[go: up one dir, main page]

LT5481B - Sarminis cinko-kobalto lydinio dangu nusodinimo elektrolitas - Google Patents

Sarminis cinko-kobalto lydinio dangu nusodinimo elektrolitas Download PDF

Info

Publication number
LT5481B
LT5481B LT2006060A LT2006060A LT5481B LT 5481 B LT5481 B LT 5481B LT 2006060 A LT2006060 A LT 2006060A LT 2006060 A LT2006060 A LT 2006060A LT 5481 B LT5481 B LT 5481B
Authority
LT
Lithuania
Prior art keywords
cobalt
zinc
coatings
electrolyte
shiny
Prior art date
Application number
LT2006060A
Other languages
Lithuanian (lt)
Other versions
LT2006060A (en
Inventor
Eimutis JUZELIŪNAS
Svetlana LICHUŠINA
Original Assignee
Chemijos Institutas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemijos Institutas filed Critical Chemijos Institutas
Priority to LT2006060A priority Critical patent/LT5481B/en
Publication of LT2006060A publication Critical patent/LT2006060A/en
Publication of LT5481B publication Critical patent/LT5481B/en

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)

Abstract

The present invention relates to chemical industry. The invention discloses the bath composition for depositing zinc-cobalt alloys onto conductive support the content of Co in the coating being up to 3-80 % by weight depending on the electrolyte composition and cuurent density. With the content of Co in the coating varied it is possible to obtain coatings with high resistance to corrosion which are not to be chromated. The elctrolyte composition claimed is as follows, in g/l: Zinc oxide (ZnO) 8-10 Cobalt sulphate (CoSO4 .7 H2O) 1-20@Sodium hydroxide (NaOH) 100-120 Aminoethylethanolamine (H2N(CH2)2NH(CH2)2OH 10-40 Water up to 1 l. Electrolyte's pH 13

Description

Išradimas priklauso chemijos pramonės sričiai, būtent, elektrolitiniam metalų dangų nusodinimui, konkrečiau priskirtinas prie elektrolitų, skirtų cinko-kobalto lydinio dangoms gauti.The invention relates to the chemical industry, namely, electrolytic deposition of metal coatings, more particularly to electrolytes for the preparation of zinc-cobalt alloy coatings.

Cinko-kobalto elektrolitiniai lydiniai pasižymi geresniu koroziniu atsparumu, palyginus su cinko 10 dangomis. Dėl gero fizikocheminių savybių derinio šios dangos daugiausiai naudojamos:Zinc-cobalt electrolytic alloys exhibit better corrosion resistance compared to zinc 10 coatings. Due to the good combination of physicochemical properties, these coatings are mainly used:

a) automobilių gamybos pramonėje;(a) the automotive industry;

b) aviacijos pramonėje, kur pagrindinis uždavinys yra pakeisti uždraustas naudoti nuodingas kadmio dangas.(b) in the aviation industry, where the main task is to replace the prohibition on the use of toxic cadmium coatings.

Cinko-kobalto dangoms gauti naudojami tiek šarminiai, tiek ir rūgštiniai elektrolitai. Abu atitinkami procesai turi savų privalumų ir trūkumų, pvz., rūgštiniuose tirpaluose katodinio proceso našumai dideli, bet išbarstomoji jėga nepakankamai gera. Šarminiuose elektrolituose katodinė išeiga mažesnė, tačiau šie procesai pasižymi labai gera išbarstomąja galia. Todėl aktualus yra naujų elektrolitų cinko-kobalto dangoms gauti sukūrimas.Both alkaline and acidic electrolytes are used to produce zinc-cobalt coatings. Both of these processes have their own advantages and disadvantages, for example, in acidic solutions, the cathodic process has high throughput but not enough spreading force. Alkaline electrolytes have a lower cathodic yield, but these processes have a very good spreading power. Therefore, the development of new electrolytes for zinc-cobalt coatings is relevant.

Literatūroje yra duomenų, kad nedideli kobalto kiekiai (iki 1%) kobalto-cinko lydinyje padidina dangos korozinį atsparumą keletą kartų, tačiau toks efektas pasiekiamas tik po dangų chromatavimo. Nechromatuotų žinomų cinko-kobalto (<1% Co) dangų korozinis atsparumas yra toks pat kaip ir cinko dangų korozinis atsparumas.It is reported in the literature that small amounts (up to 1%) of cobalt in the cobalt-zinc alloy increase the corrosion resistance of the coating several times, but this effect is achieved only after the coating has been chromatographed. Known uncoated zinc-cobalt (<1% Co) coatings have the same corrosion resistance as zinc coatings.

• 25• 25

Yra labai nedaug duomenų apie cinko-kobalto dangų su didesniu kobalto kiekiu nusodinimą. Tai gali būti sąlygojama ne vien proceso ekonominiais aspektais, bet ir tuo, kad yra pakankamai sunku nusodinti didesnį kobalto kiekį. Tačiau pastaruoju metu yra stebimas susidomėjimas dangomis su didesniu kobalto kiekiu, nes gaunamos dangos pasižymi geresnėmis fiziko30 cheminėmis savybėmis lyginant su cinko dangomis, pvz., didesniu kietumu, geresnėmis litavimosi savybėmis ir kt. Be to, lydinys, kurio sudėtyje yra 9-11% kobalto, pagal savo antikorozines savybes jūros sąlygomis prilygsta kadmio dangoms.There is very little data on the deposition of zinc-cobalt coatings with higher cobalt content. This may be due not only to the economic aspects of the process but also to the difficulty of precipitating higher amounts of cobalt. However, there is a recent interest in coatings with higher cobalt content, as the resulting coatings exhibit better physico-chemical properties compared to zinc coatings, such as higher hardness, better soldering properties, and the like. In addition, an alloy containing 9-11% cobalt is comparable to cadmium coatings in sea conditions due to its anti-corrosive properties.

