[go: up one dir, main page]

MD504Z - Process for manufacture of slightly soluble anode for cathodic protection - Google Patents

Process for manufacture of slightly soluble anode for cathodic protection Download PDF

Info

Publication number
MD504Z
MD504Z MDS20110159A MDS20110159A MD504Z MD 504 Z MD504 Z MD 504Z MD S20110159 A MDS20110159 A MD S20110159A MD S20110159 A MDS20110159 A MD S20110159A MD 504 Z MD504 Z MD 504Z
Authority
MD
Moldova
Prior art keywords
nickel
anode
slightly soluble
titanium
surface layer
Prior art date
Application number
MDS20110159A
Other languages
Romanian (ro)
Russian (ru)
Inventor
Алексей МИХАЙЛЮК
Светлана СИДЕЛЬНИКОВА
Михаил ТАВАЛИНСКИЙ
Original Assignee
Институт Прикладной Физики Академии Наук Молдовы
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт Прикладной Физики Академии Наук Молдовы filed Critical Институт Прикладной Физики Академии Наук Молдовы
Priority to MDS20110159A priority Critical patent/MD504Z/en
Publication of MD504Y publication Critical patent/MD504Y/en
Publication of MD504Z publication Critical patent/MD504Z/en

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

The invention relates to the technology for electrochemical protection of metals in natural and artificial environments, namely to electrodes used as anodes for cathodic protection of underground metallic structures from corrosion.Summary of the invention consists in the formation of a slightly soluble surface layer on a workpiece of plain carbon steel. The process includes electroplating deposition on the workpiece of an intermediate nickel layer of a thickness of 110…150 µm, and then, by electric-spark alloying method, formation of a surface layer consisting of titanium-nickel intermetallides, corresponding carbides and graphite, with a total carbon content of 6…11 mass % by weight of the surface layer.The result is to reduce by about 2.1 times the cost of manufacture of slightly soluble anode on a steel substrate, compared with the prototype on a titanium substrate, while maintaining the anode high resistance against chemical and electrochemical corrosion.

Description

Invenţia se referă la tehnologia protecţiei electrochimice a metalelor în medii naturale şi artificiale, şi anume la electrozii utilizaţi în calitate de anozi pentru protecţie catodică anticorozivă a construcţiilor metalice subterane. The invention relates to the technology of electrochemical protection of metals in natural and artificial environments, namely to electrodes used as anodes for cathodic anti-corrosion protection of underground metal structures.

Normele faţă de anozii de protecţie catodică a construcţiilor metalice subterane (CMS) sunt mai înalte decât faţă de anozii de protecţie în mediu acvatic din cauza nivelului înalt de acţiune corozivă a solurilor, coroziei cauzate de curenţii turbionari şi biocoroziunii. The standards for cathodic protection anodes for underground metal structures (CMS) are higher than for protective anodes in aquatic environments due to the high level of corrosive action of soils, corrosion caused by eddy currents and biocorrosion.

Este cunoscut procedeul de fabricare a anozilor persistenţi prin acoperirea bazei din titan cu o suspensie din titan-nichel şi laminarea ulterioară prin valţuri sau topirea în vid [1]. Aliajele intermetalice se prepară conform unor tehnologii specifice în cuptoare cu vid, după care se fărâmiţează şi se aleg fracţii de anumite mărimi. The process of manufacturing persistent anodes by coating the titanium base with a titanium-nickel suspension and subsequent rolling by rollers or vacuum melting is known [1]. Intermetallic alloys are prepared according to specific technologies in vacuum furnaces, after which they are crushed and fractions of certain sizes are selected.

Dezavantajele acestei metode constau în dificultatea aplicării procedeului în condiţiile de adezivitate redusă a acoperirii la substrat şi stabilitatea insuficientă a anodului. The disadvantages of this method consist in the difficulty of applying the process in conditions of reduced adhesion of the coating to the substrate and insufficient stability of the anode.

