTCAGC AGAGGTGGGATCCCACGCCCCCTCCCGGCCGCTCCCTGCCCTCCATTCAGGGAGAAACCT CTCCTTCCCGTGTGAGAAGGGCCA GAGGGTCCAGGCATCCCAAGTCCAGCGTGAAGGGCC ACAGCCCCTCTTGGCTGCCAAGCACGCAGATCCCATGGACATTTGGGGAAAGGGCTCCTT GGGCTGCTGGTGAACTTCTGTGGCCACCACCTCCTGCTCCTGACCTCCCTGGGAGGGTGC TATCAGTTCTGTCCTGGCCCTTTCAGTTTTATAAGTTGGTTTCCAGCCCCCAGTGTCCTG ACTTCTGTCTGCCACATGAGGAGGGAGGCCCTGCCTGTGTGGGAGGGTGGTTACTGTGGG TGGAATAGTGGAGGCCTTCAACTGATTAGACAAGGCCCGCCCACATCTTGGAGGGCATCT GCCTTACTGATTAAAATGTCAATGTAATCTAAAAAAAAAAAAAAAAAA > Hs.47986_mRNA_l gi | 13279253 | gb | BC004331.1 | BC004331 Homo sapiens clone MGC: 10940 IMAGE: 3630835 polyA = 3 GATAAATGCGGAGGGACGGTCCAGCTTTAGCTCTCTGCTCGCCGCCGCCGCTGTCGCCGC CACCTCCTCTGATCTACGAAAGTCATGTTACCCAACACCGGGAGGCTGGCAGGATGTACA GTTTTTATCACAGGTGCAAGCCGTGGCATTGGCAAAGCTATTGCATTGAAAGCAGCAAAG GATGGAGCAAATATTGTtATTGCTGCAAAGACCGCCCAsCCACATCCAAAACTTCTAGGC ACAATCTATACTGCTGCTGAAGAAATTGAAGCAGTTGGAGGAAAGGCCTTGCCATGTATT GTTGATGTGAGAGATGAACAGCAGATCAGTGCTGCAGTGGAGAAAGCCATCAAGAAATTT GGAGCTTATACCATTGCTAAGTATGGTATGTCTATGTATGTGCTTGGAATGGCAGAAGAA TTTAAAGGTGAAATTGCAGTCAATGCATTATGGCCTAAAACAGCCATACACACTGCTGCT ATGGATATGCTGGGAGGACCTGGTATCGAAAGCCAGTGTAGAAAAGTTGATATCATTGCA GATGCAGCATATTCCATTTTCCAAAAGCCAAAAAGTTTTACTGGCAACTTTGTCATTGAT GAAAATATCTTAAAAGAAGAAGGAATAGAAAATTTTGACGTTTATGCAATTAAACCAGGT CATCCTTTGCAACCAGATTTCTTCTTAGATGAATACCCAGAAGCAGTTAGCAAGAAAGTG GAATCAACTGGTGCTGTTCCAGAATTCAAAGAAGAGAAACTGCAGCTGCAACCAAAACCA CGTTCTGGAGCTGTGGAAGAAACATTTAGAATTGTTAAGGACTCTCTCAGTGATGATGTT GTTAAAGCCACTCAAGCAATCTATCTGTTTGAACTCTCCGGTGAAGATGGTGGCACGTGG TTTCTTGATCTGAAAAGCAAGGGTGGGAATGTCGGATATGGAGAGCCTTCTGATCAGGCA GATGTGGTGATGAGTATGACTACTGATGACTTTGTAAAAATGTTTTCAGGGAAACTAAAA CCAACAATGGCATTCATGTCAGGGAAATTGAAGATTAAAGGTAACATGGCCCTAGCAATC AAATTGGAGAAGCTAATGAATCAGATGAATGCCAGACTGTGAAGGAAAATATAAAAAAAA AGTCGACTGCTATGCTCAAAAAGTAAAAAAAGCTCAACAGTTAAAATCTAATGTTTGTTT TCTTTCCTGTTATATTATAAGGAT ATGCACGTTTGTTCTGGAAAAGATAGAATTTGTCTC TAAAAGACTTGAAATTGTAATTAAAATGGCAAGCTAATCAAACATAAGCTTCATTAAGTG GGATTCTAAGACAGTCTGTGTTTTTATATTTCAAGGGTTTAACCCTTTGAGCCTTACATC TCATTCACTGTCTTTCTCCAAGAAAAGTATTTTGGGCGGACAGTCAGATCAAGCAGTAAA ATTAGCTCTTTCAAATCTTCTTGTCATGTAAAATGAAGCTAGTCTGTTTT /? IATTTTTA GTTTTGGATTGTATACTAATGAAAATCTTAATGATGTTTTTGATTTTTATATACTTATTT TAAAGAAAATCTTATATAGTACATTTTACAAAAATTATAAAAAATGAATTAGTACTGGCG AGGACTAAATGAAACAATAATTTTTCATTTTGATAACTAGCTTTCCAGGTGGACTTAGCC ATAGGAAAATATTACTAATGTAATTTAACAAATTGCTGCATGTATTCCATTTAAAAATAT GTTTAAATTGTCCTAAAACAAAATAATTTTCTCCCTAGGAGTATGCATTTGGCTACAGTG TTTTGAAACAGAAACCTTAGAATAGGTCATTGGTATGGGCTGAACTGTGTATCCCCCAAT TCATTTGTTGAGGTCCTAACTCCCATTTCTTTTGAATGTGACTGTTCGGAGATGAGGCCT TTAAAGAGGTGACTTAAGTTCAAAGGAGGCTGTTAGTCTAATCCAACATGGTGTCCTTTG GACATAAGAGATACCAGCAATGTGTGCACAGAACAAAGACCAGGAGAGGACACAGTGAGA AGGCAGTTATCTGCAAGCAAAGAGAGAGGCTTCAGAAGAAACAAAATCACCAGCACCTTG ATCTTTGACTTCTAATCTCCAGAATAGTGAGAAATAAATTTCTGTTGTTAAGCCGTCCAC TGTGGGAGGCCGACGCAGGAGGATTGCTTGAGGCCAGGAGTTCAAGGCCAGCCTGGACAA CATAGTAAGACCCTATCTCTACCCCCCTAATAAATTAATTTAAAAAGCCCCCCAATCTGT GGTATTTTATTATGGCAGCCCTAGCAAGCTAATACAGTGGTTTGAGAGGCTGGGAGGGTT GAGGGGAAGATAAACTTTTAAAAAGCTCTTATCTTTCATTTCAATCAGTTAAAAATACTT GCTCAGTGTAACAATTTTGCTTCTCAGCTTCCACTCTAATATTGTTGTGCCATTAAGCAA TTTAGCTAATCCTGACATTTCTTAGATTCATAATGTTAGGAGCATTTAATCTGTATTTTA CAAGTTAGGAAGCAGAGGATCAGAGATGGGAAAGGACTAGCCCAAGGCCAACATTAACAA GCCCTCTAACAAAAACTTTACAATACATTTATGTTGAATGGAACTCCAAGATCTCACCTC TCCATCCAGGAATGGAGTCCATGTAATCAAAGTGAACTTAAAAATAGGACAGTTTCAACA AGTCAGGAGATTCACAGCAACTGATCAAAGGGAGTCCAGTCAACGTGAGCAAGCGTGATT ATGATGAGGAAGCCCCCTCTGCTTTAATCCACACAAGGAACGTAACCTGAAGTAACCTGA TGTTAACCAATCTGCTGTGTCTACTATGCTGTTTCCTTGTTCCTGCTAGTGCTGCTTTAC AAATGCAGACCATTCTATCATACCTGGCAGGGCTTCTGTTTTATTTTGTAGGCTGGATGC TACCCAGTTCATGAATCGCTAATAAAAGCCAATTAGATCTTTAAAAAAAAAAAAAAAAAA AAA > Hs.94367_mRNA_l gi | 10440200 | Dbj | AK027147.1 | AK027147 Homo sapiens cDNA: FLJ23494 fis, clone LNG01885 polyA = 3 TATTAAAAGTACCCCATGGATGGACCTCCAAATGAGTTTAGGGTAATTGCGCTTAAAATA TTAGGACCAAAGTACATTTATTTTATAGATGGAGGAGGGGAGGAGACGAGTGGGGACCAG CTTGACATCCAGTCTTCACCTGGACATATGGAAAGAACAAATGTGCGATCTGCTCGTTCC CTCTGAAGGTCTCTGTTACGTATTTCCTCCTCTCCTCCAGAGCATAATAACCAATGACTG CTCTCAGAAAGGTACTGTGACCACCACTTGCTTGGCTCTCCAACTTCCTCCCCCATTTCC CTCTTGACTCCTGTTTGCCATAACACCTTCTGTCCCCTAGCCTTGCCTCAGGTCCCCGAC GAATCCTGCCCTTAATCTGTGGGGGTGGTAGGTGGCACTGGTTTGAAGAGCTTACTGGAT CTCCCTCAGTGAGTCAGCCTGGAGTTGTGTTTGAAAACCACAGGCCCTGACTGTGGCTGT AAGACCTCCCAGACACCACCTGCTGCTGCCTATCATCATCTTCAGGTGCTGGGCTCCCCT GTGGGCCTCGTCTGCCCGCCCTCTGCTGCAGCTGTCCCATGGGCGCCCGCCCTCTCTGAC ACCACAAGAGAGCCCATCTAGATTCCAGGAAAAAACTCATCTTTATTTGCCTTCTTCCCA CTGAAGGTAAAAGCAACATTAATAACCACAACAAATACTTAGTGAGTGCTTACTATTATT CATTTAATTGTAGGCCCTTCCATCCCTGGCCATGATGAGAGACATGCCATAGCTTACTCC TAAAGAGACCTGAGGACACACGTGCACAAACATATTGGGCATATCATCAATGGCATCAAA ACTGATTTTCCCTGTCTACCCAGAACAGGCCTGAGGGAGAGGGAAAAGCGGATACCCACC TG TGTCGCTGTTTGCGTGCCAAGTCCAGGAACAGTCCATACAGCCCTGCTGCATCCCACG ACGCTGTCACAAAGCAGGAGTTCATCCGAGGCCAAGGTATGGAGAAACTGAGGCCCAGAA ATTGATGTCCAGAATGCTTTGCTCTTAGCCACTGTACTATTATGGCATATTTTATCTTTA TGTATTGCATCATTTCATGGATTCAAGTTTATCAATGTCCTTTGACAAGTTTAAAAATCT GTCTGCTAAAATCTATCAAATACATTAAGGAAAAGTCCCACTTGGCACATCTCCCACACC AGATGTTAATTATTCATACTGCATGACTGAGGATTTTGGAGGCAGAGAGAGATTCATCTG CAATATTTGGAACACCAATGGAGGTCTATGTCAACACAGAATTTATACAGCAGCTGGTGC TAGTCAGAGCTAATGACAGAATTTCAGTTTAATAAAAAGACCCCCAACTGAGCACACCAT CTTGAAAAAAGTATACTTATCAAACAGCTTTCAATCAGTTCAAGAGAGACACCTTAATTG GGGAGAGGAAGAATTGCAGAGTAGTTTGTAATCATGCCAATTCCAGATCAATAACTGCAT GTCTGTTCTTTGGTAGAAATAGCTTTTGCTTTATATTAAGTAATCACATATATATTCTCT CTATTTGGATAAGGAAACCTTCGCTTTATTTGACAATGTATAATGATATACTCTTCTAAT TCACCTCTGTGTCTTCACAATAAACATGAGTAAAATTTAGACAAGTGATGGTAAAGGTCA ATATAATTATTTATTTTTAAAATAAATTTTGTATCTAACAGGAAAGCAGTTCTTATGAAA TTtTTATATTTTCAAAAATTGTTTTGTTCAAATAAAATTTTATGAGTAAAGTTAAAAAAA ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ > Hs.49215_contigl BI493248 | N66529 | AA452255 | BI492877 | AW196683 | AI963900 | BF4781 5 | AI421654 | BE 466675 polyA = l polyA = l GGGTACCTGGTGGGGCCAATCACCGAGCCATGAACATCAGTAACGTACTCTAAAGACCAA GGCTACGATGGCTATGATGGTCAGAATTACTACCACCACCAGTGAAGCTCCAGCCTGGGA TGAATTCATCCATTCTGGCTTTGCATCCGGCTACCATTTTCGAAGTTCAACTCAGGAAGG TGCAATATAACAAATGTGCATATTATAATGAGGAATGGTACTACCGTTCCAGATTTTCTG TAATTGCTTCTGCAAAGTAATAGGCTTCTTGTCCCTTTTTTTTCTGGCATGTTATGGAAT GATCATTGTAAATCAGGACCATTTATCAAGCAGTACACCAACTCATAAGATCAAATTTCA TTGAATGGTTTGAGGTTGTAGCTCTATAAATAGTAGTTTtTAACATGCCTGTAGTATTGC TAACTGCAAAAACATACTCTTTGTACAAGAAGTGCTTCTAAGAATTTCATTGACATTAAT GACACTGTATACAATAAATGTGTAGTTTCTTAATCGCACTACCTATGCAACACTGTGTAT TAGGTTTATCATCCTCATGTATTTTTATGTGACCTGTATGTATATTCTAATCTACGAGTT TTATCACAAATAAAAATGCAATCCTTCAAA > HS .281587_contig2 R61469 | R1589l | AA0072l | R614711 I014624 | N69765 | AW592075 | H09780 | AA709038 | TO 1335898 | AI559229 | F09750 | R49594 | H11055 | T72573 | AA935558 | AA98865 | AA8 6438 | AI00243l | AI29972l polyA = l polyA = 2 AAGGTGGGCTTTCATTGTGATTTTTGTTCTGTTGCAGTAATATAGGAGCACATTTTGGCC ATTGTAATTACAGGGAACAAAGGGATTGCGGACACATATCTGGACTTCTTTTCCTCCCTT ATTGTTGTGGAAGAGACACTAGAAATGCTCAAACACCTGCAATATACAGAATATACACAA TTTTATTCCAGTATTTCCCTAACATATGGTTTAAAATTATTCCAGGTATACAGTGTATGC AATTCTGCATTATCACAGAGGAACAACTTCTTTTTTAAAAAATAAATAGGTCAGCCATTT TTATTAACGTGCAAAAACTTTATCACTCTAACATGCTCTAGGTAGTTGAGGAAAAGAGGT CTGATCACTGTTTGTATTTTATTTTCTTTGTGGGAACATTTCACCTGCTGAGTGTACATG AATTTGCTTTCTATAAAAGGCTTTTATGAGTTTACAGTAGAATCAGTGGAAGGAAGAGTT AATAAGGGCTGTTTTTAAAAAAACAAACAAACAAACAAAACAAATAATTAAAAAAAAATT TTACATTCCTTCCTATTCTCTAACTACACTTGGGAAGTGCACTTCAGATAAGTTTGCAGT GTGACTGAGAGATGAAGGAAATCCATAGAAAAGGTCCTCTTAGTGAACAAAATTTAGTTA TTAACTTTATAGCTATGAAATTTCCCCGGGCATTTGTTTTTGTTCAAACAGACTTTAACC TCTGCATCATACTTAACCCTGCGACATGCGTACAGTATGCATATTTTGTTTTGAAAAAAA ATGTTTCGTTCCAGTCTGTTAAGAATATTCAAAAATAATAAAGGTATTGCTTAATAAAAT TGCTAGAATTGTTTAGCAGTACATGCACAATATTTTACTAGATTCTTTGTTTTAATAGTG TTTTGTTGAGACTGAAAATCTTAAAATGGTCTGCGCAAATACAAAAAAAAAGAAAACACC AAAAAAAAAA > Hs.79378_mRNA_l gi 116306528 | ref | NM_003914.2 | Homo sapiens cyclin Al (CCNA1), mRNA polyA = 3 GGTGTTGTTCCGGACACATAGAAAGA1AACGACGGGAAGAGCGGGGCCCGCTTTGGGGTC CAGGCAGGTTTTGGGGCCTCCTGTCTGGTGGGAGGAGGCCGCAGCGCAGCACCCTGCTCG TCACTTGGGATGGAGACCGGCTTTCCCGCAATCATGTACCCTGGATCTTTTATTGGGGGC TGGGGAGAAGAGTATCTCAGCTGGGAAGGACCGGGGCTCCCAGATTTCGTCTTCCAGCAG CAGCCCGTGGAGTCTGAAGCAATGCACTGCAGCAACCCCAAGAGTGGAGTTGTGCTGGCT ACAGTGGCCCGAGGTCCCGATGCTTGTCAGATACTCACCAGAGCCCCGCTGGGCCAGGAT CCCCCGCAGAGGACAGTGCTAGGGCTGCTAACTGCAAATGGGCAGTACAGGAGGACCTGT GGCCAGGGGATCACAAGAATCAGGTGTTATTCTGGATCAGAAAATGCCTTCCCTCCAGCT GGAAAGAAAGCACTCCCTGACTGTGGGGTCCAAGAGCCCCCCAAGCAAGGGTTTGACATC TACATGGATGAACTAGAGCAGGGGGACAGAGACAGCTGCTCGGTCAGAGAGGGGATGGCA TTTGAGGATGTGTATGAAGTAGACACCGGCACACTCAAGTCAGACCTGCACTTCCTGCTG GATTTCAACACAGTTTCCCCTATGCTGGTAGATTCATCTCTCCTCTCCCAGTCTGAAGAT ATATCCAGTCTTGGCACAGATGTGATAAATGTGACTGAATATGCTGAAGAAATTTATCAG TACCTTAGGGAAGCTGAAATAAGGCACAGACCCAAAGCACACTACATGAAGAAGCAGCCA GACATCACGGAAGGCATGCGCACGATTCTGGTGGACTGGCTGGTGGAGGTTGGGGAAGAA TATAAACTTCGAGCAGAGACCCTGTATCTGGCTGTCAA CTTCCTGGACAGGTTCCTTTCA TGTATGTCTGTTCTGAGAGGGAAACTGCAGCTCGTAGGAACAGCAGCTATGCTTTTGGCT TCGAAATATGAAGAGATATATCCTCCTGAAGTAGACGAGTTTGTCTATATCACCGATGAT ACATACACAAAACGACAACTGTTAAAAATGGAACACTTGCTTCTGAAAGTTCTAGCTTTT GATCTGACAGTACCAACCACCAACCAGTTTCTCCTTCAGTACTTGAGGCGACAAGGAGTG TGCGTCAGGACTGAGAACCTGGCTAAGTACGTAGCAGAGCTGAGTCTACTTGAAGCAGAT CCATTCTTGAAATATCTTCCTTCACTGATAGCTGCAGCAGCTTTTTGCCTGGCAAACTAT ACTGTGAACAAGCACTTTTGGCCAGAAACCCTTGCTGCATTTACAGGGTATTCATTAAGT GAAATTGTGCCTTGCCTGAGTGAGCTTCATAAAGCGTACCTTGATATACCCCATCGACCT CAGCAAGCAATTAGGGAGAAGTACAAGGCTTCAAAGTACCTGTGTGTGTCCCTCATGGAG CCACCTGCAGTTCTTCTTCTACAATAAGTTTCTGAATGGAAGCACTTCCAGAACTTCACC TCCATATCAGAAGTGCCAATAATCGTCATAGGCTTCTGCACGTTGGATCAACTAATGTTG TTTACAATATAGATGACATTTTAAAAATGTAAATGAATTTAGTTTCCCTTAGACTTTAGT AGTTTGTAATATAGTCCAACATTTTTTAAACAATAAACTGCTTGTCTTATGACAAAAAAA AAA > Hs .156469_contig2 AI341378 | AI670817 | AI701687 | AI335022 | AW235883 | AI948598 |? AA446356 Lya p = 2 polyA = 3 TCCAAGCCATTAAGGACTGTGGAACTTGCTATGATCATGGACGTGCTGTATGGTGGCGTT TGTTATGCAGGAATTGATACAGATCCTGAGCTAAAATACCCAAAAGGTGCTGGGCGAGTT GCTTTCTCCAATCAGCAGAGCTATATTGCTGCCATTAGTGCTCGGTTTGTTCAGCTTCAG CATGGTGATATTGATAAACGTGTGGAGGTAAAGCCATATGTGCTAGATGACCAGATGTGT GATGAATGCCAGGGCGCACGCTGTGGTGGAAAATTTGCTCCCTTTTTTTGTGCCAATGTC ACTTGCCTGCAGTATTACTGTGAGTTTTGTTGGGCAAATATCCACTCTCGTGCTGGACGT GAGTTCCATAAGCCATTGGTAAAGGAAGGTGCTGATCGCCCACGTCAGATCCACTTCCGC TGGAACTAAGAATAGCAAACTGGCCTCTGTTTAACAAGGAAAGAAAGGGTGCATGTGGCT TACTGTGTCTGAAGATACTGACATGCAGAAGAAATAAGTGCATTCTTCTGCTTTTCACCC CAGCTATCAATACATGCATCTTTATCAGCAGCCAAAACACTACAAGCCTCTTGTTTTTCA CCAAAACCCTACATCTCAGGCTTACTAATTTTTGTGATATTTTCATGTTCAAATAAAATG TTTTTTTGTATTTTCAAAAAAAAAAAAAAAAAAAAAA > Hs.6631_mRNA_l gi | 020430 | dbj | AK000380.1 | AK000380 cDNA FLJ20373 fis Homo sapiens, clone HEP19740 polyA = 3 CTCGATGTAGAGGGGTTGGTAGCAGACAGGTGGTTACATTAGAATAGTCACACAAACTGT ^ TCAGTGTTGCAGGAACCTTTTCTTGGGGGTGGGGGAGTTTCCCTTTTCTAAAAATGCAAT GCACTAAAACTATTTTAAGAATGTAGTTAATTCTGCTTATTCATAAAGTGGGCATCTTCT GTGTTTTAGGTGTAATATCGAAGTCCTGGCTTTTCTCGTTTTCTCACTTGCTCTCTTGTT CTCTGTTTTTTTAAACCAATTTTACTTTATGAATATATTCATGACATTTGTAATAAATGT CTTGAGAAAGAATTTGTTTCATGGCTTCATGGTCATCACTCAAGCTCCCGTAAGGATATT ACCGTCTCAGGAAAGGATCAGGACTCCATGTCACAGTCCTGCCATCTTACTTTCCTCTTG TCGAGTTCTGAGTGGAAATAACTGCATTATGGCTGCTTTAACCTCAGTCATCAAAAGAAA CTTGCTGTTTTTTAGGCTTGATCTTTTTCCTTTGTGGTTAATTTTCCTGTATATTGTGAA AATGGGGGATTTTCCCTCTGCTCCCACCCACCTAAACACAGCAGCCATTTGTACCTGTTT GCTTCCCATCCCACTTGGCACCCACTCTGACCTCTTGTCAGTTTCCTGTTCCTGGTTCCA TCTTTTTGAAAAAGGCCCTCCTTTGAGCTACAAACATCTGGTAAGACAAGTACATCCACT CATGAATGCAGACACAGCAGCTGGTGGTTTTGTGTATACCTGTAAAGACAAGCTGAGAGG 10 CTTACTTTTTGGGGAAGTAAAAGAAGATGGAAATGGATGTTTCATTTGTATGAGTTTGGA GCAGTGCTGAAGGCCAAAGCCGCCTACTGGTTTGTAGTTAACCTAGAGAAGGTTGAAAAA TTAATCCTACCTTTAAAGGGATTTGAGGTAGGCTGGATTCCATCGCCACAGGACTTTAGT TAGAATTAAATTCCTGCTTGTAATTTATATCCATGTTTAGGCTTTTCATAAGATGAAACA TGCCACAGTGAACACACTCGTGTACATATCAAGAGAAGAAGGAAAGGCACAGGTGGAGAA CAGTAAAAGGTGGGCAGATGTCTTTGAAGAAATGCTCAATGTCTGATGCTAAGTGGGAGA AGGCAGAGAACAAAGGATGTGGCATAATGGTCTTAACATTATCCAAAGACTTGAAGCTCC ATGTCTGTAAGTCAAATGTTACACAAAAAAAAATGCAAATGGTGTTTCATTGGAATTACC AAGTGCTTAGAACTTGCTGGCTTTCCCATAGGTGGTAAAGGGGTCTGAGCTCACACCGAG TTGTGCTTGGCTTGCTTGT GCAGCTCCAGGCACCCGGTGGGCACTCTGGTGGTGTTTGTG GTGAACTGAATTGAATCCATTGTTGGGCTTAAGTTACTGAAATTGGAACACCCTTTGTCC TTCTCGGCGGGGGCTTCCTGGTCTGTGCTTTACTTGGCTTTTTTCCTTCCCGTCTTAGCC 15 TCACCCCCTTGTCAACCAGATTGAGTTGCTATAGCTTGATGCAGGGACCCAGTGAAGTTT CTCCGTTAAAGATTGGGAGTCGTCGAAATGTTTAGATTCTTTTAGGAAAGGAATTATTTT CCCCCCTTTTACAGGGTAGTAACTTCTCCACAGAAGTGCCAATATGGCAAAATTACACAA GAAAACAGTATTGCAATGACACCATTACATAAGGAACATTGAACTGTTAGAGGAGTGCTC TTCCAAACAAAACAAAAATGTCTCTAGGTTTAGTCAGAGCTTTCACAAGTAATAACCTTT CTGTATTAAAATCAGAGTAACCCTTTCTGTATTGAGTGCAGTGTTTTTTACTCTTTTCTC ATGCACATGTTACGTTGGAGAAAATGTTTACAAAAATGGTTTTGTTACACTAATGCGCAC CACATATTTATGGTATATTTTAAGTGACTTTTTATGGGTTATTTAGGTTTTCGTCTTAGT TGTAGCACACTTACCCTAATTTTGCCAATTATTAATTTGCTAAATAGTAATACAAATGAC AACTGCATTAAATTTACTAATTATAAAAGCTGCAAGCAGACTGGTGGCAAGTACACAGCC CTTTTTTTTGCAGTGCTAACTTGTCTACTGTGTATTATGAAAATTACTGTTGTCCCCCCA 90 AAAAAAA >CCCTTTTTTCCTTAAATAAAGTAAAAATGACACCCTAAAAAAAAAAAAAAAAAAAAAAAA; Hs.l55977_contigl AI309080 | AI313045 polyA = l WARN polyA = l TATACGGCTGCTAGAAGACGACAGAAGGTGGCTTGGGGGTGGATATCTTTGGGTTGCTGG AAAAGGTGTGGGAAGGTTCAGGATGGTGGGAGGGACTGAGGTCCCTGAGGTGAAGAGGCC CTTGGTCCTGACGGGTTTGACCCGTGCCTGGACCCTTGGAGCAGTGTTGTGTGAACTTGC CTAGAACTCTGCCTTCTCCGTTGTCAATAAAGCCTCCCCCTCATGACCTAAAAAAAAAAA AAAAAAAAAAAAAAAAAGTCGTATCGA > Hs.95197_mRNA_4 gi | 5817138 | emb | AL110274.1 | HSM800829 Homo sapiens mRNA; cDNA DKFZp564I0272 (from clone DKFZp564I0272) polyA = 3 GAGCAGGAAAATATATACCCTAAACAGAAACTCTTACTTGTTTTATGAGCAAGTCTGAGT GAGTCCTAAAATGGCTGGCGAAGAGCTACCAATACTGACTGACAGGTCACCTTAAAGCCT CTAGGTGTGCCAAGTTTGATTTATCTTAGGGACTAGAACCTAGTCTTCTAAATGTGATTT? TGCCTTGCTGTTTCGTCCTGATGTGAAGGTAACCACACAGAGAGATTGGGCTGCATCAGT AATGATATGCATACCTTTCGTGCATCAGTGAGCTTCTTCCCTGTTAACTGTATGACCACA AAATTTAGCTGGAGTAAATAAATATGCGACAGAAATCCTGGAACAAGATGGTGAAATTGC TTAAGAATCGAGACTTCAGGGCTCAATGACCTCTGAGCATGTTTCCCAAAGTGTGACCCA CATGACCATCTGTCTCTCAGTCTCCTGGTCCCTCCGTAGAGCTTCTGAAACTGAATCTTT GTGGGGTGGGGGTAGCGTTCAAGAATCAAAAGTTGAACCAAGCTCTTTGGGTGATACTTA TGTATACTGAGGTTCAGGAACTGCTGGAGAGATGACTGGGCACCAAGAGGATGACAGTGA CTCAGCTGGCATCCCTTAGCTGGTTCATGGCAGAGCTGAGTGGGCACTCCTGTCTCTGAC CCCAGCTTCAGTGCTCTTTATCTCCTCCATGCCTCCTCAGTCGTGCTGCTCTAAGACTGC TTACTGGCTTTCCTTCATGTCCTGGGCACAGAGCAGTTCTTTTGGTAGCAGATTTGAGTC CACTTCCCCCGTGCACAGATCACTGCTCAGGACCCAGAGAGGAGCAGCTCTGCTCCAGCA GGGTTTTCCATTGCATCACACACCCAAACGGTAGGATCCAACAGTCACACTTGAAAGCAA CCATAATTGTGAGGTTTCTGATGCTGTAGACTTCCTTACATTTCTCACAACCTAGTTAGA GAGTCACATGGGGGTGAAGTGTGGCTCGCGACCTGCCCCAACAAGTGCGTGCAGAAGCCA GGAAACAAAGGAGTAAATTCACTTCAAATGGGATGCACATGGTGTCCGTGATGAAGAGAC ACATTCAGAATTGCCCAAGGACAGGAAAATGACCAGAGAGAGCCAGAGCTGAGCTGGTAA TAAAGAGACTCCGAGACTGAGTGGAGTTAATGAGGGAAGCATGCAACGAGTGGGGCAATT TCAGTTGGTTTCTCTCATTGCTTTAAGCGAAATGAACTATACGGACAGGAGAACAGCCTG CTTGCCCCAGTCTCTCCTTGGCCG CCCTCTGTTGTCCCTGTCAACTCAGGTGCCCACGGT GCTCAGAGGAGGTGCTGGCAAAGCCCCTGGAGCCTTATGTAGGCCATGGGGGCTCCTAAA AGGAACCTGAATGAATCATTTACAGCAGGTCTCTCTTGTAAAGCCCAGCCACAGTAACTC GTACACTGACTGTTTCAAAAGACAGCCTTTCTTAATCATTTAATTGTTTCATATTCAAAT ATATCTCCTAATTGTTTTTATTTTTTCCTGATCTAGAAGATATGACAACAGGGTAGAACT TGGGAAGAGGGAATAGGAAGCTCGCCCTTCCTCCTTCCCTCCTCCCCTCTCTACTTTCCT TCCTTCCTTGGTCATCAGGTACCTTCTTTGTGCCTGCTGTTGTAGGCTACACCCTATGTT TGGTGGAAGGCAAAAAGAAAAATCAGTAGGATACAACTCAGTAGGGAAGACAGAGATATT CAAGCCCCTTGTCCTCCCAGTGTGATAAGTGTGGTGGTTGAGGTGTGAACAAGGGGCTCT GTGAACAGAGAGGACGAAAGAGGAGCTCCTCCTGAGGCTGTTGGGAAAAGCATCACTGAA GAGTGACTTTCAGAAGAAGAGAAGAAAAAGAGGAGAACATGCGTGATTTTATAATGAAAT AGATTAGATAAGGGGAAAAAAGGCATTTAAACAAGGCAAAAAGAACAGGAGAATAGAGAA GAGATGTGGAGGAGAAGGAGCACTGTAGTAAACACGCAGAAGGACAGGAACACTTAGACA TGCAACCCACTCCCACCCTCCGTCTTGGGGGAGGAAAGCACACTACTGTCCCAAAGAACT AATACTGAACCAGTGCTGCCTTGTGGAGAGAGGCATGGCCAAGGCGTTCAGAGACCTGGG CCTGGTCCCACCGCTGCCCACAGCACTCAGCCTCTGAGCACAGCCTGGGGTCATCTGTGT GCCCTCTGGCCAAGGCTGATGGTAGTTCTCTGAGTAATTGAGAGTCAT TGCCTGTCTGTG CAGTATTGTGAAAACAAGTCACCTTTTAACTTTAAAACTACTTTAAAAAACTTTAAAGTT TTAAAAAAACTTCTTTAAAAACTACTCATGAGATGACAGTTTCTCTGACCCTCAGAGGAA GGCTGGGCTGCGCATACGTGAGGAATTTTTACATGAACATCCCAGGACTTGCTGTTCGCA GGTGATAAACTGCACCTCCCCAGGACTCCCGCTGCACTCACATGCAGCTCCCTGGACTTC TGGTATCTGACCCGGCCCATTTCTGTGTTTCAGGGGAGAATTTGGCTTGCGGGAGTACTC AGAAGTTAAGACGGTGACAGTAAAGATCCCCCAGAAGAACTCCTAAGAAGGCCAAGAAGG AGGATGAAGCCCAGCCTGCACGTCTGTCCCTCTCTGCTTTCTCTGTAGGGCCCAGCTCTC AGGAATACAAAGTTGAGCCACGGTCCTTACTTAAAGATTGAAAAGATAACATGTAGGCCA GGCAGGTCACTGCACAACTAAAGCAAACCAGCTGGGTACAGTTTCTTGGCACTCTGTAAG GGGCCACCTTAATCATACCAAATATTGGGGAAAGTGGGATAAAGGGAGGAGGAGGAGCTA GCAGACACATCCAGTATCTCCTTCTGGAGCACAGGATGAAATAAGGGAGCTGTATTATTT CATGTCTTTGTCACAAAGAACTTTCCTCTCAAGGAAAGGTGACCTTTCTCCTGTCTTCAT TTTCCTCCTTCCAGGCCCTCCTCGCTCACCCACCCCTCCCTCTCTTCCAAGGAGATGTCA GCTGAGCTCATTCTGGGGCAGATGTTTGGGCCGGGAACAATTTTTCAAGGTTGTAAAGCC AAATTATCATTTCATGTTATCCATTTCTTCAAAGCAAAACATGAAATGGTTTTAGCTAGA GTCAGACCAGAATGAAAATGCCAGGAGCTGGTACACTACAGATGTAGTAAGAACCTGGGA TATTCCTGACC CAATCTGGTTTTCTTTTACCCATAAATAACATGAATGAAAAAAGATTGG GACAATAGAGACTGGAAGTCATCATGTGCAGTTCACCGCTTCTGAGCTTGCTGCAGTTTT GGGGTGTGTGTGTATTAGATTCCTTCTCAGTTATTCTGGAATAAGGCAAGGAGTGGGTTG TTTTTCATAGCTAGATAAGATCTTTTCCAAAGTTTTTCTTAGAACCAACCAAAAAACAAT CCGAGTAGGCCCGAGAATTTGATAATGCTGGATGCCTTGCAGACATCATTCAGTTTCTAA TATTGGGCAACAATTATTATTAAATGAATTATTTCTGTAGTTGGAATCTGTACCTTCTGA ACCTCTACACCAATAACTGCTGCAGGTGTGATTTTGGTCTGTCACACTGTACATCTATCA TAATGTGCCCTGTATCTATTGGCAGTGACCTTGGAAAATCTGGCCAAGCCTAGGGGTTTC CTTTTCCATTTGCCAAGTTCCATTGTGCCAGGACTGCCGTGCTCCACTGAGCTCCTCTGT CACACCCCATTCTTGCCCCTCACTGGGCAGGCCATGGCCTACAGCTXGCAGGGAGTAAAG CAGGCCCGCCTCCCTTTCTTCCCATCCACATACTCCTCTTCTGCTTTCCAGTGACTCCAC CAGTTTGATGTGGGAAGTGTTAGCTTCCTTTCCTTCTTCCATCCCTTCTTCCATCTTTCC AGCTGTCAAATCCAATCCAGTCTCTAACCTAAATGCAGATCATTTATTTAAAAGTACCAA ACATAACCCAGAGTATGTGGAAXATGGGCAACATATATATAGCCTTCTGTATTTAACGAT CTTCTGCTTCTTAACCGTACCAGTTTTCTATTTATAACTCTTATCTATCCATGATGTTTT AAAGTCTCCACTTGCTGTTATTTACAAACGACAGTGCATTCAGCAGCCCAGTGCCGTGAG CCCTGACAGATGCCGTATTTCTGAGTGCTTCCATGTGAATGCTGCCCTCCTGTAGCATGT GTCCAAGTGGACATAGCCACTAACCAACTAGTTACCTTTGGACTGCAACAAAAAATGTGA AAATGAAGATTTATTTCTTTTAATTTACTTAAAAAGAAACCTCTGTGCTAGCAATAAAGC ATTTATATTGTGCAAAAAAAAAAAAAAAAAAAAAC > Hs.48956_contigl N64339 | I569513 | AI694073 polyA = l polyA = l TGAAAATTTATATAACTGTTGTTGATAAGGAACATTATCCAGGAATTGATACGTTTATTA GGAAAAGATATTTTTATAGGCTTGGATGTTTTTAGTTCTGACTTTGAATTTATATAAAGT ATTTTTATAATGACTGGTCTTCCTTACCTGGAAAAACATGCGATGTTAGTTTTAGAATTA CACCACAAGTATCTAAATTTGGAACTTACAAAGGGTCTATCTTGTAAATATTGTTTTGCA TTGTCTGTTGGCAAATTTGTGAACTGTCATGATACGCTTAAGGTGGAAAGTGTTCATTGC ACAATATATTTTTACTGCTTTCTGAATGTAGACGGAACAGTGTGGAAGCAGAAGGCTTTT TTAACTCATCCGTTTGCCAATCATTGCAAACAACTGAAATGTGGATGTGATTGCCTCAAT AAAGCTCGTCCCCATTGCTTAAGCCTTCAAAAA > Hs.ll8825_mRNA_10 gi] 1495484 | emb | X96757.1 | HSSAPKK3 H. sapiens mRNA for MAP kinase kinase polyA = 3 CTTTTAGCTGCCAGCCCTGGCCCATCATGTAGCTGCAGCACAGCCTTCCCTAACGTTGCA ACTGGGGGAAAAATCACTTTCCAGTCTGTTTTGCAAGGTGTGCATTTCCATCTTGATTCC CTGAAAGTCCATCTGCTGCATCGGTCAAGAGAAACTCCACTTGCATGAAGATTGCACGCC TGCAGCTTGCATCTTTGTTGCAAAACTAGCTACAGAAGAGAAGCAAGGCAAAGTCTTTTG TGCTCCCCTCCCCCATCAAAGGAAAGGGGAAAATGTCTCAGTCGAAAGGCAAGAAGCGAA ACCCTGGCCTTAAAATTCCAAAAGAAGCATTTGAACAACCTCAGACCAGTTCCACACCAC CTAGAGATTTAGACTCCAAGGCTTGCATTTCTATTGGAAATCAGAACTTTGAGGTGAAGG CAGATGACCTGGAGCCTATAATGGAACTGGGACGAGGTGCGTACGGGGTGGTGGAGAAGA TGCGGCACGTGCCCAGCGGGCAGATCATGGCAGTGAAGCGGATCCGAGCCACAGTAAATA GCCAGGAACAGAAACGGCTACTGATGGATTTGGATATTTCCATGAGGACGGTGGACTGTC CATTCACTGTCACCTTTTATGGCGCACTGTTTCGGGAGGGTGATGTGTGGATCTGCATGG AGCTCATGGATACATCACTAGATAAATTCTACAAACAAGTTATTGATAAAGGCCAGACAA TTCCAGAGGACATCTTAGGGAAAATAGCAGTTTCTATTGTAAAAGCATTAGAACATTTAC ATAGTAAGCTGTCTGTCATTCACAGAGACGTCAAGCCTTCTAATGTACTCATCAATGCTC TCGGTCAAGTGAAGATGTGCGATTTTGGAATCAGTGGCTACTTGGTGGACTCTGTTGCTA AAACAATTGATGCAGGTTGCAAACCATAC ATGGCCCCTGAAAGAATAAACCCAGAGCTCA ACCAGAAGGGATACAGTGTGAAGTCTGACATTTGGAGTCTGGGCATCACGATGATTGAGT TGGCCATCCTTCGATTTCCCTATGATTCATGGGGAACTCCATTTCAGCAGCTCAAACAGG TGGTAGAGGAGCCATCGCCACAACTCCCAGCAGACAAGTTCTCTGCAGAGTTTGTTGACT TTACCTCACAGTGCTTAAAGAAGAATTCCAAAGAACGGCCTACATACCCAGAGCTAATGC AACATCCATTTTTCACCCTACATGAATCCAAAGGAACAGATGTGGCATCTTTTGTAAAAC TGATTCTTGGAGACTAAAAAGCAGTGGACTTAATCGGTTGACCCTACTGTGGATTGGTGG GTTTCGGGGTGAAGCAAGTTCACTACAGCATCAATAGAAAGTCATCTTTGAGATAATTTA ACCCTGCCTCTCAGAGGGTTTTCTCTCCCAATTTTCTTTTTACTCCCCCTCTTAAGGGGG CCTTGGAATCTATAGTATAGAATGAACTGTCTAGATGGATGAATTATGATAAAGGCTTAG GACTTCAAAAGGTGATTAAATATTTAATGATGTGTCATATGAAAAAAAAAAAAAAAAAAA AAAAAAAaAaAAaaaaaAaAaaaaaAa > Hs .135118_contig3 AI683181 | AI082848 | AW770198 | AI333188 | AI873435 | AW169942 | AI806302 | AW340718 | BF196955 | AA909720 polyA = l polyA = 2 CAGTCCCACCATGTATtTTGCTTTGTTTCTAAAAAGCTTTTTAAAAACTGTTATTTAATA CCAAAGGGAGGAATCGTATGGGTTCTTCTGCCCACCGTTGTGACTAAGAATGCACAGGGA CTTGGTTCTCGTXGCACCTTTTTTTAGTAACATGTTTCATGGGGACCCACTGTACAGCCC TTCATTCTGCTGTGTCAGTTTGGCCTGGCCTGACACTGGCTGCCCCAGCGGGGACCACGG AAGCAGAGTGAGAGCCTTCGCTGAGTCAATGCTACCTTCAGCCCCAGACGCATCCCATTT CCATGTCTTCCATGCTCACTGGXCATGCACTTTTTACACGGTTTCTTCCAAACAGCCCGG TCTTGATGCAGGAGAGTCTGGAAAAGGAAGAAAATGGTTTCAGTTTCAAAATTCAAAGGA AAAAGTTGAGGACTTATTTTGTCCTGTCAAGATTGCAAGAACATGTAAAATGTACGGAGC TTCATAATACGTTATATTGTTCCGAAGCAGCTCGTTGAGAAACATTTGTTTTCAATAACA TTTTAGCTTAAAAAAAAA > Hs.l71857_mRNA_l gi | 13161080 | g | AF332224.1 | AF332224 Homo sapiens testis protein mRNA, partial cds polyA = 3 TCACCTCGTGGCGTAGGGGAGAGGTAACACCGAGAAGAGGCAGCGGCGGTGGCNCAGAGA CGATTGGTGCCAAACAGGGCAGAACGCAACTCAGCTCTGGGTTTGTGAATAGCACAATGG AAGAAsCTGGACTTTGTGGsTTAAGAGAGAAAGCAGATATGTTGTGTAACTCTGAATCAC ATGATATTCTTCAACATCAAGACTCAAATTGCAGTGCCACAAGTAATAAACATTTATTGG AAGATGAAGAAGGCCGTGACTTTATAACAAAGAACAGGAGTTGGGTGAGCCCAGTGCACT GCACACAAGAGTCAAGAAGGGAGCTTCCTGAGCAAGAAGTAGCCCCTCCGTCTGGTCAGC AAGCTTTACAATTGCAACAGGAACAAAGAAAAAGTCTTAGGAAAAGAAGTTTTATTATTG ATGCAAGCCCTAAACACTCTTTCCGACTCCAGAGGAGAAGCTGGCAGCTCTCTGTAAGAA ATATGCTGATCTTGGAAATTCACCTCTTCTATAGAAGAGTTTGTTTTGAACTATACGATT TGAAACAAAATTCTTTTTTTGGAGACTATGGAAACATTCTCAACAGGGAAACCCTACTAG ACTTTGTAAAGCAAATAATGGAAAAGATACAGAACTTTTTGAAGAATCATGGGAAATTTT TATAATTAAATAAATGCTAAAATTCTGTTTTGTGAAACATTTATGGGAATTATCACTGAC CAAATATTTAGTTAATAATCAACTCCAAGAATAAAGCTGTAACAATAATAGTTAAAAAAA A >AGTTTTTGTACACTTTCAAATAGTGTTAAAGCAGCAACTCCATGTTGTAAATGCACAAAA; Hs.l8910_mRNA_3 gi | 12804464 | gbJBC001639.1 | BC001639 Homo sapiens clone MGC: 1944 IMAGE: 2959372 polyA = 3 GGCACGAGGGTCAGCAGCCGCCAGACTTCCTGCCGAAGTCCGAGCCCCCTCCCGGGGCTG GAGGGGGGCAAGCGGGTTCCGAGGTGCAAAGCCTGGTGCCCCGAGCCCTGCGGAGCTCGG GGCCAGCATGGCCCCCACGCTGCAACAGGCGTACCGGAGGCGCTGGTGGATGGCCTGCAC GGCTGTGCTGGAGAACCTCTTCTTCTCTGCTGTACTCCTGGGCTGGGGCTCCCTGTTGAT CATTCTGAAGAACGAGGGCTTCTATTCCAGCACGTGCCCAGCTGAGAGCAGCACCAACAC CACCCAGGATGAGCAGCGCAGGTGGCCAGGCTGTGACCAGCAGGACGAGATGCTCAACCT GGGCTTCACCATTGGTTCCTTCGTGCTCAGCGCCACCACCCTGCCACTGGGGATCCTCAT GGACCGCTTTGGCCCCCGACCCGTGCGGCTGGTTGGCAGTGCCTGCTTCACTGCGTCCTG CACCCTCATGGCCCTGGCCTCCCGGGACGTGGAAGCTCTGTCTCCGTTGATATTCCTGGC GCTGTCCCTGAATGGCTTTGGTGGCATCTGCCTAACGTTCACTTCACTCACGCTGCCCAA CATGTTTGGGAACCTGCGCTCCACGTTAATGGCCCTCATGATTGGCTCTTACGCCTCTTC TGCCATTACGTTCCCAGGAATCAAGCTGATCTACGATGCCGGTGTGGCCTTCGTGGTCAT CATGTTCACCTGGTCTGGCCTGGCCTGCCTTATCTTTCTGAACTGCACCCTCAACTGGCC CATCGAAGCCTTTCCTGCCCCTGAGGAAGTCAATTACACGAAGAAGATCAAGCTGAGTGG GCTGGCCCTGGACCACAAGGTGACAGGTGACCTCTTCTACACCCATGTGACCACCATG GG CCAGAGGCTCAGCCAGAAGGCCCCCAGCCTGGAGGACGGTTCGGATGCCTTCATGTCACC CCAGGATGTTCGGGGCACCTCAGAAAACCTTCCTGAGAGGTCTGTCCCCTTACGCAAGAG CCTCTGCTCCCCCACTTTCCTGTGGAGCCTCCTCACCATGGGCATGACCCAGCTGCGGAT 'CATCTTCTACATGGCTGCTGTGAACAAGATGCTGGAGTACCTTGTGACTGGTGGCCAGGA GCATGAGACAAATGAACAGCAACAAAAGGTGGCAGAGACAGTTGGGTTCTACTCCTCCGT CTTCGGGGCCATGCAGCTGTTGTGCCTTCTCACCTGCCCCCTCATTGGCTACATCATGGA CTGGCGGATCAAGGACTGCGTGGACGCCCCAACTCAGGGCACTGTCCTCGGAGATGCCAG GGACGGGGTTGCTACCAAATCCATCAGACCACGCTACTGCAAGATCCAAAAGCTCACCAA TGCCATCAGTGCCTTCACCC? GACCAACCTGCTGCTTGTGGGTTTTGGCATCACCTGTCT CATCAACAACTTACACCTCCAGTTTGTGACCTTTGTCCTGCACACCATTGTTCGAGGTTT CTTCCACTCAGCCTGTGGGAGTCTCTATGCTGCAGTGTTCCCATCCAACCACTTTGGGAC GCTGACAGGCCTGCAGTCCCTCATCAGTGCTGTGTTCGCCTTGCTTCAGCAGCCACTTTT CATGGCGATGGTGGGACCCCTGAAAGGAGAGCCCTTCTGGGTGAATCTGGGCCTCCTGCT ATTCTCACTCCTGGGATTCCTGTTGCCTTCCTACCTCTTCTATTACCGTGCCCGGCTCCA GCAGGAGTACGCCGCCAATGGGATGGGCCCACTGAAGGTGCTTAGCGGCTCTGAGGTGAC CGCATAGACTTCTCAGACCAAGGGACCTGGATGACAGGCAATCAAGGCCTGAGCAACCAA AAGGAGTGCCCCATATGG CTTTTCTACCTGTAACATGCACATAGAGCCATGGCCGTAGAT TTATAAATACCAAGAGAAGTTCTATTTTTGTAAAGACTGCAAAAAGGAGGAAAAAAAACC TTCAAAAACGCCCCCTAAGTCAACGCTCCATTGACTGAAGACAGTCCCTATCCTAGAGGG GTTGAGCTTTCTTCCTCCTTGGGTTGGAGGAGACCAGGGTGCCTCTTATCTCCTTCTAGC GGTCTGCCTCCTGGTACCTCTTGGGGGGATCGGCAAACAGGCTACCCCTGAGGTCCCATG TGCCATGAGTGTGCACACATGCATGTGTCTGTGTATGTGTGAATGTGAGAGAGACACAGC CCTCCTTTCAGAAGGAAAGGGGCCTGAGGTGCCAGCTGTGTCCTGGGTTAGGGGTTGGGG GTCGGCCCCTTCCAGGGCCAGGAGGGCAGGTTCCCTCTCTGGTGCTGCTGCTTGCAAGTC TTAGAGGAAATAAAAAGGGAAGTGAGAAAAAAAAAAAAAAAAAA > Hs.l94774_mRNA_l gi | 16306633 | b | BC001492.1 | BC001492 Homo sapiens clone MGC: 1774 IMAGE: 3510004 polyA = 3 GGCACGAGGGAGGCGGCGGCTCCAGCCGGCGCGGCGCGAGGCTCGGCGGTGGGATCCGGCGGGCGGTGCTAGCTCCGCGCTCCCTGCCTCGCTCGCTGCCGGGGGCGGTCGGAAGGCGCG 133 GCGCGAAGCCCGGGTGGCCCGAGGGCGCGATGGCTGCTCCTGTCCCGTGGGCCTGCTGTG CTGTGCTTGCCGCCGCCGCCGCAGTTGTCTACGCCCAGAGACACAGTCCACAGGAGGCAC CCCATGTGCAGTACGAGCGCCTGGGCTCTGACGTGACACTGCCATGTGGGACAGCAAACT GGGATGCTGCGGTGACGTGGCGGGTAAATGGGACAGACCTGGCCCCTGACCTGCTCAACG GCtCTCAGCTGGTGCTCCATGGCCTGGAACTGGGCCACAGTGGCCTCTACGCCTGCTTCC ACCGTGACTCCTGGCACCTGCGCCACCAAGTCCTGCTGCATGTGGGCTTGCCGCCGCGGG AGCCTGTGCTCAGCTGCCGCTCCAACACTTACCCCAAGGGCTTCTACXGCAGCTGGCATC TGCCCACCCCCACCTACATTCCCAACACCTTCAATGTGACTGTGCTGCATGGCTCCAAAA TTATGGTCTGTGAGAAGGACCCAGCCCTCAAGAACCGCTGCCACATTCGCTACATGCACC TGTTCTCCACCATCAAGTACAAGGTCTCCATAAGTGTCAGCAATGCCCTGGGCCACAATG CCACAGCTATCACCTTTGACGAGTTCACCATTGTGAAGCCTGATCCTCCAGAAAATGTGG TAGCCCGGCCAGTGCCCAGCAACCCTCGCCGGCTGGAGGTGACGTGGCAGACCCCCTCGA CCTGGCCTGACCCTGAGTCTTTTCCTCTCAAGTTCTTTCTGCGCTACCGACCCCTCATCC TGGACCAGTGGCAGCATGTGGAGCTGTCCGACGGCACAGCACACACCATCACAGATGCCT ACGCCGGGAAGGAGTACATTATCCAGGTGGCAGCCAAGGACAATGAGATTGGGACATGGA GTGACTGGAGCGTAGCCGCCCACGCTACGCCCTGGACTGAGGAACCGCGACACCTCACCA CGGAGGCCCAGGCTGCGG AGACCACGACCAGCACCACCAGCTCCCTGGCACCCCCACCTA CCACGAAGATCTGTGACCCTGGGGAGCTGGGCAGCGGCGGGGGACCCTCGGCACCCTTCT TGGTCAGCGTCCCCATCACTCTGGCCCTGGCTGCCGCTGCCGCCACTGCCAGCAGTCTCT TGATCTGAGCCCGGCACCCCATGAGGACATGCAGAGCACCTGCAGAGGAGCAGGAGGCCG