Cianidų neturintys cinko-kobalto dangų gavimo šarminiai elektrolitai savo sudėtyje paprastai turi cinko junginio, kobalto junginio, šarminio metalo hidroksido ir gali turėti atitinkamų priedų. Nesant stabilizuojančio agento šarminiuose tirpaluose susidaro kobalto oksidų/hidroksidų nuosėdos, todėl Co2+ stabilizuoti šarminėmis sąlygomis reikalingas kompleksodaros agentas.Alkaline electrolytes for the preparation of cyanide-free zinc-cobalt coatings usually contain zinc compound, cobalt compound, alkali metal hydroxide and may contain appropriate additives. In the absence of a stabilizing agent, cobalt oxide / hydroxide precipitates in alkaline solutions, so a complexing agent is required to stabilize Co 2+ under alkaline conditions.

JAV patente US 4299671 aprašytas silpnai šarminis (pH 6,0-9,0) elektrolitas kobalto-cinko lydinio nusodinimui, iš kurio gautų dangų išvaizda analogiška įprastoms chromo dangoms. Elektrolito sudėtyje yra 1-12 g/1 kobalto jonų, 0,75-9 g/1 cinko jonų, o kompleksodaros agentas pasirinktas iš grupės, susidedančios iš citrinų rūgšties, gliukono rūgšties, alfa-gliukoheptono rūgšties, vyno rūgšties arba jų druskų ir jų mišinių.U.S. Pat. No. 4,299,671 describes a weakly alkaline (pH 6.0-9.0) electrolyte for cobalt-zinc alloy deposition, from which coatings look similar to conventional chromium coatings. The electrolyte contains 1-12 g / l cobalt ions, 0.75-9 g / l zinc ions and the complexing agent is selected from the group consisting of citric acid, gluconic acid, alpha-glucoheptonic acid, tartaric acid or their salts mixtures.

Yra žinoma eilė Japonijos patentų, kur šarminiuose (pH>13) cinko-kobalto elektrolituose naudojamais kompleksodaros agentais dažnai nurodomos sudėtinės kompozicijos, pavyzdžiui, karbamidas ar tiokarbamidas ir dialkilaminoalkilaminas kartu su dichloralkilo eteriu ir epihalohidrinu [JP 2001214293]; karbamidas ar tiokarbamidas, dialkilaminoetilaminas ir/arba dialkilaminopropilaminas kartu su tirpiu reaktyviu dichloralkilo eteriu [JP 2001226793] ir kt. Šarminiai cinko lydimų, įskaitant ir cinko-kobalto lydinius, nusodinimo elektrolitai kartais turi specialios struktūros polimerų [JP 11193487, JP 11193488, US 5435898, EP 1114206].A number of Japanese patents are known in which complexing agents used in alkaline (pH> 13) zinc-cobalt electrolytes often refer to composite compositions such as urea or thiourea and dialkylaminoalkylamine in combination with dichloroalkyl ether and epihalohydrin [JP 2001214293]; urea or thiourea, dialkylaminoethylamine and / or dialkylaminopropylamine together with soluble reactive dichloroalkyl ether [JP 2001226793] and others. Alkaline electrolytes of zinc alloys, including zinc-cobalt alloys, sometimes contain polymers of special structure [JP 11193487, JP 11193488, US 5435898, EP 1114206].

Apie N-(2-aminoetil)-etanolamino (aminoetiletanolamino) panaudojimą kaip blizgodaros, kurios kiekis elektrolite yra nedidelis, palyginus su žymiais kiekiais kitų kompleksodaros agentų (pvz., gliukonatų arba gliukoheptonatų jonų), yra paminėta JAV patente US 4428803 kobalto-alavo dangoms gauti iš silpnai šarminio elektrolito (pH 6,0-9,0). Šiame šaltinyje yra užsiminta, kad cinko-kobalto dangoms gauti gali būti panaudotas analogiškas elektrolitas, tačiau, apsaugant dangą nuo išblukimo padidintų temperatūrų poveikyje ir suteikiant atsparumą pirštų atspaudų žymėms, yra pageidautina po to atlikti pasyvavimą Be to, iš aukščiau paminėto elektrolito nusodinamos dangos prie labai nedidelių srovės tankių ir proceso našumai yra labai maži.The use of N- (2-aminoethyl) -ethanolamine (aminoethylethanolamine) as a bleaching agent in small amounts in the electrolyte compared to significant amounts of other complexing agents (e.g., gluconates or glucoheptonate ions) is mentioned in U.S. Patent No. 4,428,803 for cobalt-tin coatings. obtained from a weakly alkaline electrolyte (pH 6.0-9.0). This source mentions that a similar electrolyte may be used to obtain zinc-cobalt coatings, but subsequent passivation is desirable to protect the coating from fading at elevated temperatures and to provide fingerprint resistance. small current densities and process efficiencies are very low.

Yra aprašytas šarminis cinko-kobalto lydinio nusodinimo elektrolitas [Electrodeposition of Zinc-Cobalt Alloy From Cianide-Free Alkaline Plating Bath, Plating and Surface Finishing,An alkaline zinc-cobalt alloy deposition electrolyte is described.

