[go: up one dir, main page]

KR970001650B1 - A process for preparing ph-sensitive liposome targetting liver cell - Google Patents

A process for preparing ph-sensitive liposome targetting liver cell Download PDF

Info

Publication number
KR970001650B1
KR970001650B1 KR1019930018391A KR930018391A KR970001650B1 KR 970001650 B1 KR970001650 B1 KR 970001650B1 KR 1019930018391 A KR1019930018391 A KR 1019930018391A KR 930018391 A KR930018391 A KR 930018391A KR 970001650 B1 KR970001650 B1 KR 970001650B1
Authority
KR
South Korea
Prior art keywords
liposomes
liposome
group
sensitive
choh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019930018391A
Other languages
Korean (ko)
Other versions
KR950007836A (en
Inventor
장진수
최명준
조성유
황유경
정홍석
박송용
문홍모
Original Assignee
재단법인 목암생명공학연구소
허영섭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 목암생명공학연구소, 허영섭 filed Critical 재단법인 목암생명공학연구소
Priority to KR1019930018391A priority Critical patent/KR970001650B1/en
Publication of KR950007836A publication Critical patent/KR950007836A/en
Application granted granted Critical
Publication of KR970001650B1 publication Critical patent/KR970001650B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Synthetic bilayered vehicles, e.g. liposomes or liposomes with cholesterol as the only non-phosphatidyl surfactant
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes or liposomes coated or grafted with polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

내용 없음.No content.

Description

간세포를 표적할 수 있는 pH에 민감한 리포좀의 제조방법Method for preparing pH-sensitive liposomes that can target hepatocytes

제1도는 갈락토세레브로사이드(galactocerebroside)를 함유한 리포좀의 pH 민감도를 측정한결과를 나타내는 그래프이다.1 is a graph showing the results of measuring the pH sensitivity of liposomes containing galactocerebroside.

제2(a)도는 4℃에서 시간에 따른 리포좀의 투과성을 측정한 결과를 나타내는 그래프이다.Figure 2 (a) is a graph showing the results of measuring the permeability of liposomes with time at 4 ℃.

제2(b)도는 37℃에서 시간에 따른 리포좀의 투과성을 측정한 결과를 나타내는 그래프이다.Figure 2 (b) is a graph showing the results of measuring the permeability of liposomes with time at 37 ℃.

제3도는 혈장내에서 리포좀의 안정성을 측정한 결과를 나타내는 그래프이다.3 is a graph showing the results of measuring the stability of liposomes in plasma.

제4도는 표적 리포좀의 생체분포(biodistribution)를 나타내는 그래프이다.4 is a graph showing the biodistribution of target liposomes.

본 발명은 간세포 및 암세포를 동시에 표적할 수 있는 리포좀의 제조방법에 관한 것이다. 좀 더 구체적으로, 본 발명은 pH에 민감하여 간세포 및 암세포를 동시에 표적할 수 있는 리포좀 및 그의 제조방법에 관한 것이다.The present invention relates to a method for preparing liposomes capable of simultaneously targeting hepatocytes and cancer cells. More specifically, the present invention relates to liposomes and a method for preparing the same that are sensitive to pH and can simultaneously target hepatocytes and cancer cells.

일반적으로, 인지질이 물에 분산되어 형성된 폐쇄형 소포체를 '리포좀(liposome)'이라 하며, 리포좀은 기초과학과 응용과학 측면에서 널리 이용되고 있다. 리포좀은 생체막의 기본 구조인 인지질의 이중층(bilayer)으로 구성되어 있는 바, 인지질은 양친매성(amphipathic)물질로서, 음이온성 또는 양쪽성 이온의 극성 분자단과 탄화수소 16개 내외의 다양한 불포화도를 갖는 2개의 비극성 지용성 사슬을 가지고 있는 분자구조이기 때문에 인지질이 물에 분산되어 자발적으로 이중층으로 형성하게 된다.In general, closed vesicles formed by dispersing phospholipids in water are called 'liposomes', and liposomes are widely used in terms of basic science and applied science. Liposomes are composed of bilayers of phospholipids, which are the basic structure of biological membranes. Phospholipids are amphipathic substances, two polar molecules with anionic or amphoteric ions and two unsaturations with about 16 hydrocarbons. Because of its molecular structure with nonpolar fat-soluble chains, phospholipids disperse in water and spontaneously form bilayers.