Cea mai apropiată soluţie tehnică reprezintă procedeul de fabricare a anodului care prevede depunerea pe un substrat din titan a unei compoziţii din titan-nichel, grafit şi carburi cu utilizarea alierii prin scânteii electrice [2]. The closest technical solution is the anode manufacturing process that involves depositing a titanium-nickel, graphite and carbide composition on a titanium substrate using electric spark alloying [2].

Dezavantajul acestui procedeu constă în costul relativ înalt al anodului, în legătură cu utilizarea în calitate de suport a eboşelor costisitoare din titan, pe suprafaţa cărora se depune o acoperire puţin solubilă. The disadvantage of this process is the relatively high cost of the anode, due to the use of expensive titanium blanks as a support, on the surface of which a poorly soluble coating is deposited.

Problema pe care o rezolvă invenţia este reducerea costului de fabricare a anodului puţin solubil la o rezistenţă înaltă contra coroziunilor electrochimice. The problem that the invention solves is reducing the cost of manufacturing the poorly soluble anode with high resistance against electrochemical corrosion.

Problema se soluţionează prin formarea pe o eboşă din oţel carbon nealiat a unui strat superficial cu solubilitate redusă. Procedeul include depunerea galvanică pe eboşă a unui strat intermediar de nichel, după care prin metoda alierii prin scântei electrice se formează un strat superficial eterogen compus din intermetalide titan-nichel, carburile respective şi grafit. Grosimea stratului de nichel rezultat prin depunerea galvanică trebuie să fie de cca 110…150 µm. The problem is solved by forming a surface layer with low solubility on a blank made of unalloyed carbon steel. The process includes galvanic deposition of an intermediate layer of nickel on the blank, after which a heterogeneous surface layer composed of titanium-nickel intermetallics, the respective carbides and graphite is formed by the electric spark alloying method. The thickness of the nickel layer resulting from galvanic deposition should be about 110…150 µm.

Utilizarea în calitate de eboşă a oţelului carbon nealiat reduce semnificativ costul anodului în comparaţie cu analogul proxim, de asemenea se simplifică montarea anodului, iar stratul de nichel depus galvanic protejează anodul de coroziunea chimică. The use of unalloyed carbon steel as a blank significantly reduces the cost of the anode compared to its closest analogue, it also simplifies the installation of the anode, and the galvanically deposited nickel layer protects the anode from chemical corrosion.

Rezultatul constă în reducerea de cca 2,1 ori a costului fabricării anodului puţin solubil pe suport de oţel, comparativ cu analogul proxim pe suport de titan, cu menţinerea rezistenţei înalte a anodului contra coroziunii chimice şi electrochimice. The result is a reduction of about 2.1 times in the cost of manufacturing the poorly soluble anode on a steel support, compared to the close analogue on a titanium support, while maintaining the high resistance of the anode against chemical and electrochemical corrosion.

Analiza comparativă a procedeului dat cu analogul proxim arată că procedeul propus se caracterizează prin aceea că în calitate de substrat se utilizează oţel carbon nealiat, iar stratul de suprafaţă se formează atât cu ajutorul procedeului de aliere prin scântei electrice, cât şi cu ajutorul nichelării galvanice. Grosimea stratului de nichel depus trebuie să fie cuprinsă în limitele 110…150 µm. Comparative analysis of the given process with the closest analogue shows that the proposed process is characterized by the fact that unalloyed carbon steel is used as a substrate, and the surface layer is formed both by the electric spark alloying process and by galvanic nickel plating. The thickness of the deposited nickel layer must be within the limits of 110…150 µm.

Procedeele cunoscute de fabricare a anodului [1, 2] nu permit obţinerea unei rezistenţe înalte a anodului împotriva coroziunii la un cost de producere relativ redus caracteristic procedeului propus. Known anode manufacturing processes [1, 2] do not allow obtaining high anode corrosion resistance at a relatively low production cost characteristic of the proposed process.