October 1997, p. 53-56], pasižymintis nedidelėmis kobalto koncentracijomis, optimaliai 0,5 -1 g/1 Co tirpale. Nurodoma, kad minėtame elektrolite buvo bandoma kompleksodaros agentu, tarp kitų, panaudoti ir dietanolaminą tačiau teko naudoti papildomą chromatavimą. Be to, didesnis nei 5% kobalto kiekis gautose dangose nurodomas kaip nepageidautinas.October 1997, p. 53-56], characterized by low concentrations of cobalt, optimally in a solution of 0.5-1 g / L Co. It is stated that in the said electrolyte diethylamine was used, among others, as a complexing agent, but additional chromimetry had to be used. In addition, cobalt content greater than 5% in the resulting coatings is reported as undesirable.

Europos patente EP 0677598 yra aprašytas šarminis cinko-kobalto dangų nusodinimo elektrolitas, turintis cinko junginį, kobalto junginį, šarminio metalo hidroksido ir alkilenamino reakcijos su alkileno oksidu produktą kuris veikia kaip kompleksodaros agentas. Sprendžiant iš aprašyme pateiktų pavyzdžių cinko ir kobalto junginių koncentracijų santykis šiame elektrolite sudarė 8-10 g/l Zn junginio su 0,05-10 g/l Co junginio [t.y. apie 1: 0,005-1], įvairių alkilenamino reakcijos su alkileno oksidu produktų kiekiui esant 0,2-100 g/l. Srovės tankio intervale 0,1-10 A/dm2, 15-35°C temperatūroje gautų dangų kobalto kiekis lydinyje sudarė 0,05-20 %. Tačiau gero korozinio atsparumo ir tinkamų kitų fizikocheminių savybių užtikrinimui, gautos Zn-Co lydinio dangos toliau buvo visais atvejais chromatuojamos.European Patent EP 0677598 discloses an alkaline zinc-cobalt coating electrolyte comprising a zinc compound, a cobalt compound, a reaction product of an alkali metal hydroxide and an alkylene amine, which acts as a complexing agent. Based on the examples presented in the description, the ratio of zinc to cobalt compounds in this electrolyte was 8-10 g / l of Zn compound with 0.05-10 g / l of Co compound [ie about 1: 0.005-1], various products of alkylenamine reaction with alkylene oxide. in the range of 0.2-100 g / l. The cobalt content of the coatings obtained in the alloy was in the range of 0.1-10 A / dm 2 and 15-35 ° C in the current density range 0.05-20%. However, to ensure good corrosion resistance and suitable other physicochemical properties, the resulting coatings of Zn-Co alloy were further chromated in all cases.

Išradimo tikslas - pagaminti elektrolitą iš kurio galima lengvai nusodinti ant laidaus pagrindo kokybiškas cinko-kobalto lydinio dangas, kurių sudėtyje, priklausomai nuo elektrolito sudėties ir srovės tankio, Co kiekis dangoje siektų nuo 3 iki 80 masės %.The object of the present invention is to produce an electrolyte which can be easily deposited on a conductive substrate with high quality zinc-cobalt alloy coatings which, depending on the electrolyte composition and current density, have a Co content in the coating of from 3 to 80% by weight.

Keičiant kobalto kiekį dangoje galima gauti tokios sudėties dangas, kurios pasižymi ypač geru 15 koroziniu atsparumu ir kurių nereikia chromatuoti.By changing the amount of cobalt in the coating, coatings of extremely good corrosion resistance and no need for chromation can be obtained.

Išradimo esmė yra tą kad cinko-kobalto lydinio dangų nusodinimo elektrolite kompleksodaros agentu naudojamas aminoetiletanolaminas, esant tokiai elektrolito komponentų sudėčiai, g/l:SUMMARY OF THE INVENTION It is an object of the present invention that aminoethyl ethanolamine is used as a complexing agent for electrolyte deposition of zinc-cobalt alloy coatings in the following composition of the electrolyte, g / l:

Cinko jonų šaltinis 6-8Zinc Ion Source 6-8

Kobalto jonų šaltinis 0,2-4,2Cobalt ion source 0.2-4.2

Natrio (arba kalio) hidroksidas 80-120Sodium (or potassium) hydroxide 80-120

Aminoetiletanolaminas (H2N(CH2)2NH(CH2)2OH) 10-40; Vanduo iki 1 litro.Aminoethyl ethanolamine (H2N (CH2) 2NH (CH2) 2OH) 10-40; Water up to 1 liter.

Tinkamiausias cinko-kobalto lydinio dangų nusodinimo elektrolitas pagal šį išradimą yra tokios sudėties (g/l):The preferred electrolyte for the deposition of zinc-cobalt alloy coatings according to the present invention is the following composition (g / l):

Cinko oksidas (ZnO) 8-10;Zinc Oxide (ZnO) 8-10;

Kobalto sulfatas (COSO4'7H2O) 1 -20;Cobalt Sulfate (COSO4'7H2O) 1 -20;

Natrio hidroksidas (NaOH) 100-120;Sodium hydroxide (NaOH) 100-120;

Aminoetiletanolaminas (H2N(CH2)2NH(CH2)2OH) 10-40; Vanduo iki 1 litro.Aminoethyl ethanolamine (H2N (CH2) 2NH (CH2) 2OH) 10-40; Water up to 1 liter.