리포좀은 기초과학분야에서는 단백질과 인지질간의 상호작용(Lee, J.W. and Kim, H., Arch Biochem. Biophys.,297 : 354(1992) ; Hahn, K.H. and Kim, H., J. Biochem., 110 : 635(1991), 생체막에서의 단백질의 위상학(topology)과 그의 활성, 생체막의 융합(Yun, C.H. and Kim, H., J. Biochem., 105 : 406 (1989) ; Kim, J. and Kim, H., Biochemistry, 25 : 7867(1986) ; Kim, J. and Kim, H., Korean Biochem. J., 18 : 403(1985)) 및 단백질의 전달기작 모델 시스템으로 이용되고 있다.Liposomes are known in the field of basic science to interact with proteins (Lee, JW and Kim, H., Arch Biochem. Biophys., 297: 354 (1992); Hahn, KH and Kim, H., J. Biochem., 110 : 635 (1991), Topology and Activity of Proteins in Biofilms, Fusion of Biofilms (Yun, CH and Kim, H., J. Biochem., 105: 406 (1989); Kim, J. and Kim , H., Biochemistry, 25: 7867 (1986); Kim, J. and Kim, H., Korean Biochem. J., 18: 403 (1985)) and protein delivery mechanism model system.

한편, 응용고학분야에서는 화장품 산업, 약물 전달, 그리고 실험실적 조건(in vitro)에서 배양중인 세포에 유전물질을 전달하는 모델로 이용하고 있으며, 현재는 리포좀의 약물전달매체(DDS : drug delivery system)로서 많은 연구가 진행되고 있다. 이와같이 리포좀이 응용과학 분야에 널리 이용되고 있는 이유는 리포좀 내에 수용성 및 지용성 물질 모두를 포획할 수 있고, 특정조직에 표적이 용이하며, 크기 및 변형이 용이하고 인지질의 사용으로 독성의 문제점이 거의 없으며, 특정조직을 표적(targeting)할 수 있는 장점이 있기 때문이다. 또한, 포획시킬 수 있는 약물을 다른 약물운반체에 보다 많이 포획할 수 있고, 치료효과를 높일 수 있는 장점이 있기 때문이기도 하다.On the other hand, the field of applied archeology is used as a model for delivering genetic material to cells in culture in the cosmetic industry, drug delivery, and laboratory conditions (in vitro), and is currently used as a drug delivery system (DDS) of liposomes. As a result, much research is being conducted. The reason why liposomes are widely used in the field of applied science is that they can capture both water-soluble and fat-soluble substances in liposomes, are easy to target to specific tissues, they are easy to size and deform, and there are few toxicity problems due to the use of phospholipids. This is because there is an advantage in targeting a specific tissue. In addition, it is also because there is an advantage that can capture more drugs that can be captured to other drug carriers, and enhance the therapeutic effect.

현재까지, 리포좀을 이용하여 특정조직을 표적하는 여러 가지 기술에 대하여는 다음과 같은 많은 연구가 진행되었다 :To date, a number of studies have been conducted on various techniques for targeting specific tissues using liposomes:

첫번째 방법은 리포좀의 상전이 온도를 이용하는 온도에 민감한 리포좀(temperature-sensitive liposome)으로, 이는 인지질의 상전이 온도근처에서 리포좀내에 들어있던 내용물의 급격한 누출(leakage)이 일어나는 것을 이용한다. 이 리포좀은 생체온도 보다 2 내지 3℃정도 높은 상전이 온도를 가지는 인지질을 사용하여 국부조직의 가열을 통하여 표적할 수 있으나 (Yatvin, M.B,. Magin, R.L., Weinstein, J. N. and Zaharko, D. S., Science, 202 : 188(1979) : Yatvin, M. B., Weinstein, J. N., Dennis, W. H. and Bluemntal, R., Science 202 : 1290(1978)), 이 방법은 생체내 상황을 고려할 때 많은 제한요소가 따른다고 볼 수 있다.The first method is a temperature-sensitive liposome that uses the phase transition temperature of liposomes, which takes advantage of the rapid leakage of the contents contained in liposomes near the phase transition temperature of phospholipids. The liposomes can be targeted by heating local tissues using phospholipids with a phase transition temperature of 2 to 3 ° C. higher than the biological temperature (Yatvin, MB, Magin, RL, Weinstein, JN and Zaharko, DS, Science, 202: 188 (1979): Yatvin, MB, Weinstein, JN, Dennis, WH and Bluemntal, R., Science 202: 1290 (1978)), and this method has many limitations when considering the in vivo situation. have.

두번째 방법은 리포좀과 세포간의 융합에 의해서 세포안으로 약물을 전달하는 방법으로, 여러 가지 융합을 야기시키는 물질을 사용하는데 이 방법은 융합시키는 물질이 세포내에 독성(toxicity)이 있다는 것이 단점으로 지적되고 있다.The second method is to deliver drugs into cells by fusion between liposomes and cells, and uses a substance that causes various fusions. This method has been pointed out that the fusion substance has toxicity in cells. .

세번째 방법은 pH에 민감한 리포좀(pH-sensitive liposome)을 제조하여 항암약물을 암세포에만 선택적으로 전달시키려는 시도이다[참조 : Ellens, H., Bentz, J. and Szoka, F. C., Biochemistry, 23 : 1532(1984) ; Nayar, R. and Shvoit, A. J., Biochemistry, 24 : 5967(1985) ; Stranbinger, R.M., Duzgunes, N. and Papahadjopoulos, D., FEBS Lett., 179 : 148(1985) ; Connor, J., Yatvin, M. B. and Huang, L., Proc. Natl. Acad. Sci. USA., 81 : 1715(1984) ; Liu, D. and Huang, L., Biochim. Biophys. Acta, 981 : 254(1989)]. 또한, 외부 DNA를 특정장기에 선택적으로 도입시키기 위해, pH에 민감한 리포좀 또는 pH에 민감한 면역리포좀(immunoliposome)을 이용하여 왔다[참조 : Connor, J. and Huang, L., Cancer Res., 46 : 3431(1986) ; Collins, D., Maxfield, F. and Huang, L., Biochim. Biophys. Acta, 987 :47(1989) ; Wang, C.Y. and Huang, L., Biochemistry, 28 : 9805(1989)]. 일반적으로, pH에 민감한 리포좀은 중성 pH에서는 안정하나 엔도좀(endosome)과 같은 산성(pH 6.5이하)에서는 융합이 일어나 리포좀에 들어있던 물질들이 밖으로 누출되는데, 이러한 방법들을 이용하면 항암약물들을 매우 효과적으로 세포질(cytoplasm)내로 전달할 수 있다.A third approach is to prepare pH-sensitive liposomes to selectively deliver anticancer drugs only to cancer cells. Ellens, H., Bentz, J. and Szoka, FC, Biochemistry, 23: 1532 1984); Nayar, R. and Shvoit, A. J., Biochemistry, 24: 5967 (1985); Stranbinger, R. M., Duzgunes, N. and Papahadjopoulos, D., FEBS Lett., 179: 148 (1985); Connor, J., Yatvin, M. B. and Huang, L., Proc. Natl. Acad. Sci. USA, 81: 1715 (1984); Liu, D. and Huang, L., Biochim. Biophys. Acta, 981: 254 (1989). In addition, to selectively introduce foreign DNA into specific organs, pH-sensitive liposomes or pH-sensitive immunoliposomes have been used [Connor, J. and Huang, L., Cancer Res., 46: 3431 (1986); Collins, D., Maxfield, F. and Huang, L., Biochim. Biophys. Acta, 987: 47 (1989); Wang, C.Y. and Huang, L., Biochemistry, 28: 9805 (1989). In general, pH-sensitive liposomes are stable at neutral pH but fusion occurs at acids (pH 6.5 or less) such as endosomes, causing the substances contained in the liposomes to leak out. Can be delivered into the cytoplasm.