GAGCTGAGCCTGCAGACCCCGGTTTCTATTTTGCACACGGGCAGGAGGACCTTTTGCATT CTCTTCAGACACAATTTGTGGAGACCCCGGCGGGCCCGGGCCTGCCGCCCCCCAGCCCTG CCGCACCAAGCTGGCCCTCCTTCCTCCCTCAGGGGAGGTGGGCCATGCAGCTAACCCACC I O CACCAAAGACCCCCTCACCCTGGCCCCTTGGGCTGGACCCTCCAATGCCAGCGACTCCCA GGAGCCCTTGGGGGACGTGAGGGGAGCCTCTCACATCCGATTTCTCCTCCTGCCCCAGCC TCCTGTCTATCCCAGGGTCTCTGTTGCCACCATCAGATTATAAGCTCCTGATGCTGGGGG GGCCCAGCCATCCCCCTCCCCCCAGCACCCACAATTTTCAGTCCCCTCCCCTCTGCCCTG TTTTGTATACCCCTCCCCTGACCCTGCTCCTATCCCACAGTATTTAATGCCCTGTCAGTC CCTTCTAGTCTGACTCAATGGTAACTTGCTGTATTTGAATTTTTTATAGATGTATATACA GGGTGGGGGGAGTGGGCGGTTCTCATTAAACGTCACCATTTCATGAAAAAAAAAAAAAAA AAA > Hs.l27428_mRNA_2 gi 16306818 | gb | BC006537.1 | BC006537 Homo sapiens clone MGC: 1934 IMAGE: 2987903 Lya p = 3 GGCACGAGGAGTTTCATAATTTCCGTGGGTCGGGCCGGGCGGGCCAGGCGCTGGGCACGG TGATGGCCACCACTGGGGCCCTGGGCAACTACTACGTGGACTCGTTCCTGCTGGGCGCCG 15 ACGCCGCGGATGAGCTGAGCGTTGGCCGCTATGCGCCGGGGACCCTGGGCCAGCCTCCCC GGCAGGCGGCGACGCTGGCCGAGCACCCCGACTTCAGCCCGTGCAGCTTCCAGTCCAAGG CGACGGTGTTTGGCGCCTCGTGGAACCCAGTGCACGCGGCGGGCGCCAACGCTGTACCCG CTGCGGTGTACCACCACCATCACCACCACCCCTACGTGCACCCCCAGGCGCCCGTGGCGG CGGCGGCGCCGGACGGCAGGTACATGCGCTCCTGGCTGGAGCCCACGCCCGGTGCGCTCT CCTTCGCGGGCTTGCCCTCCAGCCGGCCTTATGGCATTAAACCTGAACCGCTGTCGGCCA GAAGGGGTGACTGTCCCACGCTTGACACTCACACTTTGTCCCTGACTGACTATGCTTGTG GTTCTCCTCCAGTTGATAGAGAAAAACAACCCAGCGAAGGCGCCTTCTCTGAAAACAATG CTGAGAATGAGAGCGGCGGAGACAAGCCCCCCATCGATCCCAATAACCCAGCAGCCAACT GGCTTCATGCGCGCTCCACTCGGAAAAAGCGGTGCCCCTATACAAAACACCAGACCCTGG AACTGGAGAAAGAGTTTCTGTTCAACATGTACCTCACCAGGGACCGCAGGTACGAGGTGG CTCGACTGCTCAACCTCACCGAGAGGCAGGTCAAGATCTGGTTCCAGAACCGCAGGATGA Q AAATGAAGAAAATCAACAAAGACCGAGCAAAAGACGAGTGATGCCATTTGGGCTTATTTA GAAAAAAGGGTAAGC TAGAGAGAAAAAGAAAGAACTGTCCGTCCCCCTTCCGCCTTCTCC CTTTTCTCACCCCCACCCTAGCCTCCACCATCCCCGCACAAAGCGGCTCTAAACCTCAGG CCACATCTTTTCCAAGGCAAACCCTGTTCAGGCTGGCTCGTAGGCCTGCCGCTTTGATGG AGGAGGTATTGTAAGCTTTCCATTTTCTATAAGAAAAAGGAAAAGTTGAGGGGGGGGCAT TAGTGCTGATAGCTGTGTGTGTTAGCTTGTATATATATTTTTAAAAATCTACCTGTTCCT GACTTAAAACAAAAGGAAAGAAACTACCTTTTTATAATGCACAACTGTTGATGGTAGGCT GTATAGTTTTTAGTCTGTGTAGTTAATTTAATTTGCAGTTTGTGCGGCAGATTGCTCTGC CAAGATACTTGAACACTGTGTTTTATTGTGGTAATTATGTTTTGTGATTCAAACTTCTGT GTACTGGGTGATGCACCCATTGTGATTGTGGAAGATAGAATTCAATTTGAACTCAGGTTG TTTATGAGGGGAAAAAAACAGTTGCATAGAGTATAGCTCTGTAGTGGAATATGTCTTCTG TATAACTAGGCTGTTAACCTATGATTGTAAAGTAGCTGTAAGAATTTCCCAGTGAAATAA AAAAAAATTTTAAGTGTTCTCGGGGATGCATAGATTCATCATTTTCTCCACCTTAAAAAT GCGGGCATTTAAGTCTGTCCATTATCTATATAGTCCTGTCTTGTCTATTGTATATATAAT CTATATGATTAAAGAAAATATGCATAATCAGACAAGCTTGAATATTGTTTTTGCACCAGA CGAACAGTGAGGAAATTCGGAGCTATACATATGTGCAGAAGGTTACTACCTAGGGTTTAT GCTTAATTTTAATCGGAGGAAATGAATGCTGATTGTAACGGAGTTAATTTTATTGATAAT AAATTATACACTATGAAACCGCCATTGGGCTACTGTAGATTTGTATCCTTGATGAATCTG GGGTTTCCATCAGACTGAACTTACACTGTATATTTTGCAATAGTTACCTCAAGGCCTACT TTTCTAAAAAAAAAAAAAAAAAAAA >GACCAAATTGTTGTGTTGAGATGATATTTAACTTTTTGCCAAATAAAATATATTGATTCT; Hs .126852_contigl AI802118 | BF197404 | BF224434 | AA931964 | AW236083 | AI253119 | AW614335 | AI671372 | AI793240 | AW006851 | AI953604 AI640505 AI633982 | AW195809 j AI493069 | AW058576 AW293622 polyA polyA = 2 = 3 AAACCAGTGTATCCAGTCATGGAAAAGAAGGAGGAAGATGGCACCCTGGAGCGGGGGCAC TGGAACAACAAGATGGAGTTTGTGCTGTCAGTGGCTGGGGAGATCATTGGCTTAGGCAAC GTCTGGAGGTTTCCCTATCTCTGCTACAAAAATGGGGGAGGTGAGATGAGAGCCCTTGTG CCACCCCACCCACTCCTGGAAGGAGGATACTTCCATCTCCTGCACTTACGGCCCCTCTGG GGAGTCCCATAGATGTATAGAATTCTGGAGGTAGGAGGACGCTTGGAGGTCATTAAGGAC ACTCTGTAAGAGACTAAGACCTAGAAAGGTTACGTGACTATCCCAGGGCTCTTTCTATTA TAACGTGGCATCGTAGAAATATGAGCACAAGCTGGAACCAGGTGGATGAGAGTTTGGATT CTGGCTCTGCTACTTAACACTCTGTGTGATCTTGGACAAGTTACTTAAGCTCTCAGAGCA TCAATTGCCGCTCCTGCAAATTGAGATAATAATGCCTGCCTTTCAAGGTCATTGTAAGGA TTAGAGACAATGTGTGTAAAGCACTTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAGTAGTAGCTCTGTTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAGTAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGATGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGAT GATGACGTTGAT AACCAAACTGTTCTGTGGTCTTAAGTAATAAATAGTAGCTCTGCTGATGATGACGTTGAT AAAAAAAAAAAAAAAAAAAAAAAAA > Hs.28149_mRNA_l gi | 14714936 | gb | BC010626.1 | BC010626 Homo sapiens clone MGC: 17687 IMAGE: 3865868 polyA = 3 GGAAGACATCAGGATGTACCATCTGCCCTTCTGTCGGACCCCAGGGTACGTCCCATGAGC GCGGCCGAGCTGCGTCGAGGGCAGCAGAGCGTGCTGCACTGCTCAGGGACCCGGACTCTG CAGTTTCTCCTGCACTGTTTTCACCTTTGGCCAGACGGGCTCTGGGAAGACCTACACCCT GACTGGACCCCCTCCCCAGGGGGAGGGGGTGCCTGTACCCCCCAGCCTGGCTGGCATCAT GCAGAGGACCTTCGCCTGGCTGTTGGACCGCGTGCAGCACCTGGGTGCCCCTGTCACCCT TCGCGCCTCTTATCTGGAGATCTACAATGAGCAGGTTCGGGACTTGCTGAGCCTGGGGTC TCCCCGGCCCCTCCCTGTTCGCTGGAACAAGACTCGGGGCTTCTATGTGGAGCAGCTGCG GGTGGTGGAATTTGGGAGTCTGGAGGCCCTGATGGAACTTTTGCAAACGGGTCTCAGCCG TCGAAGGAACTCAGCCCACACCCTGAACCAGGCCTCCAGCCGAAGCCATGCCCTGCTCAC CCTTTACATCAGCCGTCAAACTGCCCAGCAGATGCCTTCTGTGGACCCTGGGGAGCCCCC TGTTGGTGGGAAGCTGTGCTTTGTGGACCTGGCAGGCAGTGAGAAGGTAGCAGCCACGGG ATCCCGTGGGGAGCTGATGCTTGAGGCTAACAGCATCAACCGAAGCCTGCTGGCCCTGGG TCACTGCATCTCCCTGCTGCTGGACCCACAGCGGAAGCAGAGCCACATCCCTTTCCGGGA CAGCAAGCTCACCAAGTTGCTGGCAGACTCACTGGGAGGGCGCGGGGTCACCCTCATGGT GGCCTGCGTGTCCCCCTCAGCCCAGTGCCTTCCTGAGACTCTCAGCACCCTGCGATATGC AAGCCGAGCTCAGCGGGTCACC ACCCGACCACAGGCCCCCAAGTCTCCTGTGGCAAAGCA GCCCCAGCGTTTGGAGACAGAGATGCTGCAGCTCCAGGAGGAGAACCGTCGCCTGCAGTT CCAGCTGGACCAAATGGACTGCAAGGCCTCAGGGCTCAGTGGAGCCCGGGTGGCCTGGGC CCAGCGGAACCTGTACGGGATGCTACAGGAGTTCATGCTAGAGAATGAGAGGCTCAGGAA AGAAAAGAGCCAGCTGCAGAATAGCCGAGACCTGGCCCAGAATGAGCAGCGCATCCTGGC CCAGCAGGTCCATGCACTAGAGAGGCGTCTCCTCTCTGCCTGCTACCATCACCAGCAGGG TCCTGGCCTGACCCCACCGTGTCCCTGCTTGATGGCCCCAGCTCCCCCTTGCCATGCACT GCCACCCCTCTACTCCTGCCCCTGCTGCCACATCTGCCCACTGTGTCGAGTGCCCCTGGC CCACTGGGCCTGCCTGCCAGGGGAGCACCACCTGCCCCAGGTGTTGGACCCTGAGGCCTC AGGTGGCAGGCCCCCATCTGCCCGGCCCCCACCCTGGGCACCCCCATGCAGCCCTGGCTC TGCCAAGTGCCCAAGAGAGAGGAGTCACAGTGACTGGACTCAGACCCGAGTCCTGGCAGA GATGTTGACGGAGGAGGAGGTGGTACCTTCTGCACCTCCCCTGCCTGTGAGGCCCCCGAA GACATCACCAGGGCTCAGAGGTGGGGCCGGGGTTCCAAACCTGGCCCAGAGACTGGAGGC CCTCAGAGACCAGATTGGCAGCTCCCTGCGACGTGGCCGCAGCCAGCCACCCTGCAGTGA GGGCGCACGGAGCCCAGGCCAAGTCCTCCCTCCCCATTGAAGGCCAAGTGGGAACCCAGG AGACTGCTGTGTGACCTCAGACTGGGCTCCACACTCTTGGGCTTCAGTCTGCCCATCTGC TGAATGGAGACAGCAGCTGCTACTCCACCTGCAGCTGGGCTAGGGGCGGGGACTGGGGGT GCTATTTAGGGGAACAAGGGGATTCAGGAGAAACCAGGCAGCAGGGGATGAAATACATGA ATAAAGAGAGGCATCAGCTCCAAAAAAAAAAAAAAAAAAAAAAA > Hs.35453_mRNA_3 gi | 701849 | emb | AL157475.1 | HSM802461 Homo sapiens mRNA; CDNA DKFZp761G151 (from clone DKFZp761G151); partial cds polyA = 3 CTCCCCCTGAGAGAGGCTGGGCAGCACCCCCCTTCTGCCAGGAGTGCCAGCCAAGGTGCC AGACCCCTGTCCAGTGGCAAGCTGGAAGGCTTTCAGAGCATCGATGAAGCTATAGCCTGG CTCAGGAAGGAACTGACGGAGATGCGGCTGCAGGACCAGCAACTGGCCAGACAGCTCATG CGCCTGCGTGGCGACATCAACAAGCTGAAAATCGAACACACCTGCCGCCTCCACAGGAGG ATGCTCAACGATGCCACCTACGAGCTGGAGGAGCGGGATGAGCTGGCCGACCTCTTCTGT GACTCCCCTCTTGCCTCCTCCTTCAGCCTCTCCACACCACTCAAGCTTATTGGCGTGACC AAGATGAACATCAACTCTCGGAGGTTCTCTCTCTGCTGAGGAGCCCTCAGACTGGGCGGA GGGGCTGGAGCGGAGGGCTTGGGCTGGAGGGGTGTCAGAGGAAGCTGAGGCCAAGTTACT CCAGTGGGTCTCCCGGAGGCAGGGGTCCCTGGGACTGGOGACTCAAGGGCCCCAGGACCT ATTCAGTGGTGCTCTCCCACCCAGGGGCCCTGGGTGTGGATGCCAGTGTCTCTGTGACTG GCTCTTGCTTACTACCCAAAGAGCTCTGCAGAAGGGCCGCTCCAACCAAGATGTTAAAGG AGACCTGGGTTCCCACCATAATCCATCCCTCCACGGTCACGTTCCTGTTTCCTGGAATCA CTGGTGCTATGAACTGGGATTCCCAAAGGGAGGCCCCCCAACAAAGCTGTCATTTTTGCA GAAGGCTGTCCCGCAAGGGCCTTGGGGGAAATTAGGCATGTCAGATGTGCCTGTCTCACG TGCTGTTGCTGTCCTCTAAGTATTGTCTCAAATTCACCCTAAGTACATGACTCAGCAACA TTGACAGGGAGCTACTAGGAAGGGAAAATCGAAAGGCATGACAAATGGGCACTTGGGGAC GCAGCCCCAGTGGCTGGCAGCCAG TGTCTCTGGTGAGCCTGACACTACAAGGCTGTGTAA ATTGTAAATTCTGGCGTGTGCTGGGACATGTGATGGGGGCACTAGCGTAGCTTGGGTGCA ACAAGCACAGATGTCCCCATTGTCTCCCCTGGCCACATGCATCTCCAAAGAGCCTCTTCA CTGCCACCCACACCCCAGGGTGACAGCCTGGGAGACCACTGGTGACTGAACCAGGCAGGT CCTGAAAGCATTTTCCATAACTGAATTCTCCTGCAGGGGCGTGACCGGGGCCTCCTGGTG GATTCTGGTGGTGTCACCTTACTGCCCTCTCTGGAAAGACAATCTAGGGAGCCCAGAGGC CCATCCTGAGCCTCCTCTGAGATTTTGTGCCTGACCTAAACAACTAGTTTTAATAAGACT GTTACTGATGTGTTGTTCACTTGTTAGTAACTGATTTTTGTCCAAATGCGGAAGCCACTT GTGTAGGTCAACTACAGTGCGTAGGATTTGATTTTAAGAGTTTCTCCCTCCCAACAGGCT TGAGGATCAGCAAGTTAAGACCCCAGCAGGTTAGGGAGGTCAGTCTGGGGTCATACGGCA TGGCAGGGGTCCCTCGGCCAGACCCGTAGAATCCTGAGATAAGGAGTGTTTCTGACCTTT GGTGTCATCTAGTCGAGTCCTCTCATTAGTAAAGGAGCAAAGTGAAACCTGGGGGAGGAG AAGGACTTCCCTCAGGTTGCACAGCTGTTTAGGCTATAGAATATTGATGTGTGAAACCAT TATTGATAATGCCTAGTAGATCACATGTCAATGAACTTGAACCCCAAAGATGGTCGTGAT GCTTTGCCAAACCCGCACACTGCCAACCCCTCTACTCTCCACCTCAGCCCCCACCCACAT CTCCCAGAGTATTGCAATTCAGAACATTTGGGTCAAGGTGGAGCAAGGCACTGACAGTGG CCCCACAGGGCATGTGTCACTAATCACTGTCCCATGGTCTACGCACGG CATCTGGCTGCT CTGTCTACTGTGACTTCTTCCTGTGTAATCTCAGTGGGGCCCGTGTCCACCCACACATCG TGACCCACATAGGGGAGAGG? TGCTTXTCTTTTGTGGGCTGAGAGTAGGACAATGCAAAT GAATGATCTCTAGTAGACAGAAAAGAACTTGGTCTCTTTTTTAAAATTTCAAAGAGCCAG AAGTTCTATGCCTCCTTCAAAGTAGGCAGAACAACGCAGCCAAGATCTACTGTCTGCCAT GCTCTGTGCAATGAAGTCTGCAGGCCTGAGGACCATGTACTGCTGTCCTTCCTCAGAGCT CTGCACAAACACTGCCAAGTCCTGAAGACGCATTCCTTTCCTGCCAACCTCTTTCCAGAT AAGCCCTTGAGGTCTCGGGCTGACCTACACACACACACACACACACACACACACACACAC ACACCCCCACACACACACACACACGACAGAGAACATGCCATAAACATCCTTGAACCCATG CAGGAAAGCCCATCCCATATTCTGAAAAAATGCCAAATTAGGTTTTTCTTTCTTTTTGGA AATCAGTCATTACAGTAACCGAAACCATTGGGTTCAGCGAAAATGGAAAGATTTAGCTGA ATGTAGTCAGTCCAATTAAGTTGGATGCAACTGAGTGATTTAGTTGCTTGGGTAACCCAG TGCTTGCTTGCTTTCTTCATTCTCTGGGTGGAAACTAAGATCAAGACACATGTTTGGGGA TAAGTTAAATGTCTGAGCTATTTTGCTCGGTTTATCCTAAGAGAACTTTATTATGGGATG AGGAGGTGACCCAAGATGAGAAGTGGAGGGGGACAGCGATGTTTTCTAAACATCGTCCAG TGTTGACTGGCTTCCTTACTTTGCACAGTGAACACAACTAACCACATTAATTCAGCTTTG TGAAGTCCCTGCTCTCTGTGGGTTCTATGAGTCAGCAGCAACATTGGCCTAACCTCCGTC CCAGCCTCCTG GCTCACCACATGTGTACAGTGCTGTTTGCAGTTGTACTCATTATCCATC CATCTCTCTGCCATCCCCAAGCATCGCTGGGTGTAAAACGCAAACTCTCCACCGACACTG CCATGCGTGGTCATGTCTTGATGCCTTCAGGGGCTCAGTAGCTATCAAAGAGGCCTGGAG GGCCTGGGCAGGCTTGACGATGCCTGACCGAGTTCAAGACCCACACCCTGTAGCAATACC AAGTGCTATTACATAATCAATGGACGATTTATACTTTTATTTTTTATGATTATTTGTTTC TATATTGCTGTTAGAAAAAGTGAAATAAAAATACTTCAAAAGAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAGAAAAAAAAAAAAAAAAAAA > Hs .180570_contigl R08175 | AA707224 | AA699986 | R11209 | W89099 | T98002 | AA494546 polyA = 2 polyA = 3 TGAAGGACCGCGATCCTAAAGAGATTGAATGGGACGACCTGGCCCAGCTGCCCTTCCTGA CCATGTGCGTGAAGGAGAGCCTGAGGTTACATCCCCCAGCTCCCTTCATCTCCCGATGCT GCACCCAGGACATTGTTCTCCCAGATGGCCGAGTCATCCCCAAGGGCATTACCTGCCTCA TCGATATTATAGGGGTCCATCACAACCCAACTGTGTGGCCGGATCCTGAGTCTACGACCC CTTCCGCTTTGACCCAGAGAACAGCAAGGGGAGGTCACCTCTGGCTTTTAATTCCCTTCT CCGCAGGGCCCAGGAACTGCATCGGGCCAGCGTTTCCCATGGCGGAGATGAAAGTGGTTC CTGGCGTTGATGCTGCTGCACTTCCGGTTCCTGCCAGACCACACTGAGCCCCGCAGGAAG CTGGAACTGATCATTGCGGCCGAGGGCGGGCTTTGGCTGCGGGTGGAGCCCCTGAATGTA GGTGCTGTCACCTCAAAAAAAAAAAANNNAAAA >GGCTTGCAGTGACTTTCTGACCCATCCACCTGTTTTTTTGCAGATTGTCATGAATAAAAC; Hs.l96270_mRNA_ L gi | 11545416 | g | AF283645.1 | AF283645 Homo sapiens chromosome 8 map 8q21 polyA = 3 GAGTCCTCTCGTTGGTCCCGGAGGTGGGGTTGCGCTCACAAGGGGCGACCGTCGCCACGG TGGCGGCCACTGCATCGCGTCCCACCTCCGCGGCCCTGGGCGCCGTGGTGTCGACGGGCC CCGAGCCTATGACGGGCCAGGGCCAGTCGGCGTCCGGGTCGTCGGCGTGGAGCACGGTAT TCCGCCACGTCCGGTATGAGAACCTGATAGCGGGCGTGAGCGGCGGCGTCTTATCCAACC TTGCGCTGCATCCGCTCGACCTCGTGAAGATCCGCTTCGCCGTGAGTGATGGATTGGAAC TGAGACCGAAATATAATGGAATTTTACATTGCTTGACTACCATTTGGAAACTTGATGGAC TACGGGGACTTTATCAAGGAG AACCCCAAATATATGGGGTGCAGGTTTATCCTGGGGAC TCTACTTTTTCTTTTACAATGCCATCAAGTCATATAAAACAGAAGGAAGAGCTGAACATT TAGAGGCAACAGAATACCTTGTCTCAGCTGCTGAAGCTGGAGCCATGACCCTCTGCATTA CAAACCCATTATGGGTAACAAAAACTCGCCTTATGTTACAGTATGATGCTGTTGTTAACT CCCCACACCGACAATATAAAGGAATGTTTGATACACTTGTGAAAATATATAAGTATGAAG GTGTGCGTGGATTATATAAGGGATTTGTTCCTGGGCTGTTTGGAACATCGCATGGTGCCC TTCAGTTTATGGCATATGAATTGCTGAAGTTGAAGTACAACCAGCATATCAATAGATTAC CAGAAGCCCAGTTGAGCACAGTAGAATATATATCTGTTGCAGCACTATCCAAAATATTTG CTGTCGCAGCAACATACCCATATCAAGTCGTAAGAGCTCGTCTTCAGGATCAACACATGT TTTACAGTGGTGTAATA GATGTAATCACAAAGACATGGAGGAAAGAAGGCGTCGGTGGAT TTTACAAGGGAATTGCTCCTAATTTGATTAGAGTGACTCCAGCCTGCTGTATTACCTTTG TGGTATATGAAAACGTCTCACATTTTTTACTTGACCTTAGAGAAAAGAGAAAGTAAGCTC AAAGAGGACAATTCCAGTATATCTGCCCAAGGCAGCAACAAGCTCTTTTGTGTTTAAGGC ATAAAAGAAGAATTCTGCATAGAAACATGGCTCATATTCGAAATTGCTCTATAGTCATTA GAAGCCAGAGAACTGCTAAGTCTCCTGCAATGTTTTTCTTGCTTTTTGCCTTCCCCATAT ATATGGAACTTGGCTACCTCTGCCTGAAATGGCTGCCATCAACACAATGTTAAAACTGAC ACGAAGGATAGAGTTTCACAGATTTCTACGTTTTATTGGTGGAAGCTGATTTGCAACATT TGCTAAATGGATTAGATGAATGTACTTCTTTTTGTGAGCTTACTTGCCTGGATTGCTTTA AAATTAACCTTTGTGCAATACCAAGAAAATAGCTCTTTAAAAGAATGTCTTTGTATGTCT CAAGGTAAATTAAGGATTTACTGAATAAGGTGTTGACCAAATCCAGACCA'I TTATTTTA TTTTTTTATTTATTTATTTTTTGAGATGGAGTCTTGCTTTGTCGCCCAGGCTGGAGTGCA GTGGCGTGATCTCAGCTCACTGCAACCTCCACCTCCCGGGTTCACGCCATTCTCCTGCCT CAGCCTCCTGAGTAGCTGGGACTACAGGCACCTGCCACCACGCCTGGCTAACTTTTTTTT ATATTTTGAGTAGAAATGGGGTTTCACCATGTTAGCCAGGATGGTCTCAATCTCCTGACC TTGTGATCCGCCTGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACTGCGC CTGGCCAGACCATTTTAGAATTGGGAAATTTTAGTGAGAA AAAATGCACTGTAAATATGC TTTAGTTTTAATTCAGTTGGGATGCACTACCTAGCGAAAATTGAGAAACTATATACTTCT CAGAGAAATATCTGACATCTATTGTCATTCCATTGCTATTTTTTTTCCCCAGAGACTTCC ATAATTTAAAATAAAATCCTAGATCCAGTTCTTGTTTTTTGGCATAAATACTTAATCTAT TTTAAATTTATAAAATCTGAGCTTCTAGGATCCAGCTGTGTCAACCTTTATTTAGCATAT ATAACTATAAATCACTTATTACAGATGCTAAATAGATCACCTTTTACAGATGCTGAAATG TTTGGGATATGTTTGTTGACAAGGTAAATGGAAATGAGAAACTTTATACTTCAGTTTTCA GATATATGGATCTAGATCCCAAATAAATGATTAATCTTCATTGGTTTCTCAAATTCAGGT TGAAATACAAATTAATAGCCTTTATTGATTTTACTTTTATGAGTCATTGTAGACATCTAT AAATATAAAAGGGCCTGTACCCAAAGGATGCCAGAATACTAGTATTTTTATTTATCGTAA ACATCCACGAGTGCTGTTGCACTACCATCTATTTGTTGTAAATAAAAGTGTTGTTTTCAA AAAAAAAAAAAAAA > Hs.9030_mRNA_3 gi | 12652600 | gb | BC000045.1 | BC000045 Homo sapiens clone MGC: 2032 IMAGE: 3504527 polyA = 3 CTAGAGGGGCGGAAAGTAACAAGGAGGTGGGGGTACAAATCCTCAGCTCCTGCTTCCGCA AGCACTAACCTGCTCTGAAGTGAGCCAGGCAGCTCTGGCCATCTTTTCCCAGCCACAGAA TCAGGTGATGGTCCAGAATTAAGAGCTGTCACCTGTGTCATTCACTCACAATGGAAGAAA TGAAGAAGACTGCCATCCGGCTGCCCAAAGGCAAACAGAAGCCTATAAAGACGGAATGGA ATTCCCGGTGTGTCCTTTTCACCTACTTCCAAGGGGACATCAGCAGCGTAGTGGATGAAC ACTTCTCCAGAGCTCTGAGCAATATCAAGAGCCCCCAGGAATTGACCCCCTCGAGTCAGA GTGAAGGTGTGATGCTGAAAAACGATGATAGCATGTCTCCAAATCAOTGGCGTTACTCGT CTCCATGGACAAAGCCACAACCAGAAGTACCTGTCACAAACCGTGCCGCCAACTGCAACT TGCATGTGCCTGGTCCCATGGCTGTGAATCAGTTCTCACCGTCCCTGGCTAGGAGGGCCT CTGTTCGGCCTGGGGAGCTGTGGCATTTCTCCTCCCTGGCGGGCACCAGCTCCTTAGAGC CTGGCTACTCTCATCCCTTCCCCGCTCGGCACCTGGTTCCAGAGCCCCAGCCTGATGGGA AACGTGAGCCTCTCCTAAGTCTCCTCCAGCAAGACAGATGCCTAGCCCGTCCTCAGGAAT CTGCCGCCAGGGAGAATGGCAACCCTGGCCAGATAGCTGGAAGCACAGGGTTGCTCTTCA ACCTGCCTCCCGGCTCAGTTCACTATAAGAAACTATATGTATCTCGTGGATCTGCCAGTA CCAGCCTTCCAAATGAAACTCTTTCAGAGTTAGAGACACCTGGGAAATACTCACTTACAC CACCAAACCACTGGGGCCACCCACATCGATACCTGCAGCATCTTTAGTCAAGTTGGAGGA GAAAGACAACACTTGGTCTAAGACACGGCAGCAAGACATCCCTGCATATTGTTCCAGATA AAAATGAAAGCTGCTCACACCCAC TTGCCTCCCCAATCTGTTAAACAGCTTCGTGTCTAG TATGAGCTCAGTACTTGCCCTGTGAAAATCCCAGAAGCCCCCGCTGTCAATGTTCCCCAT CCACACCCTGCTTGCTCCTGTGTAACAGCTCAGATGATGAATAATAATAAAACTGTACTT TTTTGGATGGTGAAAAAAAAAAAAAAAAAAAAAAAAA > Hs .1282_mRNA_3 gi | 4559405 | ref | NM_000065.1 | Homo sapiens complement component 6 (C6), polyA mRNA = l TTGCCTTGTGTTAGCTAGCAATAAGAAAAGAAGCTTTGTTTGGATTAACATATATACCCT CTTCATTCTGCATACCTATTTTTTCCCCAATAATTTGCAGCTTAGGTCCGAGGACACCAC AAACTCTGCTTAAAGGGCCTGGAGGCTCTCAAGGCATGGCCAGACGCTCTGTCTTGTACT TCATCCTGCTGAATGCTCTGATCAACAAGGGCCAAGCCTGCTTCTGTGATCACTATGCAT GGACTCAGTGGACCAGCTGCTCAAAAACTTGCAATTCTGGAACCCAGAGCAGACACAGAC AAATAGTAGTAGATAAGTACTACCAGGAAAACTTTTGTGAACAGATTTGCAGCAAGCAGG AGACTAGAGAATGTAACTGGCAAAGATGCCCCATCAACTGCCTCCTGGGAGATTTTGGAC CATGGTCAGACTGTGACCCTTGTATTGAAAAACAGTCTAAAGTTAGATCTGTCTTGCGTC CCAGTCAGTTTGGGGGACAGCCATGCACTGAGCCTCTGGTAGCCTTTCAACCATGCATTC CATCTAAGCTCTGCAAAATTGAAGAGGCTGACTGCAAGAATAAATTTCGCTGTGACAGTG GCCGCTGCATTGCCAGAAAGTTAGAATGCAATGGAGAAAATGACTGTGGAGACAATTCAG ATGAAAGGGACTGTGGGAGGACAAAGGCAGTATGCACACGGAAGTATAATCCCATCCCTA GTGTACAGTTGATGGGCAATGGGTTTCATTTTCTGGCAGGAGAGCCCAGAGGAGAAGTCC TTGATAACTCTTTCACTGGAGGAATATGTAAAACTGTCAAAAGCAGTAGGACAAGTAATC CATACCGTGTTCCGGCCAATCTGGAAAATGTCGGCTTTGAGGTACAAACTGCAGAAGATG ACTTGAAAACAGATTTCTACAAGGATTTAACTTCTCTTGGACACAATGAAAATCAACAAG GCTCATTCTCAAGTCAGGGGGGGAGCTCTTTCAGTGTACCAATTTTTTATTCCTCAAAGA GAAGTGAAAATATCAACCATAATTCTGCCTTCAAACAAGCCATTCAAGCCTCTCACAAAA AGGATTCTAGTTTTATTAGGATCCATAAAGTGATGAAAGTCTTAAACTTCACAACGAAAG CTAAAGATCTGCACCTTTCTGATGTCTTTTTGAAAGCACTTAACCATCTGCCTCTAGAAT ACAACTCTGCTTTGTACAGCCGAATATTCGATGACTTTGGGACTCATTACTTCACCTCTG GCTCCCTGGGAGGCGTGTATGACCTTCTCTATCAGTTTAGCAGTGAGGAACTAAAGAACT CAGGTTTAACCGAGGAAGAAGCCAAACACTGTGTCAGGATTGAAACAAAGAAACGCGTTT TATTTGCTAAGAAAACAAAAGTGGAACATAGGTGCACCACCAACAAGCTGTCAGAGAAAC ATGAAGGTTCATTTATACAGGGAGCAGAGAAATCCATATCCCTGATTCGAGGTGGAAGGA GTGAATATGGAGCAGCTTTGGCATGGGAGAAAGGGAGCTCTGGTCTGGAGGAGAAGACAT TTTCTGAGTGGTTAGAATCAGTGAAGGAAAATCCTGCTGTGATTGACTTTGAGCTTGCCC CCATCGTGGACTTGGTAAGAAACATCCCCTGTGCAGTGACAAAACGGAACAACCTCAGGA AAGCTTTGCAAGAGTATGCAGCCAAGTTCGATCCTTGCCAGTGTGCTCCATGCCCTAATA ATGGCCGACCCACCCTCTCAGGGACTGAATGTCTGTGTGTGTGTCAGAGTGGCACCTATG GTGAGAACTGTGAGAAACAGTCTCCAGATTATAAATCCAATGCAGTAGACGGACAGTGGG GTTGTTGGTCTTCCTGGAGTACCTGTGATGCTACTTATAAGAGATCGAGAACCCGAGAAT GCA? TAATCCTGCCCCCCAACGAGGAGGGAAACGCTGTGAGGGGGAGAAGCGACAAGAGG AAGACTGCACATTTTCAATCATGGAAAACAATGGACAACCATGTATCAATGATGATGAAG AAATGAAAGAGGTCGATCTTCCTGAGATAGAAGCAGATTCCGGGTGTCCTCAGCCAGTTC CTCCAGAAAATGGATTTATCCGGAATGAAAAGCAACTATACTTGGTTGGAGAAGATGTTG AAATTTCATGCCTTACTGGCTTTGAAACTGTTGGATACCAGTACTTCAGATGCTTACCAG ACGGGACCTGGAGACAAGGGGATGTGGAATGCCAACGGACGGAGTGCATCAAGCCAGTTG TGCAGGAAGTCCTGACAATTACACCATTTCAGAGATTGTATAGAATTGGTGAATCCATTG AGCTAACTTGCCCCAAAGGCTTTGTTGTTGCTGGGCCATCAAGGTACACATGCCAGGGGA ATTCCTGGACACCACCCATTTCAAACTCTCTCACCTGTGAAAAAGATACTCTAACAAAAT TAAAAGGCCATTGTCAGCTGGGACAGAAACAATCAGGATCTGAATGCATTTGTATGTCTC CAGAAGAAGACTGTAGCCATCATTCAGAAGATCTCTGTGTGTTTGACACAGACTCCAACG ATTACTTTACTTCACCCGCTTGTAAGTTTTTGGCTGAGAAATGTTTAAATAATCAGCAAC TCCATTTTCTACATATTGGTTCCTGCCAAGACGGCCGCCAGTTAGAATGGGGTCTTGAAA GGACAAGACTTTCATCCAACAGCACAAAGAAAGAATCCTGTGGCTATGACACCTGCTATG ACTGGGAAAAATGTTCAGCCTCCACTTCCAAATGTGTCTGCCTATTGCCCCCACAGTGCT TCAAGGGTGGAACCAACTCTACTGTGTCAAAATGGGATCATCAACAAGTGAGAAAACAT TGAACATCTGTGAAGTGGGAACTATAAGATGTGCAAACAGGAAGATGsAAATACTGCATC CTGGAAAGTGTTTGGCCTAGCACAATTACTGCTAGGCCCAGCACAATGAACAGATTTACC ^ ATCCCGAAGAACCAACTCCTACAAATGAGAATTCTTGCACAAACAGCAGACTGGCATGCT CAAAGTTACTGACAAAAATTATTTTCTGTTAGTTTGAGATCATTATTCTCCCCTGACTCT CCTGTTTGGGCATGTCTTATTCAGTTCCAGCTCATGACGCCCTGTAGCATACCCCTAGGT ACCAACTTCCACAGCAGTCTCGTAAATTCTCCTGTTCACATTGTACAAAAATAATGTGAC TTCTGAGGCCCTTATGTAGCCTGTGACATTAAGCATTCTCACAATTAGAAATAAGAATAA AACCCATAATTTTCTTCAATGAGTTAATAAACAGAAATCTCCAGAACCTCTGAAACACAT tCTTGAAGCCCAGCTTTCATATCTTCATTCAACAAATAATTTCTGAGTGTGTATACAGGA TGTCAAGTACTGACCAAAGTCCTGAGAACTCGGCAGATAATAAAACAGACAAAAGCCTTT AAATATGTAGC >GCCTTCATGAAGCATACATTCATTCAGGGGTAGACACACAAAAAATGAAATAAACAGGTA; Hs.268562_mRNA__2 gi | 15341874 | gb | BC013117.1 | BC013117 Homo sapiens clone MGC: 8711 IMAGE: 3882749 polyA = 3 October CTCTCCTCGCCCGCTGGGTGCTGAAGTTGGGCGGATGGCAGCAAACCGGCTCCGCTAGAG GACCGAGCCGCCCAGCCCCGCTCCCCCGGACCCATCGGCGCGCTGCCCACACCTCCAGGC GACCGGCCAACTGGGTCCTGAAGTAGCTGAAATGCGAAAAAGGCAGCAGTCCCAAAATGA AGGAACACCTGCCGTGTCTCAAGCTCCTGGAAACCAGAGGCCCAACAACACCTGTTGCTT TTGTTGGTGCTGTTGTTGCAGCTGCTCCTGCCTCACTGTGAGGAATGAAGAAAGAGGGGA AAATGCGGGAAGACCCACACACACTACAAAAATGGAGAGTATCCAGGTCCTAGAGGAATG CCAAAACCCCACTsCAGAGGAAGTCTTGTCCTGGTCTCAAAATTTTGACAAGATGATGAA GGCCCCAGCAGGAAGAAACCTTTTCAGAGAGTTCCTCCGAACAGAATACAGTGAAGAGAA CCTACTTTTCTGGCTTGCTTGTGAAGACTTAAAGAAGGAGCAGAACAAAA ^ AGTAATTGA AGAAAAGGCTAGGATGATATATGAAGATTACATTTCTATACTATCACCAAAAGAGsTCAG TCTTGATTCTCGAGTTAGAGAGGtsATCAATAGAAATCTGTTGGATCCCAATCCTCACAT GTATGAAGATGCCCAACTTCAGATATATACTTTAAtGCACAGAGATTCTTTTCCAAGGTT 15 TTTGAACTCTCAAATTTATAAGTCATTTGTTGAAAGTACTGCTGGCTCTTCTTCTGAATC TTAATGTTCATTTAAAAACAATCATTTTGGAGGGCTGAGATGGGAAATAAAAGTAGTTAA ATAACATCAGAAACTGAGTTCCTGGAGAACTACAGTTTAGCATTCCTCAGGCTACTGTGA AAACACAACC! GTTATGGTCTTTGTCTCCATTTTTATCAAGGTTTTCCATGGTTAAGTTTG GAGAAAATACCACACAAAACAATGAATTGCCAAATTGTTTGTTTTATTCAAGACTCATTC TACTTGCAAGCAAAGTGTATTTGTAGTCCTATGAACAGTCTCCTCGTGTATCTCCAGAGA CTGCATGTGCAAAGTAAAATGCTTCATTTGCCACATAGTTGTTGTAATATTTAATCCAGT AGCATAACTTATA CTGTAT TAAGGACTTTTGTGCAATATGGTCTTAAGAAATAATTGC CAAAAAAATCGGCCATGGTTCTGCATTTTTAACATAATCTAAGACAGAAAAAAAGCAATT TTTACTATGTAACAATGGTATTCAACATTCTATATACTGTGTTTAGTACACTAATTTTGA AGCCAATATTTCTGTACATGAAAAAGAGCTATTTATCTCTGTTTGTTGGAAAATCCTAAT GGGGATTCCTCTGGTTGTTCACTGCCAAAACTGTGGCATTTTCATTACAGGAGAGTTTAC Q TATGCTAAAAGCAAAAAACAAAAAAAAAAAAAAAGGGAAGAAGGAAAAAAGCAAAAAACA ATTTGAAGATATCCTATCTCAATGACAAATCAAAAGAGTGATATTGCTTTTAACTGTAAT AGAAGAAAATGAATTTATGTATATATCAGATGTCCAATACTGTAATTAATTTATTAAAGA CTGGCTCTCCAGTTTTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > Hs.l51301_mRNA_3 gi | 16041747 jgb | BC015754.1 | BC015754 Homo sapiens clone MGC: 23085 IMAGE: 862492 polyA = 3 AAAAGAACCAGGATTGCATTTGAAGTTAAGCTGCAAAAAACCAGTCGATCAACAGATTTT CGAGTCCCACAGTCAATATGCACCATGTTTAATGTTATGGTTGATGCCAAAGCTCAATCA ACAAAACTTTGCAGCATGGAAATGGGCCAAGAGTTTGCTAAAATGTGGCATCAATACCAT TCAAAAATAGACGAACTAATTGAAGAAACTGTTAAAGAAATGATAACACTCTTGGTTGCA AAGTTCGTTACTATCTTGGAAGGAGTGCTGGCAAAATTATCCAGATATGACGAAGGGACT TTGTTTTCTTCTTTTCTGTCATTTACCGTGAAGGCAGCTTCCAAATATGTGGATGTACCT AAACCCGGGATGGACGTGGCCGACGCCTACGTGACTTTCGTCCGCCATTCTCAGGATGTC -5 CTGCGTGATAAGGTCAATGAGGAGATGTACATAGAAAGGTTATTTGATCAATGGTACAAC AGCTCCATGAACGTGATCTGCACCTGGTTGACGGACCGGATGGACTTACAGCTTCATATT TATCAGTTGAAAACACTAATTAGGATGGTAAAGAAAACCTACAGAGATTTCCGATTGCAA GGGGTCCTGGACTCCACCTTAAACAGCAAGACCTATGAAACGATCCGGAACCGTCTCACT GTGGAGGAAGCCACAGCATCAGTGAGTGAAGGTGGGGGACTGCAGGGCATCAGCATGAAG GACAGCGATGAGGAAGACGAAGAAGACGATTAGACCATTTGGTCCTAGAGTCTGCTGGGA CAGAGTCCTGTAATCAGTGCATGTCCTTAGTCTGTTAGTTAAACCCATTAGGAATTTTCT GTCAACTACCATGCCCATGAGATGTTTATCAATACAACTGCCATTTTAGCTATGTGGTAC CAAGATTAGCAAATGACCTTCATATCCACTGATTTCCTGATGTCCATGTCTATATGTTTA CAAGCAATATGGAGCACCATTCTTTAAATACTGTTCATGGAGAATACATAGTCTAACCAC TAGGCGTGTCCCTGTTATCAGCAAAGATCAATGATGCTTCATTCATGTACTATGTATGCA TTGGTGGTAAATGGATGTGAGGGCAAGTACATCAAGTACATTCACTCTGTTTCACGTATG TGGATGCCAGTTAATTAAATGAGTACGTAAATAAATTAATTAAAACACATAGATCTGCTT TGTGTTTTTATTTTTATTTTTTGAAAAACAAAAGGCAAGTCTCCAACAATTAACTTTTGA TGCTTTCTGTTCCCCTAAAACCAAAAAATGAACCCCTTGTGTCGTTGTTAACCCATCCTT TCATTTACTCATATAATTAGCCAAAAAAAAAAGGATGGCTACATACCAATGGATTGATTC TCTTAATTGCCACGGCAAGGGGGCGATCCTATCATGACTTAACATCAAGCGCGCAGTTCA AAACTACTGTCTTCTGTCAAAGTT TTCTCCTCTTAAATGTTATTTTGCTTTTACGTCTCA ACTGTGTATGTAAAAAAAACGAATATTTAAATTACAACCCTAGACTAAAAATGTGTTTAT AATAAGATGTGGATATTTCCTTCAGTAGATTGTAACCATAATTTAAATTATTTTGTTCCA CACTGTTTTTTATATCTGTCATGTACATTGCATTTTGATCTGTAACTGCACAACCCTGGG GTTTGCTGCAGAGCTATTTCTTTCCATGTAAAGTAGTGGATCCATCTTGCTTTTGCCTTA TATAAAGCCTACAGTTATGGAAGTGTGGAAAACTGTGGCTTCTCAATAAATATTCAGATG TCCTAAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA > Hs.lll_contigl AA946776 | AW242338 | H24274 | AI078616 polyA = l polyA = 2 ACCTGAACTGTCTAAGATATTCTAAGCAAAGTTGACAAAGACAATTCTCCACTTGAGCCC TTAAAAATGTAACCACTATAAAGGTTTCACGCGGTGGTTCTTATTGATTCGCTGTGTCAT CACATCAGCTCCACTGTTGCCAAACTTTGTCGCATGCATAATGTATGATGGAGGCTTGGA TGGGAATATGCTGATTTTGTTCTGCACTTAAAGGCTTCTCCTCCTGGAGGGCTGCCTAGG GCCACTTGCTTGATTTATCATGAGAGAAGAGGAGAGAGAGAGAGACTGAGCGCTAGGAGT GTGTGTATGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTATGTGTGTAGCGGGAGATGTGG GCGGAGCGAGAGCAAAAGGACTGCGGCCTGATGCATGCTGGAAAAAGACACGCTTTTCAT TTCTGATCAGTTGTACTTCATCCTATATCAGCACAGCTGCCATACTTCGACTTATCAGGA TTCTGGCTGGTGGCCTGCGCGAGGGTGCAGTCTTACTTAAAAGACTTTCAGTTAATTCTC ACTGGTATCATCGCAGTGAACTTAAAGCAAAGACCTCTTAGTAAAAAATAAAAAAAATAA A > Hs.l50753_cont? Gl AI123582 | AI288234 polyA = 0 polyA = 0 GCTTCTCTTTAAAATTGACCCAAGGCATGAGCCACTGCGCCTGGCCAGCAAATGCTTTTT GTGCAGAATACACTTCTTTCAGGCATTGTCAGGTGCTGTTTTGTTTAAGCTCTAACTCAC CCCTGGAATACAGGGGAATGATGACAACCAGCCCAGCCAGGCCTGACTCATCATGGTCAC ATCCAGCCCCCACCCCCGGCCAACTAACCACTGCAGGCTCCTCTTCCAGACTCACCAGGG GGCCTCGAGGCCCCGGCATCTCCCTTGGCCCTGGGTGTGGGTTTTACAAGACTGTGTCTT TCATGACATCATAGCCCAACCATGTGAGAAGAAGGAGAAGGCCCCCCTTTCTTCATTAAT CTGAAAA > Hs.82109_mRNA_l gi) 14250611 | gb | BC008765.1 | BC008765 Homo sapiens clone MGC: 1622 IMAGE: 3347793 polyA = 3 GGCACGAGGAAGGGCCTGTGGGTTTATTATAAGGCGGAGCTCGGCGGGAGAGGTGCGGGC CGAATCCGAGCCGAGCGGAGAGGAATCCGGCAGTAGAGAGCGGACTCCAGCCGGCGGACC CTGCAGCCCTCGCCTGGGACAGCGGCGCGCTGGGCAGGCGCCCAAGAGAGCATCGAGCAG CGGAACCCGCGAAGCCGGCCCGCAGCCGCGACCCGCGCAGCCTGCCGCTCTCCCGCCGCC GGTCCGGGCAGCATGAGGCGCGCGGCGCTCTGGCTCTGGCTGTGCGCGCTGGCGCTGAGC CTGCAGCCGGCCCTGCCGCAAATTGTGGCTACTAATTTGCCCCCTGAAGATCAAGATGGC TCTGGGGATGACTCTGACAACTTCTCCGGCTCAGGTGCAGGTGCTTTGCAAGATATCACC TTGTCACAGCAGACCCCCTCCACTTGGAAGGACACGCAGCTCCTGACGGCTATTCCCACG TCTCCAGAACCCACCGGCCTGGAGGCTACAGCTGCCTCCACCTCCACCCTGCCGGCTGGA GAGGGGCCCAAGGAGGGAGAGGCTGTAGTCCTGCCAGAAGTGGAGCCTGGCCTCACCGCC CGGGAGCAGGAGGCCACCCCCCGACCCAGGGAGACCACACAGCTCCCGACCACTCATCAG GCCTCAACGACCACAGCCACCACGGCCCAGGAGCCCGCCACCTCCCACCCCCACAGGGAC ATGCAGCCTGGCCACCATGAGACCTCAACCCCTGCAGGACCCAGCCAAGCTGACCTTCAC ACTCCCCACACAGAGGATGGAGGTCCTTCTGCCACCGAGAGGGCTGCTGAGGATGGAGCC TCCAGTCAGCTCCCAGCAGCAGAGGGCTCTGGGGAGCAGGACTTCACCTTTGAAACCTCG GGGGAGAATACGGCTGTAGTGGCCGTGGAGCCTGACCGCCGGAACCAGTCCCCAGTGGAT CAGGGGGCCACGGGGGCCTCACAGGGCCTCCTGGACAGGAAAOAGGTGCTGGGAGGGGTC ATTGCCGTAGGCCTCGTGGGGCTCATCTTTGCTGTGTGCCTGGTGGGTTTCATGCTGTAC CGCATGAAGAAGAAGsACGAAGGCAGCTACTCCTTGGAsGAGCCGAAACAAGCCAACGGC GGGGCCTACCAGAAGCCCACCAAACAGGAGGAATTCTATGCCTGACGCGGGAGCCATGCG CCCCCTCCGCCCTGCCACTCACTAGGCCCCCACTTGCCTCTTCCTTGAAGAACTGCAGGC CCTGGCCTCCCCTGCCACCAGGCCACCTCCCCAGCATTCCAGCCCCTCTGGTCGCTCCTG CCCACGGAGTCGTGGGGTGTGCTGGGAGCTCCACTCTGCTTCTCTGACTTCTGCCTGGAG ACTTAGGGCACCAGGGGTTTCTCGCATAGGACCTTTCCACCACAGCCAGCACCTGGCATC GCACCATTCTGACTCGGTTTCTCCAAACTGAAGCAGCCTCTCCCCAGGTCCAGCTCTGGA 5 GGGGAGGGGGATCCGACTGCTTTGGACCTAAATGGCCTCATGTGGCTGGAAGATCCTGCG GGTGGGGCTTGGGGCTCACACACCTGTAGCACTTACTGGTAGGACCAAGCATCTTGGGGG GGtGGCCGCTGAGTGGCAGGGGACAGGAGTCCACTTTGTTTCGTGGGGAGGTCTAATCTA GATATCGACTTGTTTTTGCACATGTTTCCTCTAGTTCTTTGTTCATAGCCCAGTAGACCT TGTTACTTCTGAGGTAAGTTAAGTAAG TGATTCGGTATCCCCCCATCTTGCTTCCCTAA TCTATGGTCGGGAGACAGCATCAGGGTTAAGAAGACTTTTTTTTTTTTTTTTTTTAAACT AGGAGAACCAAATCTGGAAGCCAAAATGTAGGCTTAGTTTGTGTGTTGTCTCTTGAGTTT GTCGCTCATGTGTGCAACAGGGTATGGACTATCTGTCTGGTGGCCCCGTTTCTGGTGGTC TGTTGGCAGGCTGGCCAGTCCAGGCTGCCGTGGGGCCaCCGCCTCTTTCAAGCAGTCGTG CCTGTGTCCATGCGCTCAGGGCCATGCTGAGGCCTGGGCCGCTGCCACGTTGGAGAAGCC CGTGTGAGAAGTGAATGCTGGGACTCAGCCTTCAGACAGAGAGGACTGTAGGGAGGGCGG CAGGGGCCTGGAGATCCTCCTGCAGACCACGCCCGTCCTGCCTGTGGCGCCGTCTCCAGG GGCTGCTTCCTCCTGGAAATTGACGAGGGGTGTCTTGGGCAGAGCTGGCTCTGAGCGCCT 