Optimalus cinko junginio, kobalto junginio ir aminoetiletanolamino koncentracijų santykis siūlomame elektrolite yra apie 1:1-2:2-4, atitinkamai.The optimum ratio of zinc compound to cobalt compound to aminoethyl ethanolamine in the proposed electrolyte is about 1: 1-2: 2-4, respectively.

Išradimo esmė iliustruojama toliau pateikiamais išradimo įgyvendinimo pavyzdžiais, kuriais išradimo apimtis neapsiriboja.The invention is illustrated by the following non-limiting examples.

1 Pavyzdys. Zn-Co lydinio dangų nusodinimo elektrolito paruošimas.1 Example. Preparation of Zn-Co Alloy Coating Deposition Electrolyte.

Pradiniam natrio cinkato tirpalui pagaminti ištirpina 100 g NaOH 200 ml distiliuoto vandens ir pakaitina. Karštame NaOH (natrio hidroksido) tirpale ištirpina 10 g ZnO (cinko oksido). 400 ml distiliuoto vandens ištirpina 20 g aminoetiletanolamino (toliau AEEA).To make a stock solution of sodium zinc, dissolve 100 g of NaOH in 200 ml of distilled water and heat. Dissolve 10 g of ZnO (zinc oxide) in hot NaOH (sodium hydroxide) solution. Dissolve 20 g of aminoethyl ethanolamine (AEEA) in 400 ml of distilled water.

100 ml distiliuoto vandens ištirpina 10 g kobalto sulfato CoSO4 ’ 7H2O ir gautą tirpalą sumaišo su aminoetiletanolamino tirpalu.100 ml of distilled water was dissolved 10 g of cobalt sulfate CoSO4 '7H 2 O and the resulting solution is mixed with Aminoethylethanolamine solution.

Taip gautą kobalto komplekso tirpalą lėtai maišant supila į ankščiau paruoštą natrio cinkato tirpalą Gautą tirpalą praskiedžiamas distiliuotu vandeniu iki 1 1. Elektrolitas yra stipriai šarminis (pH >13). Elektrolitas laikant yra stabilus, nepraranda savybių iki 2 metų.The solution of the cobalt complex thus obtained is slowly added to a previously prepared solution of sodium zincate, diluted to 1 l with distilled water. The electrolyte is strongly alkaline (pH> 13). The electrolyte is stable during storage and does not lose properties for up to 2 years.

Didėjant kobalto kiekiui tirpale, elektrolitas keičia spalvą nuo šviesiai vyšninės spalvos iki tamsiai vyšninės.As the amount of cobalt in the solution increases, the electrolyte changes color from light cherry to dark cherry.

2-10 pavyzdžiai. Zn-Co dangų elektrolitai ir kobalto kiekiai dangoje.Examples 2-10. Zn-Co coatings electrolytes and cobalt levels in the coatings.

Pagal 1 pavyzdžio aprašymą pagaminti keli elektrolitai, kurių sudėtys nurodytos 1-2 lentelėse.According to the description of Example 1, several electrolytes having the compositions shown in Tables 1-2 are prepared.

1 lentelė. Zn-Co dangų nusodinimui tinkamų elektrolitų sudėtys (kompleksodaros agentu naudojant aminoetiletanolaminą)Table 1. Compositions of electrolytes suitable for the deposition of Zn-Co coatings (using aminoethyl ethanolamine as complexing agent)

Elektrolito sudėtis Electrolyte composition Pavyzdžio (elektrolito) Nr. Sample (electrolyte) no. 2 2 3 3 4 4 5 5 6 6th Cinko junginys, g/i Zinc compound, g / i ZnO, 10 ZnO, 10th ZnSO4, 20 ZnSO4, 20th ZnSO4, 18ZnSO 4 , 18 ZnCl2, 15ZnCl 2 , 15 ZnO, 10 ZnO, 10th Kobalto junginys, g/i Cobalt compound, g / i CoCl2, 1CoCl 2 , 1 CoSO4'7H2O, 10CoSO 4 '7H 2 O, 10 CoCl2, 8CoCl 2 , 8 CoSO47H2O, 4CoSO 4 7H 2 O, 4 CoSO47H2O, 1CoSO 4 7H 2 O, 1 Šarminio metalo hidroksidas, g/i Alkaline metal hydroxide, g / i NaOH, 100 NaOH, 100 KOH, 120 KOH, 120 NaOH, 120 NaOH, 120 NaOH, 100 NaOH, 100 NaOH, 80 NaOH, 80 AEEA, g/l AEEA, g / l 5 5 20 20th 20 20th 10 10th 10 10th

lentelėje nurodyti kobalto kiekiai dangoje, nustatyti rentgeno fotoelektroninės spektroskopijos metodu.Table 1 shows the cobalt content of the coating as determined by X - ray photoelectron spectroscopy.

lentelė. Elektrolitai, toliau naudoti Zn-Co dangų nusodinimui ir Co kiekiai dangosetable. Electrolytes, further used for deposition of Zn-Co coatings and Co content in coatings

Elektrolito sudėtis Electrolyte composition Pavyzdžio (elektrolito) Nr. Sample (electrolyte) no. 7 7th 8 8th 9 9th 10 10th Cinko oksidas, & Zinc oxide, & 8 8th 10 10th 10 10th 10 10th Natrio hidroksidas, g/1 Sodium hydroxide, g / l 100 100 100 100 100 100 120 120 Kobalto sulfatas, g/I Cobalt sulphate, g / l 1 1 4 4 10 10th 20 20th AEEA, g/1 AEEA, g / 1 10 10th 10 10th 20 20th 40 40 Co, masės % dangoje Co,% by weight of coating 5-30 5-30 15-89 15-89 31-85 31-85 20-80 20-80