Exemple de realizare Examples of implementation

Exemplul 1 Example 1

Iniţial, pe suprafaţa ţevii din oţel carbon nealiat cu diametrul de 57 mm se depune nichel prin metoda depunerii galvanice. În scopul ridicării calităţii depunerii nichelului, prealabil se poate depune, tot prin metoda galvanică, un strat subţire din cupru care mai uşor se polarizează şi se depune într-un strat mai dens. Initially, nickel is deposited on the surface of the 57 mm diameter unalloyed carbon steel pipe by the galvanic deposition method. In order to improve the quality of the nickel deposition, a thin layer of copper can be deposited beforehand, also by the galvanic method, which is more easily polarized and deposited in a denser layer.

Acoperirea de nichel este compusă dintr-un strat mat, deasupra căruia este depus un strat de nichel lucios. Prezenţa a două straturi de nichel separate micşorează porozitatea suprafeţei. Ulterior, prin metoda descărcării electrice prin scântei, cu ajutorul dispozitivului de scântei electrice ЭФИ-23М se formează acoperirea, care conţine intermetalidele de titan cu nichel şi fazele de grafit şi carburile respective metalice. The nickel coating consists of a matte layer, on top of which a shiny nickel layer is deposited. The presence of two separate nickel layers reduces the porosity of the surface. Subsequently, by the method of electric spark discharge, using the electric spark device ЭФИ-23М, the coating is formed, which contains titanium-nickel intermetallics and graphite phases and the corresponding metal carbides.

Analiza procesului fabricării anodului a demonstrat că la grosimi mai mici de 110 µm a stratului de nichel nu se asigură o rezistenţă suficientă împotriva coroziunii chimice, iar o grosime mai mare de 150 µm duce la exfolierea stratului galvanizat la alierea ulterioară prin scântei electrice. Analysis of the anode manufacturing process demonstrated that nickel layer thicknesses less than 110 µm do not provide sufficient resistance against chemical corrosion, and a thickness greater than 150 µm leads to exfoliation of the galvanized layer during subsequent alloying by electric sparks.

Exemplul 2 Example 2

Iniţial, pe suprafaţa ţevii din oţel carbon nealiat cu diametrul de 57 mm şi lungimea 0,8 m, se depune un strat de nichel prin metoda descrisă în ex. 1. După aceasta, prin metoda alierii prin scântei electrice (descrisă în ex. 1) se formează stratul final rezistent la coroziune. Initially, on the surface of the unalloyed carbon steel pipe with a diameter of 57 mm and a length of 0.8 m, a nickel layer is deposited by the method described in ex. 1. After this, the final corrosion-resistant layer is formed by the electric spark alloying method (described in ex. 1).

Ulterior, trei ţevi prelucrate prin procedeul descris mai sus se îmbină între ele prin filet, la care se conectează un conductor cu multe fire din cupru. În aşa mod, şase conexiuni de acest fel formează legarea la pământ anodică, care este cea mai des aplicată la protecţia catodică a comunicaţiilor metalice subterane. Subsequently, three pipes processed by the process described above are joined together by thread, to which a conductor with many copper wires is connected. In this way, six such connections form the anodic grounding, which is most often applied to the cathodic protection of underground metallic communications.

Anodurile produse în aşa mod, denumite АЗТН-3, au fost supuse testărilor de câmp în sol după instalarea lor în reţele de gaze într-o serie de raioane din Republica Moldova cu scopul protejării reţelelor de coroziunea electrochimică. Conform rezultatelor studiului realizat de specialiştii întreprinderilor raionale „Moldova-Gaz” din perioada anilor 2010 - 2011, s-a constatat că anozii experimentali au funcţionat stabil cu menţinerea parametrilor nominali. The anodes produced in this way, called AZTN-3, were subjected to field testing in the soil after their installation in gas networks in a number of districts of the Republic of Moldova with the aim of protecting the networks from electrochemical corrosion. According to the results of the study conducted by specialists of the district enterprises "Moldova-Gaz" in the period of 2010 - 2011, it was found that the experimental anodes functioned stably while maintaining the nominal parameters.