1 CCATCCAAGGCCAGG TTCTCCGTTAGCTCCTGTGGCCCCACCCTGGGCCCTGGGCTGGAA TCAGGAATATTTTCCAAAGAGTGATAGTCTTTTGCTTTTGGCAAAACTCTACTTAATCCA ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ >ATGGGTTTTTCCCTGtACAGTAsATTTTCCAAATGTAATAAACTTTAATATAAAGTAAAA; Hs.44276_mRNA_2 gi | 12654896 | gb | BC001293.1 | BC001293 Homo sapiens clone MGC: 5259 IMAGE: 3458115 polyA = 3 CGGATGGGGAAAAAAAAAGATGTCAGCTCCTCCGCTGTAGTATTGCTCCTTAAAAACCCC TCTCTCTGAAAATGACATGCCCTCGCAATGTAACTCCGAACTCGTACGCGGAGCCCTTGG CTGCGCCCGGCGGAGGAGAGCGCTATAGCCGGAGCGCAGGCATGTATATGCAGTCTGGGA GTGACTTCAATTGCGGGGTGATGAGGGGCTGCGGGCTCGCGCCCTCGCTCTCCAAGAGGG ACGAGGGCAGCAGCCCCAGCCTCGCCCTCAACACCTATCCGTCCTACCTCTCGCAGCTGG ACTCCTGGGGCGACCCCAAAGCCGCCTATCGCCTGGAACAACCTGTTGGCAGGCCGCTGT | 5 CCTCCTGCTCCTACCCACCTAGTGTCAAGGAGGAGAATGTCTGCTGCATGTACAGCGCAG AGAAGCGGGCGAAAAGTGGCCCCGAGGCAGCTCTCTACTCCCACCCCTTGCCGGAGTCCT GCCTTGGGGAGCACGAGGTACCCGTGCCCAGCTACTACCGCGCCAGCCCGAGCTACTCCG CGCTGGACAAGACGCCCCACTGTTCTGGGGCCAACGACTTCGAAGCCCCTTTCGAGCAGC GGGCCAGTCTCAACCCGCGCGCCGAACATCTGGAATCGCCTCAGCTGGGGGGCAAAGTGA GTTTCCCTGAGACCCCCAAGTCCGACAGCCAGACCCCCAGCCCCAATGAAATCAAGACGG AGCAGAGCCTGGCGGGCCCTAAAGGGAGCCCCTCGGAGAGCGAAAAGGAGAGGGCCAAAG CTGCCGACTCCAGCCCAGACACCTCGGATAACGAAGCGAAAGAGGAGATAAAGGCAGAAA ACACCACAGGAAATTGGCTGACAGCAAAGAGCGGAAGGAAGAAGAGGTGCCCCTATACTA AACACCAGACGCTGGAATTGGAGAAAGAATTTCTGTTCAATATGTATTTGACGCGAGAGC. GCCGCCTGGAGATTAGCAAGACCATTAACCTTACAGACAGACAAGTCAAAATCTGGTTTC AAAATCGCAGAATGAAACTCAAGAAAATGAACCGAGAGAATCGGATCCGGGAACTGACCT n CCAATTTTAATTTCACCTGAGAGCGCGGCCTCTCCTCCTCCCTTCCCGCTCCTTCCTCTC CCCGCCCCTCCTCCCTTTGTGCCTGGTGATATATTTTTTTTTCCTCCCTGAGTATAAATG CAATGCGACTGCAAAAAAGGCAAAGACCTCAGACTCTCCTTCCAAGGGACCTGTGGTTCG TGCTGCGAAGATGCTTCCACTTAAAGCATGAGAAATGGGGTGCCGGGATGTGGGGTGTGG TGTGTGCCCTCATAGATGGGGGTGGGAGTGTGGCTGGTGTGTGTGTCAAACCCTCACTCA CCCACGCACTCACACACAGCATTCTGTTCTCCATGCAAAGTTAAGATCGAATCCATCCGC TTGTAGGGGAAAAAAAGGAAAAAAATTAACCAGAGAGGGTCTGTAATCTCGCAGAGCACA GGCAGAATCGTTCCTTCCTTGCTGCATTTCCTCCTTAGACTAATAGACGTTTTGGAAAGT TCGGCTAGTGTTCGTGTGTTTGTCGTAGCACCCAGAGCCTCCACCAAACCCTCTCCATGT CTTTACCTCCCAGTCGCTCTAAGAATCTGCTTGAAGTCTCGTATTTGTACTGCTTTCTGC TTTTCTCCCACCCCTCCTAGCACCCCCACATCCCCCATCTAGTAACATCTCAGAAATTTC ATCCAGAGGAACAAAAAAATTAAAAATAGAACATAGCAAAGCAAAGACAGAATGCCCCCC CCCAAATATTGTCCTGTCCCTGTCTGGGAGTTGTGTTATTTAAAGATATTCTGTATGTTG 25 TATCTTTTGCATGTAGCTTCCTTAATGGAGAAAAAAAAATCCTAATAAATTTCCAGAATC ATAATCCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Hs.2142_mRNA_4 gi | 13325274 | gb | BC004453.1 | BC004453 Homo sapiens clone MGC: 4303 IMAGE: 2819400 polyA = 3 GCAGTGGCCACGAGAGGCAGGCTGGCTGGGACATGAGGTTGGCAGAGGGCAGGCAAGCTG GCCCTTGGTGGGCCTCGTCCTGAGCACTCGGAGGCACTCCTATGCTTGGAAAGCTCGCTA TGCTGCTGTGGGTCCAGCAGGCGCTGCTCGCCTTGCTCCTCCCCACACTCCTGGCACAGG GAGAAGCCAGGAGGAGCCGAAACACCACCAGGCCCGCTCTGCTGAGGCTGTCGGATTACC TTTTGACCAACTACAGGAAGGGTGTGCGCCCCGTGAGGGACTGGAGGAAGCCAACCACCG TATCCATTGACGTCATTGTCTATGCCATCCTCAACGTGGATGAGAAGAATCAGGTGCTGA CCACCTACATCTGGTACCGGCAGTACTGGACTGATGAGTTTCTCCAGTGGAACCCTGAGG ACTTTGACAACATCACCAAGTTGTCCATCCCCACGGACAGCATCTGGGTCCCGGACATTC TCATCAATGAGTTCGTGGATGTGGGGAAGTCTCCAAATATCCCGTACGTGTATATTCGGC ATCAAGGCGAAGTTCAGAACTACAAGCCCCTTCAGGTGGTGACTGCCTGTAGCCTCGACA TCTACAACTTCCCCTTCGATGTCCAGAACTGCTCGCTGACCTTCACCAGTTGGCTGCACA CCATCCAGGACATCAACATCTCTTTGTGGCGCTTGCCAGAAAAGGTGAAATCCGACAGGA GTGTCTTCATGAACCAGGGAGAGTGGGAGTTGCTGGGGGTGCTGCCCTACTTTCGGGAGT TCAGCATGGAAAGCAGTAACTACTATGCAGAAATGAAGTTCTATGTGGTCATCCGCCGGC GGCCCCTCTTCTATGTGGTCAGCCTGCTACTGCCCAGCATCTTCCTCATGGTCATGGACA TCGTGGGCTTCT ACCTGCCCCCCAACAGTGGCGAGAGGGTCTCTTTCAAGATTACACTCC TCCTGGGCTACTCGGTCTTCCTGATCATCGTTTCTGACACGCTGCCGGCCACTGCCATCG GCACTCCTCTCATTGGTGTCTACTTTGTGGTGTGCATGGCTCTGCTGGTGATAAGTTTGG CCGAGACCATCTTCATTGTGCGGCTGGTGCACAAGCAAGACCTGCAGCAGCCCGTGCCTG CTTGGCTGCGTCACCTGGTTCTGGAGAGAATCGCCTGGCTACTTTGCCTGAGGGAGCAGT CAACTTCCCAGAGGCCCCCAGCCACCTCCCAAGCCACCAAGACTGATGACTGCTCAGCCA TGGGAAACCACTGCAGCCACATGGGAGGACCCCAGGACTTCGAGAAGAGCCCGAGGGACA GATGTAGCCCTCCCCCACCACCTCGGGAGGCCTCGCTGGCGGTGTGTGGGCTGCTGCAGG AGCTGTCCTCCATCCGGCAATTCCTGGAAAAGCGGGATGAGATCCGAGAGGTGGCCCGAG ACTGGCTGCGCGTGGGCTCCGTGCTGGACAAGCTGCTATTCCACATTTACCTGCTGGCGG TGCTGGCCTACAGCATCACCCTGGTTATGCTCTGGTCCATCTGGCAGTACGCTTGAGTGG GTACAGCCCAGTGGAGGAGGGGGTACAGTCCTGGTTAGGTGGGGACAGAGGATTTCTGCT TAGGCCCCTCAGGACCCAGGGAATGCCAGGGACATTTTCAAGACACAGACAAAGTCCCGT GCCCTGTTTCCAATGCCAATTCATCTCAGCAATCACAAGCCAAGGTCTGAACCCTTCCAC CAAAAACTGGGTGTTCAAGGCCCTTACACCCTTGTCCCACCCCCAGCAGCTCACCATGGC TTTAAAACATGCTCTCTTAGATCAGGAGAAACTCGGGCACTCCCTAAGTCCACTCTAGTT GTGGACTTTTCCCCATTGACCCTCACCTGAATAAGG GACTTTGGAATTCTGCTTCTCTTT CACAACTTTGCTTTTAGGTTGAAGGCAAAACCAACTCTCTACTACACAGGCCTGATAACT CTGTACGAGGCTTCTCTAACCCCTAGTGTCTTTTTTTTCTTCACCTCACXTGTGGCAGCT TCCCTGAACACTCATCCCCCATCAGATGATGGGAGTGGGAAGAATAAAATGCAGTGAAAC CCTAAAAAAAAAAAAAAAAAAAAAA > HS.180908_ContÍgl AA846824 | AW611680 | AA846182 | AA846342 | AA846360 polyA = 2 polyA = 3 TCTTCGCTCCTCTACCCCATAAAATTCCCTACAAATGCAAAAATTCGAGATAGAAGAAGC CGTCCCTGAAATTGCTGTCTAACATTCACCGGAAACCTCTCCATAAACAAGGAGAAACGA ATGCACACGCATTTTTGCTAAGAAGCCCGGGATTAAGATTTAAGGATACAAGCTGAAAGA AAAAATGAAAAATGCTTCTCCGCGCGTCAATCGAGGGGTGGATGCGCCACGCAGCTGAGC CCAGCTCACAGCCACGCGTAAGACCAAAAGCTGCCATGGGTTCTGCGCGCGGAGACCTCA GAGCCGAAGAGAGAAGTCCCCGCGTCAGAAACGCTGCGGATGCCAGGTCTTGAAAATGCT GACTTCTGAGGCTAAGAATTATTTCAAAGACAAAAAGAAAAGACTGGTGAGGAGGCCTTC CGGTGCAAGGGCGCCTATCCGCTAATTTTGGATGGGGAAGTAGGGATTATTCGTTTAAAT TCAATCGCGAGCACCAAGTCGGACTGGCCGGGGATGGAGAAGGGCAACCCCCACCTTTAG AAAAATAAAAGATCTCGAAGGCCAAAAAAAAAAA > Hs.89 36_mRNA_l gi | 16507959 | ref | NM_004063.2 | Homo sapiens cadherin 17, cadherin Ll (liver-intestine) (CDH17), mRNA polyA = l AGGGAGTGTTCCCGGGGGAGATACTCCAGTCGTAGCAAGAGTCTCGACCACTGAATGGAA GAAAAGGACTTTTAACCACCATTTTGTGACTTACAGAAAGGAATTTGAATAAAGAAAACT ATGATACTTCAGGCCCATCTTCACTCCCTGTGTCTTCTTATGCTTTATTTGGCAACTGGA TATGGCCAAGAGGGGAAGTTTAGTGGACCCCTGAAACCCATGACATTTTCTATTTATGAA GGCCAAGAACCGAGTCAAATTATATTCCAGTTTAAGGCCAATCCTCCTGCTGTGACTTTT GAACTAACTGGGGAGACAGACAACATATTTGTGATAGAACGGGAGGGACTTCTGTATTAC AACAGAGCCTTGGACAGGGAAACAAGATCTACTCACAATCTCCAGGTTGCAGCCCTGGAC GCTAATGGAATTATAGTGGAGGGTCCAGTCCCTATCACCATAGAAGTGAAGGACATCAAC GACAATCGACCCACGTTTCTCCAGTCAAAGTACGAAGGCTCAGTAAGGCAGAACTCTCGC CCAGGAAAGCCCTTCTTGTATGTCAATGCCACAGACCTGGATGATCCGGCCACTCCCAAT GGCCAGCTTTATTACCAGATTGTCATCCAGCTTCCCATGATCAACAATGTCATGTACTTT CAGATCAACAACAAAACGGGAGCCATCTCTCTTACCCGAGAGGGATCTCAGGAATTGAAT CCTGCTAAGAATCCTTCCTATAATCTGGTGATCTCAGTGAAGGACATGGGAGGCCAGAGT GAGAATTCCTTCAGTGATACCACATCTGTGGATATCATAGTGACAGAGAATATTTGGAAA GCACCAAAACCTGTGGAGATGGTGGAAAACTCAACTGATCCTCACCCCATCAAAATCACT CAGGTGCGGTGGAATGATCCCGGTGCACAATATTCCTTAGTTGACAAAGAGAAGCTGCCA AGATTCCCATTTTCAATTGACCAGGAAGGAGATATTTACGTGACTCAGCCCTTGGACCGA GAAGAAAAGGATGCATATGTTTTTTATGCAGTTGCAAAGGATGAGTACGGAAAACCACTT 5 TCATATCCGCTGGAAATTCATGTAAAAGTTAAAGATATTAATGATAATCCACCTACATGT CCGTCACCAGTAACCGTATTTGAGGTCCAGGAGAATGAACGACTGGGTAACAGTATCGGG ACCCTTACTGCACATGACAGGGATGAAGAAAATACTGCCAACAGTTTTCTAAACTACAGG ATTGTGGAGCAAACTCCCAAACTTCCCATGGATGGACTCTTCCTAATCCAAACCTATGCT GGAATGTTACAGTTAGCTAAACAGTCCTTGAAGAAGCAAGATACTCCTCAGTACAACTTA ACGATAGAGGTGTCTGACAAAGATTTCAAGACCCTTTGTTTTGTGCAAATCAACGTTATT GATATCAATGATCAGATCCCCATCTTTGAAAAATCAGATTATGGAAACCTGACTCTTGCT GAAGACACAAACATTGGGTCCACCATCTTAACCATCCAGGCCACTGATGCTGATGAGCCA TTTACTGGGAGTTCTAAAATTCTGTATCATATCATAAAGGGAGACAGTGAGGGACGCCTG GGGGTTGACACAGATCCCCATACCAACACCGGATATGTCATAATTAAAAAGCCTCTTGAT TTTGAAACAGCAGCTGTTTCCAACATTGTGTTCAAAGCAGAAAATCCTGAGCCTCTAGTG TTTGGTGTGAAGTACAATGCAAGTTCTTTTGCCAAGTTCACGCTTATTGTGACAGATGTG I O AATGAAGCACCTCAATTTTCCCAACACGTATTCCAAGCGAAAGTCAGTGAGGATGTAGCT ATAGGCACTAAAGTsGGCAATGTGACXGCCAAGGATCCAGAAGGTCTGGACATAAGCTAT TCACTGAGGGGAGACACAAGAGGTTGGCTTAAAATTGACCACGTGACTGGTGAGATCTTT AGTGTGGCTCCATTGGACAGAGAAGCCGGAAGTCCATATCGGGTACAAGTGGTGGCCACA GAAGTAGGGGGGTCTTCCTTGAGCTCTGTGTCAGAGTTCCACCTGATCCTTATGGATGTG AATGACAACCCTCCCAGGCTAGCCAAGGACTACACGGGCTTGTTCTTCTGCCATCCCCTC AGTGCACCTGGAAGTCTCATTTTCGAGGCTACTGATGATGATCAGCACTTATTTCGGGGT CCCCATTTTACATTTTCCCTCGGCAGTGGAAGCTTACAAAACGACTGGGAAGTTTCCAAA ATCAATGGTACTCATGCCCGACTGTCTACCAGGCACACAGAGTTTGAGGAGAGGGAGTAT GTCGTCTTGATCCGCATCAATGATGGGGGTCGGCCACCCTTGGAAGGCATTGTTTCTTTA CCAGTTACATTCTGCAGTTGTGTGGAAGGAAGTTGTTTCCGGCCAGCAGGTCACCAGACT GGGATACCCACTGTGGGCATGGCAGTTGGTATACTGCTGACCACCCTTCTGGTGATTGGT 15 ATAATTTTAGCAGTTGTGTTTATCCGCATAAAGAAGGATAAAGGCAAAGATAATGTTGAA AGTGCTCAAGCATCTGAAGTCAAACCTCTGAGAAGCTGAATTTGAAAAGGAATGTTTGAA TTTATATAGCAAGTGCTATTTCAGCAACAACCATCTCATCCTATTACTTTTCATCTAACG TGCATTATAATTTTTTAAACAGATATTCCCTCTTGTCCTTTAATATTTGCTAAATATTTC TTTTTTGAGGTGGA GTCTTGCTCTGTCGCCCAGGCTGGAGTACAGTGGTGTGATCCCAGC TCACTGCAACCTCCGCCTCCTGGGTTCACATGATTCTCCTGCCTCAGCTTCCTAAGTAGC TGGGTTTACAGGCACCCACCACCATGCCCAGCTAATTTTTGTATTTTTAATAGAGACGGG GTTTCGCCATTTGGCCAGGCTGGTCTTGAACTCCTGACGTCAAGTGATCTGCCTGCCTTG GTCTCCCAATACAGGCATGAACCACTGCACCCACCTACTTAGATATTTCATGTGCTATAG ACATTAGAGAGATTTTTCATTTTTCCATGACATTTTTCCTCTCTGCAAATGGCTTAGCTA CTTGTGTTTTTCCCTTTTGGGGCAAGACAGACTCATTAAATATTCTGTACATTTTTTCTT TATCAAGGAGATATATCAGTGTTGTCTCATAGAACTGCCTGGATTCCATTTATGTTTTTT CTGATTCCATCCTGTGTCCCCTTCATCCTTGACTCCTTTGGTATTTCACTGAATTTCAAA "O CATTTGTCAGAGAAGAAAAACGTGAGGACTCAGGAAAAATAAATAAATAAAAGAACAGCC TTTTCCCTTAGTATTAACAGAAATGTTTCTGTGTCATTAACCATCTTTAATCAATGTGAC ATGTTGCTCTTTGGCTGAAATTCTTCAACTTGGAAATGACACAGACCCACAGAAGGTGTT CAAACACAACCTACTCTGCAAACCTTGGTAAAGGAACCAGTCAGCTGGCCAGATTTCCTC ACTACCTGCCATGCATACATGCTGCGCATGTTTTCTTCATTCGTATGTTAGTAAAGTTTT GGTTATTATATATTTAACATGTGGAAGAAAACAAGACATGAAAAGAGTGGTGACAAATCA AGAATAAACACTGGTTGTAGTCAGTTTTGTTTGTTAA > Hs.l51544_mRNA_8 gi | 3153107 | em | AL023657.1 | HSDSHP SH2D1A Homo sapiens cDNA, formerly known as DSHP polyA = 3 AAATCCTTCTTCCAATGTTCCTCCCCTCTCTGTATGAACCCTGTGTTGGGGGGCAGAAGA TGGAAGCCCTTGGCAAGCTCGATCGAACCAAGCTACTAAATTGCTGAGCTCGTTTTAACT GAAGTGTGAGAAGGAGGTTTAAGGCAAGTAGACAACATCCTGTTGTTGGGGTGCTTCTCT 25 CTTTTTTGCACATCTGGCTGAACTGGGAGTCAGGTGGTTGACTTGTGCCTGGCTGCAGTA GCAGCGGCATCTCCCTTGCACAGTTCTCCTCCTCGGCCTGCCCAAGAGTCCACCAGGCCA TGGACGCAGTGGCTGTGTATCATGGCAAAATCAGCAGGGAAACCGGCGAGAAGCTCCTGC TTGCCACTGGGCTGGATGGCAGCTATTTGCTGAGGGACAGCGAGAGCGTGCCAGGCGTGT ACTGCCTATGTGTGCTGTATCACGGTTACATTTATACATACCGAGTGTCCCAGACAGAAA CAGGTTCTTGGAGTGCTGAGACAGCACCTGGGGTACATAAAAGATATTTCCGGAAAATAA AAAATCTCATTTCAGCATTTCAGAAGCCAGATCAAGGCATTGTAATACCTCTGCAGTATC CAGTTGAGAAGAAGTCCTCAGCTAGAAGTACACAAGGTACTACAGGGATAAGAGAAGATC CTGATGTCTGCCTGAAAGCCCCATGAAGAAAAATAAAACACCTTGTACTTTATTTTCTAT AATTTAAATATATGCTAAGTCTTATATATTGTAGATAATACAGTTCGGTGAGCTACAAAT GCATTTCTAAAGCCATTGTAGTCCTGTAATGGAAGCATCTAGCATGTCGTCAAAGCTGAA ATGGACTTTTGTACATAGTGAGGAGCTTTGAAACGAGGATTGGGAAAAAGTAATTCCGTA GGTTATTTTCAGTTATTATATTTACAAATGGGAAACAAAAGGATAATGAATACTTTATAA AGGATTAATGTCAATTCTTGCCAAATATAAATAAAAATAATCCTCAGTTTTTGTGAAAAG CTCCATTTTTAGTGAAATATTATTTTATAGCTACTAATTTTAAAATGTCTTGCTTGATTG TATGGTGGGAAGTTGGCTGGTGTCCCTTGTCTTTGCCAAGTTCTCCACTAGCTATGGTGT CATAGGCTCTTTTGGGATTTTTGAAGCTGTATACTGTGTGCTAAAACAAGCACTAAACAA AGAGTGAAGGATTTATGTTTAATT CTGAAAGCAACCTTCTTGCCTAGTGTTCTGATATTG GACAGTAAAATCCACAGACCAACCTGGAGTTGAAAATCTTATAATTTAAAATATGCTCTA AACATGTTTATCGTATTTGATGCTACAGGATTTGAAATTGTATTACAAATCCAATGAAAT GAGTTTTTCTTTTCATTTACCTCTGCCCCAGTTGTTTCTACTACATGGAAGACCTCATTT TGAAGGGAAATTTCAGCAGCTGCAGCTCATGAGTAACTGATTTGTAACAAGCCTCCTTTT AAAGTAACCCTACAAAACCACTGGAAAGTTTATGGTTGTATTATTTTTTAAAAAAATTCC AAGTGATTGAAACCTACACGAGATACAGAATTTTATGCGGCATTTTCTTCTCACATTTAT ATTTTTGTGATTTTGTGATTGATTATATGTCACTTTGCTACAGGGCTCACAGAATTCATT CACTCAACAAACATAATAGGGCGCTGAGGGCATAGAAGTAAAAACACCTGGTCCCTGCTC TCAGTTCACTGTCTTGTTGGACGAGAAAAGAAACAATAACGATAAAAGACAGTGAAAGAA AATAACGATAAAAGACAGTGAAAGAAAATAACAATAAAAGACAAGGAAAAAATAACAATG AAAGTTGATAAGTACATGATAAGCGAGGTTCCCCGTGTGTAGGTAGATCTGGTCTTTAGA GGCAGATAGATAGGTCAGTGCAAATACTCTGGTCCATGGGCCATATGAAAAGGCTAAGCT TCACTGTAAAATAATAACTGGGAATTCTGGATTGTGTATGGGTGTTGGTGAACTTGGTTT TAATTAGTGAACTGCTGAGAGACAGAGCTATTCTCCATGTACTGGCAAGACCTGATTTCT GAGCATTTAATATGGATGCCGTGGGAGTACAAAAGTGGAGTGTGGCCTGAGTAATGCATT ATGGGTGGTTTACCATTTCTTGAGGTAAAAGCATCACATGAACTTGTAAAGGAATTTAAA AATCCTACTTTCATAATAAGTTGCATAGGTTTAATAATTTTTAATTATATGGCTTGAGTT TAAATTGTAATAGGCGTAACTAATTTTAACTCTATAATGTGTTCATTCTGGAATAATCCT AAACATATGAATTATGTTTGCATGTTCACTTCCAAGAGCCTTTTTTTGAAAAAAAGCTTT TTTTGAATCATCAAGTCTTTCACATTTAAATAAAGTGTTTGAAAGCTTTATTTAAAAAAA AAGAAAAAAA >AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA; Hs .1657_ContÍg4 AW473119 | AA164586 | AI540656 | AI758480 | AI81O94l | AI978964 | AI675862 | AI784397 | AW591562 AW514102 j AI888116 j AI983175 | AI634735 AI669577 j AI202659 j AI910598 j AI961352 | AI565481 | AI886254 | AI538838 AA291749 AW571455 j AI370308 j AI274727 AW473925 AW514787 AI273871 | AW470552 | AI524356 j AI888281 | AW089672 AI952766 | AW44060l | AI654044 | AW438839 | AI972926 polyA = 2 p = 3 AATTGTTTTCTAAGTAATTGCTGCCTCTATTATGGCACTTCATTTTTGCACTGTCTTTTG AGATTCAAGAAAAATTTCTATTCTTTTTTTTGCATCCAATTGTGCCTGAACTTTTAAAAT Lya ATGTAAATGCTGCCATGTTCCAAACCCATCGTCAGTGTGTGTGTTTAGAGCTGTGCACCC TAGAAACAACATATTGTCCCATGAGCAGGTGCCTGAGACACAGACCCCTTTGCATTCACA GAGAGGTCATTGGTTATAGAGACTTGAATTAATAAGTGACATTATGCCAGTTTCTGTTCT 'CTCACAGGTGATAAACAATGCtTTTTGTGCACTACATACTCTTCAGTGTAGAGCTCTTGT TTTATGGGAAAAGGCTCAAATGCCAAATTGTGTTTGATGGATTAATATGCCCTTTTGCCG ATGCATACTATTACTGATGTGACTCGGTTTTGTCGCAGCTTTGCTTTGTTTAATGAAACA CACTTGTAAACCTCTTTTGCACTTTGAAAAAGAATCCAGCGGGATGCTCGAGCACCTGTA AACAATTTTCTCAACCTATTTGATGTTCAAATAAAGAATTAAACTAAAAAAAAAAAAAAA A >? Hs.35984_mRNA_l gi | 6049161 | gb | AF133587.1 | AF133587 Homo sapiens chromosome 22 map 22qll.2 polyA = 3 GGCGCCGCGGACGCTGCTGGAGTCGCCTGGCAACGATGTCGCCTGGCAACTGAATAGGTT GGCCAGTGGCGCGGGCTACTGGAAGCAGAAAGGGCTGCGGAGGCAGTGAGTGGTTTCTGC AGAGCTTCATTTGGAAAGGCCTCTGTAGTTGGGGAAAGATGGCCCATTCCCAGAACTCCT TGGAGCTTCCCATTAACATCAATGCCACCCAGATTACCACTGCCTATGGCCATCGGGCCC TGCCCAAGCTGAAGOAGGAGCTGCAGTCAGAGGACCTCCAGACGAGGCAGAAAGCCCTCA TGGCCCTGTGTGACCTCATGCATGACCCCGAGTGTATCTACAAGGCCATGAACATAGGCT GTATGGAGAACCTGAAAGCTTTGCTGAAGGATAGCAACAGTATGGTGCGCATAAAGACCA CCGAGGTGCTCCACATCACGGCAAGCCATAGCGTGGGCAGATACGCCT TCTAGAGCACG ACATCGTCCTTGCCCTGTCCTTCCTGCTGAATGACCCCAGCCCAGTCTGCCGGGGGAACC TGTACAAGGCATACATGCAGCTGGTCCAGGTGCCTAGAGGGGCCCAAGAGATCATCAGCA AAGGTCTGATTTCCTCACTGGTATGGAAGCTGCAGGTGGAGGTGGAGGAGGAGGAGTTCC AGGAGTTCATCCTGGACACACTGGTCCTCTGCCTGCAGGAGGATGCCACCGAGGCCCTGG GCAGCAATGTGGTGCTTGTCCTGAAGCAGAAGCTCCTCAGCGCCAACCAGAACATCCGCA GCAAGGCCGCCCGTGCGCTCCTTAATGTCAGCATATCTCGAGAGGGCAAGAAACAGGTGT GTCATTTTGACGTCATCCCCATCCTGGTCCATCTGCTGAAAGACCCAGTGGAGCATGTGA AGTCTAACGCTGCCGGTGCCCTGATGTTCGCCACAGTGATCACTGAAGGGAAGTATGCGG CCCTGGAGGCACAAGCCATCGGCCTGCTCCTGGAGCTGCTGCACTCCCCCATGACCATAG CGCGCCTGAATGCCACCAAGGCCCTTACCATGCTGGCAGAGGCCCCCGAGGGCCGCAAGG CCCTGCAGACGCACGTGCCCACTTTCCGTGCCATGGAGGTGGAGACTTACGAAAAGCCTC AAGTGGCCGAAGCCTTACAGCGGG CAGCCCGGATCGCCATCAGTGTCATCGAGTTCAAAC CCTGAGCCCTTCATTCACCTCTGTGAGTGAATAAATGTGCTAAGTCTCTTTAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAA > Hs.33453 _mRNA_2 gi | 17389403 | g | BC017742.1 | BC017742 Ho or sapiens, clone IMAGE: 4391536, mRNA polyA = 3 AGAGCAGTAAGCTTGTGATAAAGGCCAATTCCAGGTAGCTCTTGAAGGTGATAGCCATCT ACTTTCCAGTGGCTGCCAACCACAGGGAGTGCCAGTTAACACTGGAAGGATTAAGGCAAG GTCCCTTCTCTTGAGACTCCCCTCTGAGATCTGAAAAATGAAGTGGCTTAGGAACATCAG CAGTGAAGAACTGCCAAGAGTTGGTGAAGGTTGTCTCTTCCGAGGGCCTTCTGAAGACAG GGCTCTTGAACAGACAAGTGGAAGGGCTGTACCAGGGATAAAGGAAAGAAGTGCCTGTCC AGCAGGGAGCTTGAATTTAAGTTCCATGTATGAAGTCATTGGCTCTATCTGCATTTTTCT GTCATTCTCTTCATTTGTTTTAAGGTGGAAAATTTTCTTACAGTTGATGCAAAGTATCAA CTACTTTACCCTACCTTCTCCCCTTTTAGATGGGTTCTTCCTGAGTTTTGGAGTCTTGTA TGATTATCAGTATTCCCCTGTCAAAATCAAATCTATTCAGGTTTCTTCACTGTTGAGAAC ACCTAAATGTTTTTATTTTTGAGAAGTGGGGACAGAGTCTCACTATGTCACCCAGGCTGG AGTGCAATGGCATGATCTCAGCTCACTGCAACCTTCGCCTCCTGGGTTCAAGCGATTCTC CTGCCTCCGCCTCCTGAGTAGCTGGGATTATAGGCACGCACCACCACGCCCAGCTAATTT TTTGTATTTTTAGTAGAGACAGAGTTTCACCATGTTGGCCAGGCTGGTCTTGAACTCCTG ACCTTGTGATCCACCCACCTCGGCCTCCCAGAGTGCTGGGATTACAGGCATGAGCCACCA CGCTTGGCTAAGAACACCTAAATTTTTATGTTTCTTGGCTCAAAAACCAGTTCCATTTCT AATGTTGTCCTCACAAGAAGGCTAAT TGGTGGTGAGACAGCAGGGGAGGAGGAAGAGCTG TGGTTTGTAACTTGTTCAACTCAGGCAATAAGCGATTTTAGCTTTATTTAAAGTCTTCTG TCCAGCTTTAAGCACTTTGTAAGACATGGCTGAAAGTAGCTTTTCTATCAGAATTGCAGA TAGTCATGTTGGGCTAACAGTCAATTGGATATATTCCTTTACCTCACATGACCCCAGCAA CTGTGGTGGTATCTAGAGGTGAAACAGGCAAGTGAAATGGACACCTCTGCTGTGAATGTT TTAGAGAAGGAAATTCAAAAAATGTTGTAACTGAAAGCACTGTTGAATATGGGTATCGGC TTTCTTTTTCACTTTGACTCTTAACATTATCAGTCAACTTCCACATTAATGAAAGTTGAC CATAGTTATTTCCAAATAAAAAGAAACCAACTCTTACCAGGTCTTGGACTGTGATGTCAT ATTATTCAGTTTTATGCTTGTTCCTGAGCAGAACTCATAAGAGTGACATAGTCAGCTGCT GACGGCACCTCAGCCACGCCACTCTTACTCAGTTCAGTGGGTGTGCTTGCGTGGTAGGAT GTGGTGCAGCCCTCTCTACGCTCTTCTATTTTTGGTATATTTCCTATCTAACCTTCAAAT AGCTTCCAATTCTTTTTTTCTTGGACTGGCTTCATTCTGAATTTGTGCTAAAATAATCTT TCATAAAGAGACCTCAGTTTATAGCGTAACAGACTACACAATGCACTGATGTTTTCATAA TGTTTAAGGGACCCACTGCAAGAAGCTTGCTGCCTCCTTTTAATTGTATTCATTTAGATT TTGATTTTCCATGTTAAGAAGGTGAGGTCCATGTTGGTGCCCTTCAGAGTAGAGAACCAT GTAAACATTAGGAATGAACAGAGGCCTTAGGAATGAATAGAGAGTTTGCCTTATACAATT TCCTGTTACAAAGCTCTCCCTCTCATGCAAAGTAGGGAACACCTTTTGAG CATCTTTGAA TTTGACAAATGGTGCTGTTGCAAACACTTTTTTTTTGAGATGAAGTCTCGCGGTTGTCAC CCGGGCTGGAGTGCAGTGGCGTGATCTCGGCTCACTGCAACTTCCACCTCCTGGGTTCCA GCAGTTCTCCTGCCTCAGCCTCCCAAGTAGCTGAGATTACAGGCGCCTGCCACCCCACCT GGCTGATTTTTGTAATTTTAGTAGAGACGGGGTTTCACCATGTTGGCCAGGCTGATTAAC TCCTGACCTCAGGTGATCCACCTTTCTCGGCCTCCCAAAGTGCTGGGATTACGGGTGTGA GCCACCGTGCCCGGCCTGCAZ ^ ACACATTTTAATTGACAACACTAGGGCTGTTGTACAAAA TAGTAATGATAGCCATGGAAGTTTTACCTTATTCTGTGAGAAGTGTTCTTAAACTTATTA AGTGTCTAAACTAAGGTTTAGTGCTTTTTTAAAGGAAAGTTGTCCCAGGATTCATCCTAA AGAAAGCAAAAGTTAATTCAACTGATCCACCAATGGAATTAGATGGGTAGAGTTGGGTTC TTGAGTTTTACCACCACTTAGTTCCCACTGAATTTTGTAACTTCCTGTGTTTGCATCCTC TGTTCCTATTCTGCCCTTGCTCTGTGTCATCTCAGTCATTTGACTTAGAAAGTGCCCTTC AAAAGGACCCTGTTCACTGCTGCACTTTTCAATGAATTAAAATTTATTTCTGTTCTAAAA AAAAAAAAAAA > Hs.60162_mRNA_l gi | 10437644 | dbj | AK025181.1 | AK025181 Homo sapiens cDNA: FLJ21528 fis, clone COL05977 polyA = 3 TGATCAACAACTGTCAGCTCCCAGTCAGAGAGAAAGGGCCTCTTCAGTCTGTCTCAGGAG ACTGGGAGAAACAGCATAAAGGACCCCACAAGGAAGGGAGAGGTACCCTGGGTCAGGCGC TTGTGGAGAGAGGGCTTCGCATGTAAAGTGACGTCAGGGAAAATAGAACAGAAAAAAAGC CAGGGCCAGCCCAGAGGCACCTGAGAAGAATCAGACCCACAGCTCAGCCCAGCCCTGGCA CAGAGAAGAGACAGGCCTGGCAGCACCCAGGGACCCCCTTTCCTCAGCCTCCACCTGCAG GACAGCAGGAGCACTGATGCGCTGAAGGTACGTTCTGGAGTCTGGAAGCAGCAGAACTGA AGGAAGTAAACACGGGTGTCTGGGAAGACCCCTCAAGCTGCAGTAAAGCCCAGGACTGAA TTGGCCACCTGAGGCCAAGGGTGGCACTCCAACCTCCTCCTAAAGGCTGGCTAGAGCCAC AGGAAAGGGCCAGAAGCCAGAGAAAGGGCAAAGGTGGACCCCTGCCTCCAAACCTCCTCT GGAGACTGACCTCCTCTTTCCTGTGCCTTATTGTTTCTCCCTCTTCTCTTTGTTCGCCAC TGGGCGGTGACCTCAGGGATCCTGGCCTAACCTGGTGATTGTGCAGGCAACTGTGTCCGA GAAGACCCTTCTCTGGAAGATTGAACCCCAATTCAGCCATGGTGACTCCTTTGATGTCAA ACTGGTAAGGGCTGAGCCGTGGGCACAGGATACCACTCCTTCCAGCTCTTCTGCTGTGAC CTGCCCATGGAAGTCCCTGTGGACACGAAATCCTGTTTGGATCATCTAACTGGAGGCTCT CTGTTCTTCACCTCCACGCGCCCTCTTGACCCCAGGAGGTTCAGGGGAGGAAGTACGCCA CTCTCCACTGGCACCCTCCTTGGCCTACACAGAGTCACCCCTGAGCCCCTCAATGTGTGC TGAGGTGGGCCCTGCTCTCTGCAGGGGTATGGAGAGAAATAGCTTGGGGTGCTGTGAGGC CCCGAAGAAGCTGGGCCTGTCCTTCTCCATCGAGGCGATCCTAAAGAGGCCTGCCAGGAG GAGTGATATGGACAGACCAGAAGGGCCAGGTGAAGAGGGCCCCGGAGAAGCTGCGGCCTC AGGCTCTGGGCTAGAAAAGCCTCC AAAGGACCAGCCCCAGGAAGGAAGGAAGAGCAAGCG GAGGGTTCGTACCACCTTCACCACTGAGCAGCTGCATGAGCTGGAGAAGATCTTCCACTT TACCCACTACCCAGACGTTCACATCCGCAGCCAGCTGGCAGCCAGGATCAACCTCCCAGA AGCTCGGGTGCAGATCTGGTTCCAGAATCAGCGAGCCAAGTGGCGGAAGCAGGAGAAGAT TGGCAACCTGGGGGCTCCACAGCAGCTGAGTGAAGCCAGTGTGGTCCTGCCCACAAATCT GGATGTGGCTGGGCCCACGTGGACATCCACTGCTCTGCGCAGGCTGGCTCCTCCCACGAG CTGTTGTCCATCGGCTCAAGATCAGCTGGCCTCTGCCTGGTTCCCTGCCTGGATCACCCT CCTCCCAGCGCACCCATGGGAAACACAGCCTGTCCCAGGTCTTCCCATCCATCAAACTTG CATCCCTGTGCTATGCATCCTTCCACCTCCACACCCCAAATGGGGCAGCATCTGTGCTAC TTCAACATAGAGATTGGACATGCTCTCCCCAAATGAGCCACTTTCCTCTCCAGGTGAAGG CAGGTAGCAGATGTGCCCTGGGCCTCTGGGGAAATCGATCTCACAATCCAAAAATGGCCC ACAGCCCAGGAAGCTACCCTGAACATGCCAGTTGGAAGGCTGCACCAGACTCAAAAGCAA ACTAAACAATAAAGGACAGCTCTCTTCTCTCCTGGCTAAAGCTGCTCTCCTGGTTCAGAA GACAGGCTGGATGAGATCTCAGGCCGAGCTCTGAAATAGGGAGGTAATCCTCCAGCACCT GTGTTTCCTCTAACTTGCTGTGTGACCTCCAGCCGGTCACTCACCCTCTCTGGACCTCAT CTGTAAGAGGAGCCAGCTGGATAAGATGATTTCTGAAGACGCTTCCATGGTGGGCACTGA GGCACAGAGGAGGCCAAGGAGAGGTTGTTTGTTCATGCATGCATTCAT CCGTGACACATG AGTACCTACTGAGGACTCCATAAACAGAACGGGATACAGAGATAAACAATTTGGGTTCTG TCCACGTTTGTCAAAAGGTGGTGCTGGCCCACCTCTGAAAGCAGAACACTTGCTCAACAA CCTTGCTGTTGGCCCAAGTCTAACACATTCTTTATGACTGTGAGCATCTCAGAGTGAGAG AAAAATGTAGAAAGTTTTTTAAATTCTAAACAGGATTTAGTGTCTTTAGTTATCTTGCTG GATGGGAAAGGGATGTTGTCATTTCTGGCACAAATGAAAAGTAGGACGGAAAGCTCCTTT CATTCAGTTTATCTTTCCAGGATATATGAAAAGGGACCAGCTGGAAGACTAGCCTCACTC TGTCCTCGAAAGCCTGAGCTTTCATTCAACTCCCTATTTCCATGCAAAGACGCTGGGCAA ACCACATGTTCTGTCTGAGCCTCAGTTTTCCTATCCATAAAATGAAGGTAGCCAGGCCTG CCTCAAAGAGCATTCAGGAGGCTCTGAGAGGACATGAGAGTATTTTGCAAAGTGAGGGCA AGGCCCAGTGTGGAGTGATATTGTTATTCCAAGATTCCACTGCAAAAGTGGCTGCTTTGG ATGCCAGCCCAGGATGAGTAGTTCCTGTTCTCAGGGAGGTCATCCGCTGAGCATCCCTTC TGCACAGATGTCTCTGATTCTTGTCCTTGCAGGTGGAGGACAGGGCCTGCTCCCCTAAGC TGGGAAGCCTGGAATGACCTCTTGCACAAGCCTAAATTCCAGGAATCTTCCCCAAATCCC AGATCCTCTGCAATCTACCTGCACCCCTGACCCACCCAGGAGTTGGACCGGGAGTTGGGA AGCCTAGGTCTTAGTCCTACACTCCTTCTAATTTGCTGTGTAACCTTACCATTAATCTCT CTGGGTCTCAGTTTTCTCATCTGTATTGGAGGTAGCAGTGCTAGCTCTGCCTTCAGGCAT GCAATATGCCA GAACTACAGACAACAGCCCACAGGATGCAAAAGTGCTTTGCCATCTTAA AAATGCCAGATCACTCAGAGCCTATGAATGTGGATATCAACACCAGGTCTCTAGCACCGC TGGATGAAAGGAGAAGGCTAGAGGCTGAGGGAGGAAAGAGCAGTTAACAAACAAAGGCAG TAGCTCATCACTTGGGTAGCAGGTACCCATTTTAGGACCCTACACTCAAATGTGCAAAAT AAAATTTCTATCATTTTGCTATAAAAAAAAAAAAAAAAAAAAAA > NM_004967 GAGTGAGTGAGAGGGCAGAGGAAATACTCAATCTGTGCCACTCACTGCCTTGAGCCTGCT TCCTCACTCCAGGACTGCCAGAGGCTCACTCCCTTGAGCCTGCTTCCTCACTCCAGGACT GCCAGAGGAAGCAATCACCAAAATGAAGACTGCTTTAATTTTGCTCAGCATTTTGGGAAT GGCCTGTGCTTTCTCAATGAAAAATTTGCATCGAAGAGTCAAAATAGAGGATTCTGAAGA AAATGGGG? CTTTAAGTACAGGCCACGATATTATCTTTACAAGCATGCCTACTTTTATCC TCATTTAAAACGATTTCCAGTTCAGGGCAGTAGTGACTCATCCGAAGAAAATGGAGATGA CAGTTCAGAAGAGGAGGAGGAAGAAGAGGAGACTTCAAATGAAGGAGAAAACAATGAAGA ATCGAATGAAGATGAAGACTCTGAGGCTGAGAATACCACACTTTCTGCTACAACACTGGG CTATGGAGAGGACGCCACGCCTGGCACAGGGTATACAGGGTTAGCTGCAATCCAGCTTCC CAAGAAGGCTGGGGATATAACAAACAAAGCTACAAAAGAGAAGGAAAGTGATGAAGAAGA AGAGGAGGAAGAGGAAGGAAATGAAAACGAAGAAAGCGAAGCAGAAGTGGATGAAAACGA ACAAGGCATAAACGGCACCAGTACCAACAGCACAGAGGCAGAAAACGGCAACGGCAGCAG CGGAGGAGACAATGGAGAAGAAGGGGAAGAAGAAAGTGTCACTGGAGCCAATGCAGAAGG CACCACAGAGACCGGAGGGCAGGGCAAGGGCACCTCGAAGACAACAACCTCTCCAAATGG TGGGTTTGAACCTACAACCCCACCACAAGTCTATAGAACCACTTCCCCACCTTTTGGGAA AACCACCACCGTTGAATACGAGGGGGAGTACGAATACACGGGCGTCAATGAATACGACAA TGGATATGAAATCTATGAAAGTGAGAACGGGGAACCTCGTGGGGACAATTACCGAGCCTA CTACCACCACCAGTGAAGCTCCAGCCTG >TGAAGATGAGTACAGCTACTTTAAAGGACAAGGCTACGATGGCTATGATGGTCAGAATTA; NM_002847 GCCTCCCGCCGCCTCCCGCGCGGCCATGGACTGAGCGCCGCCGGCCAGGCCGCGGGGATG GGGCCGCCGCTCCCGCTGCTGCTGCTGCTACTGCTGCTGCTGCCGCCACGCGTCCTGCCT GCCGCCCCTTCGTCCGTCCCCCGCGGCCGGCAGCTCCCGGGGCGTCTGGGCTGCCTGCTC GAGGAGGGCCTCTGCGGAGCGTCCGAGGCCTGTGTGAACGATGGAGTGTTTGGAAGGTGC CAGAAGGTTCCGGCAATGGACTTTTACCGCTACGAGGTGTCGCCCGTGGCCCTGCAGCGC CTGCGCGTGGCGTTGCAGAAGCTTTCCGGCACAGGTTTCACGTGGCAGGATGACTATACT CAGTATGTGATGGACCAGGAACTTGCAGACCTCCCGAAAACCTACCTGAGGCGTCCTGAA GCATCCAGCCCAGCCAGGCCCTCAAAACACAGCGTTGGCAGCGAGAGGAGGTACAGTCGG GAGGGCGGTGCTGCCCTGGCCAACGCCCTCCGACGCCACCTGCCCTTCCTGGAGGCCCTG TCCCAGGCCCCAGCCTCAGACGTGCTCGCCAGGACCCATACGGCGCAGGACAGACCCCCC GCTGAGGGTGATGACCGCTTCTCCGAGAGCATCCTGACCTATGTGGCCCACACGTCTGCG CTGACCTACCCTCCCGGGCCCCGGACCCAGCTCCGCGAGGACCTCCTGCCGCGGACCCTC GGCCAGCTCCAGCCAGATGAGCTCAGCCCTAAGGTGGACAGTGGTGTGGACAGACACCAT CTGATGGCGGCCCTCAGTGCCTATGCTGCCCAGAGGCCCCCAGCTCCCCCCGGGGAGGGC AGCCTGGAGCCACAGTACCTTCTGCGTGCACCCTCAAGAATGCCCAGGCCTTTGCTGGCA CCAGCCGCCCCCCAGAAGTGGCCTTCACCTCTGGGAGATTCCGAAGACCCCTCCAGCACA GGCGATGGAGCACGGATTCATACCCTCCTGAAGGACCTGCAGAGGCAGCCGGCTGAGGTG AGGGGCCTGAGTGGCCTGGAGCTGGACGGCATGGCTGAGCTGATGGCTGGCCTGATGCAA GGCGTGGACCATGGAGTAGCTCGAGGCAGCCCTGGGAGAGCGGCCCTGGGAGAGTCTGGA GAACAGGCGGATGGCCCCAAGGCCACCCTCCGTGGAGACAGCTTTCCAGATGACGGAGTG CAGGACGACGATGATAGACTTTACCAAGAGGTCCATCGTCTGAGTGCCACACTCGGGGGC CTCCTGCAGGACCACGGGTCTCGACTCTTACCTGGAGCCCTCCCCTTTGCAAGGCCCCTC GACATGGAGAGGAAGAAGTCCGAGCACCCTGAGTCTTCCCTGTCTTCAGAAGAGGAGACT GCCGGAGTGGAGAACGTCAAGAGC CAGACGTATTCCAAAGATCTGCTGGGGCAGCAGCCG CATTCGGAGCCCGGGGCCGCTGCGTTTGGGGAGCTCCAAAACCAGATGCCTGGGCCCTCG AAGGAGGAGCAGAGCCTTCCAGCGGGTGCTCAGGAGGCCCTCAGCGACGGCCTGCAATTG GAGGTCCAGCCTTCCGAGGAAGAGGCGCGGGGCTACATCGTGACAGACAGAGACCCCCTG CGCCCCGAGGAAGGAAGGCGGCTGGTGGAGGACGTCGCCCGCCTCCTGCAGGTGCCCAGC AGTGCGTTCGCTGACGTGGAGGTTCTCGGACCAGCAGTGACCTTCAAAGTGAGCGCCAAT GTCCAAAACGTGACCACTGAGGATGTGGAGAAGGCCACAGTTGACAACAAAGACAAACTG GAGGAAACCTCTGGACTGAAAATTCTTCAAACCGGAGTCGGGTCGAAAAGCAAACTCAAG TTCCTGCCTCCTCAGGCGGAGCAAGAAGACTCCACCAAGTTCATCGCGCTCACCCTGGTC TCCCTCGCCTGCATCCTGGGCGTCCTCCTGGCCTCTGGCCTCATCTACTGCCTCCGCCAT AGCTCTCAGCACAGGCTGAAGGAGAAGCTCTCGGGACTAGGGGGCGACCCAGGTGCAGAT GCCACTGCCGCCTACCAGGAGCTGTGCCGCCAGCGTATGGCCACGCGGCCACCAGACCGA CCTGAGGGCCCGCACACGTCACGCATCAGCAGCGTCTCATCCCAGTTCAGCGACGGGCCG ATCCCCAGCCCCTCCGCACGCAGCAGCGCCTCATCCTGGTCCGAGGAGCCTGTGCAGTCC AACATGGACATCTCCACCGGCCACATGATCCTGTCCTACATGGAGGACCACCTGAAGAAC AAGAACCGGCTGGAGAAGGAGTGGGAAGCGCTGTGCGCCTACCAGGCGGAGCCCAACAGC TCGTTCGTGGCCCAGAGGGAGGAGAACGTGCCCAAGAACCGCTCCCTGGCTGTGCTGACC TATGACCACTCCCGGGTCCTGCTGAAGGCGGAGAACAGCCACAGCCACTCAGACTACATC AACGCTAGCCCCATCATGGATCACGACCCGAGGAACCCCGCGTACATCGCCACCCAGGGA CCGCTGCCCGCCACCGTGGCTGACTTTTGGCAGATGGTGTGGGAGAGCGGCTGCGTGGTG ATCGTCATGCTGACACCCCTCGCGGAGAACGGCGTCCGGCAGTGCTACCACTACTGGCCG GATGAAGGCTCCAATCTCTACCACATCTATGAGGTGAACCTGGTCTCCGAGCACATCTGG TGTGAGGACTTCCTGGTGAGGAGCTTCTATCTGAAGAACCTGCAGACCAACGAGACGCGC ACCGTGACGCAGTTCCACTTCCTGAGTTGGTATGACCGAGGAGTCCCTTCCTCCTCAAGG TCCCTCCTGGACTTCCGCAGAAAAGTAAACAAGTGCTACAGGGGCCGTTCTTGTCCAATA ATTGTTCATTGCAGTGACGGTGCAGGCCGGAGCGGCACCTACGTCCTGATCGACATGGTT CTCAACAAGATGGCCAAAGGTGCTAAAGAGATTGATATCGCAGCGACCCTGGAGCACTTG AGGGACCAGAGACCCGGCATGGTC CAGACGAAGGAGCAGTTTGAGTTCGCGCTGACAGCC GTGGCTGAGGAGGTGAACGCCATCCTCAAGGCCCTTCCCCAGTGAGCGGCAGCCTCAGGG GCCTCAGGGGAGCCCCCACCCCACGGATGTTGTCAGGAATCATGATCTGACTTTAATTGT GTGTCTTCTATTATAACTGCATAGTAATAGGGCCCTTAGCTCTCCCGTAGTCAGCGCAGT TTAGCAGTTAAAAGTGTATTTTTGTTTAATCAAACAATAATAAAGAGAGATTTGTGGAAA AATCCAGTTACGGGTGGAGGGGAATCGGTTCATCAATTTTCACTTGCTTAAAAAAAATAC TTTTTCTTAAAGCACCCGTTCACCTTCTTGGTTGAAGTTGTGTTAACAATGCAGTAGCCA GCACGTTCGAGGCGGTTTCCAGGAAGAGTGTGCTTGTCATCTGCCACTTTCGGGAGGGTG GATCCACTGTGCAGGAGTGGCCGGGGAAGCTGGCAGCACTCAGTGAGGCCGCCCGGCACA CAAGGCACGTTTGGCATTTCTCTTTGAGAGAGTTTATCATTGGGAGAAGCCGCGGGGACA