Zn-Co elektrolitas pagal išradimą leidžia gauti kokybiškas dangas, naudojant tiek galvanostatinį, tiek impulsinį metodą. Elektrolizė buvo atliekama panaudojant 7-10 elektrolitus galvanostatiniu ir impulsiniu metodais. Pastovios srovės tankis buvo keičiamas intervale 1-60 mA/cm2. Impulsinės srovės parametrai buvo keičiami: impulso trukmė - 1-10 ms; pauzės trukmė 1-200 ms; srovės impulso dydis 10-1000 mA/cm2.The Zn-Co electrolyte according to the invention enables high quality coatings to be obtained using both galvanostatic and pulsed methods. Electrolysis was carried out using 7-10 electrolytes by galvanostatic and pulsed methods. The constant current density was varied in the range of 1-60 mA / cm 2 . The pulse current parameters were changed as follows: pulse duration 1-10 ms; pause duration 1-200 ms; current pulse size 10-1000 mA / cm 2 .

Impulsiniu metodu nusodintos dangos lygesnės, labiau blizgančios.Impulse-deposited coatings have a smoother, more glossy finish.

Priklausomai nuo elektrolito sudėties ir elektrolizės parametrų iš išradime siūlomų elektrolitų nusodinamos įvairios sudėties cinko-kobalto dangos, kurių savybės pateiktos 3 ir 4 lentelėse.Depending on the electrolyte composition and electrolysis parameters, various compositions of zinc-cobalt coatings are deposited from the electrolytes of the invention, the properties of which are given in Tables 3 and 4.

lentelė. Zn-Co lydinio dangų sudėties ir išvaizdos priklausomybė nuo pastovios srovės parametrųtable. The dependence of the composition and appearance of Zn-Co alloy coatings on DC parameters

Elek trolito Nr. Elek troll No. Ban- dymo Nr. Ban- dymo No. Pastovi srovė Constant current Srovės tankis, mA/cm2 Current density, mA / cm 2 Co, masės % Co., masses % Zn, masės % Zn, masses % Išorinis dangos vaizdas Exterior view of the pavement 7 7th 1 1 1 1 30 30th 70 70 Šviesiai pilka, blizganti Light gray, shiny 7 7th 2 2 2 2 30 30th 70 70 Šviesiai pilka, blizganti Light gray, shiny 7 7th 3 3 5 5 7 7th 93 93 Tamsiai pilka, neblizganti Dark gray, non-glossy 7 7th 4 4 10 10th 5 5 95 95 Tamsiai pilka, neblizganti Dark gray, non-glossy 8 8th 5 5 1 1 89 89 11 11th Blizganti Shiny 8 8th 6 6th 2 2 84 84 16 16th Šviesi, blizganti Bright, shiny 8 8th 7 7th 5 5 24 24th 76 76 v * Sv. pilka, pusiau blizganti v * Sun gray, semi-glossy 8 8th 8 8th 10 10th 18 18th 82 82 Šv. pilka, matinė St. gray, matte

3 lentelės tęsinys Continuation of Table 3 8 8th 9 9th 15 15th 21 21st 79 79 Sv. pilka, matinė Sun gray, matte 8 8th 10 10th 20 20th 10 10th 90 90 Pilka, matinė Gray, matte 8 8th 11 11th 30 30th 15 15th 85 85 Pilka, matinė Gray, matte 9 9th 12 12th 1 1 85 85 15 15th Blizganti Shiny 9 9th 13 13th 2 2 77 77 23 23rd Blizganti Shiny 9 9th 14 14th 5 5 30 30th 70 70 Šviesi pilka, blizganti Light gray, shiny 9 9th 15 15th 10 10th 33 33 67 67 Šviesi pilka, blizganti Light gray, shiny 9 9th 16 16th 15 15th 32 32 68 68 Sviesi pilka, blizganti Light gray, shiny 9 9th 17 17th 20 20th 32 32 68 68 Šviesi pilka, blizganti Light gray, shiny 9 9th 18 18th 30 30th 31 31st 69 69 Šviesi pilka, blizganti Light gray, shiny 10 10th 19 19th 10 10th 80 80 20 20th Šviesi pilka, blizganti Light gray, shiny 10 10th 20 20th 20 20th 20 20th 80 80 Šviesi pilka, blizganti Light gray, shiny 10 10th 21 21st 40 40 20 20th 80 80 Šviesi pilka, blizganti Light gray, shiny 10 10th 22 22nd 60 60 20 20th 80 80 Šviesi pilka, blizganti Light gray, shiny

lentelė. Zn-Co lydinio dangų sudėties ir išvaizdos priklausomybė nuo impulsinės srovės parametrųtable. Dependence of composition and appearance of Zn-Co alloy coatings on pulse current parameters