네번째 방법은 온도와 pH에 민감한 리포좀으로 이는 앞에서 설명한 온도에 민감한 리포좀의 특성과 pH에 민감한 리포좀의 특성을 고루 가지고 있는 리포좀을 이용하는 방법으로, 이런 리포좀을 이용하여 단순히 pH에 민감한 리포좀의 단점을 보완할 수 있다.The fourth method is liposomes that are sensitive to temperature and pH, which uses liposomes that have the characteristics of temperature-sensitive liposomes and those of pH-sensitive liposomes. These liposomes simply compensate for the disadvantages of pH-sensitive liposomes. can do.

한편, 갈락토스(galactose)가 간세포에 특이적으로 친화성이 있다는 사실이 알려져, 간세포에 대한 표적연구에 획기적인 전기가 마련되었다[참조 : Spanjer, H. H. and Scherphof, G. L., Biochim. Biophys. Acta, 734 : 40(1983) ; Grosse, E., Kieda, C. and Nicolau, C., Biochim. Biophys. Acta, 805 : 354(1984) ; Spanjer, H. H., vanDerkel, T. J. C., Scherphof, G. L. and Kempen, H. J. M., Biochim. Biophys. Acta, 816 : 396(1985)].On the other hand, galactose is known to have a specific affinity for hepatocytes, and a breakthrough biography has been prepared for target studies on hepatocytes [Spanjer, H. H. and Scherphof, G. L., Biochim. Biophys. Acta, 734: 40 (1983); Grosse, E., Kieda, C. and Nicolau, C., Biochim. Biophys. Acta, 805: 354 (1984); Spanjer, H. H., van Derkel, T. J. C., Scherphof, G. L. and Kempen, H. J. M., Biochim. Biophys. Acta, 816: 396 (1985)].

따라서, 본 발명의 발명자들도 이에 대한 연구를 거듭한 결과, pH에 민감한 모든 조성에 갈락토스잔기를 함유한 지질, 즉 갈락토세레브로사이드 및 락토세레브로사이드 등의 지질을 함유시켜 간세포와 암세표를 동시에 표적할 수 있는 리포좀을 제조하였다.Accordingly, the inventors of the present invention have repeatedly studied the results, and hepatic cells and cancer table containing lipids containing galactose residue in all pH-sensitive compositions, that is, lipids such as galactoserebroside and lactocerebroside. Liposomes were prepared that can target simultaneously.

결구, 본 발명의 목적은 pH에 민감한 모든 조성에 갈락토스 잔기를 붙여 간세포 및 암세포를 동시에 표적할 수 있는 리포좀의 제조방법에 있다.Accordingly, an object of the present invention is to prepare a liposome capable of simultaneously targeting hepatocytes and cancer cells by attaching galactose residues to all pH-sensitive compositions.

본 발명에 있어서는 갈락토스 잔기를 이용해 간조직을 표적하기 위해, 전술한 pH에 민감한 리포좀 조성에 8 내지 10몰%의 갈락토세레브로사이드(galactocerebroside) 또는 락토세레브로사이드(lactocerebroside)를 첨가시켜 pH에 따른 민감도 변화와 간세포를 표적할 수 있는 능력을 조사하였다. pH에 민감한 리포좀으로 암세포를 표적하고, 이들 조성에 갈락토스 잔기를 함유시켜 간조직을 표적할 수 있기 때문에, pH에 민감한 리포좀 조성에 8 내지 10몰%의 갈락토스 잔기가 함유된 리포좀의 조성으로 간조직과 암세포를 동시에 표적할 수 있어, 이들 조성은 간암치료를 위한 좋은 모델이 된다. 따라서, 이들 조성으로 이루어진 리포좀에 항암약물을 포획하면 간조직의 암세포에 선택적으로 전달하여 항암약물의 부작용을 줄일 수 있고, 치료효과를 높일 수 있다. 또한, 조직을 표적할 수 있는 리포좀으로 다른 조직에 표적하여 같은 효과를 기대할 수 있어 간암 뿐만 아니라 다른 조기의 암치료를 위한 좋은 모델이 될 수 있고, 간조직에 외부 DNA를 전달하는 모델로 사용이 가능하다.In the present invention, in order to target liver tissue using galactose residues, 8-10 mol% of galactocerebroside or lactocerebroside is added to the pH-sensitive liposome composition to pH. The sensitivity change and the ability to target hepatocytes were investigated. Since cancer cells can be targeted with a liposome that is sensitive to pH, and galactose residues can be contained in these compositions, the liver tissue can be targeted by the composition of liposomes containing 8 to 10 mol% of galactose residues in the pH-sensitive liposome composition. Targeting cancer cells at the same time, these compositions are a good model for liver cancer treatment. Therefore, by capturing anticancer drugs in liposomes consisting of these compositions can be delivered to cancer cells of liver tissue selectively to reduce the side effects of anticancer drugs, can increase the therapeutic effect. In addition, liposomes that can target tissues can be used to target other tissues and expect the same effect, which can be a good model for not only liver cancer but also other early cancer treatments, and can be used as a model for delivering external DNA to liver tissues. It is possible.