GAACTGAACGTCCTGCAGCTTCGGGGCAAGTGAGACAATCACAGCTCCTCGCTGCGTCTC CATCAACACTGCGCCGGGTACCATGGACGGCCCCGTCAGCCACACCTGTCAGCCCAAGCA GAGTGATTCAGGGGCTCCCCGGGGGCAGACACCTGTGCACCCCATGAGTAGTGCCCACTT GAGGCTGGCACTCCCCTGACCTCACCTTTGCAAAGTTACAGATGCACCCCAACATTGAGA TGTGTTTTTAATGTTAAAATATTGATTTCTACGTTATGAAAACAGATGCCCCCGTGAATG CTTACCTGTGAGATAACCACAACCAGGAAGAACAAATCTGGGCATTGAGCAAGCTATGAG GGTCCCCGGGAGCACACGAACCCTGCCAGGCCCCCGCTGGCTCCTCCA GGCACGTCCCGG ACCTGTGGGGCCCCAGAGAGGGGACATTTCCCTCCTGGGAGAGAAGGAGATCAGGGCAAC TCGGAGAGGGCTGCGAGCATTTCCCTCCCGGGAGAGGAGATCAGGGCGACCTGCACGCAC TGCGTAGAGCCTGGAAGGGAAGTGAGAAACCAGCCGACCGGCCCTGCCCCTCTTCCCGGG ATCACTTAATGAACCACGTGTTTTGACATCATGTAAACCTAAGCACGTAGAGATGATTCG GATTTGACAAAATAACATTTGAGTATCCGATTCGCCATCACCCCCTACCCCAGAAATAGG ACAATTCACTTCATTGACCAGGATGATCACATGGAAGGCGGCGCAGAGGCAGCTGTGTGG GCTGCAGATTTCCTGTGTGGGGTTCAGCGTAGAAAACGCACCTCCATCCCGCCCTTCCCA CAGCATTCCTCCATCTTAGATAGATGGTACTCTCCAAAGGCCCTACCAGAGGGAACACGG CCTACTGAGCGGACAGAATGATGCCAAAATATTGCTTATGTCTCTACATGGTATTGTAAT GAATATCTGCTTTAATATAGCTATCATTTCTTTTCCAAAATTACTTCTCTCTATCTGGAA TTTAATTAATCGAAATGAATTTATCTGAATATAGGAAGCATATGCCTACTTGTAATTTCT CATATTAAACTTCTGATTCAAAAAAAA >AACTCCTTATGTTTGAAGAGAAACCTCCGGTGTGAGATATACAAATATATTTAATTGTGT; BC002551 GGCACGAGGCCACGAGCTGTTGTGCATCCAGAGGTGGAATTGGGGCCCGGCATTCCCTCC TCGTCCCGGGCTGGCCCTTGCCCCCACCCTGCAACTCCTGGTTGAGATGGGCTCAGCCAA GAGCGTCCCAGTCACACCAGCGCGGCCTCCGCCGCACAACAAGCATCTGGCTCGAGTGGC GGACCCCCGTTCACCTAGTGCTGGCATCCTGCGCACTCCCATCCAGGTGGAGAGCTCTCC ACAGCCAGGCCTACCAGCAGGGGAGCAACTGGAGGGTCTTAAACATGCCCAGGACTCAGA TCCCCGCTCTCCTACTCTTGGTATTGCACGGACACCTATGAAGACCAGCAGTGGAGACCC CCCAAGCCCACTGGTGAAACAGCTGAGTGAAGTATTTGAAACTGAAGACTCTAAATCAAA TCTTCCCCCAGAGCCTGTTCTGCCCCCAGAGGCACCTTTATCTTCTGAATTGGACTTGCC TCTGGGTACCCAGTTATCTGTTGAGGAACAGATGCCACCTTGGAACCAGACTGAGTTCCC CTCCAAACAGGTGTTTTCCAAGGAGGAAGCAAGACAGCCCACAGAAACCCCTGTGGCCAG CCAGAGCTCCGACAAGCCCTCAAGGGACCCTGAGACTCCCAGATCTTCAGGTTCTATGCG CAATAGATGGAAACCAAACAGCAGCAAGGTACTAGGGAGATCCCCCCTCACCATCCTGCA GGATGACAACTCCCCTGGCACCCTGACACTACGACAGGGTAAGCGGCCTTCACCCCTAAG TGAAAATGTTAGTGAACTAAAGGAAGGAGCCATTCTTGGAACTGGACGACTTCTGAAAAC TGGAGGACGAGCATGGGAGCAAGGCCAGGACCATGACAAGGAAAATCAGCACTTTCCCTT GGTGGAGAGCTAGGCCCTGCATGGCCCCAGCAATGCAGTCACCCAGGGCCTGGTGATATC TGTGTCCTCTCACCCCTTCTTTCCCAGGGATACTGAGGAATGGCTTGTTTTCTTAGACTC CTCCTCAGCTACCAAACTGGGACTCACAGCTTTATTGGGCTTTCTTTGTGTCTTGTGTGT TTCTTTTATATTAAAGGAAGTAATTTTAAATGTTACTTTAAAAAGGTAAAAAAAAAAAAA AAAAAAAA > AL039118 GCATTCGTAGTAAAGGTGCCCAAGAAATTATTTTGGCCATTTATTGTTTTGTCCTTTTCT TTAAAGAACTGTTTTTTTTTCTTTTGTTTACTTTTAGACCAAAGATTGGGTTCTAGAAAA 5 TGCACTTGGTATACTAAGTATTAAAACAAACAAAAAGGAAAGTTGTTTCAGTTGGCAACA CTGCCCATTCAATTGAATCAGAAGGGGACAAAATTAACGATTGCCTTCAGTTTGTGTTGT GTATATTTTGATGTATGTGGTCACTAACAGGTCACTTTTATTTTTTCTAAATGTAGTGÍ \ ATGTTAATACCTATTGTACTTATAGGTAAACCTTGCAAATATGTAACCTGTGTTGCGCAA ATGCCGCATAAATTTGAGTGATTGTTAATGTTGTCTTAAAATTTCTTGATTGTGATACTG TGGTCATATGCCCGTGTTTGTCACTTACAAAAATGTTTACTATGAACACACAGAAATAAA AAATAGGCTAAATTCATATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > NM_000198 GAGGCAGTAAGGACTTGGACTCCTCTGTCCAGCTTTTAACAATCTAAGTTACGGTTACCC TCTTCTGGGTCACGCTAGAATCAGATCTGCTCTCCAGCATCTTCTGTTTCCTGGCAAGTG TTTCCTGCTACTTTGGATTGGCCACGATGGGCTGGAGCTGCCTTGTGACAGGAGCAGGAG | O GGCTTCTGGGTCAGAGGATCGTCCGCCTGTTGGTGGAAGAGAAGGAACTGAAGGAGATCA GGGCCTTGGACAAGGCCTTCAGACCAGAATTGAGAGAGGAATTTTCTAAGCTCCAGAACA GGACCAAGCTGACTGTACTTGAAGGAGACATTCTGGATGAGCCATTCCTGAAAAGAGCCT GCCAGGACGTCTCGGTCGTCATCCACACCGCCTGTATCATTGATGTCTTTGGTGTCACTC ACAGAGAGTCCATCATGAATGTCAATGTGAAAGGTACCCAGCTACTGTTGGAGGCCTGTG TCCAAGCCAGTGTGCCAGTCTTCATCTACACCAGTAGCATAGAGGTAGCCGGGCCCAACT CCTACAAGGAAATCATCCAGAACGGCCACGAAGAAGAGCCTCTGGAAAACACATGGCCCA CTCCATACCCGTACAGCAAAAAGCTTGCTGAGAAGGCTGTGCTGGCGGCTAATGGGTGGA ATCTAAAAAATGGTGATACCTTGTACACTTGTGCGTTAAGACCCACATATATCTATGGGG AAGGAGGCCCATTCCTTTCTGCCAGTATAAATGAGGCCCTGAACAACAATGGGATCCTGT CAAGTGTTGGAAAGTTCTCTACAGTCAACCCAGTCTATGTTGGCAACGTGGCCTGGGCCC ACATTCTGGCCTTGAGGGCTCTGCGGGACCCCAAGAAGGCCCCAAGTGTCCGAGGTCAAT TCTATTACATCTCAGATGACACGCCTCACCAAAGCTATGATAACCTTAATTACATCCTGA GCAAAGAGTTTGGCCTCCGCCTTGATTCCAGATGGAGCCTTCCTTTAACCCTGATGTACT GGATTGGCTTCCTGCTGGAAGTAGTGAGCTTCCTACTCAGCCCAATTTACTCCTATCAAC CCCCCTTCAACCGCCACACAGTCACATTATCAAATAGTGTGTTCACCTTCTCTTACAAGA AGGCTCAGCGAGATCTGGCGTATAAGCCACTCTACAGCTGGGAGGAAGCCAAGCAGAAAA CCGTGGAGTGGGTTGGTTCCCTTGTGGACCGGCACAAGGAGACCCTGAAGTCCAAGACTC AGTGATTTAAGGATGACAGAGATGTGCATGTGGGTATTGTTAGGAAATGTCATCAAACTC CACCCACCTGGCTTCATACAGAAGGCAACAGGGGCACAAGCCCAGGTCCTGCTGCCTCTC TTTCACACAATGCCCAACTTACTGTCTTCTTCATGTCATCAAAATCTGCACAGTCACTGG CCCAACCAGAACTTTCTGTCCTAATCATACACCAGAAGACAAACAATATGATTTGCTGTT ACCAAATCTCAGTGGCTGATTCTGAACAATTGTGGTCTCTCTTAACTTGAGGTTCTCTTT TGACTAATAGAGCTCCATTTCCCCTCTTAAATGAGAAAGCATTTCTTTTCTCTTTAATCT CCTATTCCTTCACACAGTTCAACATAAAGAGCAATAAATGTTTTAATGCTTAA 20 > H05388 AAATTTTGACCCCATATAAAGAAATGTGTTATGTATGTTGTGCCTCCTTAGAGACATAAA TTTAGTGTCAAAACATGGGAGATGGCTTACTCAGAAGCATACTCCACTTAACATACCATG GCCTGAGCTAAGTACCATGTCCTGTTTGTGTCTTATTTTTAAATATTTTCTTTGTCCACA TGGGCCGTTGACCTTAGAGTTAAGGCGGTTGCTTTTTTGAAGAAATCACCAAAGTTTCTG GGAAACTATGTTCAAGGTTGAAATGGAGAGTAGATTTAATTTTATTTGTCTTGTAGGGAA GAAATCTTCCTTTGAACCGCTTTTCTTGCTTTTTCCCTTTTTCCCAAACTAGGTTACAGG TTCTTATCTGCAAGGTTCAAGTTGCTTAGACATTGTTTTCCAGTATTCTGCAGGGCCAGT CAGTTGTACAGAAGTTGGAATATTCTGTTCCAGAATTAAAGAAGTTTTTAGATTATGAAA TATTATGATAATAAAGCTATATTTCTGAAAAAAAAAAA? > NM_004062 GAAGGAGCTCTCTTCTTGCTTGGCAGCTGGACCAAGGGAGCCAGTCTTGGGCGCTGGAGG GCCTGTCCTGACCATGGTCCCTGCCTGGCTGTGGCTGCTTTGTGTCTCCGTCCCCCAGGC TCTCCCCAAGGCCCAGCCTGCAGAGCTGTCTGTGGAAGTTCCAGAAAACTATGGTGGAAA TTTCCCTTTATACCTGACCAAGTTGCCGCTGCCCCGTGAGGGGGCTGAAGGCCAGATCGT GCTGTCAGGGGACTCAGGCAAGGCAACTGAGGGCCCATTTGCTATGGATCCAGATTCTGG CTTCCTGCTGGTGACCAGGGCCCTGGACCGAGAGGAGCAGGCAGAGTACCAGCTACAGGT CACCCTGGAGATGCAGGATGGACATGTCTTGTGGGGTCCACAGCCTGTGCTTGTGCACGT GAAGGATGAGAATGACCAGGTGCCCCATTTCTCTCAAGCCATCTACAGAGCTCGGCTGAG CCGGGGTACCAGGCCTGGCATCCCCTTCCTCTTCCTTGAGGCTTCAGACCGGGATGAGCC AGGCACAGCCAACTCGGATCTTCGATTCCACATCCTGAGCCAGGCTCCAGCCCAGCCTTC CCCAGACATGTTCCAGCTGGAGCCTCGGCTGGGGGCTCTGGCCCTCAGCCCCAAGGGGAG 5 CACCAGCCTTGACCACGCCCTGGAGAGGACCTACCAGCTGTTGGTACAGGTCAAGGACAT GGGTGACCAGGCCTCAGGCCACCAGGCCACTGCCACCGTGGAAGTCTCCATCATAGAGAG CACCTGGGTGTCCCTAGAGCCTATCCACCTGGCAGAGAATCTCAAAGTCCTATACCCGCA CCACATGGCCCAGGTACACTGGAGTGGGGGTGATGTGCACTATCACCTGGAGAGCCATCC CCCGGGACCCTTTGAAGTGAATGCAGAGGGAAACCTCTACGTGACCAGAGAGCTGGACAG AGAAGCCCAGGCTGAGTACCTGCTCCAGGTGCGGGCTCAGAATTCCCATGGCGAGGACTA TGCGGCCCCTCTGGAGCTGCACGTGCTGGTGATGGATGAGAATGACAACGTGCCTATCTG CCCTCCCCGTGACCCCACAGTCAGCATCCCTGAGCTCAGTCCACCAGGTACTGAAGTGAC TAGACTGTCAGCAGAGGATGCAGATGCCCCCGGCTCCCCCAATTCCCACGTTGTGTATCA GCTCCTGAGCCCTGAGCCTGAGGATGGGGTAGAGGGGAGAGCCTTCCAGGTGGACCCCAC TTCAGGCAGTGTGACGCTGGGGGTGCTCCCACTCCGAGCAGGCCAGAACATCCTGCTTCT GGTGCTGGCCATGGACCTGGCAGGCGCAGAGGGTGGCTTCAGCAGCACGTGTGAAGTCGA 'O AGTCGCAGTCACAGATATCAATGATCACGCCCCTGAGTTCATCACTTCCCAGATTGGGCC TATAAGCCTCCCTGAGGATGTGGAGCCCGGGACTCTGGTGGCCATGCTAACAGCCATTGA TGCTGACCTCGAGCCCGCCTTCCGCCTCATGGATTTTGCCATTGAGAGGGGAGACACAGA AGGGACTTTTGGCCTGGATTGGGAGCCAGACTCTGGGCATGTTAGACTCAGACTCTGCAA GAACCTCAGTTATGAGGCAGCTCCAAGTCATGAGGTGGTGGTGGTGGTGCAGAGTGTGGC GAAGCTGGTGGGGCCAGGCCCAGGCCCTGGAGCCACCGCCACGGTGACTGTGCTAGTGGA GAGAGTGATGCCACCCCCCAAGTTGGACCAGGAGAGCTACGAGGCCAGTGTCCCCATCAG TGCCCCAGCCGGCTCTTTCCTGCTGACCATCCAGCCCTCCGACCCCATCAGCCGAACCCT CAGGTTCTCCCTAGTCAATGACTCAGAGGGCTGGCTCTGCATTGAGAAATTCTCCGGGGA GGTGCACACCGCCCAGTCCCTGCAGGGCGCCCAGCCTGGGGACACCTACACGGTGCTTGT GGAGGCCCAGGATACAGATGAGCCGAGACTGAGCGCTTCTGCACCCCTGGTGATCCACTT CCTAAAGGCCCCTCCTGCCCCAGCCCTGACTCTTGCCCCTGTGCCCTCCCAATACCTCTG CACACCCCGCCAAGACCATGGCTTGATCGTGAGTGGACCCAGCAAGGACCCCGATCTGGC CAGTGGGCACGGTCCCTACAGCTTCACCCTTGGTCCCAACCCCACGGTGCAACGGGATTG GCGCCTCCAGACTCTCAATGGTTCCCATGCCTACCTCACCTTGGCCCTGCATTGGGTGGA GCCACGTGAACACATAATCCCCGTGGTGGTCAGCCACAATGCCCAGATGTGGCAGCTCCT GGTTCGAGTGATCGTGTGTCGCTGCAACGTGGAGGGGCAGTGCATGCGCAAGGTGGGCCG CATGAAGGGCATGCCCACGAAGCTGTCGGCAGTGGGCATCCTTGTAGGCACCCTGGTAGC AATAGGAATCTTCCTCATCCTCATTTTCACCCACTGGACCATGTCAAGGAAGAAGGACCC GGATCAACCAGCAGACAGCGTGCCCCTGAAGGCGACTGTCTGAATGGCCCAGGCAGCTCT AGCTGGGAGCTTGGCCTCTGGCTCCATCTGAGTCCCCTGGGAGAGAGCCCAGCACCCAAG ATCCAGCAGGGGACAGGACAGAGTAGAAGCCCCTCCATCTGCCCTGGGGTGGAGGCACCA TCACCATCACCAGGCATGTCTGCAGAGCCTGGACACCAACTTTATGGACTGCCCATGGGA GTGCTCCAAATGTCAGGGTGTTTGCCCAATAATAAAGCCCCAGAGAACTGGGCTGGGCCC TATGGGATTGGTA > AA782845 TCTTTACCTATGTGAAGCGAGGTGACGTGATACGTCACTGGCGCCGTCTTATAATTTAGA TGTAAAAATCTTTAGAAACAAATAAAACTCTCTATATATGTGTATGTCTGTGTACAAAAA AATGACAGAGCTGATGGCCAGTGTATACAGAGCGTGGCCCGCGGTGTACAATACCCATAT AAGGTACATTGTGCAGGAGGGGAATTGCTGGCTGCTTTTACTTCCTGACCAAGACTGAAA AATTATTTACTGAAATCTGTAAACCTTTTTATGAAACTTTTAAGCACCAGGCTGTTTACT TACACAATTTAGGTCTGCCAGAAAATTCTATCTGTGATAGATCTGTAAAGAGGGTCAGGG GTTAGAGTTTACTATTTTTGAAGTTTACATTGTTACATATGAAATGGAAACATTATTTTG AAACGTTGTCATAACCCAATGGTGCATTCTGTAACCATGGAGTCTTCTGTTTCCTGGGGG AAAGGGGCATTCATGACCTGAACTTTTTAGCAAATTATTATTCTCAGTTTCCATTACCTG 25 TTTGGCCAAACAGATTAATAAAATATTTGAAAAAGAAGCAATAAAAAAAAAA > AI457360 CTGAGAAAGTCCGGTCCCTATAAGGGGACATCAGTGCGAGACCTGCTCCGTGCTGTGAGN ACAAGAGGCACCATACAAGNAAGCTCCCAGTTGAGGTGCGACAGGCACTCGCCNAAGTCC NTGATGGCTTCGTCCAGTACTCACAAAACGGCTCCCCCCGGCTGGTCCTTCACACGCACC GAGCCATGAGGAGCTGGCGCCTCTGAGAGCCTCTTCCTGCCCTACTACCCGCCAGACTCA GAGGCCAGGAGGCCATGCCCTGGGGCCACAGGGAGGTGAGGTGGGCTGGATGCCACACAG ATGGTCTCCGTGCTGGCTCACTGAAGAGCTGAGCCTGTGGCTGGCCTCAGAATCAGGCTG GGTGCAGTGGCTCACACCTGTAATCCCAGCATTTTGGGAGGCTGAGTGAGAGGATCACTT 'GAGCTCAGGAGTTCGAGACCAGCCTGGCCAACATGGCAACACCCCATTTCTACAAAAAAT TTGTAAAATTAGCCAGGCATGGTGGCGCACGCCTGTAGTCCCAGCTGCTTGGGAGGCTGA GGTGGGAGAATCACTTGAGCCCAGGAGTTCGAGGCTGCAGTGAGCCAGGATCATGCCACT GCACTCCAGCCTGGTCCACAGAGAGACACTGTCACCCCCTTTCCCCCACAAGACTGGCAG AGGCTGGGCAGCCTGGGGCTGATGAAGCAGAGATGTTCGCTGGATCCCAGGCCCTGGCAC CCCTCAGGAAATACAAGAAAAAGAATATTCACATCTGTTTAATGTGCATAAAGCCAAGGA AAGGACAGTTCCGAATTCAAAAAAAAAAAAAAAAAAAA > BF446419 TTTTTTTTTTTTTTTTTAAATATTTAACTTATTTATTTM TGCTAGCTTTTCTGTGTTGGTGTCTAATATTTGGGTAGGGTGGGGGATCCCCAACAATCA GGTCCCCTGAGATAGCTGGTCATTGGGCTGATCATTGCCAGAATCTTCTTCTCCTGGGGT CTGGCCCCCCAAAATGCCTAACCCAGGACCTTGGGAATTCTACTCATCCCAAATGATAAT TCCAAATGCTGTTACCCAAGGTTAGGGTGTTGAAGGAAGGTAGAGGGTGGGGCTTCAGGT CTCAACGGCTTCCCTAACCACCCCTCTTCTCTTGGCCCAGCCTGGTTCCCCCCACTTCCA CTCCCCTCTACTCTCTCTAGGACTGGGCTGATGAAGGCA'CTGCCCAAAATTTCCCCTACC CCCAACTTTCCCCTACCCCCAACTTTCCCCACCAGCTCCACAACCCTGTTTGGAGCTACT GCAGGACCAGAAGCACAAAGTGCGGTTTCCCAAGCCTTTGTCCATCTCAGCCCCCAGAGT ATATCTGTGCTTGGGGAATCTCACACAGAAACTCAGGAGCACCCCCTGCCTGAGCTAAGG GAGGTCTTATCTCTCAGGGGGGGTTTAAGTGCCGTTTGCAATAATGTCGTCTTATTTATT TAGCGGGGTGAATATTTTATACTGTAAGTGAGCAATCAGAGTATAATGTTTATGGTGACA AAATTAAAGGCTTTCTTATATGTTTAAAAAAAA > BC006819 GCCTTATAAAGCACCAAGAGGCTGCCAGTGGGACATTTTCTCGGCCCTGCCAGCCCCCAG GAGGAAGGTGGGTCTGAATCTAGCACCATGACGGAACTAGAGACAGCCATGGGCATGATC ATAGACGTCTTTTCCCGATATTCGGGCAGCGAGGGCAGCACGCAGACCCTGACCAAGGGG GAGCTCAAGGTGCTGATGGAGAAGGAGCTACCAGGCTTCCTGCAGAGTGGAAAAGACAAG GATGCCGTGGATAAATTGCTCAAGGACCTGGACGCCAATGGAGATGCCCAGGTGGACTTC AGTGAGTTCATCGTGTTCGTGGCTGCAATCACGTCTGCCTGTCACAAGTACTTTGAGAAG GCAGGACTCAAATGATGCCCTGGAGATGTCACAGATTCCTGGCAGAGCCATGGTCCCAGG TTAATAAATGCTTATGAAATGAAAAAAAAAAAAAAA >CTTCCCAAAAGTGTTTGTGGCAATTATTCCCCTAGGCTGAGCCTGCTCATGTACCTCTGA; AA765597 CCAGCAAAGTCTCTTTTGACCACACGCTTTATCCGAGATGCTTAGAAGTATATTTGGCTG TTTTATTTGCATCTTTGATTAAGATGTCTATCATTGTAAAAAGGTATTCAAAACAAAAGT GTACTCTTTTATTATTATGAATCACATTGTACTGAGCTGTGAAGTCAGTGTTTTAAAAAT GTAGAGTTTATTCATGGAGCATGCCATTGAGGTTTGGATGGTGGCAGGTAAAACAGAAAG GCAAGATGTCATCTGACATTAGGCTACTTATAAATAAATGTTTATCTAGCTTTTATTTCA TGCCCTAATGAATAAAACATGCTTCGAAAAAGAAAGTAAAAAAAAAAAACAAAA > X78202 GGCGAGAGAGACGCTCCCGCTCGCCGCCAGCTCTGATTGGCCCAGCGGTAGGAAAGGTTA AACCAAAAATTTTTTTACAGCCCTAGTGTGCGCCTGTAGCTCGGAAAATTAATTGTGGCT ATAGCCGCCTCGATCGCTGTCTCCCCAGCCTCGCCGCGGACGCTCCGGGACGCGCCCGCC CGCCGCCCGGTTCTCCCCCCCTTTGGGCTGGTGCTGCTGCTGCTGTGACTGCTGCTGCGA AAGGAGGAGGAGGAGGAGGAAGCAGCGGGGGGGGGAGCGGTGGGTGTGGGGGAAACCAAG AGTACAGTGGACGAGGACTCACCCCGGCGTGGTGTTCTTTTTTCTTCTTCTTTTTCTTTC CTTTTTTTTTTTTTTTTCTAATTCCTGAGGGGTGGTTGCTGCTTTTGCTACATGACTTGC CAGCGCCCGAGCCTGCGGTCCAACTGCGCTGCTGCCGGAGCGCTCAGTGCCGCCGCTGCC GCCCGTGCCCCCCGCGCCCCGTTCGGCACCCACCGGTCGCCGCCCCGCCCGCGCGCCGCT GTCCCGCTCCCGCGCCGCCGCCGCCGTTTCCCCCCGACGACTGGGTGATGCTGGACATGG GAGATAGGAAAGAGGTGAAAATGATCCCCAAGTCCTCGTTCAGCATCAACAGCCTGGTGC CCGAGGGCCTCCAGAACGACAACCACCACGCGAGCCACGGCCACCACAACAGCCACCACC CCCAGCACCACCACCACCACCACCACCATCACCACCACCCGCCGCCGCCCGCCCCGCAAC CGCCGCCGCCGCCGCAGCAGCAGCAGCCGCCGCCGCCGCCGAGACGCGGGGCCCGGCGCC GACGACGACGAGGCCCCAGCAGTTGTTGTTCCGCCGCGCACGCACACGGCGCGCCTGAGG GCCAACGGCAGCTGGCGCAAGGCGACCGGCGCGGCCGGGGGATCTGCCCCGTCGGGCCGG ACGAGAAGGAGAAGGCCCGCGCCGGGGGGGAGGAGAAGAAGGGGGCGGGCGAGGGCGGCA AGGACGGGGAGGGGGGCAAGGAGGGCGAGAAGAAGAACGGCAAGTACGAGAAGCCGCCGT TCAGCTACAACGCGCTCATCATGATGGCCATGCGGCAGAGCCCCGAGAAGCGGCTCACGC TCAACGGCATCTACGAGTTCATCATGAAGAACTTCCCTTACTACCGCGAGAACAAGCAGG 5 GCTGGCAGAACTCCATCCGCCACAATCTGTCCCTCAACAAGTGCTTCGTGAAGGTGCCGC GCCACTACGACGACCCGGGCAAGGGCAACTACTGGATGCTGGACCCGTCGAGCGACGACG TGTTCATCGGCGGCACCACGGGCAAGCTGCGGCGCTCCACCACCTCGCCGGCCAAGCCGG CCTTCAAGCGCGGTGCCGCGCTCACCTCCACCGGCCTCACCTTCATGGACGCGCCGGCTC CCTCTACTGGCCCATGTCGCCCTTCCTGTCCCTGCACCACCCCCGCCAGCAGCACTTTGA GTTACAACGGGACCACGTCGGCCTACCCCAGCCACCCCATGCCCTACAGCTCCGTGTTGA CTCAAAACTCGCTGGGCAACAA CCACTCCTCCTCCACCGCCAACGGGCTGAGCGTGGACC GGCTGGTCAACGGGGGAATCCCGTACGCCACGCACCACCTCACGGCCGCCGCGCTAACCG CCTCGGTGCCCTGCGGCCTGCTGGTGCCCTGCTCTGGGACCTACTCCCTCAACCCCTGCT CCGTCAACCTGCTCGCGGGCCAGACCAGTTACTTTTTCCCCCACGTCCCGCACCCGTCAA TGACTTCGCAGAGCAGCACGTCCATGAGCGCCAGGGCCGCGTCCTCCTCCACGTCGCCGG CAGGCCCCCCTCGACCCCTGCCCTGTGAGTCTTTAAGACCCTCTTTGCCAAGTTTTACGA CGGGACTGTCTGGGGGACTGTCTGATTATTTCACACATCAAAATCAGGGGTCTTCTTCCA • O ACCCTTTAATACATTAACATCCCTGGGACCAGACTGTAAGTGAACGTTTTACACACATTT GCATTGTAAATGATAATTAAAAAAATAAGTCCAGGTATTTTTTATTAAGCCCCCCCCTCC CATTTCTGTACGTTTGTTCAGTCTCTAGGGTTGTTTATTATTCTAACAAGGTGTGGAGTG TCAGCGAGGTGCAATGTGGGGAGAATACATTGTAGAATATAAGGTTTGGAAGTCAAATTA TAGTAGAATGTGTATCTAAATAGTGACTGCTTTGCCATTTCATTCAAACCTGACAAGTCT ATCTCTAAGAGCCGCCAGATTTCCATGTGTGCAGTATTATAAGTTATCATGGAACTATAT GGTGGACGCAGACCTTGAGAACAACCTAAATTATGGGGAGAATTTTAAAATGTTAAACTG TAATTTGTATTTAAAAAGCATTCGTAGTAAAGGTGCCCAAGAAATTATTTTGGCCATTTA TTGTTTTCTCCTTTTCTTTAAAGAACTGTTTTTTTTTCTTTTGTTTACTTTTAGACCAAA GATTGGGCGGTTCTAGAAAATGCGCCTTGGTATACTAAGTATTAAAACAAACAAAAAGGA AAGTTGTTTCAGTTAACGCTGCCCATTCAATTGAATCAGAAGGGGACAAAATTAACGATT GCCTTCAGTTTGTGTTGTGTATATTTTGATGTATGTGGTCACTAACAGGTCACTTTTATT | 5 TTTTCTAAATGTAGTGAAATGTTAATACCTATTGTACTTATAGGTAAACCTTGCAAATAT GTAACCTGTGTTGCGCAAATGCCGCATAAATTTGAGTGATTGTTAATGTTGTCTTAAAAT TTCTTGATTGTGACTATGTGGTCATATGCCCGTGTTTGTCACTTACAAAAATGTTTACTA TGAACACACATAAATAAAAAATAG > AK026790 AAAATGCTTACTCTTGTGGGCTACTTGTTGTGTGGAAAAAGGAAAACGGATTCATTTTCC CATCGGCGACTTTATGACGACAGAAATGAACCAGTTCTGCGATTAGACAATGCACCGGAA CCTTATGATGTGAGTTTTGGGAATTCTAGCTACTACAATCCAACTTTGAATGATTCAGCC ATGCCAGAAAGTGAAGAAAATGCACGTGATGGCATTCCTATGGATGACATACCTCCACTT CGTACTTCTGTATAGAACTAACAGCAAAAAGGCGTTAAACAGCAAGTGTCATCTACATCC TAGCCTTTTGACAAATTCATCTTTCAAAAGGTTACACAAAATTACTGTCACGTTGGATTT ? Fl TGTCAAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCAT CCAAAGGTTTTCTTTCTTACAATTTTTGGCCATCCTGAGGCATTTACTAAGTAGCCTTAA TTTGTATTTTAGTAGTATTTTCTTAGTAGAAAATATTTGTGGAATCAGATAAAACTAAAA GATTTCACCATTACAGCCCTGCCTCATAACTAAATAATAAAAATTATTCCACCAAAAAAT TCTAAAACAATGAAGATGACTCTTTACTGCTCTGCCTGAAGCCCTAGTACCATAATTCAA GATTGCATTTTCTTAAATGAAAATTGAAAGGGTGCTTTTTAAAGAAAATTTGACTTAAAG CTAAAAAGAGGACATAGCCCAGAGTTTCTGTTATTGGGAAATTGAGGCAATAGAAATGAC AGACCTGTATTCTAGTACGTTATAATTTTCXAGATCAGCACACACATGATCAGCCCACTG AGTTATGAAGCTGACAATGACTGCATTCAACGGGGCCATGGCAGGAAAGCTGACCCTACC CAGGAAAGTAATAGCTTCTTTAAAAGTCTTCAAAGGTTTTGGGAATTTTAACTTGTCTTA ATATATCTTAGGCTTCAATTATTTGGGTGCCTTAAAAACTCAATGAGAATCATGGTAAAA AAAAAAAGTTAACCAAAGAATATACCTGTACATAATTTGTACAGTTTTAAGTTGTTAGAT AGGAACTGGATTTCtTATGTATTAGACATTATTGCTCAATCATAATGGAATAGATTCTGC ATCCCTAAATGTATGAACCATAAGGTTAAAAAAGATGAATGGAAATATCAAACAACTTTT CACTGAGCATCAGTTTCATAATCAATAATATAAGAAGATTAATTTGGATTCTAGTATGTT TCAGTTTGTTTTTAATTACCACCTTCCTTTGGTAGAAAAAATATGTTCCTTGATGTAGGA AAGTCTAGGTTTTAGAGATTAGAGGATGAGATCAAGAGTTAAATTCCTAAAGAAGCACTG AATATATGAAGAGAGCAAACAAATCAAGTACCAACCTAGAGGCTTTATTTTTGAATTGAT TCATGGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTAACACAGAAACAGCT TTCAGAAAATAAGGGATAGAAAGTAATGAAGAAAGTACTTACCCCATATTGCCATAAAAA TAGCAAAGAAGACTGTCCCTCCATTATCGAACAAATATGTCACCTGAGTAGAAAACAAAC AGAAATATTAGTCATGCAAATTGATTATAATAAGCCAGTGAATACTGTTTGCACTCAGGT ACTATGATTTTTTCTCAAATAGAATCATATTATTTTATAGTACAGAAATATTATATATGA ATTCCTTTCATGGGTCTTGCAACAATTTCACATGATTTTTCTCATGGGGAGAGGTGAAGA 5 AACAACATTAGCCCTCTTCTCTCCTCTCTTGATTCCCTTTATACCCCACCATCATTTCTG ATTATAAATAATTCTACCATTCTATGGAAGTATTTGTGGGTCACAGATTGTCAAACTACT TAATGAAAGTTGTATGAAATTAGTTTTTCAGGTGAGGCATTCCTAGTTGCAATTCCTGTT AGCAAAACTTCTAGGAGTGGGGAAGTTGGAAAATGCAGGATTCTTCCAGTGAGCCAGCAT TTCCCATAGCTAACCCTATTCTCTTAGTCTTTCAAAATGTAGAATGGGTCCAATAATGGC TATAAGATGTAATAAATCCCATCTTAATTTGTTTTAAAAGTTTCATAAATCACTGAACAC TTATGAAACAAAGTGTTTTTTAATCAGATATCAACTGAAACTTCATAAAGGATGCATAGT TTTATAATGTTATTGAATCAAATTTTAAGGCTTGTATTGTTTGATTTTATAAAGTATAA TCTCCTTTTTAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAA >; BC012727 GGCACGAGGCTGCCTGCCCCCCGGGTGGGGCTGCGGCTCTGGCCTCCCAGGCCCATCCTC AACAGCTACCCCAGCCAACACCAAGGCCACAAGGGGACCCCGGCCTAGGAGGCAGGAAGC '° CAAGGTACAGAGAGCAGCCTGGCCCTCACCAGTGCGCAAGCTGGGGCAGCAAGGCTGACA GTTGCTGCATGCCCAGGGCAGGGTGTGGTACTGGCACCCAAGTTCAGCATGGCAGAGCTG GCCAACAGCTTGTCCCCGATCTGCCTCCAGCCCCAAGATGCCTACAGCCCCCAGGCCCCT TCGGCAGCACTGCCTCTGCCCACCTGCCTTTAAGAGACTCCAGGGCTGCTCCTGTCATGC AGCGAAGGTTTTGTCTGTTTCAAAGTTCGAGACTCAACTTGAGGGACTGTTTTTGACAAT CCCCGCTGACCTCCGCTCCTCGTGGCGCCCTGGCCCTACACCCAGCCTGGCCCAGGGCCG GCTTTGCCTGGTGAGGCTGGAGGGAGCACCAGGACCTGCTGTCTGCTGTCAGCCCCTCCT GGTGCTGGTGCCCTGATGCTGTGCCTTGTCACCCATTGAGCTGCAAGAGGGACCAAGAGG GGGCCACGCAGCCAGCCAGA'GCCTGGCCCTGTGCTGGGGCAGACAACGCTGCAGAGCCC AGGGAGCCTGGCGCTAGGACGTGCGTCCTTGTGACACTGGCCTGTCTGAACTCACCTGGC CTGGGAAGCACCGTCTGCCCGGGCCCAAGCCCTGCCCCTCCAGAGTCCAGAGCCAGGAAG GGGCTGCTGAGGGCGAGCATCCTGCTGGGCTCTCTGCCCGGCCCACCCCTCCAAGGGGCT GGCCTGTGAGCCTTGACTGGGATTCATGATGTGGAGGCCCCCAACTTCCAGAAGCAGCTG GTACTCTGCTCACACAAGCGACTGGGCCGGCCGGCCCTGGACCCCTAGACCCCGAGCCGC CTGCCGACTGCCTGCACAGGGAGAGCAGTTGAGGCCCGGGCAGGGCCCCCACACCAGACC CCAACATAGCTTCCCCACCCAGGCACCCCCTCCCGGGGCAGCAGGCGTGGGAGTCAGGGC TGCATGCTCCTCCCCTCCCACCTCACAGGCGGCCTTAGGCAAGTCATTTTCTGTCATCAC AAGGTCGCCTCTGCCTAGTCAGGTCCTGGCGTCCAGAGTAAGGATGTGCGGCCCCCAGGC CCCCGCACACCTCCCTCAGCACCAAGACCGGGACCCCCCCACCCACGTGTCTCATTGTGG CTGCCTATGGACTCCCGGGCCTTGTGTGCAGGCCAGGCCCTTCCACTGATTTTTTAAAGT GAACCATTGCTGGATCTCAGATTCTGTGGCATCTAAGGCCTAGCAGGGGTGGGCACACGG GTCACCCGAGGCCCATACCAAGACTCTGTTCCTGCCCTAGGCCCAGTCTCAAAGGAAGCC ACAAGGCGCGGGGGCCACTGAGGAAGGAAATGTTCATTTTCATTTGTCCAAAACCACCTT AAGTTTTAAGTATATTAATCTTGATGCTTTTTAACTATTGCTTTTTAACTTGCTGAGATT TAGAAATACTGTTATAAAAACTTTTTTAATTTCTGTATTTTTTTTCTGTATTGTATCTTC the 9th ATGGGACATTAGGGGTTTTCTATGGTAAGCACACCTATGGTTTTGGTAAAAACATTATCA AATATATATCCAGACGGTTCTTCCCTAGAAGAAAAACAAGTCTTTACACCTGATAAAATA TTTTGCGAAGAGAGGTGTTCTTTTTCCTTACTGGTGCTGAAAGGAAGGATGGATAACGAG GAGAAAATAAAACTGTGAGGCTCAAAAAAAAAAAAAAAAAA? R45389 CCTGCCCTTCTCTATATGTACCATCTCCAAAAACCATGTACATCTCCAAAAACTGGAGTA GAAAGTTAGATTGCTCAACTACAACTCCTCTAGAACTCTATAGCTCTGACATACAGATTC ACACTCTCCTCTATTTGCTAAGTATGTAAAGAATGTTTTCTTTTAAAATGTTCTCTTTTG AGAACAACTGCTTATTTGTTATAAAAGCATTTGGTTAAAATGATGTCATCATAAAGAACA GTGGCTTTGTTTCAATACATATTTTTGAGATGATTATCTAGAAGCCAGATTAATAAAATC AGCTTGTGACCTTGCTAAGCATATAAACTGGAAATTCAGATACATTCAAAATTATGGGTT 25 CATTTAAAAGTGtTCTACCTTTTGGGTATGAGACTAATATCACTAATTCCTCAATAGTTA TCATGGCTCTATCTTAATTAATTAGAAAATATGTGTGTTTAATTCTTTGAGAATTAAAAT AGAGAATATTAACAGAGGGTTAAAAACTGCTTCAACTCCAATAAGATAAAGGAAGCTCAA AATCTATGAGCTGAGTGTTCAATTAGCTTTGCCTACTGAGTTCAATTTTATGTCAATACA ACAGTGGATCAGACAGTACGACTTTGAACTGGTGAATGTAAACAATTGTTTTTCACCTAA GCTGCTTTGGAAGAACTGATGCTTGCTGCTAACTAAAGTTTTGGATGTATCGATTTAGAG AACCAATTAATACCTGCAAAATAAAGCATACTGTGGTACTTCTGTTTGATCTAGTATGTG TGATTTTAGATTGATGGATTAAAAATTAATAAAGATCATACATTCCATACCAAAAAAAAA AAAAAAAA > BC006811 CCAGAAGCCTGCATTTCTGCATTCTGCTTAATTCCCTTTCCTTAGATTTGAAAGAAGCCA ACACTAAACCACAAATATACAACAAGGCCATTTTCTCAAACGAGAGTCAGCCTTTAACGA AATGACCATGGTTGACACAGAGATGCCATTCTGGCCCACCAACTTTGGGATCAGCTCCGT GGATCTCTCCGTAATGGAAGACCACTCCCACTCCTTTGATATCAAGCCCTTCACTACTGT TGACTTCTCCAGCATTTCTACTCCACATTACGAAGACATTCCATTCACAAGAACAGATCC AGTGGTTGCAGATTACAAGTATGACCTGAAACTTCAAGAGTACCAAAGTGCAATCAAAGT GGAGCCTGCATCTCCACCTTATTATTCTGAGAAGACTCAGCTCTACAATAAGCCTCATGA AGAGCCTTCCAACTCCCTCATGGCAATTGAATGTCGTGTCTGTGGAGATAAAGCTTCTGG ATTTCACTATGGAGTTCATGCTTGTGAAGGATGCAAGGGTTTCTTCCGGAGAACAATCAG ATTGAAGCTTATCTATGACAGATGTGATCTTAACTGTCGGATCCACAAAAAAAGTAGAAA TAAATGTCAGTACTGTCGGTTTCAGAAATGCCTTGCAGTGGGGATGTCTCATAATGCCAT CAGGTTTGGGCGGATGCCACAGGCCGAGAAGGAGAAGCTGTTGGCGGAGATCTCCAGTGA TATCGACCAGCTGAATCCAGAGTCCGCTGACCTCCGGGCCCTGGCAAAACATTTGTATGA I O CTCATACATAAAGTCCTTCCCGCTGACCAAAGCAAAGGCGAGGGCGATCTTGACAGGAAA GACAACAGACAAATCACCATTCGTTATCTATGACATGAATTCCTTAATGATGGGAGAAGA TAAAATCAAGTTCAAACACATCACCCCCCTGCAGGAGCAGAGCAAAGAGGTGGCCATCCG CATCTTTCAGGGCTGCCAGTTTCGCTCCGTGGAGGCTGTGCAGGAGATCACAGAGTATGC CAAAAGCATTCCTGGTTTTGTAAATCTTGACTTGAACGACCAAGTAACTCTCCTCAAATA TGGAGTCCACGAGATCATTTACACAATGCTGGCCTCCTTGATGAATAAAGATGGGGTTCT CATATCCGAGGGCCAAGGCTTCATGACAAGGGAGTTTCTAAAGAGCCTGCGAAAGCCTTT TGGTGACTTTATGGAGCCCAAGTTTGAGTTTGCTGTGAAGTTCAATGCACTGGAATTAGA TGACAGCGACTTGGCAATATTTATTGCTGTCATTATTCTCAGTGGAGACCGCCCAGGTTT GCTGAATGTGAAGCCCATTGAAGACATTCAAGACAACCTGCTACAAGCCCTGGAGCTCCA GCTGAAGCTGAACCACCCTGAGTCCTCACAGCTGTTTGCCAAGCTGCTCCAGAAAATGAC AGACCTCAGACAGATTGTCACGGAACACGTGCAGCTACTGCAGGTGATCAAGAAGACGGA GACAGACATGAGTCTTCACCCGCTCCTGCAGGAGATCTACAAGGACTTGTACTAGCAGAG AGTCCTGAGCCACTGCCAACATTTCCCTTCTTCCAGTTGCACTATTCTGAGGGAAAATCT GACACCTAAGAAATTTACTGTGAAAAAGCATTTTAAAAAGAAAAGGTTTTAGAATATGAT CTATTTTATGCATATTGTTTATAAAGACACATTTACAATTTACTTTTAATATTAAAAATT ACCATATTATGAAAAAAAAAAAAAAAA > X05615 GCAGTGGTTTCTCCTCCTTCCTCCCAGGAAGGGCCAGGAAAATGGCCCTGGTCCTGGAGA TCTTCACCCTGCTGGCCTCCATCTGCTGGGTGTCGGCCAATATCTTCGAGTACCAGGTTG ATGCCCAGCCCCTTCGTCCCTGTGAGCTGCAGAGGGAAACGGCCTTTCTGAAGCAAGCAG ACTACGTGCCCCAGTGTGCAGAGGATGGCAGCTTCCAGACTGTCCAGTGCCAGAACGACG GCCGCTCCTGCTGGTGTGTGGGTGCCAACGGCAGTGAAGTGCTGGGCAGCAGGCAGCCAG GACGGCCTGTGGCTTGTCTGTCATTTTGTCAGCTACAGAAACAGCAGATCTTACTGAGTG GCTACATTAACAGCACAGACACCTCCTACCTCCCTCAGTGTCAGGATTCAGGGGACTACG CGCCTGTTCAGTGTGATGTGCAGCATGTCCAGTGCTGGTGTGTGGACGCAGAGGGGATGG AGGTGTATGGGACCCGCCAGCTGGGGAGGCCAAAGCGATGTCCAAGGAGCTGTGAAATAA GAAATCGTCGTCTTCTCCACGGGGTGGGAGATAAGTCACCACCCCAGTGTTCTGCGGAGG GAGAGTTTATGCCTGTCCAGTGCAAATTTGTCAACACCACAGACATGATGATTTTTGATC TGGTCCACAGCTACAACAGGTTTCCAGATGCATTTGTGACCTTCAGTTCCTTCCAGAGGA GGTTCCCTGAGGTATCTGGGTATTGCCACTGTGCTGACAGCCAAGGGCGGGAACTGGCTG AGACAGGTTTGGAGTTGTTACTGGATGAAATTTATGACACCATTTTTGCTGGCCTGGACC TTCCTTCCACCTTCACTGAAACCACCCTGTACCGGATACTGCAGAGACGGTTCCTCGCAG TTCAATCAGTCATCTCTGGCAGATTCCGATGCCCCACAAAATGTGAAGTGGAGCGGTTTA CAGCAACCAGCTTTGG TCACCCCTATGTTCCAAGCTGCCGCCGAAATGGCGACTATCAGG CGGTGCAGTGCCAGACGGAAGGGCCCTGCTGGTGTGTGGACGCCCAGGGGAAGGAAATGC 25 ATGGAACCCGGCAGCAAGGGGAGCCGCCATCTTGTGCTGAAGGCCAATCTTGTGCCTCCG AAAGGCAGCAGGCCTTGTCCAGACTCTACTTTGGGACCTCAGGCTACTTCAGCCAGCACG ACCTGTTCTCTTCCCCAGAGAAAAGATGGGCCTCTCCAAGAGTAGCCAGATTTGCCACAT CCTGCCCACCCACGATCAAGGAGCTCTTTGTGGACTCTGGGCTTCTCCGCCCAATGGTGG AGGGACAGAGCCAACAGTTTTCTGTCTCAGAAAATCTTCTCAAAGAAGCCATCCGAGCAA TTTTTCCCTCCCGAGGGCTGGCTCGTCTTGCCCTTCAGTTTACCACCAACCCAAAGAGAC TCCAGCAAAACCTTTTTGGAGGGAAATTTTTGGTGAATGTTGGCCAGTTTAACTTGTCTG GAGCCCTTGGCACAAGAGGCACATTTAACTTCAGTCAATTTTTCCAGCAACTTGGTCTTG CAAGCTTCTTGAATGGAGGGAGACAAGAAGATTTGGCCAAGCCACTCTCTGTGGGATTAG ATTCAAATTCTTCCACAGGAACCCCTGAAGCTGCTAAGAAGGATGGTACTATGAATAAGC CAACTGTGGGCAGCTTTGGCTTTGAAATTAACCTACAAGAGAACCAAAATGCCCTCAAAT TCCTTGCTTCTCTCCTGGAGCTTCCAGAATTCCTTCTCTTCTTGCAACATGCTATCTCTG 5 TGCCAGAAGATGTGGCAAGAGATTTAGGTGATGTGATGGAAACGGTACTCGACTCCCAGA CCTGTGAGCAGACACCTGAAAGGCTATTTGTCCCATCATGCACGACAGAAGGAAGCTATG AGGATGTCCAATGCTTTTCCGGAGAGTGCTGGTGTGTGAATTCCTGGGGCAAAGAGCTTC CAGGCTCAAGAGTCAGAGATGGACAGCCAAGGTGCCCCACAGACTGTGAAAAGCAAAGGG CTCGCATGCAAAGCCTCATGGGCAGCCAGCCTGCTGGCTCCACCTTGTTTGTCCCTGCTT GTACTAGTGAGGGACATTTCCT GCCTGTCCAGTGCTTCAACTCAGAGTGCTACTGTGTTG ATGCTGAGGGTCAGGCCATTCCTGGAACTCGAAGTGCAATAGGGAAGCCCAAGAAATGCC CCACGCCCTGTCAATTACAGTCTGAGCAAGCTTTCCTCAGGACGGTGCAGGCCCTGCTCT CTAACTCCAGCATGCTACCCACCCTTTCCGACACCTACATCCCACAGTGCAGCACCGATG GGCAGTGGAGACAAGTGCAATGCAATGGGCCTCCTGAGCAGGTCTTCGAGTTGTACCAAC GATGGGAGGCTCAGAACAAGGGCCAGGATCTGACGCCTGCCAAGCTGCTAGTGAAGATCA TGAGCTACAGAGAAGCAGCTTCCGGAAACTTCAGTCTCTTTATTCAAAGTCTGTATGAGG I O CTGGCCAGCAAGATGTCTTCCCGGTGCTGTCACAATACCCTTCTCTGCAAGATGTCCCAC TAGCAGCACTGGAAGGGAAACGGCCCCAGCCCAGGGAGAATATCCTCCTGGAGCCCTACC TCTTCTGGCAGATCTTAAATGGCCAACTCAGCCAATACCCGGGGTCCTACTCAGACTTCA GCACTCCTTTGGCACATTTTGATCTTCGGAACTGCTGGTGTGTGGATGAGGCTGGCCAAG AACTGGAAGGAATGCGGTCTGAGCCAAGCAAGCTCCCAACGTGTCCTGGCTCCTGTGAGG AAGCAAAGCTCCGTGTACTGCAGTTCATTAGGGAAACGGAAGAGATTGTTTCAGCTTCCA ACAGTTCTCGGTTCCCTCTGGGGGAGAGTTTCCTGGTGGCCAAGGGAATCCGGCTGAGGA ATGAGGACCTCGGCCTTCCTCCGCTCTTCCCGCCCCGGGAGGCTTTCGCGGAGTTTCTGC GTGGGAGTGATTACGCCATTCGCCTGGCGGCTCAGTCTACCTTAAGCTTCTATCAGAGAC GCCGCTTTTCCCCGGACGACTCGGCTGGAGCATCCGCCCTTCTGCGGTCGGGCCCCTACA TGCCACAGTGTGATGCGTTTGGAAGTTGGGAGCCTGTGCAGTGCCACGCTGGGACTGGGC ACTGCTGGTGTGTAGATGAGAAAGGAGGGTTCATCCCTGGCTCACTGACTGCCCGCTCTC TGCAGATTCCACAGTGCCCGACAACCTGCGAGAAATCTCGAACCAGTGGGCTGCTTTCCA GTTGGAAACAGGCTAGATCCCAAGAAAACCCATCTCCAAAAGACCTGTTCGTCCCAGCCT GCCTAGAAACAGGAGAATATGCCAGGCTGCAGGCATCGGGGGCTGGCACCTGGTGTGTGG ACCCTGCATCAGGAGAAGAGTTGCGGCCTGGCTCGAGCAGCAGTGCCCAGTGCCCAAGCC TCTGCAATGTGCTCAAGAGTGGAGTCCTCTCTAGGAGAGTCAGCCCAGGCTATGTCCCAG CCTGCAGGGCAGAGGATGGGGGCTTTTCCCCAGTGCAATGTGACCAGGCCCAGGGCAGCT GCTGGTGTGTCATGGACAGCGGAGAAGAGGTGCCTGGGACGCGCGTGACCGGGGGCCAGC CCGCCTGTGAGAGCCCGCGGTGTCCGCTGCCATTCAACGCGTCGGAGGTGGTTGGTGGAA CAATCCTGTGTGAGACAATCTCGGGCCCCACAGGCTCTGCCATGCAGCAGTGCCAATTGC TGTGCCGCCAAGGCTCCTGGAGCGTGTTTCCACCAGGGCCATTGATATGTAGCCTGGAGA GCGGACGCTGGGAGTCACAGCTGCCTCAGCCCCGGGCCTGCCAACGGCCCCAGCTGTGGC AGACCATCCAGACCCAAGGGCACTTTCAGCTCCAGCTCCCGCCGGGCAAGATGTGCAGTG f) CTGACTACGCGGGTTTGCTGCAGACTTTCCAGGTTTTCATATTGGATGAGCTGACAGCCC GCGGCTTCTGCCAGATCCAGGTGAAGACXTTTGGCACCCTGGTTTCCATTCCTGTCTGCA ACAACTCCTCTGTGCAGGTGGGTTGTCTGACCAGGGAGCGTTTAGGAGTGAATGTTACAT GGAAATCACGGCTTGAGGACATCCCAGTGGCTTCTCTTCCTGACTTACATGACATTGAGA GAGCCTTGGTGGGCAAGGATCTCCTTGGGCGCTTCACAGATCTGATCCAGAGTGGCTCAT TCCAGCTTCATCTGGACTCCAAGACGTTCCCAGCGGAAACCATCCGCTTCCTCCAAGGGG ACCACTTTGGCACCTCTCCTAGGACACGGTTTGGGTGCTCGGAAGGATTCTACCAAGTCT