Elek trolito Nr. Elek troll No. Ban- dymo Nr. Ban- dymo No. Impulsinė srovė, mA/cm2 (Srovės impuPulse current, mA / cm 2 (Current impulse so trukmė 1 ms) so duration 1 ms) Pauzės trukmė ms Pauses duration ms Srovės impulso dydis, mA/cm2 Current impulse size, mA / cm 2 Co, masės % Co., masses % Zn, masės % Zn, masses % Išorinis dangos vaizdas Exterior view of the pavement 7 7th 1 1 10 10th 10 10th 25 25th 75 75 Blizganti Shiny 7 7th 2 2 10 10th 20 20th 16 16th 84 84 Blizganti Shiny 7 7th 3 3 10 10th 55 55 3 3 97 97 Pilka, matinė Gray, matte 7 7th 4 4 100 100 100 100 18 18th 82 82 Blizganti Shiny 8 8th 5 5 1 1 10 10th 81 81 19 19th blizganti shiny 8 8th 6 6th 10 10th 10 10th 85 85 15 15th blizganti shiny 8 8th 7 7th 10 10th 20 20th 70 70 30 30th blizganti shiny 8 8th 8 8th 10 10th 100 100 17 17th 83 83 Šv. pilka, blizganti St. gray, shiny 8 8th 9 9th 100 100 100 100 83 83 17 17th Pilka, matinė Gray, matte 8 8th 10 10th 100 100 200 200 34 34 66 66 blizganti shiny 8 8th 11 11th 100 100 500 500 28 28th 72 72 Pilka, blizganti Gray, shiny 8 8th 12 12th 200 200 500 500 80 80 20 20th Metalinis blizgesys Metallic luster

4 lentelės tęsinys Continuation of Table 4 9 9th 13 13th 10 10th 11 11th 87 87 13 13th Metalinis blizgesys Metallic luster 9 9th 14 14th 10 10th 55 55 39 39 61 61 Šv. pilka, blizganti St. gray, shiny 9 9th 15 15th 10 10th 110 110 36 36 64 64 Šv. pilka, blizganti St. gray, shiny 9 9th 16 16th 10 10th 220 220 32 32 68 68 Šv. pilka, blizganti St. gray, shiny 9 9th 17 17th 100 100 200 200 85 85 15 15th Metalinis blizgesys Metallic luster 9 9th 18 18th 100 100 500 500 43 43 57 57 Blizganti Shiny 9 9th 19 19th 100 100 1000 1000 37 37 63 63 Sv. pilka, pusiau blizganti Sun gray, semi-glossy

Iš lentelėse pateiktų rezultatų matyti, kad pakankamai geros kokybės galvaninės dangos nusodinamos iš 9 ir 10 tirpalų, tai yra optimaliausia elektrolito sudėtis yra g/1: cinko oksidas (ZnO) - 10; kobalto sulfatas (COSO47H2O) - 10-20; natrio hidroksidas (NaOH) - 100-120;The results in the tables show that the coating of solutions of good quality is deposited from solutions 9 and 10, the optimum electrolyte composition is g / 1: zinc oxide (ZnO) - 10; cobalt sulfate (COSO47H2O) - 10-20; sodium hydroxide (NaOH) - 100-120;

aminoetiletanolaminas (H2N(CH2)2NH(CH2)2OH) - 20-40.Aminoethylethanolamine (H 2 N (CH 2) 2 NH (CH 2) 2 OH) - 20-40.

Priklausomai nuo srovės tankio proceso išeiga 40-80 %. Dangos sudėtis nepriklauso nuo srovės tankio plačiame srovės tankių intervale.Depending on the current density, the process yields 40-80%. The coating composition is independent of current density over a wide range of current densities.

pavyzdys. Zn-Co dangų antikorozinės savybės.example. Anticorrosive properties of Zn-Co coatings.

Gautų Zn-Co dangų korozinis atsparumas buvo tiriamas druskos rūko kameroje. Bandymai druskos rūko kameroje buvo atliekami pagal standartą LST ISO 9227:1997.The corrosion resistance of the resulting Zn-Co coatings was investigated in a salt fog chamber. Salt fog chamber tests were performed according to LST ISO 9227: 1997.

Dangos buvo įvertinamos pagal standartą ISO 10289:1999.The coatings were evaluated according to ISO 10289: 1999.

Rezultatai pateikti 5 lentelėje; galutiniai rezultatai pateikti po 2102 vai. išlaikymo.The results are shown in Table 5; final results are presented after 2102 hours. maintenance.

lentelė. Zn -Co(20%) dangų korozinis atsparumas druskos rūko kamerojetable. Corrosion resistance of Zn-Co (20%) coatings in salt fog chamber

Zn-Co(20%) dangos nusodinimo srovės tankis Zn-Co (20%) coating deposition current density Plieno plokštelės Nr. Steel plates No. Zn korozijos pradžia, vai. The onset of Zn corrosion, baby. Zn korozijos 5% ploto,vai. Zn corrosion 5% of the area, or. Fe korozijos pradžia, vai. Fe corrosion onset, ch. Iic=10 mA cm’2 Ic = 10 mA cm- 2 1 1 696(9 balai) (0<%<0,l) 696 (9 points) (0 <% <0, l) 826 826 2030 2030 2 2 360(9 balai) (0<%<0,l) 360 (9 points) (0 <% <0.1) 768 768 1982 1982 Ik=20 mA cm'2 Ik = 20 mA cm ' 2 3 3 168 (9 balai) (0< % <0,l) 168 (9 points) (0 <% <0, l) 720 720 1982 1982 4 4 696 (9 balai) (0<%<0,l) 696 (9 points) (0 <% <0, l) 950 950 2102 2102 5 5 672 (9 balai) (0<%<0,l) 672 (9 points) (0 <% <0, l) 854 854 2030 2030 6 6th 168 (9 balai) (0<%<0,l) 168 (9 points) (0 <% <0, l) 720 720 1958 1958

Korozinių bandymų rezultatai (5 lentelė) parodė, kad cinko-kobalto (20% Co) lydinio dangų korozinis atsparumas druskos rūko kameroje iki geležies korozijos sudaro apie 2000 vai. Tai prilygsta chromatuotų cinko dangų koroziniam atsparumui.The results of the corrosion tests (Table 5) showed that the corrosion resistance of the zinc-cobalt (20% Co) alloy coatings to the iron corrosion in the salt fog chamber is about 2000 hours. This equates to the corrosion resistance of chromium-plated zinc coatings.