Analiza comparativă a costului fabricării anodului prin procedeul propus şi conform analogului proxim (la o lungime a anodului de 14,4 m şi calcularea doar a acelor parametri după care procedeele se deosebesc) au demonstrat că preţul fabricării anodului conform procedeului propus este aproximativ de 2,1 ori mai mic comparativ cu analogul proxim. Comparative analysis of the cost of manufacturing the anode using the proposed process and the closest analogue (at an anode length of 14.4 m and calculating only those parameters by which the processes differ) demonstrated that the price of manufacturing the anode using the proposed process is approximately 2.1 times lower compared to the closest analogue.

1. SU 783365 1980.11.30 1. SU 783365 1980.11.30

2. MD 1705 G2 2001.07.31 2. MD 1705 G2 2001.07.31

Claims (1)

Procedeu de fabricare a anodului puţin solubil pentru protecţie catodică care include formarea pe suprafaţa unui suport metalic prin metoda alierii prin scântei electrice a unui strat superficial compus din intermetalide de titan-nichel, carburile respective şi grafit, cu un conţinut total de carbon de 6…11% mas. de la masa stratului superficial, caracterizat prin aceea că în calitate de suport metalic se foloseşte oţel carbon nealiat, pe care prin metoda galvanică se depune un strat intermediar de nichel cu grosimea de 110…150 µm, după care se formează stratul superficial menţionat.Process for manufacturing a poorly soluble anode for cathodic protection which includes forming on the surface of a metallic support by the electric spark alloying method a superficial layer composed of titanium-nickel intermetallics, the respective carbides and graphite, with a total carbon content of 6…11% by weight of the mass of the superficial layer, characterized in that unalloyed carbon steel is used as the metallic support, on which an intermediate layer of nickel with a thickness of 110…150 µm is deposited by the galvanic method, after which the aforementioned superficial layer is formed.
MDS20110159A 2011-10-19 2011-10-19 Process for manufacture of slightly soluble anode for cathodic protection MD504Z (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
MDS20110159A MD504Z (en) 2011-10-19 2011-10-19 Process for manufacture of slightly soluble anode for cathodic protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
MDS20110159A MD504Z (en) 2011-10-19 2011-10-19 Process for manufacture of slightly soluble anode for cathodic protection

Publications (2)

Publication Number Publication Date
MD504Y MD504Y (en) 2012-04-30
MD504Z true MD504Z (en) 2012-11-30

Family

ID=46046413

Family Applications (1)

Application Number Title Priority Date Filing Date
MDS20110159A MD504Z (en) 2011-10-19 2011-10-19 Process for manufacture of slightly soluble anode for cathodic protection

Country Status (1)

Country Link
MD (1) MD504Z (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD685Z (en) * 2013-02-13 2014-05-31 Институт Прикладной Физики Академии Наук Молдовы Process for producing a multilayer coating by the electrospark alloying method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU783365A1 (en) * 1978-03-02 1980-11-30 Всесоюзный Научно-Исследовательский Институт По Защите Металлов От Коррозии Method of making anode
MD1705G2 (en) * 1999-10-08 2002-03-31 Институт Прикладной Физики Академии Наук Молдовы Anode manufacturing process
MD2503G2 (en) * 2003-04-04 2005-04-30 КОСОВ Вилгельм Process for electrolytic protection of structural metals from corrosion
MD2865G2 (en) * 2004-02-17 2006-05-31 Вильгельм КОСОВ Method and installation for measuring the protective potential value and automatic installation for electrochemical protection of metals from corrosion
MD3082G2 (en) * 2005-08-08 2007-01-31 КОСОВ Вилгельм Process for metal electrochemical protection from corrosion
MD3384F1 (en) * 2005-11-25 2007-08-31 Вильгельм КОСОВ Grounding process
  • 2011