TGACAAGTGAGGCCAGTCAGGACGGACTGGGATGCGTTAAGTGCCATGAAGGAAGCTATT CCCAAGATGAGGAATGCATTCCTTGTCCTGTTGGATTCTACCAAGAACAGGCAGGGAGCT TGGCCTGTGTCCCATGTCCTGTGGGCAGAACGACCATTTCTGCCGGAGCTTTCAGCCAGA CTCACTGTGTCACTGACTGTCAGAGGAACGAAGCAGGCCTGCAATGTGACCAGAATGGCC AGTATCGAGCCAGCCAGAAGG ACAGGGGCAGTGGGAAGGCCTTCTGTGTGGACGGCGAGG GGCGGAGGCTGCCATGGTGGGAAACAGAGGCCCCTCTTGAGGACTCACAGTGTTTGATGA 5 TGCAGAAGTTTGAGAAGGTTCCAGAATCAAAGGTGATCTTCGACGCCAATGCTCCTGTGG CTGTCAGATCCAAAGTTCCTGATTCTGAGTTCCCCGTGATGCAGTGCTTGACAGATTGCA CAGAGGACGAGGCCTGCAGCTTCTTCACCGTGTCCACGACGGAGCCAGAGATTTCCTGTG ATTTCTATGCTTGGACAAGTGACAATGTTGCCTGCATGACTTCTGACCAGAAACGAGATG CACTGGGGAACTCAAAGGCCACCAGCTTTGGAAGTCTTCGCTGCCAGGTGAAAGTGAGGA GCCATGGTCAAGATTCTCCAGCTGTGTATTTGAAAAAGGGCCAAGGATCCACCACAACAC TTCAGAAACGCTTTGAACCCACTGGTTTCCAAAACATGCTTTCTGGATTGTACAACCCCA TTGTGTTCTCAGCCTCAGGAGCCAATCTAACCGATGCTCACCTCTTCTGTCTTCTTGCAT GCGACCGTGATCTGTGTTGCGATGGCTTCGTCCTCACACAGGTTCAAGGAGGTGCCATCA TCTGTGGGTTGCTGAGCTCACCCAGTGTCCTGCTTTGTAATGTCAAAGACTGGATGGATC CCTCTGAAGCCTGGGCTAATGCTACATGTCCTGGTGTGACATATGACCAGGAGAGCCACC AGGTGATATTGCGTCTTGGAGACCAGGAGTTCATCAAGAGTCTGACACCCTTAGAAGGAA CTCAAGACACCTTTACCAATTTTCAGCAGGTTTATCTCTGGAAAGATTCTGACATGGGGT CTCGGCCTGAGTCTATGGGATGTAGAAAAAACACAGTGCCAAGGCCAGCATCTCCAACAG AAGCAGGTTTGACAACAGAACTTTTCTCCCCTGTGGACCTCAACCAGGTCATTGTCAATG GAAATCAATCACTATCCAGCCAGAAGCACTGGCTTTTCAAGCACCTGTTTTCAGCCCAGC AGGCAAACCTATGGTGCCTTTCTCGTTGTGTGCAGGAGCACTCTTTCTGTCAGCTCGCAG AGATAACAGAGAGTGCATCCTTGT ACTTCACCTGCACCCTCTACCCAGAGGCACAGGTGT GTGATGACATCATGGAGTCCAATACCCAGGGCTGCAGACTGATCCTGCCTCAGATGCCAA AGGCCCTGTTCCGGAAGAAAGTTATACTGGAAGATAAAGTGAAGAACTTTTACACTCGCC TGCCGTTCCAAAAACTGATGGGGATATCCATTAGAAATAAAGTGCCCATGTCTGAAAAAT CTATTTCTAATGGGTTCTTTGAATGTGAACGACGGTGCGATGCGGACCCATGCTGCACTG GCTTTGGATTTCTAAATGTTTCCCAGTTAAAAGGAGGAGAGGTGACATGTCTCACTCTGA ACAGCTTGGGAATTCAGATGTGCAGTGAGGAGAATGGAGGAGCCTGGCGCATTTTGGACT GTGGCTCTCCTGACATTGAAGTCCACACCTATCCCTTCGGATGGTACCAGAAGCCCATTG CTCAA ^ TAATGCTCCCAGTTTTTGCCCTTTGGTTGTTCTGCCTTCCCTCACAGAGAAAG TGTCTCTGGAATCGTGGCAGTCCCTGGCCCTCTCTTCAGTGGTTGTTGATCCATCCATTA GGCACTTTGATGTTGCCCATGTCAGCACTGCTGCCACCAGCAATTTCTCTGCTGTCCGAG ACCTCTGTTTGTCGGAATGTTCCCAACATGAGGCCTGTCTCATCACCACTCTGCAAACCC AACTCGGGGCTGTGAGATGTATG? TCTATGCTGATACTCAAAGCTGCACACATAGTCTGC AGGGTCGGAACTGCCGACTTCTGCTTCGTGAAGAGGCCACCCACATCTACCGGAAGCCAG GAATCTCTCTGCTCAGCTATGAGGCATCTGTACCTTCTGTGCCCATTTCCACCCATGGCC GGCTGCTGGGCAGGTCCCAGGCCATCCAGGTGGGTACCTCATGGAAGCAAGTGGACCAGT TCCTTGGAGTTCCATATGCTGCCCCGCCCCTGGCAGAGAGGCACTTCCA GGCACCAGAGC CCTTGAACTGGACAGGCTCCTGGGATGCCAGCAAGCCAAGGGCCAGCTGCTGGCAGCCAG GCACCAGAACATCCACGTCTCCTGGAGTCAGTGAAGATTGTTTGTATCTCAATGTGTTCA TCCCTCAGAATGTGGCCCCTAACGCGTCTGTGCTGGTGTTCTTCCACAACACCATGGACA GGGAGGAGAGTGAAGGATGGCCGGCTATCGACGGCTCCTTCTTGGCTGCTGTTGGCAACC TCATCGTGGTCACTGCCAGCTACCGAGTGGGTGTCTTCGGCTTCCTGAGTTCTGGATCCG GAGAGGTGAGTGGCAACTGGGGGCTGCTGGACCAGGTGGCGGCTCTGACCTGGGTGCAGA CCCACATCCGAGGATTTGGCGGGGACCCTCGGCGCGTGTCCCTGGCAGCAGACCGTGGCG GGGCTGATGTGGCCAGCATCCACCTTCTCACGGCCAGGGCCACCAACTCCCAACTTTTCC GGAGAGCTGTGCTGATGGGAGGCTCCGCACTCTCCCCGGCCGCCGTCATCAGCCATGAGA GGGCTCAGCAGCAGGCAATTGCTTTGGCAAAGGAGGTCAGTTGCCCCATGTCATCCAGCC AAGAAGTGGTGTCCTGCCTCCGCCAGAAGCCTGCCAATGTCCTCAATGATGCCCAGACCA AGCTCCTGGCCGTGAGTGGCCCTTTCCACTACTGGGGTCCTGTGATCGATGGCCACTTCC TCCGTGAGCCTCCAGCCAGAGCACTGAAGAGGTCTTTATGGGTAGAGGTCGATCTGCTCA TTGGGAGTTCTCAGGACGACGGGCTCATCAACAGAGCAAAGGCTGTGAAGCAATTTGAGG AAAGTCGAGGCCGGACCAGTAGCAAAACAGCCTTTTACCAGGCACTGCAGAATTCTCTGG GTGGCGAGGACTCAGATGCCCGCGTCGAGGCTGCTGCTACATGGTATTACTCTCTGGAGC ACTCCACGGATG ACTATGCCTCCTTCTCCCGGGCTCTGGAGAATGCCACCCGGGACTACT TTATCATCTGCCCTATAATCGACATGGCCAGTGCCTGGGCAAAGAGGGCCCGAGGAAACG TCTTCATGTACCATGCTCCTGAAAACTACGGCCATGGCAGCCTGGAGCTGCTGGCGGATG TTCAGTTTGCCTTGGGGCTTCCCTTCTACCCAGCCTACGAGGGGCAGTTTTCTCTGGAGG AGAAGAGCCTGTCGCTGAAAATCATGCAGTACTTTTCCCACTTCATCAGATCAGGAAATC CCAACTACCCTTATGAGTTCTCACGGAAAGTACCCACATTTGCAACCCCCTGGCCTGACT TTGTACCCCGTGCTGGTGGAGAGAACTACAAGGAGTTCAGTGAGCTGCTCCCCAATCGAC AGGGCCTGAAGAAAGCCGACTGCTCCTTCTGGTCCAAGTACATCTCGTCTCTGAAGACAT CTGCAGATGGAGCCAAGGGCGGGCAGTCAGCAGAGAGTGAAGAGGAGGAGTTGACGGCTG GATCTGGGCTAAGAGAAGATCTCCTAAGCCTCCAGGAACCAGGCTCTAAGACCTACAGCA AGTGACCAGCCCTTGAGCTCCCCAAAAACCTCACCCGAGGCTGCCCACTATGGTCATCTT TTTCTCTAAAATAGTTACTTACCTTCAATAAAGTATCTACATGCGGTG > X79676 AGATCTCTCCAGATCACACTGTCACGTGTACCTAGCACATCTCGAGAACTCCTTTGGGCC GTCTGGGGCCCGGGAAGGAAGCCTGAGTTCTCAAGATTCCAGGACTGAGAGTGCCAGCTT GTCTCAAAGCCAGGTCAATGGTTTCTTTGCCAGCCATTTAGGTGACCAAACCTGGCAGGA ATCACAGCATGGCAGCCCTTCCCCATCTGTAATATCCAAAGCCACCGAGAAAGAGACTTT CACTGATAGTAACCAAAGCAAAACTAAAAAGCCAGGCATTTCTGATGTAACTGATTACTC AGACCGTGGAGATTCAGACATGGATGAAGCCACTTACTCCAGCAGTCAGGATCATCAAAC ACCAAAACAGGAATCTTCCTCTTCAGTGAATACATCCAACAAGATGAATTTTAAAACTTT TCCTTCATCACCTCCTAGGTCTGGAGATATCTTTGAGGTTGAACTGGCTAAAAATGATAA CAGCTTGGGGATAAGTGTCACGGGAGGTGTGAATACGAGTGTCAGACATGGTGGCATTTA TGTGAAAGCTGTTATTCCCCAGGGAGCAGCAGAGTCTGATGGTAGAATTCACAAAGGTGA TCGCGTCCTAGCTGTCAATGGAGTTAGTCTAGAAGGAGCCACCCATAAGCAAGCTGTGGA AACACTGAGAAATACAGGACAGGTGGTTCATCTGTTATTAGAAAAGGGACAATCTCCAAC ATCTAAAGAACATGTCCCGGTAACCCCACAGTGTACCCTTTCAGATCAGAATGCCCAAGG TCAAGGCCCAGAAAAAGTGAAGAAAACAACTCAGGTCAAAGACTACAGCTTTGTCACTGA AGAAAATACATTTGAGGTAAAATTATTTAAAAATAGCTCAGGTCTAGGATTCAGTTTTTC TCGAGAAGATAATCTTATACCGGAGCAAATTAATGCCAGCATAGTAAGGGTTAAAAAGCT CTTTCCTGGACAGCCAGCAGCAGAAAGTGGAAAAATTGATGTAGGAGATGTTATCTTGAA AGTGAATGGAGCCTCTTTGAAAGGACTATCTCAGCAGGAAGTCATATCTGCTCTCAGGGG AACTGCTCCAGAAGTATTCTTGCTTCTCTGCAGACCTCCACCTGGTGTGCTACCGGAAAT TGATACTGCGCTTTTGACCCCACTTCAGTCTCCAGCACAAGTACTTCCAAACAGCAGTAA AGACTCTTCTCAGCCATCATGTGTGGAGCAAAGCACCAGCTCAGATGAAAATGAAATGTC AGACAAAAGCAAAAAACAGTGCAA GTCCCCATCCAGAAAAGACAGTTACAGTGACAGCAG TGGGAGTGGAGAAGATGACTTAGTGACAGCTCCAGCAAACATATCAAATTCGACCTGGAG TTCAGCTTTGCATCAGACTCTAAGCAACATGGTATCACAGGCACAGAGTCATCATGAAGC ACCAAGAGTCAAGAAGATACCATTTGTACCATGTTTTACTATCCTCAGGAAAAGGCCCAA TAAACCAGAGTTTGAGGACAGTAATCCTTCCCCTCTACCACCGGATATGGCTCCTGGGCA GAGTTATCAACCCCAATCAGAATCTGCTTCCTCTAGTTCGATGGATAAGTATCATATACA TCACATTTCTGAACCAACTAGACAAGAAAACTGGACACCTTTGAAAAATGACTTGGAAAA TCACCTTGAAGACTTTGAACTGGAAGTAGAACTCCTCATTACCCTAATTAAATCAGAAAA AGGAAGCCTGGGTTTTACAGTAACCAAAGGCAATCAGAGAATTGGTTGTTATGTTCATGA TGTCATACAGGATCCAGCCAAAAGTGATGGAAGGCTAAAACCTGGGGACCGGCTCATAAA GGTTAATGATACAGATGTTACTAATATGACTCATACAGATGCAGTTAATCTGCTCCGGGG ATCCAAAACAGTCAGATTAGTTATTGGACGAGTTCTAGAATTACCCAGAATACCAATGTT GCCTCATTTGCTACCGGACATAACACTAACGTGCAACAAAGAGGAGTTGGGTTTTTCCTT ATGTGGAGGTCATGACAGCCTTTATCAAGTGGTATATATTAGTGATATTAATCCAAGGTC CGTCGCAGCCATTGAGGGTAATCTCCAGCTATTAGATGTCATCCATTATGTGAACGGAGT CAGCACACAAGGAATGACCTTGGAGGAAGTTAACAGAGCATTAGACATGTCACTTCCTTC ATTGGTATTGAAAGCAACAAGAAATGATCTTCCAGTGGTCCCCAGCTC AAAGAGGTCTGC TGTTTCAGCTCCAAAGTCAACCAAAGGCAATGGTTCCTACAGTGTGGGGTCTTGCAGCCA GCCTGCCCTCACTCCTAATGATTCATTCTCCACGGTTGCTGGGGAAGAAATAAATGAAAT ATCGTACCCCAAAGGAAAATGTTCTACTTATCAGATAAAGGGATCACCAAACTTGACTCT GCCCAAAGAATCTTATATACAAGAAGATGACATTTATGATGATTCCCAAGAAGCTGAAGT TATCCAGTCTCTGCTGGATGTTGTGGATGAGGAGTCCCAGAATCTTTTAAACGAAAATAA TGCAGCAGGATACTCCTGTGGTCCAGGTACATTAAAGATGAATGGGAAGTTATCAGAAGA GAGAACAGAAGATACAGACTGCGATGGTTCACCTTTACCTGAGTATTTTACTGAGGCCAC CAAAATGAATGGCTGTGAAGAATATTGTGAAGAAAAAGTAAAAAGTGAAAGCTTAATTCA GAAGCCACAAGAAAAGAAGACTGATGATGATGAAATAACATGGGGAAATGATGAGTTGCC AATAGAGAGAACAAACCATGAAGATTCTGATAAAGATCATTCCTTTCTGACAAACGATGA GCTCGCTGTACTCCCTGTCGTCAAAGTGCTTCCCTCTGGTAAATACACGGGCGCCAACTT AAAATCAGTCATTCGAGTCCTGCGGGTTGCTAGATCAGGAATTCCTTCTAAGGAGCTGGA GAATCTTCAAGAATTAAAACCTTTGGATCAGTGTCTAATTGGGCAAACTAAGGAAAACAG AAGGAAGAACAGATATAAAAATATACTTCCCTATGATGCTACAAGAGTGCCTCTTGGAGA TGAAGGTGGCTATATCAATGCCAGCTTCATTAAGATACCAGTTGGGAAAGAAGAGTTCGT TTACATTGCCTGCCAAGGACCACTGCCTACAACTGTTGGAGACTTCTGGCAGATGATTTG GGAGCAAAAAT CCACAGTGATAGCCATGATGACTCAAGAAGTAGAAGGAGAAAAAATCAA ATGCCAGCGCTATTGGCCCAACATCCTAGGCAAAACAACAATGGTCAGCAACAGACTTCG ACTGGCTCTTGTGAGAATGCAGCAGCTGAAGGGCTTTGTGGTGAGGGCAATGACCCTTGA AGATATTCAGACCAGAGAGGTGCGCCATATTTCTCATCTGAATTTCACTGCCTGGCCAGA CCATGATACACCTTCTCAACCAGATGATCTGCTTACTTTTATCTCCTACATGAGACACAT CCACAGATCAGGCCCAATCATTACGCACTGCAGTGCTGGCATTGGACGTTCAGGGACCCT GATTTGCATAGATGTGGTTCTGGGATTAATCAGTCAGGATCTTGATTTTGACATCTCTGA TTTGGTGCGCTGCATGAGACTACAAAGACACGGAATGGTTCAGACAGAGGATCAATATAT TTTCTGCTATCAAGTCATCCTTTATGTCCTGACACGTCTTCAAGCAGAAGAAGAGCAAAA ACAGCAGCCTCAGCTTCTGAAGTGACATGAAAAGAGCCTCTGGATGCATTTCCATTTCTC TCCTTAACCTCCAGCAGACTCCTGCTCTCTATCCAAAATAAAGATCACAGAGCAGCAAGT TCATACAACATGCATGTTCTCCTCTATCTTAGAGGGGTATTCTTCTTGAAAATAAAAAAT ATTGAAATGCTGTATTTTTACAGCTACTTTAACCTATGATAATTATTTACAAAATTTTAA CACTAACCAAACAATGCAGATCTTAGGGATGATTAAAGGCAGCATTTGATGATAGCAGAC ATTGTTACAAGGACAXGGTGAGTCTATTTTTAATGCACCAATCTTGTTTATAGCAAAAAT GTTTTCCAATATTTTAATAAAGTAGTTATTTATAGGCATACTTGAAACCAGTATTTAAGC TTTAAATGACAGTAATATTGGCATAGAAAAAAGTAGCAAATGTTTACTGTATCAATTTCT AATGTTTACTATATAGAATTTCCTGTAATATATTTATATACTTTTTCATGAAAATGGAGT TATCAGTTATCTGTTTGTTACTGCATCATCTGTTTGTAATCATTATCTCACTTTGTAAAT AAAAACACACCTTAAAACATGAACAAGCCAAAAAAAAAAAAAAA > NM_006142 CCAGGCAGCAGTTAGCCCGCCGCCCGCCTGTGTGTCCCCAGAGCCATGGAGAGAGCCAGT CTGATCCAGAAGGCCAAGCTGGCAGAGCAGGCCGAACGCTATGAGGACATGGCAGCCTTC CCAGGCAGCAGTTAGCCCGCCGCCCGCCTGTGTGTCCCCAGAGCCATGGAGAGAGCCAGT CTGATCCAGAAGGCCAAGCTGGCAGAGCAGGCCGAACGCTATGAGGACATGGCAGCCTTC ATGAAAGGCGCCGTGGAGAAGGGCGAGGAGCTCTCCTGCGAAGAGCGAAACCTGCTCTCA GTAGCCTATAAGAACGTGGTGGGCGGCCAGAGGGCTGCCTGGAGGGTGCTGTCCAGTATT GAGCAGAAAAGCAACGAGGAGGGCTCGGAGGAGAAGGGGCCCGAGGTGCGTGAGTACCGG GAGAAGGTGGAGACTGAGCTCCAGGGCGTGTGCGACACCGTGCTGGGCCTGCTGGACAGC CACCTCATCAAGGAGGCCGGGGACGCCGAGAGCCGGGTCTTCXACCTGAAGATGAAGGGT GACTACTACCGCTACCTGGCCGAGGTGGCCACCGGTGACGACAAGAAGCGCATCATTGAC TCAGCCCGGTCAGCCTACCAGGAGGCCATGGACATCAGCAAGAAGGAGATGCCGCCCACC AACCCCATCCGCCTGGGCCTGGCCCTGAACTTTTCCGTCTTCCACTACGAGATCGCCAAC AGCCCCGAGGAGGCCATCTCTCTGGCCAAGACCACTTTCGACGAGGCCATGGCTGATCTG CACACCCTCAGCGAGGACTCCTACAAAGACAGCACCCTCATCATGCAGCTGCTGCGAGAC AACCTGACACTGTGGACGGCCGACAACGCCGGGGAAGAGGGGGGCGAGGCTCCCCAGGAG CCCCAGAGCTGAGTGTTGCCCGCCACCGCCCCGCCCTGCCCCCTCCAGTCCCCGCCCTGC CGAGAGGACTAGTATGGGGTGGGAGGCCCCACCCTTCTCCCCTAGGCGCTGTTCTTGCTC CAAAGGGCTCCGTGGAGAGGGACTGGCAGAGCTGAGGCCACCTGGGGCTGGGGATCCCAC TCTTCTTGCAGCTGTTGAGCGCACCTAACCACTGGTCATGCCCCCACCCCTGCTCTCCGC ACCCGCTTCCTCCCGACCCCAGGACCAGGCTACTTCTCCCCTCCTCTTGCCTCCCTCCTG CCCCTGCTGCCTCTTGATTCGTAGGAATTGAGGAGTGTCTCCGCCTTGTGGCTGAGAACT GGACAGTGGCAGGGGCTGGAGATG GGTGTGTGTGTGTGTGTGTGTGTGTGTGTGTGCGCG CGCGCCAGTGCAAGACCGAGACTGAGGGAAAGCATGTCTGCTGGGTGTGACCATGTTTCC TCTCAATAAAGTTCCCCTGTGACACTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAA > AW445220 CGGCCGCGAGGCCCTGAGATGAGGCTCCAAAGACCCCGACAGGCCCCGGCGGGTGGGAGG CGCGCGCCCCGGGGCGGGCGGGGCTCCCCCTACCGGCCAGACCCGGGGAGAGGCGCGCGG AGGCTGCGAAGGTTCCAGAAGGGCGGGGAGGGGGCGCCGCGCGCTGACCCTCCCTGGGCA CCGCTGGGGACGATGGCGCTGCTCGCCTTGCTGCTGGTCGTGGCCCTACCGCGGGTGTGG ACAGACGCCAACCTGACTGCGAGACAACGAGATCCAGAGGACTCCCAGCGAACGGACGAG GGTGACAATAGAGTGTGGTGTCATGTTTGTGAGAGAGAAAACACTTTCGAGTGCCAGAAC CCAAGGAGGTGCAAATGGACAGAGCCATACTGCGTTATAGCGGCCGTGAAAATATTTCCA CGTTTTTTCATGGTTGCGAAGCAGTGCTCCGCTGGTTGTGCAGCGATGGAGAGACCCAAG CCAGAGGAGAAGCGGTTTCTCCTGGAAGAGCCCATGCCCTTCTTTTACCTCAAGTGTTGT AAAATTCGCTACTGCAATTTAGAGGGGCCACCTATCAACTCATCAGTGTTCAAAGAATAT GCTGGGAGCATGGGTGAGAGCTGTGGTGGGCTGTGGCTGGCCATCCTCCTGCTGCTGGCC TCCATTGCAGCCGGCCTCAGCCTGTCTTGAGCCACGGGACTGCCACAGACTGAGCCTTCC GGAGCATGGACTCGCTCCAGACCGTTGTCACCTGTTGCATTAAACTTGTTTTCTGTTGAT TAAAAAAAAAAAAAAAAA > A 025701 TTCAGCCGGAACGTTACTCCGTGTCCACCCGGATCGTGTGTGTGATCGAGGCTGCGGAGA CGCCTTTCACGGGGGGTGTCGAGGTGGACGTCTTCGGGAAACTGGGCCGTTCGCCTCCCA ATGTCCAGTTCACCTTCCAACAGCCCAAGCCTCTCAGTGTGGAGCCGCAGCAGGGACCGC AGGCGGGCGGCACCACACTGACCATCCACGGCACCCACCTGGACACGGGCTCCCAGGAGG ACGTGCGGGTGACCCTCAACGGCGTCCCGTGTAAAGTGACGAAGTTTGGGGCGCAGCTCC AGTGTGTCACTGGCCCCCAGGCGACACGGGGCCAGATGCTTCTGGAGGTCTCCTACGGGG GGTCCCCCGTGCCCAACCCCGGCATCTTCTTCACCTACCGCGAAAACCCCGTACTGCGAG CCTTCGAGCCGCTACGAAGCTTTGCCAGTGGTGGCCGCAGCATCAACGTCACGGGTCAGG GCTTCAGCCTGATCCAGAGGTTTGCCATGGTGGTCATCGCGGAGCCCCTGCAGTCCTGGC AGCCGCCGCGGGAGGCTGAATCCCTGCAGCCCATGACGGTGGTGGGTACAGACTACGTGT TCCACAATGACACCAAGGTCGTCTTCCTGTCCCCGGCTGTGCCTGAGGAGCCAGAGGTCT ACAACCTCACGGTGCTGATCGAGATGGACGGGCACCGTGCCCTGCTCAGAACAGAGGCCG 5 GGGCCTTCGAGTACGTGCCTGACCCCACCCTTGAGAACTTCACAGGTGGCGTCAAGAAGC AGGTCAACAAGCTCATCCACGCCCGGGGCACCAATCTGAACAAGGCGATGACGCTGCAGG AGGCCGAGGCCTTCGTGGGTGCCGAGCGCTGCACCATGAAGACGCTGACGGAGACCGACC TGTACTGTGAGCCCCCGGAGGTGCAGCCCCCGCCCAAGCGGCGGCAGAAACGAGACACCA CACACAACCTGCCCGAGTTCATTGTGAAGTTCGGCTCTCGCGAGTGGGTGCTGGGCCGCG TGGAGTACGACACACGGGTGAGCGACGTGCCGCTCAGCCTCATCTTGCCGCTGGTCATCG TGCCCATGGTGGTCGTCATCGCGGTGTCTGTCTACTGCTACTGGAGGAAGAGCCAGCAGG CCGAACGAGAGTATGAGAAGATCAAGTCCCAGCTGGAGGGCCTGGAGGAGAGCGTGCGGG ACCGCTGCAAGAAGGAATTCACAGACCTGATGATCGAGATGGAGGACCAGACCAACGACG TGCACGAGGCCGGCATCCCCGTGCTGGACTACAAGACCTACACCGACCGCGTCTTCTTCC TGCCCTCCAAGGACGGCGACAAGGACGTGATGATCACCGGCAAGCTGGACATCCCCGAGC CGCGGCGGCCGGTGGTGGAGCAGGCCCTCTACCAGTTCTCCAACCTGCTGAACAGCAAGT I O CTTTCCTCATCAATTTCATCCACACCCTGGAGAACCAGCGGGAGTTCTCGGCCCGCGCCA AGGTCTACTTCGCGTCCCTGCTGACGGTGGCGCTGCACGGGAAACTGGAGTACTACACGG ACATCATGCACACGCTCTTCCTGGAGCTCCTGGAGCAGTACGTGGTGGCCAAGAACCCCA AGCTGATGCTGCGCAGGTCTGAGACTGTGGTGGAGAGGATGCTGTCCAACTGGATGTCCA TCTGCCTGTACCAGTACCTCAAGGACAGTGCCGGGGAGCCCCTGTACAAGCTCTTCAAGG CCATCAAACATCAGGTGGAAAAGGGCCCGGTGGATGCGGTACAGAAGAAGGCCAAGTACA CTCTCAACGACACGGGGCTGCTGGGGGATGATGTGGAGTACGCACCCCTGACGGTGAGCG TGATCGTGCAGGACGAGGGAGTGGACGCCATCCCGGTGAAGGTCCTCAACTGTGACACCA TCTCCCAGGTCAAGGAGAAGATCATTGACCAGGTGTACCGTGGGCAGCCCTGCTCCTGCT GGCCCAGGCCAGACAGCGTGGTCCTGGAGTGGCGTCCGGGCTCCACAGCGCAGATCCTGT CGGACCTGGACCTGACGTCACAGCGGGAGGGCCGGTGGAAGCGCGTCAACACCCTTATGC ACTACAATGTCCGGGATGGAGCCACCCTCATCCTGTCCAAGGTGGGGGTCTCCCAGCAGC | 5 CGGAGGACAGCCAGCAGGACCTGCCTGGGGAGCGCCATGCCCTCCTGGAGGAGGAGAACC GGGTGTGGCACCTGGTGCGGCCGACCGACGAGGTGGACGAGGGCAAGTCCAAGAGAGGCA GCGTGAAAGAGAAGGAGCGGACGAAGGCCATCACCGAGATCTACCTGACGCGGCTGCTCT CAGTCAAGGGCACACTGCAGCAGTTTGTGGACAACTTCTTCCAGAGCGTGCTGGCGCCTG GGCACGCGGTGCCACCTGCAGTCAAGTACTTCTTCGACTTCCTGGACGAGCAGGCAGAGA AGCACAACATCCAGGATGAAGACACCATCCACATCTGGAAGACGAACAGTTTACCGCTCC GGTTCTGGGTGAACATCCTCAAGAACCCCCACTTCATCTTTGACGTGCATGTCCACGAGG TGGTGGACGCCTCGCTGTCAGTCATCGCGCAGACCTTCATGGATGCCTGCACGCGCACGG AGCATAAGCTGAGCCGCGATTCTCCCAGCAACAAGCTGCTGTACGCCAAGGAGATCTCCA CCTACAAGAAGATGGTGGAGGATTACTACAAGGGGATCCGGCAGATGGTGCAGGTCAGCG ACCAGGACATGAACACACACCTGGCAGAGATTTCCCGGGCGCACACGGACTCCTTGAACA CCCTCGTGGCACTCCACCAGCTCTACCAATACACGCAGAAGTACTATGACGAGATCATCA 9Q ATGCCTTGGAGGAGGATCCTGCCGCCCAGAAGACGCAGCTGGCCTTCCGCCTGCAGCAGA TTGCCGCTGCACTGGAGAACAAGGTCACTGACCTCTGACCTACAATCTCCAGTGCTGCCT TGGGACATAGGTACCTGAGGTACCTGAGAGCCCCTCAGGGGAGGAGGCCGAGTGGCTGTG GCTGAGGCCCCCACCCTCCCCTGGAACGCGCCCCAAGCCGGAGTGGGTGCAGCCGGAACC CGCCCAGCGTCTAGACTGTAGCATCTTCCTCTGAGCAATACCGCCGGGCACCGCACCAGC ACCAGCCCCAGCCCCAGCTCCCTCCGGCCGCAGAACCAGCATCGGGTGTTCACTGTCGAG TCTCGAGTGATTTGAAAATGTGCCTTACGCTGCCACGCTGGGGGCAGCTGGCCTCCGCCT CCGCCCACGCACCAGCAGCCGCCTCCATGCCCTAGGTTGGGCCCCTGGGGGATCTGAGGG CCTGTGGCCCCCAGGGCAAGTTCCCAGATCCTATGTCTGTCTGTCCACCACGAGATGGGA GGAGGAGAAAAAGCGGTACGATGCCTTCCTGACCTCACCGGCCTCCCCAAGGGTGCCGGC ACTCTGGGTGGACTCACGGCTGCTGGGCCCCACGTCAAAGGTCAAGTGAGACGTAGGTCA AGTCCTACGTCGGGGCCCAGACATCCTGGGGTCCTGGTCTGTCAGACAGGCTGCCCTAGA GCCCCACCCAGTCCGGGGGGACTGGGAGCAGTTCCAAGACCACCCCACCCCTTTTTGTAA 2 ^ ATCTTGTTCATTGTAAATCAAATACAGCGTCTTTTTCACTCCGAAAAAAAAAAAAAAAAA AAAAAA > NM_033229 GATGTGGGCACGCCTCAGAGCCAGAAGTTTATGGCTCCCACCTGCTCAATCTGACAGGAA GCTTCTGCTCCCCAGTTCTCCCCAGCCACTGTGGTCTACAGATTCCAGGAAACCCATCCC CCTGTGACCTCAGGGTGTGCTCTGTTCTCCACCCTAGGGACCAGAAGGAGCCAGGAGTAA AGAACTGGCTTACTTGGCCGCCACTGGGAAATTCTGGGTAATTCGAGACGCCCTGGAATT TGGACCCACTCCGCTGATAGGTGGTGGGCAGGGTTCTAGGGAACACAAGAGGCGGAGCCA GGTGGCTTCCCTGTGCTGGCATTCTTGGCTCTCTCTCTCTCTCTTTCTCTCTCTCTGTCT CTCTCTCTCTCTCTGTCTCTCAGCCTTGAAGCCGTTTCCCTCTGCGATTCATGTAAGTGT GACTCGATTTCAGGGAAAGGGAACTCGCGTGGGCTGAGGAGACCGGAGTGGACGGGCTGG GGAAGGCACCGTGATGCCCGCAACCCCGTCCCTGAAGGTGGTCCATGAGCTGCCTGCCTG TACCCTCTGTGCGGGGCCGCTGGAGGATGCGGTGACCGTTCCCTGTGGACACACCTTCTG CCGGCTCTGCCTCCCCGCGCTCTCCCAGATGGGGGCCCAATCCTCGGGCAAGATCCTGCT CTGCCCGCTCTGCCAAGAGGAGGAGCAGGCAGAGACTCCCATGGCCCCTGTGCCCCTGGG CCCGCTGGGAGAAACTTACTGCGAGGAGCACGGCGAGAAGATCTACTTCTTCTGCGAGAA CGATGCCGAGTTCCTCTGTGTGTTCTGCAGGGAGGGTCCCACGCACCAGGCGCACACCGT GGGGTTCCTGGACGAGGCCATTCAGCCCTACCGGGATCGTCTCAGGAGTCGACTGGAAGC TCTGAGCACGGAGAGAGATGAGATTGAGGATGTAAAGTGTCAAGAAGACCAGAAGCTTCA AGTGCTGCTGACTCAGATCGAAAGCAAGAAGCATCAGGTGGAAACAGCTTTTGAGAGGCT GCAGCAGGAGCTGGAGCAGCAGCGATGTCTCCTGCTGGCCAGGCTGAGGGAGCTGGAGCA GCAGATTTGGAAGGAGAGGGATGAATATATCACAAAGGTCTCTGAGGAAGTCACCCGGCT TGGAGCCCAGGTCAAGGAGCTGGAGGAGAAGTGTCAGCAGCCAGCAAGTGAGCTTCTACA I O AGATGTCAGAGTCAACCAGAGCAGGTGTGAGATGAAGACTTTTGTGAGTCCTGAGGCCAT TTCTCCTGACCTTGTCAAGAAGATCCGTGATTTCCACAGGAAAATACTCACCCTCCCAGA GATGATGAGGATGTTCTCAGAAAACTTGGCGCATCATCTGGAAATAGATTCAGGGGTCAT CACTCTGGACCCTCAGACCGCCAGCCGGAGCCTGGTTCTCTCGGAAGACAGGAAGTCAGT GAGGTACACCCGGCAGAAGAAGAGCCTGCCAGACAGCCCCCTGCGCTTCGACGGCCTCCC GGCGGTTCTGGGCTTCCCGGGCTTCTCCTCCGGGCGCCACCGCTGGCAGGTTGACCTGCA GCTGGGCGACGGCGGCGGCTGCACGGTGGGGGTGGCCGGGGAGGGGGTGAGGAGGAAGGG AGAGATGGGACTCAGCGCCGAGGACGGCGTCTGGGCCGTGATCATCTCGCACCAGCAGTG CTGGGCCAGCACCTCCCCGGGCACCGACCTGCCGCTGAGCGAGATCCCGCGCGGCGTGAG AGTCGCCCTGGACTACGAGGCGGGGCAGGTGACCCTCCACAACGCCCAGACCCAGGAGCC CATCTTCACCTTCACTGCCTCTTTCTCCGGCAAAGTCTTCCCTTTCTTTGCCGTCTGGAA AAAAGGTTCCTGCCTTACGCTGAAAGGCTGAAGTGGGGCGCGCGAAGGGCGGCGAAGCGG AGACGGCGGCTCTCCGGGATCCAGCTCCGCCCCTGGCCAGTGTGCGGCCCGGGGGCTCCC TGTGCCCGCGTGAGGCGAGAGAACAGGGGACTTGAGTCTCGAACAGCGGTTGTTTTTACT TTATTTATCTTAGGCCCTCAGCTCCCTGACGTCCTGAGCCTCCCTGTGACGCTCTGGCCT TCTCTGCACCTCAGAGTGCAGAACCACAGACGGCTTCGGCTGTGCCTAGGGCAACAGCCA ACCTAGGAGCCAGCGGGCTTTCGGGGAAAAAAAAGAAAAAGACATCTAAAATAAAATGTT TAAACTGTTTCAAAATAAAAAAAAAAAAAAAAAAA > AV656862 TTTATACATTCTAAATCTCCCCAGTTTCTTTGGGGCTGGAAGATGCAACTTCCATTTAAT AGAAACTTTGAAATCTTGGGGTAAGGGAGCAGTGGGGGGACTAGGGAGAAGGATAAGAAA TAGAATTATTGAAAAGCCCCCACCAGGGACCTTCCTGGCCAGAATATGCAGAGTAATTCC TGCTGGCTTCACCTTTGAAAGTCCCTCGAAACTATGCAGATGAAACTGAGTCTGTTTTTG the 9th ATATTGTCAGATGTATTCTACCTTGGAAGTCCCAACACCTAAACTGGAATTCTTGTATTT ACATCTCCTCCACTGTCCCCCACACCACCCCTCAATTCCTGCTGCCCCTGCTAATGTTAA GCATTTTTCTCTTGTTATCATCAGGTTCACATTAAAAACAGATACTTACAAACTGACTTG AAGCACAGATACTTTTACGAATGTGATAAAATATTTTCTTAAGAAAAGGAAAGAGGATGT GGGTCAAATAAAACACCGCATsGATGTTGATTGGTGAATACTGGTGTAAGAAAAGGGAGC TCAGGAATTTTTATTACTGTATTTGTAAATGAGTTTGAAGGAATTTGTAAATGCCACTGG TACATTTTTAAGGTGACACATTTGCTCCTTATAAAGTTATTAAAAATTACAGGGTAAGCT TAAATGACGTTTGCCAGTAGTTTTACTTTATATAATCAATATTGATATTGTTGCTGAACT ATGTAACTTTATGATGCATTTTTCAGTCCCTTTTCAGAGCAAATGCTTTTGCAATGGTAG TAATGTTTAGTTtAAATTGACTTAATAAATTATTACCTGAGCAAAAAAAAAAAAAAAAAA AAAAAAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAATAATAAAAAAAAAAAAZVACA AACAAATCAATAAAACTTAAACAAAAAAAAAATAAAAAAAAA 25 > AI499593 GCAGAGATCGCCACATCGTCGGACAAGGTCAAGGACGGGGGCGGCGGGAACGAGGGCTCT CCATGCCCACCGTGTCCCGGGCCCATAGCCGGGCAAGCCCTAGGAGGCAGCCGGGCGTCG CCGGCCCCGGCGCCGTCACGCTCGCCCTCGGCGCAGTGTCCTTTTCCAGGCGGGACGGTG CTGTCCCGGCCTCTCTACTACACCGCGCCCTTCTATCCCGGCTACACGAACTATGGCTCC TTCGGACACCTTCATGGCCACCCGGGGCCGGGGCCGGGCCCCACACCCGGTCCGGGGTCT CATTTCAATGGATTAAACCAGACCGTGTTGAACCGAGCGGACGCTTTGGCTAAAGACCCG AAAATGTTGCGGAGCCAGTCTCAGCTAGACCTGTGCAAAGACTCTCCCTATGAATTGAAG AAAGGTATGTCCGACATTTAACGCGGGCTGCGTCGGTCCCGGACTTTTCTAATTTATTAA AAACATGGCCTTGGCAGTTATTTTTCCATCACCGAGAGAGAGAGACAGAGAGAGAAAATA AACTACCCCTCCTATTCAGAAGTTTATAGTTTATGGAGATGGATGACATAAAAATGTAAA CATCTCCACACACACAAAAAAATGTCTTAACCAACCGAAAAGAAAAATTAAAAAAGGATT TGTATTAAATCTTATTCTGTATATTTAATGTAGCATTTTTGTATTTAAATTGATAATTCA ATATCTTTGAAGTAAATTATGAAATCAAGACACCTGTACAGGCATTTAATGTTTTTTTGT AATATAAATATATACATTTGTGTTTCCCCCAAAACTGTTTCATAGTTAAAAAATACAAGT TTAATTTAATTTTTTACACCTATTGATTCTGCTGGGTATGAGCTAAAGTATTACGGAAAG GAAACAGGTTATACTCTTAGATTTAAAAAGTGAAAGAAACTGCAGGCGCCTTTGTAAAAT GCAAAATATTTAATTAAAAGAGAT TTTAACATAATGAGAGCCACTCATTACTTTTTAGAA GCCTCAATAAACTGTCCATTGCCTTGGTCAAAAAAAAAAAAAAAAAAAAA > AI952953 ATATCCAAGAAATTTGGACACCTATACCTACAGAATAATGAAATAGAAAAGATGAATCTN ACAGTGATGTGTCCTTCTATTGACCCACTACATTACCACCATTTAACATACATTCGTGTG GACCAAAATAAACTAAAAGAACCAATAAGCTCATACATCTTCTTCTGCTTCCCTCATATA CACACTATTTATTATGGTGAACAACGAAGCACTAATGGTCAAACAATACAACTAAAGACC CAAGTTTTCAGGAGATTTCCAGATGATGATGATGAAAGTGAAGATCACGATGATCCTGAC AATGCTCATGAGAGCCCAGAACAAGAAGGAGCAGAAGGGCACTTTGACCTTCATTATTAT GAAAATCAAGAATAGCAAGAAACTATATAGGTATACACTTACGACTTCACAAAACCTATA CTTAATATAGTAAATCTAAGTAAACATGTATTACTCAAAGTAATATATTTAGAATTATGT ATTAGTATAAGATCAGAATTGAATTTAAGTTGTTGGTGACATCTGCATCATTTCATAGGA TTAGAACTTACTCAAAATAATGTAAATCTTTAAAAATATAAATTAGAATGACAAGTGGGA ATCATAAATTAAACGTTAATGGTTTCTTATGCTCTTTTTAAATATAGAAATATCATGTTA AAAAAAAA > AK025470 ATGATTGCAACAGTGGATTTAAAAGTCAATGAATATGAGAAAAACCAAAAATGGCTTGAG A? CCTAAATAAGATTGAAAACAAAACATACACGAAGCTCAAAAATGGACATGTGTTTAGG AAGCAGGCACTGATGAGTGAAGAAAGGACTCTGTTATATGATGGCCTTGTTTACTGGAAA ACTGCTACAGGTCGTTTCAAAGATATCCTAGCTCTACTTCTAACTGATGTGCTGCTCTTT TTACAAGAAAAAGACCAGAAATACATCTTTGCAGCCGTTGATCAGAAGCCATCAGTTATT TCCCTTCAAAAGCTTATTGCTAGAGAAGTTGCTAATGAGGAGAGAGGAATGTTTCTGATC AGTGCTTCATCTGCTGGTCCTGAGATGTATGAAATTCACACCAATTCCAAGGAGGAACGC AATAACTGGATGAGACGGATCCAGCAGGCTGTAGAAAGTTGTCCTGAAGAAAAAGGGGGA AGGACAAGTGAATCTGATGAAGACAAGAGGAAAGCTGAAGCCAGAGTGGCCAAAATTCAG CAATGTCAAGAAATACTCACTAACCAAGACCAACAAATTTGTGCGTATTTGGAGGAGAAG CTGCATATCTATGCTGAACTTGGAGAACTGAGCGGATTTGAGGACGTCCATCTAGAGCCC CACCTCCTTATTAAACCTGACCCAGGCGAGCCTCCCCAGGCAGCCTCATTACTGGCAGCA sCACTGAAAGAAGCATTAGTCACAGGAGGGAGAGAAGGAAGAGGCTGTTCGGATGTGGAT CCCGGGATCCAGGGTGTGGTAACCGACTTGGCCGTCTCTGATGCAGGGGAGAAGGTGGAA TGTAGAAATTTTCCAGGTTCTTCACAATCAGAGATTATACAAGCCATACAGAATTTAACC CGTCTCTTATACAGCCTTCAGGCCGCCTTGACCATTCAGGACAGCCACATTGAGATCCAC AGGCTGGTTCTCCAGCAGCAGGAGGGCCTGTCTCTCGGCCACTCTATCCTCCGAGGCGGC CCCTTGCAGGACCAGAAGTCTCGCGACGCGGACAGGCAGCATGAGGAGCTGGCCAATGTG CACCAGCTTCAGCACCAGCTCCAGCAGGGGCAGCGGCGCTGGCTGCGCAGGTGTGAGCAG CAGCAGCGGGCGCAGGCGACCAGGGAGAGCTGGCTGCAGGAGCGGGAGCGGGAGTGCCAG TCGCAGGAGGAGCTGCTGCTGCGGAGCCGGGGCGAGCTGGACCTCCAGCTCCAGGAGTAC CAGCACAGCCTGGAGCGGCTGAGGGAGGGCCAGCGCCTGGTGGAGAGGGAGCAGGCGAGG ATGCGGGCCCAGCAGAGCCTGCTGGGCCACTGGAAGCACGGCCGGCAGAGGAGCCTGTCC GCGGTGCTCCTTCCGGGTGGCCCCGAGGTAATGGAACTTAATCGATCTGAGAGTTTATGT CATGAAAACTCATTCTTCATCAATGAAGCTTTAGTACAAATGTCATTTAACACTTTCAAC AAACTGAATCCATCAGTTATCCATCAGGATGCCACTTACCCTACAACTCAATCTCATTCT GACTTGGTGAGGACTAGTGAACATCAAGTAGACCTCAAGGTGGACCCTTCTCAGCCTTCG AATGTCAGTCACAAACTGTGGACAGCCGCTGGTTCCGGCCATCAGATACTTCCTTTCCAT GAAAGCAGCAAGGATTCTTGTAAAAATGGCTCCAGTATGACAAAGTGCAGTTGTACGTTG ACATCTCCCCCGGGACTGTGGACTGGAACCACATCTACTTTGAAGGATTTGGACACCTCC CACACTGAGTCCCCAACCCCCCATGACTCAAATTCACACCGCCCTCAACTGCAGGCGTTT ATAACAGAAGCAAAGCTAAATCTACCGACAAGGACAATGACCAGACAAGATGGGGAAACT GGAGATGGAGCCAAAGAAAATATTGTTTACCTCTAATTGTGTTGTCATTTTTCCAAACAA AACAAAACACTGGCACTTTTGGGAGAAACTTTTTGTCTCCATTCCTTATGTATGTGTGAT TGTCTGTGTCCAAATTGCTTTAAGAATAATATTTAATATTTCCTGGAAGCTCATTTTTTT GGCATGAGTCTAATTAAATTATTGAAAGCCACCCTGTTTGTATAATCTTTAACTTATCAA ATCTAATTTCAGATTTCTGGAGGAGAAACTAACTTGAATAAGCAGGACTATTTTAAAAGT TGTTTTGACGCTAGAGTAAAATTCCATGTCACATTTTCTACCCAATCATCTGGATTTCAA GATTCCTTTTAAGATCTCAATGAAGCAATTTGGATTTAAAGAGTGGTATTCACAAGGGGT GAACTTTCACAGTCAGGGCAGTTGCCTCAGTGCCCACATAGGCAGAGGAGGATGTGGGAA AGGGCTTTTCTCAGCTAGTTTTTGTGTGCTCATTTCTTCTGGGAGCATTAAAAGTGGTGA TCTGTTACAGTCACTATTCAACTGGGCACGTGTTGTGATTGGTCAGTCACTGAGCCAGGG ATACAGTCCGGACTTGCTTAGTACCTAAGCCTAATGCTGGTGGGGTTTCAAGACATGGTT CAGCATCATCTTTTAACAAGGCCC AGAGGCCCAGAGCCCGCATCAAGTCATTTTGATGTA AATAGTGAACTTTGTTAGAGCCCTCACTTCTATCAATCAGCTGTCCTGTCCCTGCCAGCA CCTGGAGCACCAACTACCACTCCCTGGAAAGAACCCTTCCCTGCAGTTTTTTAAGGACAA AACTGCCCACTCCTCATTAAGTTTGCTGCCTGGATACACTT TCCACAAAGGAAAACTGG CATATCCTGCCTTCCGAGTAGTATGGGTCTCTGTGTGAGAAACCAGGAGATATTTTCATC TTGTTCGGAAATACTTGTATGTATTTTGGTGTCAATAAATATCTTGTACCTCATTAAAAA AAAAAAAAAAAAA > NM_006378 CTGAGCCGCATCTGCAATAGCACACTTGCCCGGCCACCTGCTGCCGTGAGCCTTTGCTGC TGAAGCCCCTGGGGTCGCCTCTACCTGATGAGGATGTGCACCCCCATTAGGGGGCTGCTC ATGGCCCTTGCAGTGATGTTTGGGACAGCGATGGCATTTGCACCCATACCCCGGATCACC TGGGAGCACAGAGAGGTGCACCTGGTGCAGTTTCATGAGCCAGACATCTACAACTACTCA GCCTTGCTGCTGAGCGAGGACAAGGACACCTTGTACATAGGTGCCCGGGAGGCGGTCTTC GCTGTGAACGCACTCAACATCTCCGAGAAGCAGCATGAGGTGTATTGGAAGGTCTCAGAA GACAAAAAAGCAAAATGTGCAGAAAAGGGGAAATCAAAACAGACAGAGTGCCTCAACTAC ATCCGGGTGCTGCAGCCACTCAGCGCCACTTCCCTTTACGTGTGTGGGACCAACGCATTC CAGCCGGCCTGTGACCACCTGAACTTAACATCCTTTAAGTTTCTGGGGAAAAATGAAGAT GGCAAAGGAAGATGTCCCTTTGACCCAGCACACAGCTACACATCCGTCATGGTTGATGGA GAACTTTATTCGGGGACGTCGTATAATTTTTTGGGAAGTGAACCCATCATCTCCCGAAAT TCTTCCCACAGTCCTCTGAGGACAGAATATGCAATCCCTTGGCTGAACGAGCCTAGTTTC GTGTTTGCTGACGTGATCCGAAAAAGCCCAGACAGCCCCGACGGCGAGGATGACAGGGTC TACTTCTTCTTCACGGAGGTGTCTGTGGAGTATGAGTTTGTGTTCAGGGTGCTGATCCCA CGGATAGCAAGAGTGTGCAAGGGGGACCAGGGCGGCCTGAGGACCTTGCAGAAGAAATGG ACCTCCTTCCTGAAAGCCCGACTCATCTGCTCCCGGCCAGACAGCGGCTTGGTCTTCAAT GTGCTGCGGGATG TCTTCGTGCTCAGGTCCCCGGGCCTGAAGGTGCCTGTGTTCTATGCA CTCTTCACCCCACAGCTGAACAACGTGGGGCTGTCGGCAGTGTGCGCCTACAACCTGTCC ACAGCCGAGGAGGTCTTCTCCCACGGGAAGTACATGCAGAGCACCACAGTGGAGCAGTCC CACACCAAGTGGGTGCGCTATAATGGCCCGGTACCCAAGCCGCGGCCTGGAGCGTGCATC GACAGCGAGGCACGGGCCGCCAACTACACCAGCTCCTTGAATTTGCCAGACAAGACGCTG CAGTTCGTTAAAGACCACCCTTTGATGGATGACTCGGTAACCCCAATAGACAACAGGCCC AGGTTAATCAAGAAAGATGTGAACTACACCCAGATCGTGGTGGACCGGACCCAGGCCCTG GATGGGACTGTCTATGATGTCATGTTTGTCAGCACAGACCGGGGAGCTCTGCACAAAGCC ATCAGCCTCGAGCACGCTGTTCACATCATCGAGGAGACCCAGCTCTTCCAGGACTTTGAG CCAGTCCAGACCCTGCTGCTGTCTTCAAAGAAGGGCAACAGGTTTGTCTATGCTGGCTCT AACTCGGGCGTGGTCCAGGCCCCGCTGGCCTTCTGTGGGAAGCACGGCACCTGCGAGGAC TGTGTGCTGGCGCGGGACCCCTACTGCGCCTGGAGCCCGCCCACAGCGACCTGCGTGGCT CTGCACCAGACCGAGAGCCCCAGCAGGGGTTTGATTCAGGAGATGAGCGGCGATGCTTCT GTGTGCCCGGATAAAAGTAAAGGAAGTTACCGGCAGCATTTTTTCAAGCACGGTGGCACA GCGGAACTGAAATGCTCCCAAAAATCCAACCTGGCCCGGGTCTTTTGGAAGTTCCAGAAT GGCGTGTTGAAGGCCGAGAGCCCCAAGTACGGTCTTATGGGCAGAAAAAACTTGCTCATC TTCAACTTGTCAGAAGGAGACAGTGGGGTGTACCAGT GCCTGTCAGAGGAGAGGGTTAAG AACAAAACGGTCTTCCAAGTGGTCGCCAAGCACGTCCTGGAAGTGAAGGTGGTTCCAAAG CCCGTAGTGGCCCCCACCTTGTCAGTTGTTCAGACAGAAGGTAGTAGGATTGCCACCAAA GTGTTGGTGGCATCCACCCAAGGGTCTTCTCCCCCAACCCCAGCCGTGCAGGCCACCTCC TCCGGGGCCATCACCCTTCCTCCCAAGCCTGCGCCCACCGGCACATCCTGCGAACCAAAG ATCGTCATCAACACGGTCCCCCAGCTCCACTCGGAGAAAACCATGTATCTTAAGTCCAGC GACAACCGCCTCCTCATGTCCCTCTTCCTCTTCTTCTTTGTTCTCTTCCTCTGCCTCTTT TTCTACAACTGCTATAAGGGATACCTGCCCAGACAGTGCTTGAAATTCCGCTCGGCCCTA CTAATTGGGAAGAAGAAGCCCAAGTCAGATTTCTGTGACCGTGAGCAGAGCCTGAAGGAG ACOTTAGTAGAGCCAGGGAGCTTCTCCCAGCAGAATGGGGAGCACCCCAAGCCAGCCCTG GACACCGGCTATGAGACCGAGCAAGACACCATCACCAGCAAAGTCCCCACGGATAGGGAG GACTCACAGAGGATCGACGACCTTTCTGCCAGGGACAAGCCCTTTGACGTCAAGTGTGAG