Nusodintos cinko-kobalto lydinio dangos yra kokybiškos, tolygios, gerai sukibusios su pagrindu. Plačiame srovės tankių intervale dangų sudėtis yra pastovi.The deposited zinc-cobalt alloy coatings are of high quality, even, well adhering to the substrate. The composition of coatings is constant over a wide range of current densities.

Iš pateiktų rezultatų matyti, kad siūlomas elektrolitas leidžia nusodinti dangas, kurių nereikia papildomai chromatuoti. Kaip žinoma, Cr(VI) yra labai nuodingas, jo naudojimas nuolat mažinamas ir ateityje bus uždraustas, todėl chromatavimo operacijos eliminavimas yra labai pageidautinas ekologiniu požiūriu. Be to, nusodinamos cinko-kobalto dangos yra kietesnės, palyginus su cinko dangomis, pasižymi geresnėmis litavimosi savybėmis.The results presented above show that the proposed electrolyte allows the deposition of coatings which do not require additional chromation. Cr (VI) is known to be highly toxic, its use is constantly being reduced, and it will be banned in the future, so elimination of the chromation operation is highly desirable from an ecological point of view. In addition, the deposited zinc-cobalt coatings are harder compared to zinc coatings and have better soldering properties.

Elektrolitas yra stabilus, jis gaminamas iš nedidelio ingredientų skaičiaus; dangos nusodinamos kambario temperatūroje be maišymo.The electrolyte is stable and is made from a small number of ingredients; the coatings are deposited at room temperature without mixing.

vv

Elektrolito paruošimas nėra sudėtingas; naudojamos palyginus nedidelės druskų ir ' kompleksodaros koncentracijos, tai leidžia pasiekti papildomą ekologinį efektą, palengvinant technologinio proceso atliekų valymą.Electrolyte preparation is not difficult; The use of relatively low concentrations of salts and complexing agents provides additional ecological effects by facilitating the purification of process waste.

Claims (3)

1. Šarminis cinko-kobalto lydinio dangų nusodinimo elektrolitas, turintis cinko jonų šaltinį, kobalto jonų šaltinį, šarminio metalo hidroksidą kompleksodaros agentą ir, nebūtinai, • 5 papildomas medžiagas, besiskiriantis tuo, kad kompleksodaros agentu naudojamas aminoetiletanolaminas, esant tokiai elektrolito komponentų sudėčiai, (g/1):1. An alkaline zinc-cobalt alloy deposition electrolyte containing a zinc ion source, a cobalt ion source, an alkali metal hydroxide complexing agent, and, optionally, 5 additional substances, wherein the complexing agent is an aminoethyl ethanolamine having the following composition ( g / 1): Cinko jonų šaltinis 6-8Zinc Ion Source 6-8 Kobalto jonų šaltinis 0,2-4,2Cobalt ion source 0.2-4.2 Natrio (arba kalio) hidroksidas 80-120Sodium (or potassium) hydroxide 80-120 10 Aminoetiletanolaminas (H2N(CH2)2NH(CH2)2OH) 10-40; Vanduo iki 1 litro.10 Aminoethyl ethanolamine (H2N (CH2) 2NH (CH2) 2OH) 10-40; Water up to 1 liter. 2. Elektrolitas pagal 1 punktą besiskiriantis tuo, kad elektrolito komponentų sudėtis yra (g/1):2. The electrolyte according to claim 1, characterized in that the electrolyte components have a composition (g / l): 15 Cinko oksidas (ZnO) 8-10;15 Zinc oxide (ZnO) 8-10; Kobalto sulfatas (CoSO4 ‘ 7H2O) 1 -20;Cobalt sulfate (CoSO4 '7H2O) 1 -20; Natrio hidroksidas (NaOH) 100-120;Sodium hydroxide (NaOH) 100-120; Aminoetiletanolaminas (H2N(CH2)2NH(CH2)2OH) 10-40;Aminoethyl ethanolamine (H2N (CH2) 2NH (CH2) 2OH) 10-40; Vanduo iki 1 litro.Water up to 1 liter. 3. Elektrolitas pagal 1 ir/arba 2 punktą besiskiriantis tuo, kad optimalus cinko junginio, kobalto junginio ir aminoetiletanolamino koncentracijų santykis yra apie 1:1-2:2-4, atitinkamai.3. The electrolyte according to claim 1 and / or 2, wherein the optimum ratio of zinc compound, cobalt compound and aminoethyl ethanolamine is about 1: 1-2: 2-4, respectively.
LT2006060A 2006-07-11 2006-07-11 Sarminis cinko-kobalto lydinio dangu nusodinimo elektrolitas LT5481B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
LT2006060A LT5481B (en) 2006-07-11 2006-07-11 Sarminis cinko-kobalto lydinio dangu nusodinimo elektrolitas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
LT2006060A LT5481B (en) 2006-07-11 2006-07-11 Sarminis cinko-kobalto lydinio dangu nusodinimo elektrolitas

Publications (2)

Publication Number Publication Date
LT2006060A LT2006060A (en) 2008-01-25
LT5481B true LT5481B (en) 2008-03-26

Family

ID=38947332

Family Applications (1)