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU783365A1 (en) * 1978-03-02 1980-11-30 Всесоюзный Научно-Исследовательский Институт По Защите Металлов От Коррозии Method of making anode
MD1705G2 (en) * 1999-10-08 2002-03-31 Институт Прикладной Физики Академии Наук Молдовы Anode manufacturing process
MD2503G2 (en) * 2003-04-04 2005-04-30 КОСОВ Вилгельм Process for electrolytic protection of structural metals from corrosion
MD2865G2 (en) * 2004-02-17 2006-05-31 Вильгельм КОСОВ Method and installation for measuring the protective potential value and automatic installation for electrochemical protection of metals from corrosion
MD3082G2 (en) * 2005-08-08 2007-01-31 КОСОВ Вилгельм Process for metal electrochemical protection from corrosion
MD3384F1 (en) * 2005-11-25 2007-08-31 Вильгельм КОСОВ Grounding process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Articolul "Cathodic protection". Wikipedia The Free Encyclopedia, (regăsit în Internet la 2012.02.20, url: http://en.wikipedia.org/wiki/Cathodic_protection ) *

Also Published As

Publication number Publication date
MD504Y (en) 2012-04-30

Similar Documents

Publication Publication Date Title
EP2817430B1 (en) Coating with conductive and corrosion resistance characteristics
Frangini et al. Cr7C3-based cermet coating deposited on stainless steel by electrospark process: structural characteristics and corrosion behavior
Monticelli et al. Investigation on the corrosion process of carbon steel coated by HVOF WC/Co cermets in neutral solution
MY143701A (en) Manufacturing process of electrodes for electrolysis
WO2008022316A3 (en) Method and system for depositing alloy composition
FI2823079T3 (en) Corrosion resistant and electrically conductive surface of metal
KR101243433B1 (en) Slide member fabrication method, slide member, and slide member base material
MX354008B (en) Metal pipe for vehicle piping and surface treatment method for pipe.
CN102266847A (en) Method for preparing ductile cast iron tube with strong acid and alkali resistance
WO2009031841A3 (en) Method of coating metallic material
MD504Z (en) Process for manufacture of slightly soluble anode for cathodic protection
JP2018003163A (en) Roll for molten-metal plating bath, and production method of roll for molten-metal plating bath
CN103952654B (en) Preparation method of deep ocean corrosion resistant high speed electric arc spraying layer
Cheng et al. TiB2/Ni coatings on surface of copper alloy electrode prepared by electrospark deposition
CN104131204A (en) Magnesium alloy, magnesium alloy composite material and preparation method of composite material
JPS5941492A (en) Method of forming anti-wear and corrosion resistant coating layer on piston rod of working cylinder used in underground mining work and working cylinder equipped with the coating layer
TW200303935A (en) Anode for oxygen evolution and relevant substrate background of the invention
CN204491005U (en) Electrolytic aluminum cathode collector bar
AU2014264849B2 (en) Electrical steel sheet with a layer improving the electrical insulation and method for the production thereof
JP5353253B2 (en) High corrosion resistance plated steel
CN102925892A (en) Electric spark deposition method for molten zinc corrosion resistant Ti-Al-Nb coating
Pascal et al. Electrochemical Corrosion Behavior of High Temperature Vacuum Brazed WC-Co-NiP Functional Composite Coatings
WO2012175803A3 (en) Permanent cathode and a method for treating the surface of a permanent cathode
WO2003093538A1 (en) Reducing power consumption in electro-refining or electro-winning of metal
JP4847179B2 (en) Titanium or titanium alloy material with precious metal plating

Legal Events

Date Code Title Description
FG9Y Short term patent issued
KA4Y Short-term patent lapsed due to non-payment of fees (with right of restoration)