CTGAAGTTCGCTGACTCAGACGCAGATGGAGACTGAGGCCGGCTGTGCATCCCCGCTGGT GCCTCGGCTGCGACGTGTCCAGGCGTGGAGAGTTTTGTGTTTCTCCTGTTCAGTATCCGA GTCTCGTGCAGTGCTGCGTAGGTTAGCCCGCATCGTGCAGACAACCTCAGTCCTCTTGTC TATTTTCTCTTGGGTTGAGCCTGTGACTTGGTTTCTCTTTGTCCTTTTGGAAAAATGACA AGCATTGCATCCCAGTCTTGTGTTCCGAAGTCAGTCGGAGTACTTGAAGAAGGCCCACGG GCGGCACGGAGTTCCTGAGCCCTTTCTGTAGTGGGGGAAAGGTGGCTGGACCTCTGTTGG CTGAGAAGAGCATCCCTTCAGCTTCCCCTCCCCGTAGCAGCCACTAAAAGATTATTTAAT TCCAGATTGGAAATGACATTTTAGTTTATCAGATTGGTAACTTATCGCCTGTTGTCCAGA TTGGCACGAACCTTTTCTTCCACTTAATTATTTTTTTAGGATTTTGCTTTGATTGTGTTT ATGTCATGGGTCATTTTTTTTTAGTTACAGAAGCAGTTGTGTTAATATTTAGAAGAAGAT GTATATCTTCCAGATTTTGTTATATATTTGGCATAAAATACGGCTTACGTTGCTTAAGAT TCTCAGGGATAAACTTCCTTTTGCTAAATGCATTCTTTCTGCTTTTAGAAATGTAGACAT AAACACTCCCCGGAGCCCACTCACCTTTTTTCTTTTTCTTTTTTTTTTTTTAACTTTATT CCTTGAGGGAAGCATTGTTTTTGGAGAGATTTTCTTTCTGTACTTCGTTTTACTTTTCTT TTTTTTTAACTTTTACTCTCTCGAAGAAGAGGACCTTCCCACATCCACGAGGTGGGTTTT GAGCAAGGGAAGGTAGCCTGGATGAGCTGAGTGGAGCCAGGCTGGCCCAGAGCTGAGATG GGAGTGCGGTACAATCTGGAGCCC ACAGCTGTCGGTCAGAACCTCCTGTGAGACAGATGG AACCTTCACAAGGGCGCCTTTGGTTCTCTGAACATCTCCTTTCTCTTCTTGCTTCAATTG CTTACCCACTGCCTGCCCAGACTTTCTATCCAGCCTCACTGAGCTGCCCACTACTGGAAG GGAACTGGGCCTCGGTGGCCGGGGCCGCGAGCTGTGACCACAGCACCCTCAAGCATACGG CGCTGTTCCTGCCACTGTCCTGAAGATGTGAATGGGTGGTACGATTTCAACACTGGTTAA TTTCACACTCCATCTCCCCGCTTTGTAAATACCCATCGGGAAGAGACTTTTTTTCCATGG TGAAGAGCAATAAACTCTGGATGTTTGTGCGCGTGTGTGGACAGTCTTATCTTCCAGCAT GATAGGATTTGACCATTTTGGTGTAAACATTTGTGTTTTATAAGATTTACCTTGTTTTTA CTTAAAAAAAAAAAAAA >TTTTTCTACTTTGAATTGTATACATTTGGAAAGTACCCAAATAAATGAGAAGCTTCTATC; AA993639 CCCNTCCCCAGAGGCAGGAAAANCAGTNTGCCGAAAGGATAGACTGNGGTGCNGTCTTTC CCCAAGTTNTGAACTAGTTTTAAGGTAGCTTAGGATGAAAAATGGAGAATGATTGGGGGT TCCAAACCACTTTCTTCTCCCTTGGCTTATATCTCTTCACCATTTGGTGGTCAACTGTGG GCCTACCCTGGACCTCATCTACTCAGCGAGAATTGGACATGAAGCTAGAGGCAGCTGCCT TGGAAGGGAAGTCAGGCTCACTTGGACAGCCCAGGCCATGGCAGGAAGAATCCCTTCCTC TTGGGGTCCTTGATGGGCATGTGTGATGGGGAAGGAGCAGTCTCCCAGCCCTGGGTCTGC TCCCCACATCTCTCCTAATTCCACTTCACCTTTTGCCACCCCCTCCCCACCAGAGGCCTA GCCCTTTTGTCACCGAAGGCCCCCAGAGTGTTTCTGTGTGAAACCCTCTCATTTACACTG TGGCATCAAAATCCACAAAAGATGGATTAATTGCACTCTGGTTAATAGCAGCAGCACAAT GATTAAAATCTATATTCCTATCTTCTCTAGCACCCTGGTGTGGGGATGGGGCGGAAGGGT GTCTTGAGGGGCAGGGAGGACCCCATAAAACAATCCCTCCTGCATTCTCAGGCTAAATAG GGCCCCCAGTGACTACCTGTTCTTGGCTGTCCCCTCTGAAGAGCTCTGCCTTCTCACAGC CACCACCAGTTGCCCCACTCCCAGGAAAACAGCACATGTTCTTCTTCTCCTGCCTTGAGA CTGCGTGTTAGTCTTCCATTCATAACTCATCAGCAGCTCAGTCCTTCTTATGTCTAGTCT CAGTTCATTCAGCCAAAGCTCATTTTTGTCCTATCCAAAGTAGAAAGGGTTCTTTTAGAA AACTTGAAGAATGTGCCTCCTCTTAGCATCTGTTTCTGACTCCCAGTTATTTTTAAAATA AATGATGAATAAA ATGCCTGCCCTGAAGGGTTCTGGAGGAGTCAGGTATCAAAAAAAAAA AAA > BE552004 TTTTTAAGATGATCTTGCTCCGTCACCCAGGCTGGAGTGCAGTGGCGTAATCATGGCTTC CTGCAGCCTCAAACTCCTGGGCTCAATGAGTTCCTTGAGATCTTCCATCCTCAGCTTCCC AAGTAGCTAGTAGTAGTAGTGGCTTGCACCAACGCTCCTGCCCTAATTTTCAATATTTTT TTTGTAGAGATAGGATCTCACTGTGTTACCCAAGCTAGACTTGAACTCCTGGCCTCAAGC GATCCTTCCGCCTTGGCCTCCCAAAGTGTTGGGATTACAGGCATTAGCTACCACACCTGG CCAAGGCCCAGGTTTCGACAGAAAGGGAGAGAAAACCTGCCAGAGATGCCATTTCGGAGC CACTCTGCTTGGCAGGGACCTGTGTTCCCCTCATGCAGGTTCATCCTTAGAGGGCTGCGG TCTTATCTGGTTGTGCAAAAGTCCCACAACCTTTCTGGATTGATAGTTTGTGGTGAAATA AACAATTTTAGTTTGTTTGGAGAATCTTTTGTATACAAAATACAAATAAAACCTAAATCA AAGAAACAGA > BC010437 GAGGGGCCGGAGGCGTCCCCGCTCCCGCTCGCTACTAGCCCGCGGGCCAGCGCCGCGTCC CGAGCCCCGGCGGGAGCCATGGCTCTAAAAGGACAAGAAGATTATATTTATCTTTTCAAG GATTCAACACATCCAGTGGATTTTCTGGATGCATTCAGAACATTTTACTTGGATGGATTA TTTACTGATATTACTCTTCAGTGTCCTTCAGGCATAATTTTCCATTGTCACCGAGCCGTT 5 TTAGCTGCTTGCAGCAATTATTTTAAGGCAATGTTCACAGCTGACATGAAAGAAAAATTT AAAAATAAAATAAAACTCTCTGGCATCCACCATGATATTCTGGAAGGCCTTGTAAATTAT GCATACACTTCCCAAATTGAAATAACTAAAAGAAATGTTCAAAGCCTGCTTGAGGCAGCG GATCTGCTACAGTTCCTTTCAGTAAAGAAGGCTTGTGAGCGGTTTTTGGTAAGGCACTTG GATATTGATAATTGTATTGGAATGCACTCCTTTGCAGAATTTCATGTGTGTCCAGAACTA GAGAAGGAATCTCGAAGAATTCTATGTTCAAAGTTTAAGGAAGTGTGGCAACAAGAAGAA TTTCTGGAAATCAGCCTTGAAAAGTTTCTCTTTATCTTGTCCAGAAAGAATCTCAGTGTT TGGAAAGAAGAAGCTATCATAGAGCCAGTTATTAAGTGGACTGCTCATGATGTAGAAAAT CGAATTGAATGCCTCTATAATCTACTGAGCTATATCAACATTGATATAGATCCAGTGTAC TTAAAAACAGCCTTAGGCCTTCAAAGAAGCTGCCTGCTCACCGAAAATAAGATCCGCTCC CTAATATACAATGCCTTGAATCCCATGCATAAAGAGATTTCCCAGAGGTCCACAGCCACA ATGTATATAATTGGAGGCTATTACTGGCATCCTTTATCAGAGGTTCACATATGGGATCCT | O TTGACAAATGTTTGGATTCAGGGAGCAGAAATACCAGATTATACCAGGGAGAGCTATGGT GTTACATGTTTAGGACCCAACATTTATGTAACTGGGGGCTACAGGACGGATAACATAGAA GCTCTTGACACAGTGTGGATCTATAACAGTGAAAGTGATGAATGGACAGAAGGTTTGCCA ATGCTCAATGCCAGGTATTACCACTGTGCAGTCACCTTGGGTGGCTGTGTCTATGCTTTA GGTGGTTACAGAAAAGGGGCTCCAGCAGAAGAGGCTGAGTTCTATGATCCTTTAAAAGAG AAATGGATTCCTATTGCAAACATGATTAAAGGTGTGGGAAATGCTACTGCCTGTGTCTTA CATGATGTTATCTACGTCATTGGTGGCCACTGTGGCTACAGAGGAAGCTGCACCTATGAC AAAGTTCAGAGCTACAATTCCGATATCAACGAATGGAGCCTCATCACCTCCAGTCCACAT CCAGAATATGGATTGTGCTCAGTTCCGTTTGAAAATAAGCTCTATCTAGTCGGTGGACAA ACTACAATCACAGAATGCTATGACCCTGAACAAAATGAATGGAGAGAGATAGCTCCCATG ATGGAAAGGAGGATGGAGTGCGGTGCCGTCATCATGAATGGATGTATTTATGTCACTGGA GGATACTCCTACTCAAAGGGAACGTATCTTCAGAGCATTGAGAAATATGATCCÁGATCTT AATAAGTGGGAAATAGTGGGTAATCTTCCCAGTGCCATGCGGTCTCATGGGTGTGTTTGT GTGTATAATGTCTAATTGAATCTGCAGAAATGACCAAGCAATCACTTTTTTGGAGTATAG TTTTATAAAAAAAGAATGCAGGGTTTGAAGTTCCTTACCTGATAATTGTGTCTGGCACAT GATAGGGGATCAGTAAATTGTAATTCCTAACCCTACTGTACTCCCAAACATGGTGATTCA TGGTCAAGAAAAATCTTATATATATATATACACACACATATATATGTGTTCATATATATG TATACATATATGTGTATATATACGCATGTATGTATACATATATGTGTATATATACGCATG TATGTATGCATATGTGTGTATATATACGTATGTATGTATACATATGTGTATATATACGTA TGTATGTATACATATATGTGTATATATGCGTATGTATGTATACATATATGTGTATATATA CGTATGTATGTATACATATATGTGTATATATACGTATGTATGTATACATATATGTGTATA TATACGTATGTATGTATACATATATGTGTGTATATACGTGTGTATGTATACATATATGTG TATATATACGTGTGTATGTATACATATATGTGTATATATGCGTGTGTATGTATACATATA TGTGTATATATACGTGTGTATGTATACATATATGTGTATATATACGTGTGTATGTATACA 9"TATATGTGTATATATGCGTGTGTATATATATACACATATATACGTATATATGTATATATA TATACACAGTTGAATCAGTGGGATTAATACCTATAATCTCTGGTTTTCAAAGGTAATATG GAATATTTGACACTTGGTAAAAGGTGAACTACCTTTGTAGTGAATCTTTTCCTCTTGGTA GCATCAACACTGGGGATAAATCAGAACCATTCTGTGGAATGAAATGTTTCTCAAGAGCCT ATAATATAGTAGATAGTGCATATTAAGATGTCTGGCTGGGCATGGTGGCTCATGCCTGTA ATCCCAGCACTTTGGGAGGCTGAGGCGGGAGGATCACTTGAGCCTAGAAGTTGGAGACTA ACCTGGCGAGACCCTGTCTCAAAAAAAAAAAAAAAAAA > R15881 ACCCTTTTGTGACCAGCTGCATACCCCAAAACCTTTTGGAATCTGGGCTAACTGGCTGTG CCTACATCAACAGCACCCGTGAACCCCCGTGTGCTATGCTCTGTGCAACAAAACATTCAG AACCCACTTTCAAGATGCTGCTGCTGTGCCAGTGTGACAAAAAAAAGAGGCGCAAGCAGC AGTACCAGCAGAGACAGTCGGTCATTTTTCACAAGCGCGCACCCGAGCAGGCCTTGTAGA 25 ATGAGGTTGTATCAATAGCAGTGACAAAACGCACACATCAACCCACAGACCTTAGGAGGA GGAAGGCGAGGGCGGGGTGACTTCTGGTGATGATAAAAATGGTTTTATCACCCAGATGTG AAAGAAGCTGCCTGTTTACTGATCCATTGAATAAACCCATTTTAATAGAAAAAGTCAATA CCAATTCAGCAAAAAAAAA > AF191770 TATCTATGTAACAAATCGCAGCACAGGAGTCCCCTGGGCTCCCTCAGGCTCTGGTATGAC ATATTTGAGCCATATAAATTCAGCTTCTCCTCTGGCATCTGTTAGCCGACTCACTTGCAA CTCCACCTCAGCAGTGGTCTCTCAGTCCTCTCAAAGCAAGGAAAGAGTACTGTGXGCTGA GAGACCATGGCAAAGAATCCTCCAGAGAATTGTGAAGACTGTCACATTCTAAATGCAGAA GCTTTTAAATCCAAGAAAATATGTAAATCACTTAAGATTTGTGGACTGGTGTTTGGTATC CTGACCCTAACTCTAATTGTCCTGTTTTGGGGGAGCAAGCACTTCTGGCCGGAGGTACCC AAAAAAGCCTATGACATGGAGCACACTTTCTACAGCAGTGGAGAGAAGAAGAAGAT TAC ATGGAAATTGATCCTGTGACCAGAACTGAAATATTCAGAAGCGGAAATGGCACTGATGAA ACATTGGAAGTACACGACTTTAAAAACGGATACACTGGCATCTACTTCGTGGGTCTTCAA AAATGTTTTATCAAAACTCAGATTAAAGTGATTCCTGAATTTTCTGAACCAGAAGAGGAA ATAGATGAGAATGAAGAAATTACCACAACTTTCTTTGAACAGTCAGTGATTTGGGTCCCA GCAGAAAAGCCTATTGAAAACCGAGATTTTCTTAAAAATTCCAAAATTCTGGAGATTTGT GATAACGTGACCATGTATTGGATCAATCCCACTCTAATATCAGTTTCTGAGTTACAAGAC TTTGAGGAGGAGGGAGAAGATCTTCACTTTCCTGCCAACGAAAAAAAAGGGATTGAACAA AATGAACAGTGGGTGGTCCCTCAAGTGAAAGTAGAGAAGACCCGTCACGCCAGACAAGCA AGTGAGGAAGAACTTCCAATAAATGACTATACTGAAAATGGAATAGAATTTGATCCCATG CTGGATGAGAGAGGTTATTGTTGTATTTACTGCCGTCGAGGCAACCGCTATTGCCGCCGC GTCTGTGAACCTTTACTAGGCTACTACCCATATCCATACTGCTACCAAGGAGGACGAGTC ATCTGTCGTGTCATCATGCCTTGTAACTGGTGGGTGGCCCGCATGCTGGGGAGGGTCTAA TAGGAGGTTTGAGCTCAAATGCTTAAACTGCTGGCAACATATAATAAATGCATGCTATTC AGGTAATTCCTCTCTTCATGTTCTAATAAACTTCTACATTATCAAAAAA >AATGAATTTCTGCCTATGAGGCATCTGGCCCCTGGTAGCCAGCTCTCCAGAATTACTTGT; BC005364 GCGGATCGCTGCTCCCTCTCGCCATGGCGCAGGTGCTGATCGTGGGCGCCGGGATGACAG GAAGCTTGTGCGCTGCGCTGCTGAGGAGGCAGACGTCCGGTCCCTTGTACCTTGCTGTGT GGGACAAGGCTGACGACTCAGGGGGAAGAATGACTACAGCCTGCAGTCCTCATAATCCTC AGTGCACAGCTGACTTGGGTGCTCAGTACATCACCTGCACTCCTCATTATGCCAAAAAAC ACCAACGTTTTTATGATGAACTGTTAGCCTATGGCGTTTTGAGGCCTCTAAGCTCGCCTA TTGAAGGAATGGTGATGAAAGAAGGAGACTGTAACTTTGTGGCACCTCAAGGAATTTCTT CAATTATTAAGCATTACTTGAAAGAATCAGGTGCAGAAGTCTACTTCAGACATCGTGTGA CACAGATCAACCTAAGAGATGACAAATGGGAAGTATCCAAACAAACAGGCTCCCCTGAGC AGTTTGATCTTATTGTTCTCACAATGCCAGTTCCTGAGATTCTGCAGCTTCAAGGTGACA TCACCACCTTAATTAGTGAATGCCAAAGGCAGCAACTGGAGGCTGTGAGCTACTCCTCTC GATATGCTCTGGGCCTCTTTTATGAAGCTGGTACGAAGATTGATGTCCCTTGGGCTGGGC AGTACATCACCAGTAATCCCTGCATACGCTTCGTCTCCATTGATAATAAGAAGCGCAATA TAGAGTCATCAGAAATTGGGCCTTCCCTCGTGATTCACACCACTGTCCCATTTGGAGTTA CATACTTGGAACACAGCATTGAGGATGTGCAAGAGTTAGTCTTCCAGCAGCTGGAAAACA TTTTGCCGGGTTTGCCTCAGCCAATTGCTACCAAATGCCAAAAATGGAGACATTCACAGG TTACAAATGCTGCTGCCAACTGTCCTGGCCAAATGACTCTGCATCACAAACCTTTCCTTG CATGTGGAGGGGATGGATTTACTCAGTCCAACTTTGATGGCTGCATCACTTCTGCCCTAT GTGTTCTGGAAGCTTTAAAGAATTATATTTAGTGCCTATATCCTTATTCTCTATATGTGT ATTGGGTTTTTATTTTCACAATTTTCTGTTATTGATTATTTTGTTTTCTATTTTGCTAAG AAAAATTACTGGAAAATTGTTCTTCACTTATTATCATTTTTCATGTGGAGTATAAAATCA ATTTTGTAATTTTGATAGTTACAACCCATGCTAGAATGGAAATTCCTCACACCTTGCACC TTCCCTACTTTTCTGAATTGCTATGACTACTCCTTGTTGGAGGAAAAGTGGTACTTAAAA AATAACAAACGACTCTCTCAAAAAAATTACATTAAATCACAATAACAGTTTGTATGCCAA AAACTTGATTATCCTTATGAAAATTTCAATTCTGAATAAAGAATAATCACATTATCAAAG CCCCATCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > NM_001337 ACTCGTCTCTGGTAAAGTCTGAGCAGGACAGGGTGGCTGACTGGCAGATCCAGAGGTTCC CTTGGCAGTCCACGCCAGGCCTTCACCATGGATCAGTTCCCTGAATCAGTGACAGAAAAC TTTGAGTACGATGATTTGGCTGAGGCCTGTTATATTGGGGACATCGTGGTCTTTGGGACT GTGTTCCTGTCCATATTCTACTCCGTCATCTTTGCCATTGGCCTGGTGGGAAATTTGTTG GTAGTGTTTGCCCTCACCAACAGCAAGAAGCCCAAGAGTGTCACCGACATTTACCTCCTG AACCTGGCCTTGTCTGATCTGCTGTTTGTAGCCACTTTGCCCTTCTGGACTCACTATTTG ATAAATGAAAAGGGCCTCCACAATGCCATGTGCAAATTCACTACCGCCTTCTTCTTCATC GGCTTTTTTGGAAGCATATTCTTCATCACCGTCATCAGCATTGATAGGTACCTGGCCATC GTCCTGGCCGCCAACTCCATGAACAACCGGACCGTGCAGCATGGCGTCACCATCAGCCTA GGCGTCTGGGCAGCAGCCATTTTGGTGGCAGCACCCCAGTTCATGTTCACAAAGCAGAAA GAAAATGAATGCCTTGGTGACTACCCCGAGGTCCTCCAGGAAATCTGGCCCGTGCTCCGC AATGTGGAAACAAATTTTCTTGGCTTCCTACTCCCCCTGCTCATTATGAGTTATTGCTAC TTCAGAATCATCCAGACGCTGTTTTCCTGCAAGAACCACAAGAAAGCCAAAGCCATTAAA CTGATCCTTCTGGTGGTCATCGTGTTTTTCCTCTTCTGGACACCCTACAACGTTATGATT TTCCTGGAGACGCTTAAGCTCTATGACTTCTTTCCCAGTTGTGACATGAGGAAGGATCTG AGGCTGGCCCTCAGTGTGACTGAGACGGTTGCATTTAGCCATTGTTGCCTGAATCCTCTC ATCTATGCATTTGCTGGGGAGAAGTTCAGAAGATACCTTTACCACCTGTATGGGAAATGC CTGGCTGTCCTGTGTGGGCGCTCAGTCCACGTTGATTTCTCCTCATCTGAATCACAAAGG AGCAGGCATGGAAGTGTTCTGAGCAGCAATTTTACTTACCACACGAGTGATGGAGATGCA TTGCTCCTTCTCTGAAGGGAATCCCAAAGCCTTGTGTCTACAGAGAACCTGGAGTTCCTG AACCTGATGCTGACTAGTGAGGAAAGATTTTTGTTGTTATTTCTTACAGGCACAAAATGA TGGACCCAATGCACACAAAACAACCCTAGAGTGTTGTTGAGAATTGTGCTCAAAATTTGA AGAATGAACAAATTGAACTCTTTGAATGACAAAGAGTAGACATTTCTCTTACTGCAAATG TCATCAGAACTTTTTGGTTTGCAGATGACAAAAATTCAACTCAGACTAGTTTAGTTAAAT GAGGGTGGTGAATATTGTTCATATTGTGGCACAAGCAAAAGGGTGTCTGAGCCCTCAAAG TGAGGGGAAACCAGGGCCTGAGCCAAGCTAGAATTCCCTCTCTCTGACTCTCAAATCTTT TAGTCATTATAGATCCCCCAGACTTTACATGACACAGCTTTATCACCAGAGAGGGACTGA CACCCATGTTTCTCTGGCCCCAAGGGAAAATTCCCAGGGAAGTGCTCTGATAGGCCAAGT I O TTGTATCAGGTGCCCATCCCTGGAAGGTGCTGTTATCCATGGGGAAGGGATATATAAGAT GGAAGCTTCCAGTCCAATCTCATGGAGAAGCAGAAATACATATTTCCAAGAAGTTGGATG GGTGGGTACTATTCTGATTACACAAAACAAATGCCACACATCACCCTTACCATGTGCCTG ATCCAGCCTCTCCCCTGATTACACCAGCCTCGTCTTCATTAAGCCCTCTTCCATCATGTC CCCAAACCTGCAAGGGCT CCCCACTGCCTACTGCATCGAGTCAAAACTCAAATGCTTGGC TTCTCATACGTCCACCATGGGGTCCTACCAATAGATTCCCCATTGCCTCCTCCTTCCCAA AGGACTCCACCCATCCTATCAGCCTGTCTCTTCCATATGACCTCATGCATCTCCACCTGC TCCCAGGCCAGTAAGGGAAATAGAAAAACCCTGCCCCCAAATAAGAAGGGATGGATTCCA ACCCCAACTCCAGTAGCTTGGGACAAATCAAGCTTCAGTTTCCTGGTCTGTAGAAGAGGG ATAAGGTACCTTTCACATAGAGATCATCCTTTCCAGCATGAGGAACTAGCCACCAACTCT TGCAGGTCTCAACCCTTTTGTCTGCCTCTTAGACTTCTGCTTTCCACACCTGCACTGCTG TGCTGTGCCCAAGTTGTGGTGCTGACAAAGCTTGGAAGAGCCTGCAGGTGCCTTGGCCGC GTGCATAGCCCAGACACAGAAGAGGCTGGTTCTTACGATGGCACCCAGTGAGCACTCCCA AGTCTACAGAGTGATAGCCTTCCGTAACCCAACTCTCCTGGACTGCCTTGAATATCCCCT CCCAGTCACCTTGTGCAAGCCCCTGCCCATCTGGGAAAATACCCCATCATTCATGCTACT GCCAACCTGGGGAGCCAGGGCTATGGGAGCAGCTTTTTTTTCCCCCCTAGAAACGTTTGG AACAATGTAAAACTTTAAAGCTCGAAAACAATTGTAATAATGCTAAAGAAAAAGTCATCC AATCTAACCACATCAATATTGTCATTCCTGTATTCACCCGTCCAGACCTTGTTCACACTC TCACATGTTTAGAGTTGCAATCGTAATGTACAGATGGTTTTATAATCTGATTTGTTTTCC TCTTAACGTTAGACCACAAATAGTGCTCGCTTTCTATGTAGTTTGGTAATTATCATTTTA GAAGACTCTACCAGACTGTGTATTCATTGAAGTCAGATGTGGTAACTGTTAAATTGCTGT GTATCTGATAGCTCTTTGGCAGTCTATATGTTTGTATAATGAATGAGAGAATAAGTCATG TTCCTTCAAGATCATGTACCCCAATTTACTTGCCATTACTCAATTGATAAACATTTAACT TGTTTCCAATGTTTAGCAAATACATATTTTATAGAACTTC - >; AI041545 TGAACATATTCAGGCTGATTGGGGACGTGTCCCACCTGGCGGCCATCGTCATCTTGATGG TAGAGATCTGGAAGACGCGCTCCTGCGCCGGTATTTCTGGGAAAAGCCAGCTTCTGTCTG CACTGGTCTTCACAACTCGTGACCTGGATCTTTTCACTTCATTTATTTCAGTGTATCACA CATCTATCAAGGTTATCTACGTTGCCTGCTCGTATGCCACAGTGTACCTGATCTACCTTA AATTTAAGGCAACATCGGATGGAAATCATGATACCTTCCGAGTGGAGTTTCTGGTGGTCC CTGTGGGAGGCCTCCTCATTTTTAGTTAATCACGATTTCTCTCCTCTTGAGTACTCAAGG GAAAGAAGCTCAGTTTGCCAGCATAAGTGCCAAAGACCATCGCCAGCATCTGTCCTTCAG GGTGTTCGGACAGAATTCTTACCACAGCAAAGGCATAAGATGCTTGATACGGAAAATCAA GAACTTAACTTTTTTGTTGCAGATAGTCATCAGTGGTTCTGTAAAAACGCAGAGGAAAAG AGCCAGAAGGTTTCTGTTTAATGCATCTTGCCTTATCTTTTTTTATTACTGTGCACAAAG ATTTTTTTACACAAACATCCTTAATGCTGTTTTAATAAATTCAGTGTGTAGCTTCAAAAA AA > NM_024423 GGCAGGTCTCGCTCTCGGCACCCTCCCGGCGCCCGCGTTCTCCTGGCCCTGCCCGGCATC CCGATGGCCGCCGCTGGGCCCCGGCGCTCCGTGCGCGGAGCCGTCTGCCTGCATCTGCTG CTGACCCTCGTGATCTTCAGTCGTGATGGTGAAGCCTGCAAAAAGGTGATACTTAATGTA CCTTCTAAACTAGAGGCAGACAAAATAATTGGCAGAGTTAATTTGGAAGAGTGCTTCAGG TCTGCAGACCTCATCCGGTCAAGTGATCCTGATTTCAGAGTTCTAAATGATGGGTCAGTG TACACAGCCAGGGCTGTTGCGCTGTCTGATAAGAAAAGATCATTTACCATATGGCTTTCT GACAAAAGGAAACAGACACAGAAAGAGGTTACTGTGCTGCTAGAACATCAGAAGAAGGTA TCGAAGACAAGACACACTAGAGAAACTGTTCTCAGGCGTGCCAAGAGGAGATGGGCACCT ATTCCTTGCTCTATGCAAGAGAATTCCTTGGGCCCTTTCCCATTGTTTCTTCAACAAGTT GAATCTGATGCAGCACAGAACTATACTGTCTTCTACTCAATAAGTGGACGTGGAGTTGAT 5 AAAGAACCTTTAAATTTGTTTTATATAGAAAGAGACACTGGAAATCTATTTTGCACTCGG CCTGTGGATCGTGAAGAATATGATGTTTTTGATTTGATTGCTTATGCGTCAACTGCAGAT GGATATTCAGCAGATCTGCCCCTCCCACTACCCATCAGGGTAGAGGATGAAAATGACAAC CACCCTGTTTTCACAGAAGCAATTTATAATTTTGAAGTTTTGGAAAGTAGTAGACCTGGT ACTACAGTGGGGGTGGTTTGTGCCACAGACAGAGATGAACCGGACACAATGCATACGCGC CTGAAATACAGCATTTTGCAGCAGACACCAAGGTCACCTGGGCTCTTTTCTGTGCATCCC AGCACAGGCGT AATCACCACAGTCTCTCATTATTTGGACAGAGAGGTTGTAGACAAGTAC TCATTGATAATGAAAGTACAAGACATGGATGGCCAGTTTTTTGGATTGATAGGCACATCA ACTTGTATCATAACAGTAACAGATTCAAATGATAATGCACCCACTTTCAGACAAAATGCT TATGAAGCATTTGTAGAGGAAAATGCATTCAATGTGGAAATCTTACGAATACCTATAGAA GATAAGGATTTAATTAACACTGCCAATTGGAGAGTCAATTTTACCATTTTAAAGGGAAAT GAAAATGGACATTTCAAAATCAGCACAGACAAAGAAACTAATGAAGGTGTTCTTTCTGTT 'O GTAAAGCCACTGAATTATGAAGAAAACCGTCAAGTGAACCTGGAAATTGGAGTAAACAAT GAAGCGCCATTTGCTAGAGATATTCCCAGAGTGACAGCCTTGAACAGAGCCTTGGTTACA GTTCATGTGAGGGATCTGGATGAGGGGCCTGAATGCACTCCTGCAGCCCAATATGTGCGG ATTAAAGAAAACTTAGCAGTGGGGTCAAAGATCAACGGCTATAAGGCATATGACCCCGAA AATAGAAATGGCAATGGTTTAAGGTACAAAAAATTGCATGATCCTAAAGGTTGGATCACC ATTGATGAAATTTCAGGGTCAATCATAACTTCCAAAATCCTGGATAGGGAGGTTGAAACT CCCAAAAATGAGTTGTATAATATTACAGTCCTGGCAATAGACAAAGATGATAGATCATGT ACTGGAACACTTGCTGTGAACATTGAAGATGTAAATGATAATCCACCAGAAATACTTCAA GAATATGTAGTCATTTGCAAACCAAAAATGGGGTATACCGACATTTTAGCTGTTGATCCT GATGAACCTGTCCATGGAGCTCCATTTTATTTCAGTTTGCCCAATACTTCTCCAGAAATC AGTAGACTGTGGAGCCTCACCAAAGTTAATGATACAGCTGCCCGTCTTTCATATCAGAAA AATGCTGGATTTCAAGAATATACCATTCCTATTACTGTAAAAGACAGGGCCGGCCAAGCT GCAACAAAATTATTGAGAGTTAATCTGTGTGAATGTACTCATCCAACTCAGTGTCGTGCG ACTTCAAGGAGTACAGGAGTAATACTTGGAAAATGGGCAATCCTTGCAATATTACTGGGT ATAGCACTGCTCTTTTCTGTATTGCTAACTTTAGTATGTGGAGTTTTTGGTGCAACTAAA GGGAAACGTTTTCCTGAAGATTTAGCACAGCAAAACTTAATTATATCAAACACAGAAGC? CCTGGAGACGATAGAGTGTGCTCTGCCAATGGATTTATGACCCAAACTACCAACAACTCT AGCCAAGGTTTTTGTGGTACTATGGGATCAGGAATGAAAAATGGAGGGCAGGAAACCATT GAAATGATGAAAGGAGGAAACCAGACCTTGGAATCCTGCCGGGGGGCTGGGCATCATCAT ACCCTGGACTCCTGCAGGGGAGGACACACGGAGGTGGACAACTGCAGATACACTTACTCG GAGTGGCACAGTTTTACTCAACCCCGTCTCGGTGAAGAATCCATTAGAGGACACACTGGT TAAAAATTAAACATAAAAGAAATTGCATCGATGTAATCAGAATGAAGACCGCATGCCATC CCAAGATTATGTCCTCACTTATAACTATGAGGGAAGAGGATCTCCAGCTGGTTCTGTGGG CTGCTGCAGTGAAAAGCAGGAAGAAGATGGCCTTGACTTTTTAAATAATTTGGAACCCAA -O ATTTATTACATTAGCAGAAGCATGCACAAAGAGATAATGTCACAGTGCTACAATTAGGTC TTTGTCAGACATTCTGGAGGTTTCCAAAAATAATATTGTAAAGTTCAATTTCAACATGTA TGTATATGATGATTTTTTTCTCAATTTTGAATTATGCTACTCACCAATTTATATTTTTAA AGCCAGTTGTTGCTTATCTTTTCCAAAAAGTGAAAAATGTTAAAACAGACAACTGGTAAA TCTCAAACTCCAGCACTGGAATTAAGGTCTCTAAAGCATCTGCTCTTTTTTTTTTTTACG GATATTTTAGTAATAAATATGCTGGATAAATATTAGTCCAACAATAGCTAAGTTATGCTA ATATCACATTATTATGTATTCACTTTAAGTGATAGTTTAAAAAATAAACAAGAAATATTG AGTATCACTATGTGAAGAAAGTTTTGGAAAAGAAACAATGAAGACTGAATTAAATTAAAA ATGTTGCAGCTCATAAAGAATTGGGACTCACCCCTACTGCACTACCAAATTCATTTGACT TTGGAGGCAAAATGTGTTGAAGTGCCCTATGAAGTAGCAATTTTCTATAGGAATATAGTT GGAAATAAATGTGTGTGTGTATATTATTATTAATCAATGCAATATTTAAAATGAAATGAG AACAAAGAGGAAAATGGTAAAAACTTGAAATGAGGCTGGGGTATAGTTTGTCCTACAATA -5 GAAAAAAGAGAGAGCTTCCTAGGCCTGGGCTCTTAAATGCTGCATTATAACTGAGTCTAT GAGGAAATAGTTCCTGTCCAATTTGTGTAATTTGTTTAAAATTGTAAATAAATTAAACTT TTCTGGTTTCTGTGGGAAGGAAATAGGGAATCCAATGGAACAGTAGCTTTGCTTTGCAGT CTGTTTCAAGATTTCTGCATCCACAAGTTAGTAGCAAACTGGGGAATACTCGCTGCAGCT GGGGTTCCCTGCTTTTTGGTAGCAAGGGTCCAGAGATGAGGTGTTTTTTTCGGGGAGCTA ATAACAAAAACATTTTAAAACTTACCTTTACTGAAGTTAAATCCTCTATTGCTGTTTCTA TTCTCTCTTATAGTGACCAACATCTTTTTAATTTAGATCCAAATAACCATGTCCTCCTAG AGTTTAGAGGCTAGAGGGAGCTGAGGGGAGGATCTTACTGAAAGCACCCTGGGGAGATTG ATTGTCCTTAAACCTAAGCCCCACAAACTTGACACCTGATCAGGTCTGGGAGCTACAAAA TTTCATTTTTCTCCTCACTGCCCTTCTTCTGAGTGGCATTGGCCTGAATCAAGGAAAGCC AGGCCTTGTGGGCCCCCTTCTTTCGGCTTTCTGCTAAAGCAACACCTCCAGCAGAGATTC CCTTAAGTGACTCCAGGTTTTCCACCATCCTTCAGCGTGAATTAATTTTTAATCAGTTTG CTTTCTCCAGAGAAATTTTAAAATAATAGAAGAAATAGAAATTTTGAATGTATAAAAGAA AAAGATCAAGTTGTCATTTTAGAACAGAGGGAACTTTGGGAGAAAGCAGCCCAAGTAGGT TATTTGTACAGTCAGAGGGCAACAGGAAGATGCAGGCCTTCAAGGGCAAGGAGAGGCCAC AAGGAATATGGGTGGGAGTAAAAGCAACATCGTCTGCTTCATACTTTTTCCTAGGCTTGG CACTGCCTTTTCCTTTCTCAGGCCAATGGCAACTGCCATTTGAGTCCGGTGAGGGATCAG CCAACCTCTTCTCTATGGCTCACCTTATTTGGAGTGAGAAATCAAGGAGACAGAGCTGAC TGCATGATGAGTCTGAAGGCATTTGCAGGATGAGCCTGAACTGGTTGTGCAGAACAAACA AGGCATTCATGGGAATTGTTGTATTCCTTCTGCAGCCCTCCTTCTGGGCACTAAGAAGGT CTATGAATTAAATGCCTATCTAAAATTCTGATTTATTCCTACATTTTCTGTTTTCTAATT TGACCCTAAAATCTATGTGTTTTAGACTTAGACTTTTTATTGCCCCCCCCCCCTTTTTTT TTGAGACGGAGTCTCGCTCTGACGCACAGGCTGGAGTGCAGTGGCTCCGATCTCTGCTCA CTGAAAGCTCCGCCTCCCGGGTTCATGCCATTCTCCTGCCTCAGCCTCCTGAGTAGCTGG | O GACTACAGGCGCCCACCACCACGCCCGGCTAATTTTTTGTATTTTTAATAGAGACGGGGT TTCACTGTGTTAGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCTGCCTCGGCC TCCCAAAGTGCTGGGATTACAGGCATGACCCACCGCTCCCGGCCTTGTTTTCCGTTTAAA GTCGTCTTCTTTTAATGTAATCATTTTGAACATGTGTGAAAGTTGATCATACGAATTGGA TCAATCTTGAAATACTCAACCAAAAGACAGTCGAGAAGCCAGGGGGAGAAAGAACTCAGG GCACAAAATATTGGTCTGAGAATGGAATTCTCTGTAAGCCTAGTTGCTGAAATTTCCTGC TGTAACCAGAAGCCAGTTTTATCTAACGGCTACTGAAACACCCACTGTGTTTTGCTCACT CCCACTCACCGATCAAAACCTGCTACCTCCCCAAGACTTTACTAGTGCCGATAAACTTTC TCAAAGAGCAACCAGTATCACTTCCCTGTTTATAAAACCTCTAACCATCTCTTTGTTCTT TGAACATGCTGAAAACCACCTGGTCTGCATGTATGCCCGAATTTGTAATTCTTTTCTCTC AAATGAAAATTTAATTTTAGGGATTCATTTCTATATTTTCACATATGTAGTATTATTATT TCCTTATATGTGTAAGGTGAAATTTATGGTATTTGAGTGTGCAAGAAAATATATTTTTAA | 5 AGCTTTCATTTTTCCCCCAGTGAATGATTTAGAATTTTTTATGTAAATATACAGAATGTT TTTTCTTACTTTTATAAGGAAGCAGCTGTCTAAAATGCAGTGGGGTTTGTTTTGCAATGT TTTAAACAGAGTTTTAGTATTGCTATTAAAAGAAGTTACTTTGCTTTTAAAGAAACTTGG CTGCTTAAAATAAGCAAAAATTGGATGCATAAAGTAATATTTACAGATGTGGGGAGATGT AATAAAACAATATTAACTTGGAAAAAAAAAAAAAAAAAAA > AA745593 GACTCAGNCTTCAGCCGCTCTCCTCCCCCTGGGCAAACAGGACTCATCTGATGATGTGAG AAGAGTTCAGAGGAGGGAGAAAAATCGTATTGCCGCCCAGAAGAGCCGACAGAGGCAGAC ACAGAAGGCCGACACCCTGCACCTGGAGAGCGAAGACCTGGAGAAACAGAACGCGGCTCT ACGCAAGGAGATCAAGCAGCTCACAGAGGAACTGAAGTACTTCACGTCGGTGCTGAACAG CCACGAGCCCCTGTGCTCGGXGCTGGCCGCCAGCACGCCCTCGCCCCCCGAGGTGGTGTA 90 CAGCGCCCACGCATTCCACCAACCTCATGTCAGCTCCCCGCGCTTCCAGCCCTGAGCTTC CGATGCGGGGAGAGCAGAGCCTCGGGAGGGGCACACAGACTGTGGCAGAGCTGCGCCCAT CCCGCAGAGGCCCCTGTCCACCTGGAGACCCGGAGACAGAGGCCTGGACAAGGAGTGAAC ACGGGAACTGTCACGACTGGAAGGGCGTGAGGCCTCCCAGCAGTGCCGCAGCGTTTCGAG GGGCGTGTGCTGGACCCCACCACTGTGGGTTGCAGGCCCAATGCAGAAGAGTAT AAGAA AGATGCTCAAGTCCCATGGCACAGAGCAAGGCGGGCAGGGAACGGTTATTTTTCTAAATA AATGCTTTAAAAGAAAAAAAAAAAAAAAAAAAAAAA > AI985118 ATGCAAGGNNTAGGCAAAGATTGTTGACCCNGGAGATAGAGGTNNCAATGAGCCAGATCA TTCCATTGCATTCCAGCTTGGGCGACAGAATGAGACTCTGTCTCAAAATTAAAAANCAAA AAACCAAAANCAAATAGATGAAAAAGTAGACTGGAGACAAATAAAAGTGAGTTTCTAAAG . GAAATTCACAGTAATGCTGCATTAAACACTAAGCTCACTTAGGTCACTTTCTAGTGAGCT - * AACCGTAACAGAGAGCCTACAGGATACACGTGAGATAATGTCACGTGTAGAAGATCGTTG TGAATTAAAGTTCAAAATTAAGACTTCTTAGATTATGATGTAGATTTTAGAGCTCCTTAA AACATAAAGCGAATCTTATAAATGTTCAATTCTAAAGTTATTCCACTTGGAAAAATTAGC TTTTGGGACAATTTTTAAGAACTTTTGTGTAAAATGCAGCTCCATGTTTAGCATAATCTA AAAATAATTTCAAGCAATCCAGAATCTTCCAAsAATGTTATTAAAGCTTTAAAACAAAGC AAAACAAAAAGACCCTTTTGTGCCTTATATGGGAAGACTAAAAAAA > AB038160 ACCGGGCACCGGACGGCTCGGGTACTTTCGTTCTTAATTAGGTCATGCCCGTGTGAGCCA GGAAAGGGCTGTGTTTATGGGAAGCCAGTAACACTGTGGCCTACTATCTCTTCCGTGGTG CCATCTACATTTTTGGGACTCGGGAATTATGAGGTAGAGGTGGAGGCGGAGCCGGATGTC AGAGGTCCTGAAATAGTCACCATGGGGGAAAATGATCCGCCTGCTGTTGAAGCCCCCTtC 3 TCATTCCGATCGCTTTTTGGCCTTGATGATTTGAAAATAAGTCCTGTTGCACCAGATGCA GATGCTGTTGCTGCACAGATCCTGTCACTGCTGCCATTGAAGTTTTTTCCAATCATCGTC ATTGGGATCATTGCATTGATATTAGCACTGGCCATTGGTCTGGGCATCCACTTCGACTGC TCAGGGAAGTACAGATGTCGCTCATCCTTTAAGTGTATCGAGCTGATAGCTCGATGTGAC GGAGTCTCGGATTGCAAAGACGGGGAGGACGAGTACCGCTGTGTCCGGGTGGGTGGTCAG AATGCCGTGCTCCAGGTGTTCACAGCTGCTTCGTGGAAGACCATGTGCTCCGATGACTGG AAGGGTCACTACGCAAATGTTGCCTGTGCCCAACTGGGTTTCCCAAGCTATGTGAGTTCA GATAACCTCAGAGTGAGCTCGCTGGAGGGGCAGTTCCGGGAGGAGTTTGTGTCCATCGAT CACCTCTTGCCAGATGACAAGGTGACTGCATTACACCACTCAGTATATGTGAGGGAGGGA TGTGCCTCTGGCCACGTGGTTACCTTGCAGTGCACAGCCTGTGGTCATAGAAGGGGCTAC AGCTCACGCATCGTGGGTGGAAACATGTCCTTGCTCTCGCAGTGGCCCTGGCAGGCCAGC CTTCAGTTCCAGGGCTACCACCTGTGCGGGGGCTCTGTCATCACGCCCCTGTGGATCATC 10 ACTGCTGCACACTGTGTTTATGACTTGTACCTCCCCAAGTCATGGACCATCCAGGTGGGT CTAGTTTCCCTGTTGGACAATCCAGCCCCATCCCACTTGGTGGAGAAGATTGTCTACCAC AGCAAGTACAAGCCAAAGAGGCTGGGCAATGACATCGCCCTTATGAAGCTGGCCGGGCCA CTCACGTTCAATGGTACATCTGGGTCTCTATGTGGTTCTGCAGCTCTTCCTTTGTTTCAA GAGGATTTGCAATTGCTCATTGAAGCATTCTTATGATGGCTGCTTTATAATCCTTGTCAG CATTAAAATTGTGATGCTCCTAAAAAAAAAAAAAAAAAA >ATATTAATAATTCCAACTCCTGATTCATGTTGGTGTTGGCATCAGTTGATTATCTTTTCT; X69699 TTCAGAAGGAGGAGAGACACCGGGCCCAGGGCACCCTCGCGGGCGGGCGGACCCAAGCAG TGAGGGCCTGCAGCCGGCCGGCCAGGGCAGCGGCAGGCGCGGCCCGGACCTACGGGAGGA AGCCCCGAGCCCTCGGCGGGCTGCGAGCGACTCCCCGGCGATGCCTCACAACTCCATCAG 15 ATCTGGCCATGGAGGGCTGAACCAGCTGGGAGGGGCCTTTGTGAATGGCAGACCTCTGCC GGAAGTGGTCCGCCAGCGCATCGTAGACCTGGCCCACCAGGGTGTAAGGCCCTGCGACAT CTCTCGCCAGCTCCGCGTCAGCCATGGCTGCGTCAGCAAGATCCTTGGCAGGTACTACGA GÁCTGGCAGCATCCGGCCTGGAGTGATAGGGGGCTCCAAGCCCAAGGTGGCCACCCCCAA GGTGGTGGAGAAGATTGGGGACTACAAACGCCAGAACCCTACCATGTTTGCCTGGGAGAT CCGAGACCGGCTCCTGGCTGAGGGCGTCTGTGACAATGACACTGTGCCCAGTGTCAGCTC CATTAATAGAATCATCCGGACCAAAGTGCAGCAACCATTCAACCTCCCTATGGACAGCTG CGTGGCCACCAAGTCCCTGAGTCCCGGACACACGCTGATCCCCAGCTCAGCTGTAACTCC CCCGGAGTCACCCCAGTCGGATTCCCTGGGCTCCACCTACTCCATCAATGGGCTCCTGGG CATCGCTCAGCCTGGCAGCGACAAGAGGAAAATGGATGACAGTGATCAGGATAGCTGCCG ACTAAGCATTGACTCACAGAGCAGCAGCAGCGGACCCCGAAAGCACCTTCGCACGGATGC CTTCAGCCAGCACCACCTCGAGCCGCTCGAGTGCCCATTTGAGCGGCAGCACTACCCAGA 9Q GGCCTATGCCTCCCCCAGCCACACCAAAGGCGAGCAGGGCCTCTACCCGCTGCCCTTGCT CAACAGCACCCTGGACGACGGGAAGGCCACCCTGACCCCTTCCAACACGCCACTGGGGCG CAACCTCTCGACTCACCAGACCTACCCCGTGGTGGCAGATCCTCACTCACCCTTGGCCAT AAAGCAGGAAACCCCCGAGGTGTCCAGTTCTAGCTCCACCCCTTGCTCTTTATCTAGCTC CGCCCTTTTGGATCTGCAGCAAGTCGGCTCCGGGGTCCCGCCCTTCAATGCCTTTCCCCA TGCTGCCTCCGTGTACGGGCAGTTCACGGGCCAGGCCCTCCTCTCAGGGCGAGAGATGGT GGGGCCCACGCTGCCCGGATACCCACCCCACATCCCCACCAGCGGACAGGGCAGCTATGC CTCCTCTGCCATCGCAGGCATGGTGGCAGGAAGTGAATACTCTGGCAATGCCTATGGCCA CACCCCCTACTCCTCCTACAGCGAGGCCTGGGGCTTCCCCAACTCCAGCTTGCTGAGTTC CCCATATTATTACAGTTCCACATCAAGGCCGAGTGCACCGCCCACCACTGCCACGGCCTT TGACCATCTGTAGTTGCCATGGGGACAGTGGGAGCGACTGAGCAACAGGAGGACTCAGCC TGGGACAGGCCCCAGAGAGTCACACAAAGGAATCTTTATTATTACATGAAAAATAACCAC AAGTCCAGCATTGCGGCACACTCCCTGTGTGGTTAATTTAATGAACCATGAAAGACAGGA - > TGACCTTGGACAAGGCCAAACTGTCCTCCAAGACTCCTTAATGAGGGGCAGGAGTCCCAG GGAAAGAGAACCATGCCATGCTGAAAAAGACAAAATTGAAGAAGAAATGTAGCCCCAGCC GGTACCCTCCAAAGGAGAGAAGAAGCAATAGCCGAGGAACTTGGGGGGATGGCGAATGGT TCCTGCCCGGGCCCAAGGGTGCACAGGGCACCTCCATGGCTCCATTATTAACACAACTCT AGCAATTATGGACCATAAGCACTTCCCTCCAGCCCACAAGTCACAGCCTGGTGCCGAGGC TCTGCTCACCAGCCACCCAGGGAGTCACCTCCCTCAGCCTCCCGCCTGCCCCACACGGAG GCTCTGGCTGTCCTCTTTCCTCCACTCCATTTGCTTGGCTCTTTCTACACCTCCCTCTTG GATGGGCTGAGGGCTGGAGCGAGTCCCTCAGAAATTCCACCAGGCTGTCAGCTGACCTCT TTTTCCTGCTGCTGTGAAGGTATAGCACCACCCAGGTCCTCCTGCAGTGCGGCATCCCCT TGGCAGCTGCCGTCAGCCAGGCCAGCCCCAGGGAGCTTAAAACAGACATTCCACAGGGCC TGGGCCCCTGGGAGGTGAGGTGTGGTGTGCGGCTTCACCCAGGGCAGAACAAGGCAGAAT CGCAGGAAACCCGCTTCCCCTTCCTGACAGCTCCTGCCAAGCCAAATGTGCTTCCTGCAG CTCACGCCCACCAGCTACTGAAGGGACCCAAGGCACCCCCTGAAGCCAGCGATAGAGGGT CCCTCTCTGCTCCCCAGCAGCTCCTGCCCCCAAGGCCTGACTGTATATACTGTAAATGAA ACTTTGTTTGGGTCAAGCTTCCTTCTTTCTAACCCCCAGACTTTGGCCTCTGAGTGAAAT GTCTCTCTTTGCCCTGTGGGGCTTCTCTCCTTGATGCTTCTTTCTTTTTTTAAAGACAAC CTGCCATTACCACATGACTCAATAAACCATTGCTCTTCAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAA > AK025615 TGCTTCATAAAATTTACCTAAGCAAGTGGTCTTGCTTGCCTCAAATCCAAGCAGTCTTGA ACACTTGGAGGCAATTAATGAGTATATCTTAGTCAAAAGAATTGTTGGAGCTTTTTATTA AAGCTGCAGTTTCAGTTCTGCTTTTGGGGAATTGTGCTATGAAAGCAGCTGCCAAAATAA GCTCATTTATTTTCTTCAATCCCACTCAGTGCTCAGTCACTATATTCTGTTTCCTTTTTT TTTTTCAAGTTGCATATTTGGTTTCCCCTTATGATTGGGAAAGATGAATTTTCAGCAGAA AACAGTGTTTGTTCACTTTCAAAGAGTGATAGTTTCTAAAACATTTAGAGCAATAAATAT TCATCAGAGGTACCAAGTAAGCCAGCAGAAGAGTTAAGGGTTAGAGAAATCCCTTATTTC ATGTCTTGACTCTAAAATGATCAAAGTACTTTTCCTTGTAATGTGGATTTCTTCTTATGC GGATATGCAAAAACTTCAGTTATACGTAGTAATGCTAGCAGGTAATTTTAGTGGACATTT TATAACAACTGTCACTTTGTTTTGCCACATGTAGAGTTTGTTCAGCTATTTTCCAGATAT CTCCCCACAAAAGGAGGCAAAGGGTACCAGCTTTTCAATGAGCATTACCTATTACTTGGC AAAGATGATGAAGACTCTATTAATAGTTCATTTGATAAATGTTGACATAACCAACAATAG AGATTAGGAAGTTAGTTTTAAGAAATCAATAGCATATAGACATTACCCTCATGGAGTTTG