Application Number Title Priority Date Filing Date
LT2006060A LT5481B (en) 2006-07-11 2006-07-11 Sarminis cinko-kobalto lydinio dangu nusodinimo elektrolitas

Country Status (1)

Country Link
LT (1) LT5481B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299671A (en) 1980-06-13 1981-11-10 Hooker Chemicals & Plastics Corp. Bath composition and method for electrodepositing cobalt-zinc alloys simulating a chromium plating
US4428803A (en) 1981-02-25 1984-01-31 Omi International Corporation Baths and processes for electrodepositing alloys of colbalt, tin and/or zinc
EP0677598A1 (en) 1994-04-14 1995-10-18 Dipsol Chemical Co., Ltd Zinc-cobalt alloy-plating alkaline bath and plating method using the same
JPH11193487A (en) 1997-12-29 1999-07-21 Nippon Hyomen Kagaku Kk Alkaline plating solution for zinc or zinc alloy and plating process
JPH11193488A (en) 1997-12-29 1999-07-21 Nippon Hyomen Kagaku Kk Alkaline plating bath for zinc or zinc alloy and plating process
EP1114206A1 (en) 1998-09-02 2001-07-11 ATOTECH Deutschland GmbH Cyanide-free aqueous alkaline bath used for the galvanic application of zinc or zinc-alloy coatings
JP2001214293A (en) 2000-01-31 2001-08-07 Dipsol Chem Co Ltd Alkaline zinc and zinc alloy plating bath
JP5435898B2 (en) 2008-06-05 2014-03-05 株式会社三共 Slot machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4299671A (en) 1980-06-13 1981-11-10 Hooker Chemicals & Plastics Corp. Bath composition and method for electrodepositing cobalt-zinc alloys simulating a chromium plating
US4428803A (en) 1981-02-25 1984-01-31 Omi International Corporation Baths and processes for electrodepositing alloys of colbalt, tin and/or zinc
EP0677598A1 (en) 1994-04-14 1995-10-18 Dipsol Chemical Co., Ltd Zinc-cobalt alloy-plating alkaline bath and plating method using the same
JPH11193487A (en) 1997-12-29 1999-07-21 Nippon Hyomen Kagaku Kk Alkaline plating solution for zinc or zinc alloy and plating process
JPH11193488A (en) 1997-12-29 1999-07-21 Nippon Hyomen Kagaku Kk Alkaline plating bath for zinc or zinc alloy and plating process
EP1114206A1 (en) 1998-09-02 2001-07-11 ATOTECH Deutschland GmbH Cyanide-free aqueous alkaline bath used for the galvanic application of zinc or zinc-alloy coatings
JP2001214293A (en) 2000-01-31 2001-08-07 Dipsol Chem Co Ltd Alkaline zinc and zinc alloy plating bath
JP5435898B2 (en) 2008-06-05 2014-03-05 株式会社三共 Slot machine

Also Published As

Publication number Publication date
LT2006060A (en) 2008-01-25

Similar Documents

Publication Publication Date Title
US10704155B2 (en) Low hydrogen embrittlement zinc/nickel plating for high strength steels
DE19538419C2 (en) Use of a bath-soluble polymer in an aqueous alkaline bath for the galvanic deposition of zinc and zinc alloys
US4765871A (en) Zinc-nickel electroplated article and method for producing the same
CN101545125A (en) Bright corrosion resisting zinc-iron alloy plating process
EP2116634A1 (en) Modified copper-tin electrolyte and method of depositing bronze layers
JPH0312157B2 (en)
CN102171386B (en) Zinc alloy electroplating baths and processes
JPH0338351B2 (en)
JP2004536219A (en) Electrolytic medium for tin alloy deposition and method for depositing tin alloy
EP0787834B1 (en) Acidic tinplating bath and additve therefor
US6387229B1 (en) Alloy plating
JPS6141999B2 (en)
AT516876B1 (en) Deposition of decorative palladium-iron alloy coatings on metallic substances
NO784204L (en) PROCEDURE FOR PREPARING SHINY ELECTROLYTICAL ZINC PRECIPITATIONS AND WATER, ACID PLATING BATH FOR CARRYING OUT THE PROCEDURE
FR2519656A1 (en) PROCESS FOR THE ELECTROLYTIC COATING OF TRIVALENT CHROMIUM WITHOUT HEXAVALENT CHROMIUM ION FORMATION, USING A FERRITE ANODE
KR101074165B1 (en) Zn-Ni alloy electrodeposition composition
LT5481B (en) Sarminis cinko-kobalto lydinio dangu nusodinimo elektrolitas
Rajendran et al. The electrodeposition of zinc-nickel alloy from a cyanide-free alkaline plating bath
GB2094349A (en) Metal plating compositions and processes
Thangaraj et al. Electrodeposition and compositional behaviour of Zn-Ni alloy
US20060254923A1 (en) Low hydrogen embrittlement (LHE) zinc-nickel plating for high strength steels (HSS)
Shivakumara et al. Influence of condensation product on electrodeposition of Zn-Mn alloy on steel
KR100940669B1 (en) Zinc-nickel alloy electroplating composition, plated steel sheet manufacturing method and zinc-nickel alloy electroplated steel sheet produced according to the surface appearance, adhesion and low temperature chipping of the coating layer
US3577327A (en) Method and composition for electroplating cadmium (b)
Krishnan et al. Electrodeposition of Zinc from a Noncyanide Alkaline Bath

Legal Events

Date Code Title Description
MM9A Lapsed patents

Effective date: 20110711