TATTCTACTACTTGAACTGATTGTAGCTATAAAAGCATAGTTAGATAGCTGAATAGTTAG ATCATAAGCAAAGAAGGCCAGAACACATCTCTTATCAAGAAATCAATGAATAGTTTATCT CATTTTTAAAGCAACTTTATCCTTCTTTAATTCCTTCCTTTCTTCTAGTGCAAAACTACT TAATAAGGTTGGTGTTTAGGTTAGTGTTCACACCATTCCTCATCTGGTGTGAATTACCTT CTCTTTCTTTACTATTTACTACCAACCTAGTACATGTGTTGACTGAATTCTTTTCAAACA ATGTTGAGTTATCATGGTGCACCTAATAAATTAACACCACAGATTACAGCATCCTTGCTG ATTTTCTCAGCAAAGCCAGATTAG ATGGAAATAAACAAAGAAAATGATCCTAGAGTGAAT TTTTCTAGAAAATATCTATTATGAACCATGCTGTTTAAAGTATTAGCTTGAAGGTGATGs ATCCAGCTATTCAGAAAATAACTTTCATATAACCATGATTTTGCACAGTATGAGGTCTTA AATGTGTGGAAAGAGATAAATTTTTTATCATTACCACAAACCCCTTTTAAAGATTCAAAG GTGGAAGAAAGTGATTTATTTTTTCTCTTCAGCATACATATATAAAAGACTTGTCAGATG TTTAATTTGGGGAGGTTGATAATGAAACATATCAACAGAGTATAGTAGTTATAGTAGTGT TTGTGGGTAAATAATTTCCTGGGGTCAGACATATATAAACATATTTGCTTCAAAATGATA AAGGCATGAAATCAGTCTTAAAAATTGAAATGGGGGTGATGGGGGAGAAAAAGAAGAACA AATTTGAAGTGCCCTTTCAAATCTGCTGGATACAAGTATTGAAGTTTTAAGTCATCTTAT TCTGTCTGAAAGTGTATTTTTCATTCTACAATAGACCCAATCAACAAGACGTATAACTTG AGTTGCATGATGTTCAGTTTATGTAATCTACTGTTGGGATGGTAAGAATTGATGTAGGCT GTGGTGTAAGAATGAATTAAAATATAGTTTCACTGGCTTTTCTCTACATATCCACTATCA CAATGGCTAGGTTTCCTGTTGCTCACTGTTGGATTCTGGAGAAAAATTTAATGAAAGATG ATATCAGAGGAAGAATAAGTGGAGGTAGAGAAGAAAGGAGTGATAGAGGAGGGGAAAAAA ACAAAACATATTTTTGTGTTATCCAAAGGAGCTTTTTCCTTATTCTGTCAAGCATTGAGA TCTTCTTCAGCTTTCAATGTAGTTGCTAAATACAAATAATGCTACTAGGTAGTGACTAAA TATAGCAAACACTTCATCAGATATTAGAATTAGGTCACACTATTGAGG TTATAATCTGAA GGTTGTGTTACATAGAAACCACTTTAGATTATTATCAACTTGGGCTAGGCTTTATTTTAT AATAGCATAGTAAGTAATATCTATTGTGTCATTTCTTCAACCATTTTATTCTAAGATCCA TGAAGCTTCTTGAGGCCAAATAAAATAATAAGTTTAGACAAGAAGTAGATTGTGACTTTT TTTCCCTTAGAGATACTATTTACTATCTCCTATCCTGATAGGTGGAAGGTTTACTGAATT GGAAATTGGTTGACTATTAGTTTTTAACTAAAATGTGCAATAACACATTGCAGTTTCCTC AAACTAGTTTCCTATGATCATTAAACTCATTCTCAGGGTTAAGAAAGGAATGTAAATTTC TGCCTCAATTTGTACTTCATCAATAAGTTTTTGAAGAGTGCAGATTTTTAGTCAGGTCTT AAAAATAAACTCACAAATCTGGATGCATTTCTAAATTCTGCAAATGTTTCCTGGGGTGAC TTAACAAGGAATAATCCCACAATATACCTAGCTACCTAATACATGGAGCTGGGGCTCAAC CCACTGTTTTTAAGGATTTGCGCTTACTTGTGGCTGAGGAAAAATAAGTAGTTCGAGGAA GTAGTTTTTAAATGTGAGCTTATAGATAGAAACAGAATATCAACTTAATTATGAAATTGT TAGAACCTGTTCTCTTGTATCTGAATCTGATTGCAATTACTATTGTACTGATAGACTCCA GCCATTGCAAGTCTCAGATATCTTAGCTGTGTAGTGATTCTTGAAATTCTTTTTAAGAAA AATTGAGTAGAAAGAAATAAACCCTTTGTAAATGAGGCTTGGCTTTTGTGAAAGATCATC CGCAGGCTATGTTAAAAGGATTTTAGCTCACTAAAAGTGTAATAATGGAAATGTGGAAAA TATCGTAGGTAAAGGAAACTACCTCATGCTCTGAAGGTTTTGTAGAAGCACAATTAAACA TCTAAAATGGCTTTGTTACACCAGAGCCATCTGGTGTGAAGAACTCTATATTTGTATGTT GAGAGGGCATGGAATAATTGTATTTTGCTGGCAATAGACACATTCTTTATTATTTGCAGA TTCCTCATCAAATCTGTAATTATGCACAGTTTCTGTTATCAATAAAACAAAAGAATCCTG TTAAAAAAAAAAAAAAAAAAAAA > AW118445 TGGCTCTCTCCTTCAAAAGGNCCAGGCCCTGTCCCCCTTTCTCCCCGANTCCAACCCCAG CTCCCCTGTGAAGAAAAAAGTTAAAAAATTTGTTATTTATTTGCTTTTTGCGTTGGGATG GGTTCGTGTCCAGTCCCGGGGGTCTGATATGGCCATCACAGGCTGGGTGTTCCCAGCAGC CCTGGCTTGGGGGCTTGACGCCCTTCCCCTTGCCCCAGGCCATCATCTCCCCACCTCTCC TCCCCTCTCCTCAGTTTTGCCGACTGCTTTTCATCTGAGTCACCATTTACTCCAAGCATG TATTCCAGACTTGTCACTGACTTTCCTTCTGGAGCAGGTGGCTAGAAAAAGAGGCTGTGG GCAGGAAAGAAAGGCTCCTGTTTCTCATTTGTGAGGCCAGCCTCTGGCTTTTCTGCCGTG GATTCTCCCCCTGTCTTCTCCCCTCAGCAATTCCTGCAAAGGGTTAAAAATTTAACTGGT TTTTACTACTGATGACTTGATTTAAAAAAAATACAAAGATGCTGGATGCTAACTTGATAC TAACCATCAGATTGTACAGTTTGGTTGTTGCTGTAAATATGGTAGCGTTTTGTTGTTGTT GTTTTTTCATGCCCCATACTACTGAATAAACTAGTTCTGTGCGGGTAAAAAAAAAAAAAA AAAAAAAAAAA > AL137761 CACAAAGAAAAAAGAAATACCTGTAGAAGCGCATCGAAAGCTCCTGGAACAGAGTTGTGT CTCATATTTGCAAAGATGCAGAAAAAATAAACCCGGGACATCCAGCTTTCTTTTCCTTTC TTCTTTGACTATTCTGAGAAGCTATGCGACTAGGAGCACATTTTAGGTAAACACGTGGCT TGAGTAGCCATAAGGCCACTCTTCCCTGTCGTGTGACCCGCGCCTGGGCCTTTAAGAGAT ATTGGTGTTTGAAAAGGGAGGAATCTGTTTGCCCTCAGATATTTAGTTCAACTGCCTGCA TTGCTTCCTATTTTGTTGTCCAACTCTGTAGTAGTTAGCACTGGCCTTACCAACATGTAA AGAAATTTTCTTTACTGCCCCATGAGTAGTTGGAGGCAAAGAGAAATTTTTAAAGCGCAG AAAAAGGCCTGCAGGGAGATGGAATTTGTTCTGCCAGAGAAACGAGATGATAGCTGTATT TAATAAAGTTACTGACCTCTTGTCAAAATTTAAAACGCAAAAGAAGATGTTTCAAAATGC AGAGAATGTCAGAAAACAAAAACTACAGGGACCAGACCAGTATAATGTTTAGTTTTCATT ATACTAACTTTTGTCTAGACTGGAGTTGATTCACTATTTTTTCTTTAACTCCTCAGGAAG CAAACCTTCCCGATGATGAAGACTTCTTGAAGGATTTCATGGGTGATTTGGGATCCCAGG ACCATTTGGCTAGTGTGCCTAGGTGACCACATGATTGCTGTTTTACCAGGAATGCAGCAT CCCATTGACAAAACAAGTGCTCTGAGAAGGTTTAAAATACTACAGAGAATATGGGAACAC AGACCTTGAAATTTAGCTGAGTTGTAACAGCTGAAACTCCAAGAGGTGTCTTCCTTGTTT GAGGTGAAACTAGTGTTGCTTCCAGAGGGCAGCTGGAAACCGTAAAGCTGTTTGGAAATC TTTTTGACTGACTTGCTGACAAAGAGGTACTGTGATGCATTTTAACAATATCTAAGTTGA TTTTTTTTTAAATCAAGGAAAATAAAAACCAAGCATGAATGCTATGGTATGTGCCCCTTT TGACCATCCTGGGCTGATTAACATCATTTAAATCAAAGTAATCATAAAAAGGCATATTCT ACTTCAATTATGTGGTCAAATAAOAGTAAACACACACACTCACACATGCTGACCCCAATT GCCAGAGCATTACTGCACTATAAA TTACGGTTAATTCCCAAATTATACTACTGTTTATCT TATTTAACAAGTCAGAAAGCACTTTTAAAATAACTTGAGGGCTACAAGGTCATTCTATTA ATGTCATTCTCCATTCGGGTTGTAGGCATGTGGAAGTACCCATTAAAAGATAAGTTAGAG TTTAAATACTGATAAACAAAACCTTTTATTGCAACTGGACAGTTTCTGGAGAGTTAGCGG AAGAATCTTGGAGTTTCCTTTGGTCAGATGAATACAACATTTCACTTTTGCAGCACTATT TAGAATGTACTCCATGGTTCTCTTGTTCCCAACTTCCAAAAAGAACAGAAAACTTTGGTT TACACAGAACACGGGCATCTGAGGCAGGACCTCTTCCCTGCCCTTTGATCTGACTCACAC CTCCACATATGACGTAATCAACCCAAATTTGACACCAATTCACTCTTTTCTGCAAAGGGC ATATTTTGAAACAAGGGACAGCCTGAGGGCGGCTATAATGAGAATGTTCATGGGGGTTAC TGGGTCCCTAATTCTGAACTTGCTTATGACACCCAGAGTGAATAGATTCAGATTCAGAAC CTTCTGAGAAATAACCCAAAGAAAATTTGTTACCCAGCCAATTCTTCGAAAGCTTAATAT CAAAATATATCTTTTCAAGAAGAAAATCGTTAGAGAGAAGAATGTGGAGGGGAGAGAAAT GGGTTTCTCATTGATATGATATTTTGTTAACCATTTCATTTTGAATTATTCAAGTTTTGG TTAATATTGTATTCTTTTTTCGTAACTATTTTACCGTGAGAGTAGGTCATTGGGTTACTT AGATATTTATTTTTACACAGTTATTAGTCTTCAGATAGTTTTATTTTACTTCATATGATT TTAGTTTTTGTCAGTATAATTTTAAATCATGTTTTTCTTGGTCATCTCTTTGTGTATATT GTGTAATTGGATTTTCATTGACTGCAAGTGGAGTGTTTGCCACTCAATTCAGTACTCAGT ACTATGGTGACTTGTTTTCAAATAAGTCTCAGATACACATTTAGGGAGCCTTTGCTGGCC GAATATAGACTCTGTCAGGACAGCAGGTCCCCTGATCTAAGAATTTTCCCCAATGGTTGC TCTAAAAATGCTGCTATTTTGCTGTTCACTGTATTGCACTTAGTTAAAAAGAAGATAATG TGAAAGATGAGAGCAGTTTTTTAAAGGATCTTTTCATATACCCAATTCCCTTATTTTCAG ATGTCCCATCAATTTTAGATATGAAAGCTTTAAGTAAAAGTGTGTATGCCTTTCTACTGT CAGAACAGGATGGATGCAGCCTGGGTCAGATTTATTTAAGATAAAAATCATGCAGACTCA TCATTCATATCATAGGTGAAAAATGTAAAAACCAAATGGTTTCCACTAAAGCCACCAAGA TCTTTTAGAAATGTTTGCACCTTTGGTGGTGGCACAGGAAAAGAGAAGAATTCAGCTGGA GTGAATTCTAGAAGTAGATATCAGAAACGGGGCATGAAGAACAGGGGAACTGGGTGGCAT CAGACTCCTAAAGAAGTGAGTTAATTTTCCTTCCCTTCCATTCAGATTCATGCCACAGCT CCATATCTTGAGTATGTGTAAGAGGTGAGTTCCTTCTTCAGCCAGGGGCGGTGGCTCATG CCTTTAATCCCAATGCTTTGGGAGGCCAAGGTGGGAGGATCACTTGTGCCTTGGGGTTCA AGGTTGCAGTGAACCATGATTGCACCACTGCACTCCAGCCTGAGTGACAGAGCAAGACCC TGTCTCTAAAAATATATATAAAAAGTAAAACTAAAGAACTTCTTGCCTAAACCTGAATTA CCGCAATTTGCTGAGTGACTTTGAGAAAAATCAGACTGTTTAGTTCAGTCGGGATGAAAA GCTTGCGATTGCTTCCCACAAGAATGGGCAATAGTGACGGCTGCAAGGTACTTTTATTTG TTCATGAAAGAACGACAATTTTTCAAAATGTAATTAAACATAATAGAATGTTTTAAACTA I O CTGGGCACTGAAACTGGAAGAAAAAGGAGGCTTTATTGAACATTCCCCTTTT CAGTTGG TTCAAAGTTCAGCACTGTGGTTATCATTGGTGATGCCAGAAAACATTAGTAGACTTAGAC AATTGCTATGGCAGTTTCTAAACAGAGCTTTTTCTATACACTATTTGCAACTGGAGTGCA ATATTGTATATTCTGTGTTA AAGAAATAAAGTATTTTTATCATTTATTAAAAAAAAAAAA AAAAA >; AF038191 CCATCCAGAACGATGAGGCCGTGGCCCCGCTCATGAAGTACCTGGATGAGAAOCTGGCCC TGCTGAACGCCTCGCTGGTGAAGGGGAACCTGAGCAGGGTGCTGGAGGCCCTGTGGGAGC TACTCCTCCAGGCCATTCTGCAGGCGCTGGGTGCAAACCGTGACGTCTCTGCTGATTTCT ACAGCCGCTTCCATTTCACGCTGGAGGCCCTGGTCAGTTTTTTCCACGCAGAGGGTCAGG GTTTGCCCCTGGAGAGCCTGAGGGATGGAAGCTACAAGAGGCTGAAGGAGGAGCTGCGGC | 5 TGCACAAATGTTCCACCCGCGAGTGCATCGAGCAGTTCTACCTGGACAAGCTCAAACAGA GGACCCTGGAGCAGAACCGGTTTGGACGCCTGAGCGTCCGTTGCCATTACGAGGCGGCTG AGCAGCGGCTGGCCGTGGAGGTGCTGCACGCCGCGGACCTGCTCCCCCTGGATGCCAACG GCTTAAGTGACCCCTTTGTGATTGTGGAGCTGGGCCCACCGCATCTCTTTCCACTGGTCC GCAGCCAGAGGACCCAGGTGAAGACCCGGACGCTGCACCCTGTATACGACGAACTCTTCT ACTTTTCCGTGCCTGCCGAGGCGTGCCGCCGCCGCGCGGCCTGTGTGTTGTTCACCGTCA TGGACCACGACTGGCTGTCCACCAACGACTTCGCTGGGGAGGCGGCCCTCGGCCTAGGTG GCGTCACTGGTGTCGCCCGGCCCCAGGTGGGCGGGGGTGCAAGGGCTGGGCAGCCTGTCA CCCTGCACCTGTGCCGGCCCAGAGCCCAGGTGAGATCTGCGCTGAGGAGGCTGGAAGGCC GCACCAGCAAGGAGGCGCAGGAGTTCGTGAAGAAACTCAAGGAGCTGGAGAAGTGCATGG AGGCGGACCCCTGAGTCCATCAGCTGCCAGCCCCGGCCCTGGCCCCCACCCCAAGTTCCC TGAAGCATCCTCCAGCTCACTGTGGCCAGCTTTGTGCAACCAGGGCCCACGGCGCCCCTC ? 0 CTGTGCTGTGACGTGTGTGTCGTGGCTGGCCCCGCGGCGCCTACCGCCCTGGCCGTGTCT GTCTGGTGTGTGCTGTGAACCCCTGCACCCAACCCCACATCTGGGTGGCCAACTTGGCAG GACTTGGCCAGCAGCTGCCCAGGACACAGTGCAGGCCAGAGCGGGCTTGACCACCTGGTG GGCCTCCCTGCCCGCTTCCTTGGGCTCCCCGGCCCTGGGTGGGCGGTGCGCAGCTGGTCT CCAGGGACTCAGTGAGTGGCTGTGCTCTCTGCACAACGGGCAATGTGCAGACGCATTTTT GGTAATCACAGCTGGGGAGTGAAAAGGGTGCCACTGGCACCACTGGGTGGATGGTCCAGA GCCTCCACCCACAGAGGGGATGCAAAGGGCAGGTGAGTCAAGAACCGCATAGGTCTCCAG TCCCCACGGGGCTCCCAGGCCGGGGAAAGGTTCCCCTGAGGTCACTCTGAGGCCAGGGAC GTCACCCAAGGCTGGTGGTCAGTGTGAAGGGCTCCGTGCCAACTGGTCAGCTGTCCTTCA CGCACATATCCGTGGCCACCTGAGACCTGCTCCACGACCCTTCCAGGCAGAGCCGAGAGT TCGCCCCAACCCTTCCCCAGGCCCAGTGTGAAAAACAGACTCACAAGGGGCTTCTTGGCC TGCAGCTTCATTTGCGAGAGCGCCGAGGCAGGACACAGAGCACAGCTGTGCTGGAAGTGT GGGGAGAACCCGGACAGCTCAGTCCTGCCAGCAGCCGCAAAGAGCCGAGGCTGCCAGGCC -5 CATTTATGTCCCTCATGTCTCTAGATTTTCTCGTCACCCAGCCTCAAAAATATATGTGTC TGCAACCCTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA > BC016340 GGGGGGGCTCCGTGACAGCCAACGCAGTGACCCTCGCCCCTTCCTTGGCAGCACATCATG CTTGTGCAGCGGCAGATGTCTGTGATGGAAGAGGACCTGGAAGAATTCCAGCTCGCTCTG AAACACTACGTGGAGAGTGCTTCCTCCCAAAGTGGATGCTTGCGTATTTCTATACAGAAG CTTTCAAATGAATCTCGCTACATGATCTATGAGTTCTGGGAGAATAGTAGTGTATGGAAT AGCCACCTTCAGACAAATTATAGCAAGACATTCCAAAGAAGTAATGTGGATTTCTTGGAA ACTCCAGAACTCACATCTACAATGCTAGTTCCTGCTTCGTGGTGGATCCTGAACAACTAG ATGTTCCTAGACATTTTCTTTATGGTTCCAAGTGCAAAACAGGTGTTCTTATCTAAAACG TCAATTAGAAAATTATCTGCGGTTGTTAATCTACTGTATATTTTTGTTTGGTATATTTAC 5 TAAGTGCACTCTTTCAAAACTTATTCTATAACTTTATCAATTCATGTGAATTTTAGCTCA ATTTTCAAAGTTCACTAATATTCTCAATATTTAATGCTAAATGCTTTGCTACATTGTAAC TCACCTAAAACCTTTTAGTGACAAAATCCTAATATGTGGAAAAAAGCATATGCATAAAGG AATAATATTGTGAAAATGAATCTGTTATGATAAAGAAAAAATAAAGTGGAAACTTTTAGA GTATTACTTCATAGGGCAGATTTTGTAAACTGTCGTATACTGTAAAGGGTTAAATCAGCG TTTTGTGATTTTTAAGTAACTGTGAGTGAAGTTTATTCTTCAACAATGTCTACTCCATCC CCAACCCAACTCACAGCCCTATGACTACTATCTTTGCATTAGTTAAAAAGTTAGTATATA GGCATCAAACAACCTTGGCTGTAACCTATAGAATCTCTATCCATGTATCAGGTTATAGAC TGGTTTTTCAAA AGTGAACAATCCTGTGATAAGTTGGAGTACCATTTAGTAATACAGCAA CATTGTGTCATTTATTAGCATCATAATTCTTTGTTATGTAAGTTAAATATATCAAGAAAG AAGAGACTGTTTGGAAAAATGTGGTTCAAGTTTTATGCTATATAGTTTTGGTATGCGATA CAGACAGCTAACTTTTCTTATGAAAAATACATATTTGCATGTAAACAATGATTTCAAAAT I O ACTTGAAAAATAAAATTTTAACCCAAATGAATAACTAAGAAATATAAAACAAGCACAAAA TCTTAGGGAAGTCATAAAATAGTAGTGAAAGTATTAGACAGAAGACATCTGTTTTCGAAT TTCAACACTAGAATGACTAAAACTATCTACCTATAGAACTATCTGTAGATAGTATACTAT CTACACTCTGCTCAACAAGCTCAGAAATTAAATATTTTTAGTAATAAAAATCTGTTCTGG TTATAAACCTTGCTAATGAAAATACAATACATATAAAAATGTATAGCCATGTTATTTTCT AGTATAAATTCCTTTGAAACTATAAGTCTTTGAGGAAAATTATAAGGTAAAATTTTCCTG TTTTTCCCCCTTTGAAAAACTCAGGAAAAAAGGAAGATTGAACTAATAAAATTTTATTTC TTAAATATAAATTTGACCTAAAATATTTTCTCAAACTAATTCATGAAACAGCAACTTTTA CCAATACCTTTGTATACTCTCAGTTCTCAXTCAGTATAAATAAAATTTTAAAATCCTTTC ATAGTTCTATTAGAAATAAGTAGTAAATTTTGATATATTGTACATACACACGTGTGTGTG TGTGTGTGTGTGTGTGTGTATTTGTGTGCCTCTGGTCAACTCTAAGGATGACAGACACTG TGTAACAACACCTGGGTCAACTCTTTTAATTTATATACAAAGCAAAGAACAACATTAATG GAGATGCACAATGATTATTCAAACAAGCTATATATGTACAAAGGCAAACAGACACATA ACAGTCTCTGCAGACTGATTGTATATAGTAAGAAAAGATCAAAAGACTTTAAAACCTAAA TGACTTTTGACATACAAACTCTTCTTGAGAATGTTTGTTGTAAATGGTTAAATACA AATTATAGCCAAAACATTGCTTTGGTTGGTGCATTTAAGTATCCAACAAAGC ATAATATTTTGGGTACTAGGCAGTTTCCAAAGTAGCATGGTAGTATTACTTGTTAA AAGGGTTCTGTTTTAACAGTACTAAGTGGAAGGGATCTGCAGATTCCAAATTGGAA TAAGCTCTAATTCTGAAACAAGAATTAGAATGACTTGAGAACGGGCAAATAACAAA GCAAACCAATATAATTATATGGTCTGACCCCAGCTCTTATACAAATTATACATGTA TTTTTGTGTATGTTTGTGAGAGTTGTATGTATGTGAATGTGTGTGAGTGTGTATAT ACACATATATACTGGAACCTATAGTAGAAAAGGAAACTAGTAGGGCCAAAAAAAAAAAGA AAAAGAAAAAGAAAAAAGAAAAAAAAAGAAAAAACTGGGACCTAAGTATAAATATC CCTAAAGTAAACAATAAGTTTATAGTTAACGAAGATTTTTTTCTATTTAAAACCCCATTT 0 >TCCTAAAGAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA; BC013282 GGCACGAGGGCAGGGGGAAGGGAAGTGCGGCTCGGTCGGCGCGGGTGGAGGGGGCGTGAG GCCGCCCTACGGTGGCCGTCGAGGGACGGCGCTACGGCTCCCACGCTAGGCCAAACGCCT CCGGCGGCCGCGCCCGAGAGCCCCTTCACCTGCAGGGCGACCCCAGCCGGCGACGCGTGA ACCACGCCCTCAGCCGCCTTGCCAGCGCCCCCAGCCGCGCGCCCCAGCACCATGCGGCCG CCCTGCGCACGGAGCCCCGAGGGACAGGGGCACCCGCAGGCCCGGCCCCTAGCACCGCCG GCCGGCCCCGAGGTCCGGGACGCCGGCGCCGCCGCGGAGAGGGCACCGGGCCGACGCCTC CCCCCAGGGTCAGCTGCGGGCTCCCAGGCCTAGGCGCCCATGACCCCTACGCCAACCGCC GCCTGGACACCGCCGCCGCCACTGCGACCTAGCGCCGCCGCCGCCGGGGCCCAATGCCGG TCATGCCCATTCCGCGGCGGGTGCGCTCCTTCCACGGCCCGCACACCACCTGCCTGCATG CGGCCTGCGGGCCCGTGCGCGCCTCCCACCTGGCCCGCACCAAGTACAACAACTTCGACG TGTACATCAAGACGCGCTGGCTGTACGGCTTCATCCGCTTCCTACTCTACTTTAGCTGCA GCCTGTTCACTGCGGCGCTCTGGGGTGCGCTGGCCGCCCTCTTCTGCCTACAGTACCTGG GCGTTCGCGTCCTGCTGCGCTTCCAGCGCAAGCTGTCGGTGCTGCTGCTGCTGCTGGGCC GCCGGCGCGTGGACTTCCGCCTGGTGAACGAGCTGCTCGTCTATGGCATCCACGTCACCA TGCTGCTGGTCGGGGGCCTGGGCTGGTGCTTCATGGTCTTCGTGGACATGTGAGGGCCGT GGGTGCGAGCTTGATGTATCGTCCCGGCCTGTGGCTGTGTTCTCTCCATGGGTGGGGTCG GCCAGCGCCTTCCCTTCGCCCATCCCCCAGGCAGTCGCTGCTGCCCGGCGCCCACGGAGA GAAAAGAAAGGGCTGAGACTTCTGTGATGGGGGCGCGGACACCACCCCTAGGCTGGCTTC CTGGACCCACCCTCCCCGTATGCACTCTCAGGGGCAGCGCCCACCTGCCGGTGGCTCCTG CTCACATGTCTTCGGGTCGTACTGCGGGGTGGGCCCTCCGTTCCGCCTCTCTGTGGGCCT CTCTCCAGGACCACAGCTGCCAGGGACTTTAGACATCACCCTGGGAGGCCCCTGGACACA GAGGGCTGTGTGCCCAGGAGCAATTCCGGAGGGGGGCCCTCCTGGCTGCACAGCCCCTTC TGCGTGCCCTGGCCCCAGCCCCAGCCAACGGGACACGGAAGGCTCCCCTCGCTGACACAC CACACTGCCACAAAGCTGCTTACTCTGCCCTGGGCCGCCTGAGGCCTGGCACTGCCCGCG GACCACCCTGTGTGTGTCATCCTGAGGGGCTGTGTGGGTCCTGAGTCCCCAGCCAGCCTT CAGGGTCCCCTTGGATTGTGTAGATGCAGTCTAGCGGGGGGCCGGAGAAGGGCTCAGGTG GGAGGGGCCTCAGCAGGCTCCCAGCTCAGGGGCTGGCCTGGGGGGAACCCTGGGAGCCAG GGGCTGACTCCAGCAACACTGGCC TGTCTGCCTGTTCTGGGAGGGCTGTGAGGATGTCTT GCAGATGCTCTGGATTTCTGCGGAGGCACCTCCATTCCTTTCTGGCTTTTTTTGCGGGGG AGGGCTTTGGGCCTCTTTCTTTGAGGGAACACCGTCAAAGAAAGCCTGGGAGATCGAGGC TTCAGTGAGCCAGGATGGAAACGCGTGTCCCAAGTGTCCGGAGCAGGCGGCAGAGGCCTC AGTGCGGCAAACACAGCCCCAGAGCCTGTGTGGCACCAGCAGCATCTTAGAGCCCCAGGT ATATGCTGAGATCTTATCTCACGCTGTCCTCCAGTGTCTGGGGGGCCCAAATGATGGCAC AGGGTCAGGTGGGCTGGAGGGGCGCAGATGCCTGTGTTCAGGGAGGGTGGCCACCATGGG CCGAGGTCTCACCCAGGACCCCTTGCTCTGCTCCTCAGCCTTGCAGTCACGGCAGCACTA TGGTGGACTGCCCATGGCCGTGTGACTTTGGGGGCAAGTGGGAGGGCGCCCTGAATAATG ATTGCAAGGACAACAGGCAGAGGCTACCCTAGAGCAGGACACAGGGTGTGGTACTGACAA CCCTAGTGTCACCTCAAATCCATGTCCCCACACTCTGGGCATGGGTGGGACTTGTGACCC TACCCTGTCAGGCGGACCAGTGGCCCAGGAGCCATGAGGACAGTTGTGTGCCACTGGAAG AGAAACTTTTTGAAAAACCCTAAATCAGGTAGAGAAAGCAAAAAATCTCTGGCCGTAAAC CGTGCTCTCTAATTTATCGGCAGCTTCTGTGGATGACCTCTGATGAGCCCGGGCTGCGTC CACGCCCTGGGCAGGTAGGCGGGAGCTTCCCTGCGTGGGCCTCATTTCTTGCTGCAGAGA ATCTTTTGCACTAAGTCATGCTGTTTCCTCAAAGAAGCTTTGTTTTTTGTTAACGTATTA CTCAGAGTCACCCAAGCCTCTTGGCTGAGGGTGAAGGTGGGACGGGAG GCGGGAGGGGGC TGGTGGTGCCGCTCGTGCGGTGTCAACGCTGCAGGGAGTTGTGGCACCTTGGTGCCCTCTGAGCACCTGGCCGCCTGCTGTCCCCGGTGCCTGTGAAATTCGTCATGCCATGACCCACCT GCATTAAACCTATTTTTTTAATGTGTTAAAAAAAAAAAAAAAAAAAAAA > H09748 GNGGAAACACGGGCCAAACCCGTGANTTTGGTGCCCCTTGTAAACTCANCCCCTGCAAAN CCAAAGACCCCAATGGATTTAAAGTTGNTTGGCATTTGTACTGGCAAGGCAAAANATTTT TAANTACCTTTTCCTAATACTTATTGTATGAGCTTTTGNTGTTTACTTGGAGGTTTTGTC TTTTACTACAAGTTTGGAACTATTTANTATTGCCTTGGTATTTGTGCTCTGTTTAAGAAA CAGGCACTTTTTTTTATTATGGATAAAATGTTGAGATGACAGGAGGTCATTTCAATATGG CTTAGTAAAATATTTATTGTTCCTTTATTCTCTGTACAAGATTTTGGGCCTCTTTTTTTC CTTAATGTCACAATGTTGAGTTCAGCATGTGTCTGTCCATTTCATTTGTACGCTTGTTCA AAACCAAGTTXGTTCTGGTTTCAAGTTATAAAAATAAATTGGACATTTAACTTGATCTCC AAAAAAAAAAAAAAAA > BC001665 GGCACGAGGCAATCTGAGGAGCAGGAGGACCGGGGCGCCGGTGTCCTGCCGCCTCCTTCT CCTTGCTCTCACCTGCGCCTATTAGTCCACGCGCCTTCAAGGCCAGGGGCTACAGCCCAG ACAGAGAGGGGACAGCAGAGGGAGAGAGAGCACCTGAGGATACAGAGCTGGCACTGGACT GCCTTTTCACCCCCCAGGTGATGAGTGAGGTTCGAAGAACGGAAGATTTAAAAAGCAGCC GGGGCCTCCGTATTGAATGAAAGACCCAGTGCAAAGACATCACCATGAACACTAGCATTC CTTATCAGCAGAATCCTTACAATCCACGGGGCAGCTCCAATGTCATCCAGTGCTACCGCT GTGGAGACACCTGCAAAGGGGAAGTGGTCCGCGTGCACAACAACCACTTCCACATCAGAT GCTTCACCTGTCAAGTATGTGGCTGTGGCCTGGCCCAGTCAGGCTTCTTCTTCAAGAACC AGGAGTACATCTGCACCCAGGACTACCAGCAACTCTATGGCACCCGCTGTGACAGCTGCC GGGACTTCATCACAGGCGAAGTCATCTCGGCCCTGGGCCGCACTTACCACCCCAAGTGCT TCGTGTGCAGCTTGTGCAGGAAGCCTTTCCCCATTGGAGACAAGGTGACCTTCAGCGGTA AAGAATGTGTGTGCCAAACGTGCTCCCAGTCCATGGCCAGCAGTAAGCCCATCAAGATTC GTGGACCAAGCCACTGTGCCGGGTGCAAGGAGGAGATCAAGCACGGCCAGTCACTCCTGG CTCTGGACAAGCAGTGGCACGTCAGCTGCTTCAAGTGCCAGACCTGCAGCGTCATCCTCA CCGGGGAGTATATCAGCAAGGATGGTGTTCCATACTGTGAGTCCGACTACCATGCCCAGT TTGGCATTAAATGTGAGACTTGTGACCGATACATCAGTGGCAGAGTCTTGGAGGCAGGAG GGAAGCACTACCACCCAACCTGTGCCAGGTGTGTACGCTGCCACCAGATGTTCACCGAAG GAGAGGAAATGTACCTCACAGGTTCCGAGGTTTGGCACCCCATCTGCAAACAGGCAGCCC GGGCAGAGAAGAAGTTAAAGCATAGACGGACATCTGAAACCTCCATCTCACCCCCTGOAT CCAGCATTGGGTCACCCAACCGAGTCATCTGCGACATCTACGAGAACCTGGACCTCCGGC AGAGACGGGCCTCCAGCCCGGGGTACATAGACTCCCCCACCTACAGCCGGCAGGGCATGT CCCCCACCTTCTCCCGCTCACCTCACCACTACTACCGCTCTGGTGATTTGTCTACAGCAA CCAAGAGCAAAACAAGTGAAGACATCAGCCAGACCTCCAAGTACAGTCCCATCTACTCGC CAGACCCCTACTATGCTTCGGAGTCTGAGTACTGGACCTACCATGGGTCCCCCAAAGTGC CCCGAGCCAGAAGGTTCTCGTCTGGAGGAGAGGAGGATGATTTTGACCGCAGCATGCACA AGCTCCAAAGTGGAATTGGCCGGCTGATTCTGAAGGAAGAAATGAAGGCCCGGTCGAGCT CCTATGCAGATCCCTGGACCCCTCCCCGGAGCTCCACCAGCAGCCGGGAAGCCCTGCACA CAGCTGGCTATGAGATGTCCCTCAATGGCTCCCCTCGGTCGCACTACCTGGCTGACAGTG ATCCTCTCATCTCCAAATCTGCCTCCCTGCCTGCCTACCGAAGAAATGGGCTGCACAGGA CACCCAGCGCAGACCTCTTCCACTACGACAGCATGAACGCAGTCAACTGGGGCATGCGAG AGTACAAGATCTACCCTTATGAACTGCTGCTGGTGACTACAAGAGGAAGAAACCGACTGC CCAAGGATGTAGACAGGACCCGTTTAGAGGGAAACTTTTGGAAGAGTGGCTGCTTATGAG ATTCCAAAATGAAGTGTTGGCCAACACCGCTCATGGCCATCCTGGATTTTCCCAGTGGCT TCCCTTCCTGCTCGCCTCCCTGAACAGGGGAGAAAGCTTAACCTCTCTTCTCCTCTCCAA ACCTTTCACCTTGAATGGGTAATGTTTGGTGGGGGCTGTTCCTTCTTGGAGAAGCCTTGA GTCGGACCATTTTGAGATCATGGAGGAAGGATGAAGAAGTGAAAATGACAATAATGACTC TCAAGAGGCTGGCGATGTGACATGGCAAATGTAGAACTGACTTAAATTGAACAAACCCTC ACTGAGCACCTCTGATGTTGAGCA CCTGCTGAATACTGAGCACTGAATGGGGGAGGGGGA GGGGAGCACGGGGTGAGTCAACCTGGGACTCGGTCTCAGGGATATGCCTACCAATAGCGG GTATCGTAAGGCATGTACCCAAACATAACGGATGTAAGGCAGAAAGTGATCGGAGAAGGA ATGAGAAAGTGTGCGTGATGTTAATGAAAAGTCATATGCAGCTAGAGCAGACCCAGGAAA GCTTTCTGGAAGAGATTGCATCTGAGGAAATTCAGGAAGGATCTTTGTAGATTGGGGGGA GATTCTAAATTGAAGGGGTGATGGGGTGAGGGGCCAGAGGGAAGTCTGCTGTGTTCTCAT GTAGGATGTCAGCCCTCCCTGCAACTTCTCTTTTTGGCCAATGTCTTTTCACTTTCCTGA CCCTTTAGAATCATCCCCAGCCAGACGCAATCATGGAAGTTGCCTTATTGTCACTGGTTA AAGCACATCATTTCAACCCTAAAAAAAAAAAAAAAAAAAAAA >AGAACTTGGCGAGATTGAAGGGCTTTTGTTATTGTTGTTGGATATTTTTGTTTCCCATAA; BC016451 GAAGAATTAGATACTTTTGAGTGGGCTTTGAAGAGCTGGTCTCAGTGTTCCAAACCCTGT GGTGGAGGTTTCCAGTACACTAAATATGGATGCCGTAGGAAAAGTGATAATAAAATGGTC CATCGCAGCTTCTGTGAGGCCAACAAAAAGCCGAAACCTATTAGACGAATGTGCAATATT CAAGAGTGTACACATCCACTCTGGGTAGCAGAAGAATGGGAACACTGCACCAAAACCTGT GGAAGTTCTGGCTATCAGCTTCGCACTGTACGCTGCCTTCAGCCACTCCTTGATGGCACC AACCGCTCTGTGCACAGCAAATACTGCATGGGTGACCGTCCCGAGAGCCGCCGGCCCTGT AACAGAGTGCCCTGCCCTGCACAGTGGAAAACAGGACCCTGGAGTGAGTGTTCAGTGACC TGCGGTGAAGGAACGGAGGTGAGGCAGGTCCTCTGCAGGGCTGGGGACCACTGTGATGGT GAAAAGCCTGAGTCGGTCAGAGCCTGTCAACTGCCTCCTTGTAATGATGAACCATGTTTG GGAGACAAGTCCATATTCTGTCAAATGGAAGTGTTGGCACGATACTGCTCCATACCAGGT TATAACAAGTTATGTTGTGAGTCCTGCAGCAAGCGCAGTAGCACCCTGCCACCACCATAC CTTCTAGAAGCTGCTGAAACTCATGATGATGTCATCTCTAACCCTAGTGACCTCCCTAGA TCTCTAGTGATGCCTACATCTTTGGTTCCTTATCATTCAGAGACCCCTGCAAAGAAGATG TCTTTGAGTAGCATCTCTTCAGTGGGAGGTCCAAATGCATATGCTGCTTTCAGGCCAAAC AGTAAACCTGATGGTGCTAATTTACGCCAGAGGAGTGCTCAGCAAGCAGGAAGTAAGACT GTGAGACTGGTCACCGTACCATCCTCCCCACCCACCAAGAGGGTCCACCTCAGTTCAGCT TCACAAATGGCTGCTGCTTCCTTCTTTGCAGCCAGTGATTCAATAGGTGCTTCTTCTCAG GCAAGAACCTCAAAGAAAGATGGAAAGATCATTGACAACAGACGTCCGACAAGATCATCC ACCTTAGAAAGATGAGAAAGTGAACCAAAAAGGCTAGAAACCAGAGGAAAACCTGGACAA CCTCTCTCTTCCCATGGTGCATATGCTTGTTTAAAGTGGAAATCTCTATAGATCGTCAGC TCATTTTATCTGTAATTGGAAGAACAGAAAGTGCTGGCTCACTTTCTAGTTGCTTTCATC CTCCTTTTGTTCTGCATTGACTCATTTACCAGAATTCATTGGAAGAAATCACCAAAGATT ATTACAAAAGAAAAATATGTTGCTAAGATTGTGTTGGTCGCTCTCTGAAGCAGAAAAGGG ACTGGAACCAATTGTGCATATCAGCTGACTTTTTGTTTGTTTTAGAAAAGTTACAGTAAA AATTAAAAAGAGATACCAATGGTTTACACTTTAACAAGAAATTTTGGATATGGAACAAAG AATTCTTAGACTTGTATTCCTATTTATCTATATTAGAAATATTGTATGAGCAAATTTGCA GCTGTTGTGTAAATACTGTATATTGCAAAAATCAGTATTATTTTAAGAGATGTGTTCTCA AATGATTGTTTACTATATTACATTTCTGGATGTTCTAGGTGCCTGTCGTTGAGTATTGCC TTGTTTGACATTCTATAGGTTAATTTTCAAAGCAGAGTATTACAAAAGAGAAGTTAGAAT TACAGCTACTGACAATATAAAGGGTTTTGTTGAATCAACAATGTGATACGTAAATTATAG AAAAAGAAAAGAAACACAAAAGCTATAGATATACAGATATCAGCTTACCTATTGCCTTCT ATACTTATAATTTAAAGGATTGGTGTCTTAGTACACTTGTGGTCACAGGGATCAACGAAT AGTAAATAATGAACTCGTGCAAGACAAAACTGAAACCCTCTTTCCAGGACCTCAGTAGGC ACCGTTGAGGTGTCCTTTGTTTTTGTGTGTGTGTGTTCTTTTTTAATTTTCGCATTGTTG ACAGATACAAACAGTTATACTCAATGTACTGTAATAATCGCAAAGGAAAAAGTTTTGGGA 5 TAACTTATTTGTATGTTGGTAGCTGAGAAAAATATCATCAGTCTAGAATTGATATTTGAG TATAGTAGAGCTTTGGGGCTTTGAAGGCAGGTTCAAGAAAGCATATGTCGATGGTTGAGA TATTTATTTTCCATATGGTTCATGTTCAAATGTTCACAACCACAATGCATCTGACTGCAA TAATGTGCTAATAATTTATGTCAGTAGTCACCTTGCTCACAGCAAAGCCAGAAATGCTCT CTCCAGGGAGTAGATGTAAAGTACTTGTACATAGAATTCAGAACTGAAGATATTTATTAA AAGTTGATTTTTTTTTCTTGAT AGTATTTTTATGTACTAAATATTTACACTAATATCAAT ACATATTTTGGTAAACTAGAGAGACATAATTAGAGATGCATGCTTTGTTCTGTGCATAG AGACCTTTAAGCAAACTACTACAGCCAACTCAAAAGCTAAAACTGAACAAATTTGATGTT ATGCAAACATCTTGCATTTTTAGTAGTTGATATTAAGTTGATGACTTGTTTCCCTTCAAG GAAACATTAAATTGTATGGACTCAGCTAGCTGTTCAATGAAATTGTGAATTAGAAACATT TTTAAAAGTTTTTGAAAGAGATAAGTGCATCATGAATTACATGTACATGAGAGGAGATAG TGATATCAGCATAATGATTTTGAGGTCAGTACCTGAGCTGTCTAAAAATATATTATACAA 10 ACTAAAATGTAGATGAATTAACCTCTCAAAGCACAGAATGTGCAAGAACTTTTGCATTTT AATCGTTGTAAACTAACAGCTTAAACTATTGACTCTATACCTCTAAAGAATTGCTGCTAC TTTGTGCAAGAACTTTGAAGGTCAAATTAGGCAAATTCCAGATAGTAAAACAATCCCTAA GCCTTAAGTCTTTTTTTTTTTCCTAAAAATTCCCATAGAATAAAATTCTCTCTAGTTTAC TTGTGTGTGCATACATCTCATCCACAGGGGAAGATAAAGATGGTCACACAAACAGTTTCC ATAAAGATGTACATATTCATTATACTTCTGACCTTTGGGCTTTCTTTTCTACTAAGCTAA AAATTCCTTTTTATCAAAGTGTACACTACTGATGCTGTTTGTTGTACTGAGAGCACGTAC CAATAAAAATGTTAACAAAATATAAAAAAAAAAAAAAA > BF510316 TCCTGTGTTCTAGACCTCTGGAGGCTGCTGTGGGGACCACACTGATCCTGGAGAAAAGGG ATGGAGCTGAAAAAGATGGAATGCTTGCAGAGCATGACCTGAGGAGGGAGGAACGTGGTC 15 AACTCACACCTGCCTCTTCCTGCAGCCTCACCTCTACCTGCCCCCATCATAAGGGCACTG AGCCCTTCCCAGGCTGGATACTAAGCACAAAGCCCATAGCACTGGGCTCTGATGGCTGCT CCACTGGGTTACAGAATCACAGCCCTCATGATCATTCTCAGTGAGGGCTCTGGATTGAGA GGGAGGCCCTGGGAGGAGAGAAGGGGGCAGAGTCTTCCCTACCAGGTTTCTACACCCCCG CCAGGCTGCCCATCAGGGCCCAGGGAGCCCCCAGAGGACTTTATTCGGACCAAGCAGAGC TCACAGCTGGACAGGTGTTG ATATAGAGTGGAATCTCTTGGATGCAGCTTCAAGAATAA ATTTTTCTTCTCTTTTCAAAAATGTATAAAAATCATTATACATAGCATTAAAGAAACATT TTTGAGAAGTACAAAACAAAAAAAAAA > AF301598 CGGGCGCCGCAGGAGCGAGTGAGCTGGGAGCGAGGGGCGAAGGCGCGGAGAAGCCCGGCC GCCCGGTGGGCGGCAOAAGGCTCAGCCGAGGCGGCGGCGCCGACTCCGTTCCACTCTCGG ? 0 CCCGGATCCAGGCCTCCGGGTTCCCAGGCGCTCACCTCCCTCTGACGCACTTTAAAGAGT CTCCCCCCTTCCACCTCAGGGCGAGTAATAGCGACCAATCATCAAGCCATTTACCAGGCT TCGGAGGAAGCTGTTTATGTGATCCCCGCACTAATTAGGCTCATGAACTAACAAATCGTT TGCACAACTTGTGAAGAAGCGAACACTTCCATGGATTGTCCTTGGACTTAGGGCGCCCTG CCCGCCTTTTGCAGAGGAGAAAAAACTTTTTTTTTTTTTTGCCTCCCCCGAGAACTTTCC CCCCTTCTCCTCCCTGCCTCTAACTCCGATCCCCCCACGCCATCTCGCCAAAAAAAAAAA AAAAAAAAAAAAAGAAAAAAAAAGAAAAAAAAAGAAAAAAAATTACCCCAATCCACGCCT GCAAATTCTTCTGGAAGGATTTTCCCCCCTCTCTTCA'GGTTGGGCGCGTTTGGTGCAAGA TTCTCGGGATCCTCGGCTTTGCCTCTCCCTCTCCCTCCCCCCTCCTTTCCTTTTTCCTTT CCTTTCCTTTCTTTCTTCCTTTCCTTCCCCCCACCCCCACCCCCACCCCAAACAAACGAG TCCCCAATTCTCGTCCGTCCTCGCCGCGGGCAGCGGGCGGCGGAGGCAGCGTGCGGCGGT CGCCAGGAGCTGGGAGCCCAGGGCGCCCGCTCCTCGGCGCAGCATGTTCCAGCCGGCGCC CAAGCGCTGCTTCACCATCGAGTCGCTGGTGGCCAAGGACAGTCCCCTGCCCGCCTCGCG - CTCCGAGGACCCCATCCGTCCCGCGGCACTCAGCTACGCTAACTCCAGCCCCATAAATCC GTTCCTCAACGGCTTCCACTCGGCCGCCGCCGCCGCCGCCGGTAGGGGCGTCTACTCCAA CCCGGACTTGGTGTTCGCCGAGGCGGTCTCGCACCCGCCCAACCCCGCCGTGCCAGTGCA CCCGGTGCCGCCGCCGCACGCCCTGGCCGCCCACCCCCTACCCTCCTCGCACTCGCCACA CCCCCTATTCGCCTCGCAGCAGCGGGATCCGTCCACCTTCTACCCCTGGCTCATCCACCG CTACCGATATCTGGGTCATCGCTTCCAAGGGAACGACACTAGCCCCGAGAGTTTCCTTTT GCACAACGCGCTGGCCCGAAAGCCCAAGCGGATCCGAACCGCCTTCTCCCCGTCCCAGCT TCTAAGGCTGGAACACGCCTTTGAGAAGAATCACTACGTGGTGGGCGCCGAAAGGAAGCA GCTGGCACACAGCCTCAGCCTCACGGAAACTCAGGTAAAAGTATGGTTTCAGAACCGAAG AACAAAGTTCAAAAGGCAGAAGCTGGAGGAAGAAGGCTCAGATTCGCAACAAAAGAAAAA AGGGACGCACCATATTAACCGGTGGAGAATCGCCACCAAGCAGGCGAGTCCGGAGGAAAT AGACGTGACCTCAGATGATTAAAAACATAAACCTAACCCCACAGAAACGGACAACATGGA GCAAAAGAGACAGGGAGAGGTGGAGAAGGAAAAAACCCTACAAAACAAAAACAAACCGCA TACACGTTCACCGAGAAAGGGAGAGGGAATCGGAGGGAGCAGCGGAATGCGGCGAAGACT CTGGACAGCGAGGGCACAGGGTCCCAAACCGAGGCCGCGCCAAGATGGCAGAGGATGGAG GCTCCTTCATCAACAAGCGACCCTCGTCTAAAGAGGCAGCTGAGTGAGAGACACAGAGAG AAGGAGAAAGAGGGAGGGAGAGAGAGAAAGAGAGAGAAAGAGAGAGAGAGAGAGAGAGAG AGAAAGCTGAACGTGCACTCTGAC AAGGGGAGCTGTCAATCAAACACCAAACCGGGGAGA CAAGATGATTGGCAGGTATTCCGTTTATCACAGTCCACTTAAAAAATGATGATGATGATA AAAACCACGACCCAACCAGGCACAGGACTTTTTTGTTTTTTGCACTTCGCTGTGTTTCCC CCCCATCTTTAAAAATAATTAGTAATAAAAAACAAAAATTCCATATCTAGCCCCATCCCA CACCTGTTTCAAATCCTTGAAATGCATGTAGCAGTTGTTGGGCGAATGGTGTTTAAAGAC CGAAAATGAATTGTAATTTTCTTTTCCTTTTAAAGACAGGTTCTGTGTGCTTTTTATTTT GATTTTTTTTCCCAAGAAATGTGCAGTCTGTAAACACTTTTTGATACCTTCTGATGTCAA AGTGATTGTGCAAGCTAAATGAAGTAGGCTCAGCGATAGTGGTCCTCTTACAGAGAAACG GGGAGCAGGACGACGGGGGGGCTGGGGGTGGCGGGGGAGGGTGCCCACAAAAAGAATCAG GACTTGTACTGGGAAAAAAACCCCTAAATTAATTATATTTCTTGGACATTCCCTTTCCTA ACATCCTGAGGCTTAAAACCCTGATGCAAACTTCTCCTTTCAGTGGTTGGAGAAATTGGC CGAGTTCAACCATTCACTGCAATGCCTATTCCAAACTTTAAATCTATCTATTGCAAAACC TGAAGGACTGTAGTTAGCGGGGATGATGTTAAGTGTGGCCAAGCGCACGGCGGCAAGTTT TCAAGCACTGAGTTTCTATTCCAAGATCATAGACTTACTAAAGAGAGTGACAAATGCTTC CTTAATGTCTTCTATACCAGAATGTAAATATTTTTGTGTTTTGTGTTAATTTGTTAGAAT TCTAACACACTATATACTTCCAAGAAGTATGTCAATGTCAATATTTTGTCAATAAAGATT TATCAATATGCCAAAAAAAAAAAAAAA > Hs.77031_mRNA_l gi | 16741772 | gb | BC016680.1 | BC016680 Homo sapiens clone MGC: 21349 IMAGE: 4338754 polyA = 3 GTGGCGGCGGAGGCGGCGGAGGCCAGGGAGGAAGATGTCGTAATGAGCGATCCACAGACC AGCATGGCTGCCACTGCTGCTGTGAGTCCCAGTGACTACCTGCAGCCTGCCGCCTCCACC ACCCAGGACTCCCAGCCATCTCCCTTAGCCCTGCTTGCTGCAACATGTAGCAAAATTGGC CCTCCAGCAGTTGAAGCTGCTGTGACACCTCCTGCTCCCCCACAGCCCACACCGCGGAAA CTTGTCCCTATCAAACCTGCCCCTCTCCCTCTCAGCCCCGGCAAGAATAGCTTTGGAATC TTGTCCTCCAAAGGAAATATACTTCAGATTCAGGGGTCACAACTGAGCGCCTCCTATCCT GGAGGGCAGCTGGTGTTCGCTATCCAGAATCCCACCATGATCAACAAAGGGACCCGATCA AATGCCAATATCCAGTACCAGGCGGTCCCTCAGATTCAGGCAAGCAATTCCCAAACCATC CAAGTACAGCCCAATCTCACCAACCAGATCCAGATCATCCCTGGCACCAACCAAGCCATC ATCACCCCCTCACCGTCCAGTCACAAGCCTGTCCCCATCAAGCCAGCCCCCATCCAGAAG TCGAGTACGACCACCACCCCCGTGCAGAGCGGGGCCAATGTGGTGAAGTTGACAGGTGGG GGCGGCAATGTGACGCTCACTCTGCCCGTCAACAACCTCGTGAACGCCAGTGACACCGGG GCCCCTACTCAGCTCCTCACTGAAAGCCCCCCAACCCCGCTGTCTAAGACTAACAAGAAA GCAAGGAAGAAGAGCCTTCCTGCCTCCCAGCCCCCTGTGGCTGTGGCTGAGCAGGTGGAG ACGGTGCTGATCGAGACCACCGCGGACAACATCATCCAGGCAGGAAATAACCTGCTCATT GTTCAGAGCCCTGGTGGGGGCCAGCCAGCTGTGGTCCAGCAGGTCCAGGTGGTGCCCCCC AAGGCCGAGCAGCAGCAGGTGGTACAGATCCCCCAGCAGGCTCTGCGGGTGGTGCAGGCG GCATCTGCCACCCTCCCCACTGTACCCCAGAAGCCCTCCCAGAACTTTCAGATCCAGGCA GCTGAGCCGACACCTACTCAGGTCTACATCCGCACGCCTTCCGGTGAGGTGCAGACAGTC CTTGTCCAGGACAGCCCCCCAGCAACAGCTGCAGCCACCTCTAACACCACCTGTAGCAGC CCTGCATCCCGTGCTCCCCATCTGAGTGGGACCAGCAAAAAGCACTCAGCTGCAATTCTC CGAAAAGAGCGTCCCCTGCCAAAGATTGCCCCAGCCGGGAGCATCATCAGCCTGAATGCA GCCCAGTTGGCGGCAGCTGCCCAGGCAATGCAGACCATCAACATCAATGGTGTCCAGGTC CAGGGCGTGCCTGTCACCATCACCAACACAGGCGGGCAGCAGCAGCTGACAGTGCAGAAT GTTTCTGGGAACAACCTGACCATCAGTGGGCTGAGCCCCACCCAGATCCAGCTGCAAATG GAACAAGCCCTGGCCGGAGAGACCCAGCCCGGGGAGAAGCGGCGCCGCATGGCCTGCACG TsTCCCAACTGCAAGGATGGGGAGAAGAGGTCTGGAGAGCAGGGCAAGAAGAAGCACGTG TGCCACATCCCCGACTGTGGCAAGACGTTCCGTAAGACGTCCTTGCTGCGTGCCCATGTG CGCCTGCACACTGGCGAGCGGCCCTTTGTCTGCAACTGGTTCTTCTGTGGGAAGAGGTTC ACACGGAGTGACGAGCTCCAACGGCATGCTCGCACCCACACAGGGGACAAACGCTTCGAG TGCGCCCAGTGTCAGAAGCGCTTCATGAGGAGTGACCACCTCACCAAGCATTACAAGACC CACCTGGTCACGAAGAACTTGTAAGGCCAACTGCGGCGGGAGGCCCTGAAGATGCAGTCC CCCACCTGTGTCCTCCCTGGGCCCCTGGTGGAAAGGAGCCCTGTGGCTGCCTTGGGCCTG CCCTCAGCCCCACTCCTGTTCTGCAACTGTCCCCACAGGAAGGGGCTCTGTTCCCTGTAT TGTCCTCCTTCTGAAGCCCCTTGGCTCTGCCTTGGCCCTTCCCCTCACCACGAGCTCCCG GCCTGCCCAGACTGTGGACACTGGCCGTGCCCAATGAGACGTTCTAAACCAGGACGCGTG GGAACCCTTATTTCCAAAGGAAAAACATGCATTTCACTCCGTCGAGGAGCAAAGTGAGCC CCTACCCCCCACCCCGATCCCCGCTCCCAACACTGCCGGAGTCGCGTCATGCCATGCCCC CTCTCCTGCACCTCCCTGGCCCTGCCGGCCACTGTGGACGCCCTGGGGCTTGGCACCCAC CTCTGGAGAAACTCGGGGCCACCT CCACTCCATGTGCCCAGCCCCGCCACAACCTCTCCT CCAGCACATTCCAGCTCTATTTAAAAAGTAAAGACACCCACCGACTCCTGATCCCCCTCT TTTTCTATGGAGAACGTTGCCTTATACTCTCTACTTCAGATGATGAACACTGTGTACTGT GTGTGCTTTAAAGAAGTTTTATTTAATTGCTCCCTTCTTCCTTTCCTTGTTATTCACCTC CCTGATGCCTGCTTTCAGTTGAGGGTTGGGGGCAATGATGAGCATATGAATTTTTTCTCA CTCTAGCAATTCCCTTTTCTAAATGACACAGCATTTAAACTCAAATCTGGATTCAGATAA CAGCACCTGCACATCCTGCACCTCCTCCCTCTCCCTTCACCTCACCCCTGCCCGGCCCAA GCTCTACTTGTGTACAGTGTATATTGTATAATAGACAATTGTGTCTACTACATGTTTAAA AACACATTGCTTGTTATTTTTGAGGCTTTTAAATTAAACAAAAATCCAACTTTAAAAAAA AAAAAAAA > Hs.77541_mRNA_l gi | 1280436 | gb | BC003043.1 | BC003043 Homo sapiens clone MGC: 4370 ~ IMAGE: 2822973 Lya p = 3 CCCGCGTCGGTGCCCGCGCCCCTCCCCGGGCCCCGCCATGGGCCTCACCGTGTCCGCGCT CTTTTCGCGGATCTTCGGGAAGAAGCAGATGCGGATTCTCATGGTTGGCTTGGATGCGGC TGGCAAGACCACAATCCTGTACAAACTGAAGTTGGGGGAGATTGTCACCACCATCCCAAC CATAGGCTTCAATGTAGAAACAGTGGAATATAAGAACATCTGTTTCACAGTCTGGGACGT GGGAGGCCAGGACAAGATTCGGCCTCTGTGGCGGCACTACTTCCAGAACACTCAGGGCCT CATCTTTGTGGTGGACAGTAATGACCGGGAGCGGGTCCAAGAATCTGCTGATGAACTCCA GAAGATGCTGCAGGAGGACGAGCTGCGGGATGCAGTGCTGCTGGTATTTGCCAACAAGCA GGACATGCCCAACGCCATGCCCGTGAGCGAGCTGACTGACAAGCTGGGGCTACAGCACTT ACGCAGCCGCACGTGGTATGTCCAGGCCACCTGTGCCACCCAAGGCACAGGTCTGTACGA TGGTCTGGACTGGCTGTCCCACGAGCTGTCAAAGCGCTAACCAGCCAGGGGCAGGCCCCT GATGCCCGGAAGCTCCTGCGTGCATCCCCGGATGACCATACTCCCGGACTCCTCAGGCAG TGCCCTTTCCTCCCACTTTTCCTCCCCCATAGCCACAGGCCTCTGCTCCTGCTCCTGCCT GCATGTTCTCTCTGTTGTTGGAGCCTGGAGCCTTGCTCTCTGGGCACAGAGGGGTCCACT CTCCTGCCTGCTGGGACCTATGGAAGGGGCTTCCTGGCCAAGGCCCCCTCTTCCAGAGGA GGAGCAGGGATCTGGGTTTCCTTTTTTTTTTCTGTTTTGGGTGTACTCTAGGGGCCAGGT TGGGAGGGGGAAGGTGAGGGCT TCGGGTGGTGCTATAATGTGGCACTGGATCTTGAGTAA TAAATTTGCTGTGGTTTGAAAAAAAAAAAAAAAAAAAAA > Hs.7001_mRNA_l "gi | 6808256 | emb | AL137727.l | HSM802274 Homo sapiens mRNA; cDNA DKFZp434M0519 (from clone DKFZp434M0519); partial cds polyA = 3 GTGGCGGTGGCTGCGGCGACGGCAGAGGCGAAGGGAGCCGGATCGCCGACCTGAGCGGGA GGCGGCGGTGGCGGCCATGGCGGCAGATGGAGAGCGTTCCCCGCTGCTGTCTGAGCCCAT CGACGGTGGCGCGGGCGGCAACGGTTTAGTGGGGCCCGGCGGGAGTGGGGCTGGGCCCGG GGGAGGCCTGACCCCCTCCGCACCACCGTACGGAGCCGGTAAACATGCCCCGCCCCAGGG TAAGCCGGGGCGGGTCCGAGGTGCTCCCCGGGGTACTCTGAAAGCCGGGGAGGGGGCGGG ACCGAGGGCGGAGGCGGGTCCCAGTCGCCAGGTGCGGGACTGCTGCACCTGTGACTGGGC GAGGCTTCCTTCCCTCCGTAATCGCGACCACAGCCTAGGGACGGAAGGGGGTTCTGAGCA ACCTGATAGAAGTGCCAATTATGAGAAGCCCTCCGAGCTTGGTCAGAGGGTTGAAGATCA GAAGGACTTCCCTACCACCGTGGAGCATCAGTGGGGGTGTAAGTGATCCCAGCCCTTCTA TTTGCTTCCTCTCCAGCATTTCCCCCGTTTCCCGAGGGGCATCCAGCCGTGTTGCCTGGG GAGGACCCACCCCCCTATTCACCCTTAACTAGCCCGGACAGTGGGAGTGCCCCTATGATC ACCTGCCGAGTCTGCCAATCTCTCATCAACGTGGAAGGCAAGATGCATCAGCATGTAGTC AAATGTGGTGTCTGCAATGAAGCCACCGTGAGTTACACATATCTATGAAATGGGCCCTGT TTCCTGGATCCTCTTTCTGATGTCTTGGTTCTAGACCCTGACCTTCCGGCTATTAGCCAA GTGCTTTTGATGATACCCAGGTTTCAGTTCCAGGTGTCTCACACAGCCATTTCCCCAGAA GCCACTCACCAAAGCTAATGTTCACTTTCTCTCACTTTTACACCTAGCCTAGTTCCTATT TGCAAATCTCATGATATAGTCTTTCTTTTATTTCTCCTTCCTGGTTAGCACCTTATTTTT CTGATCTCATAAAGTGTTTTTGGAGGGAAGTGGAGGGGATTGGGATTAGAGGTTTGCTTG CTGATGACCCTATTATTCTCTAGCCAATCAAGAATGCACCCCCAGGGAAAAAATATGTTC GATGCCCCTGTAACTGTCTCCTTATCTGCAAAGTGACATCCCAACGGATTGCATGCCCTC GTCCCTACTGGTAAGAGGCATAAGGTGGGGAAGGGCCTAAGTGGGGAACTGGAAAGTCAA AAAAGGATGAGCGTATACAGAGAATGTAAAGGTGAGAGAGCCTAGTGTTTATTTAGGAGA AAAGGCTTXGAAGCATGTGCCTCAGGAATGTTATAGCTGTCTTTCTCGTTTCTCAATAAA AATATTGAGATGAAATGATGTCGTTTCGGAGAATAGAGAGCCTTGGGGACTGGGTGTGTT ATCCTGAGGTCGGAGGGGAATTGGGGACCTGAAGTTTAAACAGTGCTCTTTCTTTCTCAA 5 GGATTCTTGAGGGTATACAGTTGGGGGACAGAGTATCTTAAGTACAGAGAAGTCGAGTGA CTTAATAGACAGGGAGTGGGGGATGTGGAACAGGGACTGTGAAGATTTTTAGGATTAAAA ATTTTTCAAACACAAGTTTGAAAATACAAGTCTTTTTCTTTTGTATAGCAAAAGAATCAT CAACCTGGGGCCTGTGCATCCCGGACCTCTGAGTCCAGAACCCCAACCCATGGGTGTCAG GGTTATCTGTGGACATTGCAAGAATACTTTTCTGGTGAGGAAGGGGTATTGGGAAGGGGA GGGGAAAGGAGACTAAGAGTCATTTCGAGTATATTTCTTAGAGTAATGGTAATGACCCCT GAAAGGTCTGTCCTATGGGAACATGTTCTGCATCCCCACCCCAAGGT? CTCATTGAGGGA GACCCTGCTTGTGCTATTATTTTTGTTTTCTTTCTCCATAGTGGACAGAGTTCACAGACC GCACTTTGGCACGTTGTCCTCACTGCAGGAAAGTGTCATCTATTGGGCGCAGATACCCAC GTAAGAGATGTATCTGCTGCTTCTTGCTTGGCTTGCTTTTGGCAGTCACTGCCACTGGCC TTGCCGTGAGTACCCTTGCCCCAACCTCTTTCATTCTGCAGCCTCATCTCCATAGGCTAA GATTTGGGAAACTGCTACCCT AAAAAAAAGTGGAAGAAACTTAGGGGACTAGTTTGTTTT or GTTTTAAGATATGGATGAGCTAAAGTGCAAAGTGGCTGATCAAACAGACTTTATTACTAC TACAAGAGTGAAAAACAGCCTTCCTTTCTCTGTAGGATGAGGATAGGACAGTGAAATTCT TAATTTAAGAGTTGCTATTTTTCAAACCTGGCTCAGTTGTCAGATATTAAGAAAAACTGA GATACAGTGTGGGATGGGATGAGTATGTTACGCCTAAGGGAAGGAAGCTGATCAGCTCTG CCTTTAAGAAGGTCCCTGAGGGTGGCTACATGTGGATAAGGAACAAGGACTGAAGCGTGA GTTATTACTGTTCTTAGÁACTAATAGGAGGTAGTGGAGACCAACATTAACCCCATCTTTC TTTTCTTCTCCCTCCTTATCTTCATCAGTTTGGCACATGGAAGCATGCACGGCGATATGG AGGCATCTATGCAGCCTGGGCATTTGTCATCCTGTTGGCTGTGCTGTGTTTGGGCCGGGC TCTTTATTGGGCCTGTATGAAGGTCAGCCACCCTGTCCAGAACTTCTCCTGAGCCTGATG ACCCACAGACTGTGCCTGGCCCCTCCCTGGTGGGGACAGTGACACTACGAAGGGAGCTGG GGTAGTTAAAGGCTCCCGGGGCTTCTAGAAGGAAGCCAAGCAGCTGCCTTCCTTTTCCCT GGGGAGAGGTAGGAAGGAACCAGGCCCTCACTTAGGTTTGGAGGGGCAGATAAGAGCACT • <; - GCTGACCATCTGCTTTCCTCCAAGsGTTGCTGTGTCTAGGGTGAAGTAGGCAAAACGTTG CCCTTAAAACTGGGCCCTGAAGACGGTTCCAGCCTTGTCCTTCCTGTGTGCTCCCTGAGA sCCATTCCTGTCCCTTACACATTCCAGGGCAGGGTGGGGGTGGGTAGCCCTGGGGGTTCC CCTCCCTCTTGTGCACCATTAGGACTTTGCTGCTGCTATTGCACTTCACCAGAGGTTGGC TCTGGCCTCAGTACCCTCAGTCTCCTCTCCCCACATTGTGTCCTGTGGGGGTGGGGTCAG CCGCTGCTCTGTACAGAACCACAGGAACTGATGTGTATATAACTATTTAATGTsGGATAT GTTCCCCTATTCCTGTATTTCCCTTAATTCCTCCTCCCGACCTTTTTTACCCCCCCAGTT GCAGTATTTAACTGGGCTGGGTAGGGTTGCTCAGTCTTTGGGGGAGGTTAGGGACTTATC CTGTGCTTGTAAATAAATAAGGTCATGACTCTAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA > Hs.302144_mRNA_l gi | 11493400 | gb | AF130047.1 | AF130047 Homo sapiens polyA = 0 clone FLB3020 CTGTCAGCACGGGGCCTGGCATGTAATTGGTCTGCACCCACTGGTGCACTGAACTGCCAT 0 AACCTCAGGTTTTCTTTCTTGCTGATACCCCTGGGTCATGTTCTTTGGCAAATAACATGA TTCATTATGAAGTAGAGTTCAGCAAAGGACAAGGATGAAAGTTGTCATTTAGAGAACTGC CATTCAGACTTTCTTGTCTAGGTAAAGAGCAAGGTCTTCTCTCTTTTCAACTCATTTTCT AAATTTAAACTGACGATGAGAATATGGATGATGTGTAGCTTCCTTCTCCCCCACTGATTT TTGGTTCAGGCTCTGGGTTTTTGGCAAGAACTTACAGATCTCACTTATTATTGGCCACCC TTCTGCTTTAAGACCTGTCAGGGCTTGTCTGAAATAAAACTGGAAGCACTTCTGATTCCA TCCTCACTGCTTTCCTCCTTCACCGTCAGACAGCATTACTGTATAGCACTGAGTGAGGGG CCCTGACACTGGAAGGTGGCAGGTGGGGCCTGGCCGCCAGTGAGGTATCATCATTTGTGT GTGCTCATGTGTGCGTTGGGCTTGTTGTATCTGAGGCATGAACATTCCATATACACGGCT TAAAGAGTTTTCTTCCCATACCGAAAGCATATATTCGGAGAGGACCCAACTTATTCAGCA TAGCCTTGTTCCCATAGTAGCCATCCTATTCCCCCACAGCCTCTACTTTAGGAAAGCTCC CCGTCCCCATATGAAATCCAAACCAAAAAAGATATATCACTTTCAGCTCAATTATTCCAT 25 AATTACAAGATATTAGGCTAGTGGGCTCTTTATTGGTTGGGTCTTATATTAATGTTATAT GCTAGCCTTGTAATTTTGAGCTCCTCTATGGATGTTAATTTTAGTGAAACTCTATATTGA AGAAAAGATGGGACTAAGGGGGAGACAGGAGGAGGAAAGAAAGCAGAGACAGGCAAAGAA TCATAGCCTGAAATTCAACAGCAAGCATGGCTTATGAAGATCAAGTTATATTTTTGCTTC ATGAATCATTGTCAGACAAATTAAGAACATATTGTTTCTTATTTATCTATTGTCAAGGAT TCACTATCAGACACTAAGAATGAATCTTGATTTTCATAAGCTCTGTTGACACCATGGAGC CACAGAGCATAAAACTTGCATCTAATAAAGAAAGTGCAACATGGAACAGCAGGGAGTGGA ATACCAGCACAACTCACAGCTGCTTCCTGTTCCTCGTCCCTGTTTTCAGGAATGTTTCTT AGCAGGAAGTTTTTTAATAGACCGAGAATTTGTTATATGTATTCTAAGAAAAGTTGTAGT TGTAGATGCATTACTCTCCCAAATCTTAGAGATCAGGGATGATTATGTTCCATTTTTGTT TGGTGAGTTCCCATCTTTGTATGTACCTCCTTGCTCCCGGCTGTCCTCCTCTCCTCTTCC CTAGTGAGTGGTTAATGAGTGTTAATGCCTAAACCATACTTGTTTTATGGACACTTCTAT AATGGATTCGTTGCATAATTTTCATGCAGTGTATAGTGTTACTAGTTGGAAATTCTTGGA GGACTCTTAGCTGTCTGATGAAATTCCTAGTAGAAATTTTTGTTTTGAATTCCTAAAGTT GAAATATGAAAATTATATTTTAATTTGATTC > Hs.26510_mRNA_2 gi | 11345385 | gb | AF308803.1 | AF308803 Homo sapiens chromosome 15 map 15q26 polyA = 3 AGTTTTTCTGGTAGAAGGCGGGGTTCTCCTCGTACGCTGCGGAGTCTCTGCGGGGTGTAG ACCGGAATCCTGCTGACGGGCAGAGTGGATCAGGGAGGGAGGGTCGAGACACGGTGGCTG CAGGTCTGAGACAAGGCTGCTCCGAGGTAGTAGCTCTCTTGCCTGGAGGTGGCCATTCAT TCCTGGAGTGCTGCTGAGGAGCGAGGGCCCATCTGGGGTCTCTGGAAGTCGGTGCCCAGG CCTGAAGGATAGCCCCCCTTGCGCTTCCCTGGGCTGCGGCCGGCCTTCTCAGAACGAAGG GCGTCCTTCCACCCCGCGGCGCAGGTGACCGCTGCCATGGCTTTTCCCCATCGGCCGGAC GCCCCTGAGCTGCCTGACTTCTCCATGCTGAAGAGGCTGGCTCGAGACCAGCTCATCTAT CTGCTGGAGCAGCTTCCTGGAAAAAAGGATTTATTCATTGAGGCAGATCTCATGAGCCCT TTGGATCGAATTGCCAATGTCTCCATCCTGAAGCAACACGAAGTAGACAAGCTATACAAG GTGGAGAACAAGCCAGCCCTCAGCTCCAATGAACAATTGTGCTTCTTGGTCAGACCCCGC ATCAAGAATATGCGATACATTGCCAGTCTTGTCAATGCTGACAAATTGGCTGGCCGAACT CGCAAATACAAAGTGATCTTCAGCCCTCAAAAGTTCTATGCGTGTGAGATGGTGCTTGAG GAAGAGGGAATCTATGGAGATGTGAGCTGTGATGAATGGGCCTTCTCTTTGCTGCCTCTT GATGTGGATCTGCTGAGCATGGAACTACCAGAATTTTTCAGGGATTACTTTCTGGAAGGA GATCAGCGTTGGATCAACACTGTAGCTCAGGCCTTACACCTTCTCAGCACTCTCTATGGA CCCTTTCCAAACTGCTATGGAATTGGCAGG TGCGCCAAGATGGCATATGAATTGTGGAGG AACCTGGAGGAGGAGGAGGATGGCGAAACCAAGGGCCGAAGGCCAGAGATTGGACATATC TTTCTCTTGGACAGAGATGTGGACTTTGTGACAGCACTTTGCTCCCAAGTGGTTTATGAG GGCCTAGTAGATGACACCTTCCGCATCAAGTGTGGGAGTGTCGACTTTGGCCCAGAAGTC ACATCCTCTGACAAGAGCCTGAAGGTGCTACTCAATGCCGAGGACAAGGTGTTTAATGAG ATTCGGAACGAGCACTTCTCCAATGTCTTTGGCTTCTTGAGCCAGAAGGCCCGGAACTTG CAGGCCCAGTATGATCGCCGGAGAGGCATGGACATTAAGCAGATGAAGAATTTCGTGTCC CAGGAGCTCAAGGGCCTGAAACAGGAGCACCGCCTGCTGAGTCTCCATATTGGGGCCTGT GAATCCATCATGAAGAAGAAAACCAAGCAGGATTTCCAGGAGCTAATCAAGACTGAGCAT GCACTGCTAGAGGGGTTCAACATCCGGGAGAGCACCAGCTACATTGAGGAACACATAGAC CGGCAGGTGTCGCCTATAGAAAGCCTGCGCCTCATGTGCCTTTTGTCCATCACTGAGAAT GGTTTGATCCCCAAGGATTACCGATCTCTGAAAACACAGTATCTGCAGAGCTATGGCCCT GAGCACCTGCTAACCTTCTCCAATCTGCGAAGAGCTGGGCTCCTAACGGAGCAGGCCCCC GGGGACACCCTCACAGCCGTGGAGAGTAAAGTGAGCAAGCTGGTGACCGACAAGGCTGCA GGAAAGATTACTGATGCCTTCAGTTCTCTGGCCAAGAGGAGCAATTTTCGTGCCATCAGC AAAAAGCTGAATTTGATCCCACGTGTGGACGGCGAGTATGATCTGAAAGTGCCCCGAGAC ATGGCTTACGTCTTCAGTGGTGCTTATGTGCCCCTGAGCTGCCGAATCATTGAG CAGGTG CTAGAGCGGCGAAGCTGGCAGGGCCTTGATGAGGTGGTACGGCTGCTCAACTGCAGTGAC TTTGCATTCACAGATATGACTAAGGAAGACAAGGCTTCCAGTGAGTCCCTGCGCCTCATC TTGGTGGTGTTCTTGGGTGGTTGTACATTCTCTGAGATCTCAGCCCTCCGGTTCCTGGGC AGAGAGAAAGGCTACAGGTTCATTTTCCTGACGACAGCAGTCACAAACAGCGCTCGCCTT ATGGAGGCCATGAGTGAGGTGAAAGCCTGATGTTTTTCCCGGCCAGTGTTGACATCTTCC CTGAACACATTCCTCAGTGAGATGCAGGCATCTGGCACCCAGCTGCTATAACCAAGTGTC CACCAACTACCTGCTAAGAGCCGGGAGCATGGAACGTGTTGGGATTTAGAGAACATTATC TGAGAAAAGAGTTCACTTCCTGCTCCCAGGATATTTCTCTTTTCTGTTTATGAAGTACAA CCCATGCTGCTAAGATGCGAGCAGGAAGAGGCATCCTTTGCTAAATCCTGTTTGAATGTC ATTGTAAATAAAGCCTCTGCTCTCAGATGTAAAAAAAAAAAAAAAAAAAAA > Hs.324709_mRNA_2 gi | 12655026 | gb | BC001361.1 | BC001361 Homo sapiens clone MGC: 2474 IMAGE: 3050694 polyA = 2 GGCACGAGGGGTCGCGCTGCCGCCGTTTTATTTGAAGACATCGTCCAGTTCTGACCATGG ACTCGCAGCCATCGGCCCTTAGTTTCCATCCCCTCTAGTGGGCCTTCGGGGGCTCTACTG ACGTCCCTCCTTCCCTTGGTACCGGGCCGGGGAAGTGTTCTCGGGCGCGGGAGGTTCCGC ATGCCCAGGCCTGGCCAGGGGAGATGACCGATCCGTCGCTGGGGCTGACAGTCCCCATGG CGCCGCCTCTGGCCCCGCTCCCTCCCCGGGACCCAAACGGGGCGGGATCCGAGTGGAGAA AGCCCGGGGCCGTGAGCTTCGCCGACGTGGCCGTGTACTTCTCCCGGOAGGAGTGGGGCT GCCTGCGGCCCGCGCAGAGGGCCCTGTACCGGGACGTGATGCGGGAGACCTACGGCCACC TGGGCGCGCTCGGTGAGAGCCCCACCTGCTTGCCTGGGCCCTGCGCCTCCACAGGCCCTG CCGCGCCTCTGGGAGCTGCGTGTGGAGTTGGGGGCCCCGGGGCCGGGCAGGCGGCCTCCT CGCAGCGTGGGGTTTGCGTTCTTCTCCCCCAGGAGTCGGAGGCAGCAAGCCGGCGCTCAT CTCCTGGGTGGAGGAGAAGGCCGAACTGTGGGATCCGGCTGCCCAGGATCCGGAGGTGGC GAAGTGTCCGACAGAAGCGGACCCAGCAGATTCCAGAAACAAGGAAGAGGAAAGACAAAG GGAAGGGACGGGAGCCCTGGAGAAGCCCGACCCTGTGGCCGCCGGGTCTCCTGGGCTGAA GGCTCCCCAAGCCCCCTTTGCCGGGTTGGAGCAGCTGTCCAAGGCCCGGCGCCGGAGTCG CCCCCGCTTTTTTGCCCACCCCCCTGTCCCCCGAGCTGACCAGCGTCACGGCTGCTACGT GTGCGGGAAGAGCTTCGCCTGGCGCTCCACACTGGTGGAGCACATTTACAGCCACAGGGG CGAGAAGCCCTTCCACTGCGCAGACTGCGGCAAGGGCTTCGGCCACGCTTCCTCCCTGAG CAAACACCGGGCCATCCATCGTGGGGAGCGGCCCCACCGCTGTCCCGAGTGTGGTCGGGC CTTCATGCGCCGCACGGCGCTGACTTCTCACCTGCGCGTTCACACTGGCGAGAAGCCCTA CCGCTGCCCGCAGTGTGGCCGCTGCTTCGGCCTGAAGACCGGCATGGCCAAGCACCAATG GGTCCATCGGCCCGGGGGCGAGGGGCGTAGGGGCCGGCGCCCTGGGGGGCTGTCTGTGAC CCTGACTCCTGTCCGCGGGGACCTGGACCCGCCTGTGGGCTTCCAGCTGTATCCAGAGAT ATTCCAGGAATGTGGGTGACGGCCTAAAAAGTGACCATCTAGACATTGTGGGCGGCCCGA GATGGGCTCAGGGGCCCGAACCTC TGCAGCGGCCTGCAGGGAGGTCCCAGAATCCACCGC AAGAGCTGGCCTGGGGTGCGGACAGTCTGATCTTGGGCTCTCAGCAGCCTCTTCTGCCAG CACCTTGCTCCCCGCTGCCCTGGGCTCTCCAAGGCCCCCTTTGCTGAGGCAGGGCTGAGG TGAGAACCCCCCAGACCTCCATACAGGGAAGCAAAAGCTGTTTCTCCTCCCAGAGATGCT AAGAGGATTGAGGTAGAGAAGAACCTTGTTTTCTCTGTTGTCTTTTTCTTTTTACTTTTT TAATTTTTTGAGACGGAGT TTGCTCTTGTTGCCCAGGCTGGAGTGCAATGGTGCGATCT CGACTCACTGCAACTTCCACCTCCTGGAGTCAAGCGATTCTCCTGCCTCAGCCACCCAAG TAGCTGGAATTACAGGCACCTGCCACTATGCCCGGCTAACTTTTTGTATTTTTAGTAGAG ATGGGGTTTCACCATGTTGGCTAGGCTGGTCTCGAACTCCTGCCCTCAGGTGATCCACCC ACCTCTGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCTCACCTGGCCTTTTCTT TTTTATTCTTTGACCTTCCCACAAGACAATACCCATTGTCTGTTTTTTTTGTTTATTTAT TTACTTATTAAGACAGCATCTTGCTCCTCACCCAGGCTGGAATGCAGTGGTGTGAACTGG GCTCACTGCAGCCTAGACCTGCTGGGCTCAAGGAATCCTCCTGCCCCAGCCTCTCAGATG GCTGTGACTACAGGTGGGCAACACTATGCCTGGTTAATTTTTAAATTTTTTTGCAGAGAT GGGGTTCCCACTATGTTGATCAGGCTGGTCTCAAACTCCTCGGTTCAAGCAATTCGCCCA CCTTGGCCTCCCAAAGTGCTGGGATTACAGGGGAGCCACTGCACTGGCCTTCATTGTCTT TTTGCTGCACAACCTAAAAAACCAGTGACCCTGTATTGGAAAAAAAAA AAAAAAAAAAAA A >; Hs.65756_mRNA_3 gi | 3641494 | gb | AF035154.1 | AF035154 Homo sapiens chromosome 16 map 16pl3.3 polyA = 3 GCCATGGCCGCCGGCCCCGCGCCGCCCCCCGGCCGCCCCCGGGCGCAGATGCCGCATCTG AGGAAGGTGCGAGGCGGATGGAGCGGGTGGTCGTGAGCATGCAGGACCCCGACCAGGGCG TGAAGATGCGGAGCCAGCGCCTGCTGGTCACCGTCATTCCCCACGCGGTGACAGGCAGCG ACGTCGTGCAGTGGTTGGCCCAGAAGTTCTGCGTCTCGGAGGAGGAGGCCCTGCACCTGG GCGCCGTCCTGGTGCAGCATGGCTACATCTACCCGCTGCGCGACCCCCGTAGCCTCATGC TCCGGCCAGACGAGACGCCCTACAGGTTCCAGACCCCGTACTTCTGGACAAGTACCCTGA GGCCGGCTGCAGAGCTGGACTATGCCATCTACCTGGCCAAGAAGAACATCCGAAAACGGG GGACCCTGGTGGATTATGAGAAGGACTGCTATGACCGGCTACACAAGAAGATCAACCACG CATGGGACCTGGTGCTGATGCAGGCGAGGGAGCAGCTGAGGGCAGCCAAGCAGCGCAGCA AGGGGGACAGGCTGGTCATTGCGTGCCAGGAGCAGACCTACTGGCTGGTGAACAGGCCCC CGCCCGGGGCCCCCGATGTGCTGGAGCAGGGTCCAGGGCGGGGATCCTGCGCTGCCAGCC GTGTGCTCATGACCAAGAGTGCAGATTTCCATAAGCGGGAGATCGAGTACTTCAGGAAAG CGCTGGGCAGGACCCGAGTGAAGTCCTCCGTCTGCCTTGAGGCGTACCTGAGTTTCTGCG GCCAGCGTGGACCCCACGATCCCCTCGTGTCGGGGTGCCTGCCCAGCAATCCCTGGATCT CAGACAATGACGCCTACTGGGTCATGAATGCCCCCACGGTGGCTGCCCCCACGAAGCTCC GTGTGGAGAGAT GGGGCTTCAGCTTCCGGGAGCTCCTGGAGGACCCCGTGGGGCGGGCCC ACTTCATGGACTTTCTGGGAAAGGAGTTCAGTGGAGAAAACCTCAGCTTCTGGGAGGCAT GTGAGGAGCTTCGATATGGAGCGCAGGCCCAGGTCCCCACCCTGGTGGATGCCGTGTACG AGCAGTTCCTGGCCCCCGGAGCTGCCCACTGGGTCAACATCGACAGCCGGACCATGGAGC AGACCCTGGAGGGGCTGCGCCAGCCCCACCGCTATGTCCTGGATGACGCCCAGCTGCACA TATACATGCTCATGAAGAAGGACTCCTACCCAAGGTTCCTGAAGTCTGACATGTACAAGG CCCTCCTGGCAGAGGCTGGGATCCCGCTGGAGATGAAGAGACGCGTGTTCCCGTTTACGT GGAGGCCACGGCACTCGAGCCCCAGCCCTGCACTCCTTCCCACCCCTGTGGAGCCCACAG CGGCTTGTGGCCCTGGGGGTGGAGATGGGGTGGCCTAGTGGACCTGGCCCATCTGCCACT CTAGTCCCTGCAGCTCAACGTCCTGCGTGAATGCAGCAGCCACCCCCGTCTTGGCCCAGG TCCTGGGGGCTGCTGAACCCAGCACCAGTGTCCCCTTGTGCCCAGGGGGCCCAGTCTTCT GTGGGGTGCACAGCCTCCCTCCCTCCAGCAAGCCCTCCCTGCCCAGAAGGAATGGGTCCA GGTGTGGATTCCCAGGGAGGGGGTTCATTGGCTCAGCTTGGGTCAGGGCAGAGCCTGTTA CCTGAAGAGAGGTGAGACCAAGGCCACAGGGAGCTCCACCTTCTCTGGTCTTCAGTCCAG CACTGGGTGCCCATCCCCATCTCTAAAACCAGTAAATCAGCCAGCGAATACCCGGAAGCA AGATGCACAGGCGGGCGGCTTCCCACACACCCGTCACAAGACGCGGACATGCAGGTCTCG GCGCGAGCTCTGCCCCGTCCAAGAGCCTCTCCGCTGTCGCCCAGTGTGAGCCTGGAAGAG GACCCAAGAGAGTGCCGTGCTGAGGCTGCCTCGAGGTCACTGCCTTCCGGAGCTGCGCCT ATTCCTCCCTCGCCAAACGCGTTCCAGAATTTGTCCACAGGTGCGCCGGCACCTGCTTTC CCACCTCGAGGCCGCGGCCTCCCCCCCGATTTATAGACAACTCTGACATTGTCACCCCAC TGACGAGGCCCGATTCCATAGGGT GGATCCTTGCCAGGCGTCCCTGATCCTCCCTGCCCA AGTCTTCCTTCGTGAGCTGGCCTTGCTCCCCATCCCCCAAGTGCCTCACCAGTCCCCCAG ACTGGGTGAAGGTACAGCTGGCTCCTTTCGGGGGTGCAGCTTCAACTCTCTCGGCGGTAG GGCGGTGCCATCCCCACCCATAGGGCTGGCTCACATCCAGTCACTCCCAACAGCGTCCAG CACACAAATAAAAGACCCTTGGGCCCTGGCTCTGAGAAAAAAAA > Hs.l65743_mRNA_2 gi | 13543889 | gb | BC006091.1 | BC006091 Homo sapiens clone MGC: 12673 IMAGE: 3677524 polyA = 3 AGACTGCCGAGCAGCCTTGAGCCGTTGAGCAGCTGAACAGAGGCCATGCCGGGGCACTCC GAGGCCTGAGACGACCACGCCTGTGCCGCTGAGGACCTTCATCAGGGCTCCGTCCACTTG GCCCGCTTGGCTGTCCAATCACACTCCAGTGTCAACCACTGGCACCCAGCAGCCAAGAGA GGTGTGGCGTGGCCCTGGGGACGCATGGCTGAGGCAGGAACAGGTGAGCCGTCCCCCAGC GTGGAGGGCGAACACGGGACGGAGTATGACACGCTGCCTTCCGACACAGTCTCCCTCAGT GACTCGGACTCTGACCTCAGCTTGCCCGGTGGTGCTGAAGTGGAAGCACTGTCCCCGATG GGGCTGCCTGGGGAGGAGGATTCAGGTCCTGATGAGCCGCCCTCACCCCCGTCAGGCCTC CTCCCAGCCACGGTGCAGCCATTCCATCTGAGAGGCATGAGCTCCACCTTCTCCCAGCGC AGCCGTGACATCT TGACTGCCTGGAGGGGGCGGCCAGACGGGCTCCATCCTCTGTGGCC CACACCAGCATGAGTGACAACGGAGGCTTCAAGCGGCCCCTAGCGCCCTCAGGCCGGTCT CCAGTGGAAGGCCTGGGCAGGGCCCATCGGAGCCCTGCCTCACCAAGGGTGCCTCCGGTC CCCGACTACGTGGCACACCCCGAGCGCTGGACCAAGTACAGCCTGGAAGATGTGACCGAG GTCAGCGAGCAGAGCAATCAGGCCACCGCCCTGGCCTTCCTGGGCTCCCAGAGCCTGGCT GCCCCCACTGACTGCGTGTCCTCCTTCAACCAGGATCCCTCCAGCTGTGGGGAGGGGAGG GTCATCTTCACCAAACCAGTCCGAGGGGTCGAAGCCAGACACGAGAGGAAGAGGGTCCTG GGGAAGGTGGGAGAGCCAGGCA GGGGCGGCCTTGGGAATCCTGCCACAGACAGGGGCGAG GGCCCTGTGGAGCTGGCCCATCTGGCCGGGCCCGGGAGCCCAGAGGCTGAGGAGTGGGGC AGCCCCCATGGAGGCCTGCAGGAGGTGGAGGCACTGTCAGGGTCTGTCCACAGTGGGTCT GTGCCAGGTCTCCCGCCGGTGGAAACTGTTGGCTTCCATGGCAGCAGGAAGCGGAGTCGA GACCACTTCCGGAACAAGAGCAGCAGCCCCGAGGACCCAGGTGCTGAGGTCTGAGAGGGA GATGGCCCAGCCTGACCCCACTGGCCACTGCCATCCTGCTGCCTTCCCAGTGGGGCTGGT CAGGGGGCAGCCTGGCCACTGCCTAGCTGGAATGGGAGGAAGCCTGCAGGTGGCACCGGT GGCCCTGGCTGCAGTTCTGGGCAGCATCCTCCCAAGCAGAGACCTTGCTGAAGCTCCTGG GGTGTGGGGTGTGGGCTGGAAGCACTGGCTCCCTGGTAGGGACAATAAAGGTTTTGGGTC TTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC

Claims (23)

  1. CLAIMS 1. A method for classifying a sample containing cells as containing tumor cells of a tissue type, the method characterized in that it comprises determining the expression levels of approximately five to 49 transcribed cell sequences in a sample containing cells obtained of a human subject, wherein the sample is not a section of frozen tissue, and classifying the sample as containing tumor cells of a tissue type from a plurality of tumor types based on the expression levels of the sequences, in where the ratio of sequences transcribed to the number of tumor types used in the classification is from about 1: 2 to about 5: 2 or higher.
  2. 2. A method for classifying a sample containing cells as containing tumor cells of a tissue type, the method characterized in that it comprises determining the expression levels of approximately five to 49 transcribed cell sequences in a sample containing cells obtained from a human subject and classifying the sample as containing tumor cells of a tissue type of a plurality of tumor types based on the expression levels of the sequences, wherein the ratio of sequences transcribed to the number of tumor types used in the classification is from about 1: 2 to about 5: 2 or higher, and wherein a) the expression of more than 50% of the transcribed sequences they are not correlated with the expression of another of the transcribed sequences, or b) the five to 49 transcribed sequences are not selected based on supervised learning using known tumor samples, on the level of correlation between their expression and the plurality of tumor types , or about its classification in the correlation between its expression and the plurality of tumor types.
  3. 3. The method according to claim 1 or 2, characterized in that the ratio is up to about 20: 1.
  4. 4. The method according to any of claims 1-3, characterized in that the ratio is from about 3: 2 to about 5: 2 and the number of tumor types varies from two to 38.
  5. 5. The method of compliance with any of claims 1-4, characterized in that it further comprises determining the expression levels of an access number of transcribed sequences, beyond the number based on the ratio in number of tumor types, is determined.
  6. 6. The method of compliance with the claim 5, characterized in that expression levels are determined by the use of a microarray.
  7. The method according to any of claims 1-6, characterized in that the classification is with an accuracy of 60% or higher.
  8. The method according to any of claims 1-7, characterized in that the five to 49 transcribed sequences comprise two or more selected from the set of 74 genes.
  9. 9. The method of compliance with the claim 8, characterized in that the 5 to 49 transcribed sequences comprise five or more selected from the set of 74 genes.
  10. The method according to any of claims 1-7, characterized in that the determination comprises the measurement compared to one or more transcribed reference sequences.
  11. 11. The method according to any of claims 1-10, characterized in that the determination comprises the measurement of the expression of all or part of the transcribed sequences.
  12. 12. The method according to any of claims 1-10, characterized in that the determination comprises the amplification of all or part of the transcribed sequences, or Reverse transcription and RNA labeling corresponding to the transcribed sequences.
  13. The method according to claim 12, characterized in that the amplification comprises the amplification of linear RNA or quantitative PCR.
  14. The method according to claim 12, characterized in that the amplification is of sequences present within 600 nucleotides of the polyadenylation sites of the transcripts.
  15. 15. The method of compliance with the claim 12, characterized in that the amplification is the quantitative PCR amplification of at least 50 nucleotides of the transcripts.
  16. 16. A microarray, characterized in that it comprises oligonucleotide probes for detecting the amplification products of claim 12.
  17. 17. The method according to any of claims 1-10, characterized in that the transcribed sequences are selected to be non-redundant.
  18. 18. The method of compliance with the claim 17, characterized in that it also comprises determining the expression levels of an excess number of transcribed sequences that are redundant to those used for the classification.
  19. 19. The method of compliance with any of the claims 1-18, characterized in that the sample is a clinical sample of a human patient.
  20. 20. The method of compliance with the claim 19, characterized in that the sample is a fixed sample.
  21. 21. The method according to the claim 20, characterized in that the sample is a sample embedded in paraffin, fixed with formalin (FFPE).
  22. The method according to claim 1, characterized in that it also comprises before the determination of the expression levels of approximately five to 49 transcribed sequences, diagnosis of a human subject as in need of the determination; or obtaining a sample containing a cell of a human subject; or receiving a sample containing cell; or sectioning a sample containing cell; or isolation of cells from a cell-containing sample; or obtaining RNA from cells of a cell-containing sample.
  23. 23. The method according to claim 1, characterized in that it also comprises, after the determination of the expression levels of approximately five to 49 transcribed sequences and the classification of the sample, processing of the reimbursement or payment for the determination or classification to indicate that 1) the payment is received, or 2) the payment will be made by another subscriber, or 3) the payment remains without payment; or receipt of] reimbursement for the determination or classification; o advance or have a request for reimbursement advanced to an insurance company, health maintenance organization, federal health agency, or the patient for determination or settlement; or receipt of the indication of approval for payment or denial of payment for the determination or classification; or sent a request for reimbursement for the determination or classification; or indication of the need for reimbursement or payment on a form or database for the determination or classification; or indication of performance for determination or classification on a form or in a database; or report the results of the determination or classification, optionally to a health care facility, a health care provider, a doctor, a nurse, or the patient; or receiving a payment from the patient for the performance of the determination or classification.
MX/A/2007/015252A 2005-06-03 2007-11-30 Identification of tumors and tissues MX2007015252A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US60/687,174 2005-06-03

Publications (1)

Publication Number Publication Date
MX2007015252A true MX2007015252A (en) 2008-09-02

Family

ID=

Similar Documents

Publication Publication Date Title
US20230023867A1 (en) Identification of tumors and tissues
US10538816B2 (en) Identification of tumors
JP6684775B2 (en) Methods and compositions for diagnosis of thyroid status
CN102272325B (en) Methods and compositions of molecular profiling for disease diagnostics
US20180073085A1 (en) Determining tumor origin
WO2013002750A2 (en) Determining tumor origin
MX2007015252A (en) Identification of tumors and tissues
US20220106646A1 (en) Determining tumor origin