본 발명을 기술하는데 사용된 약어 및 원어는 다음과 같다 :Abbreviations and source words used to describe the invention are as follows:

* CTL : 세포독성-T 임파세포(cytotoxic-T lymphocytes)* CTL: Cytotoxic-T lymphocytes

* DPPA : 디팔미토일포스파티딜산(dipalmitoylphosphatidic acid)DPPA: dipalmitoylphosphatidic acid

* DOPA : 디올레일포스파티딜산(dioleoylphosphtidic acid)DOPA: Dioleylphosphatidic acid

* PE : 포스파티딜에탄올아민(phosphatidyl ethanolamine)* PE: phosphatidyl ethanolamine

* DOPE : 디올레일포스파티딜에탄올아민(dioleoyl phosphatidyl ethanolami* DOPE: dioleoyl phosphatidyl ethanolami

ne)ne)

* DPG : 디팔미토일-sn-글리세롤(dipalmitoyl-sn-glycerol)DPG: dipalmitoyl-sn-glycerol

* DOG : 디올레일-sn-글리세롤(dioleoyl-sn-glycerol)DOG: Dioleyl-sn-glycerol

* MLV : 다층막 리포좀(multilamellar vesicle)* MLV: multilamellar vesicle

* SUV : 소형 단층막 리포좀(small unilamellar vesicle)* SUV: small unilamellar vesicle

* FTV : 동결-해동 리포좀(freezing-thawing vesicle)FTV: freezing-thawing vesicles

* SPLV : 안정한 다중층막 리포좀(stable pulrilamellar vesicle)* SPLV: Stable pulrilamellar vesicle

* BPB : 브로모페놀블루(bromophenol blue)* BPB: bromophenol blue

* ANTS : 8-아미노나프탈렌-1,3,6-트리설폰산 이중나트륨염(8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt)ANTS: 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt

* DPX : p-크실렌 비스(피리디늄)브로마이드(p-xylene bis(pyridinium)bro* DPX: p-xylene bis (pyridinium) bromide (p-xylene bis (pyridinium) bro

mide)mide)

* POPE : 포스파티딜에탄올아민-β-올레일-γ-팔미토일(phosphatidylethanolamine-β-oleoyl-γ-palmitoyl)* POPE: phosphatidylethanolamine-β-oleyl-γ-palmitoyl (phosphatidylethanolamine-β-oleoyl-γ-palmitoyl)

이하, 본 발명에 도입된 여러가지 방법들에 대하여 설명한다.Hereinafter, various methods introduced in the present invention will be described.

리포좀의 제조방법Method for preparing liposomes

(1) MLV의 제조(1) MLV Manufacturing

인지질을 유리병(glass vial)에 넣어 유기용매에 용해시킨 후 질소가스를 불어넣어 유리병내에 얇은 막을 형성시키고, 포획시킬 약물, 형광물질 또는 펩타이드를 녹인 완충용액(pH 8.0)을 넣은 다음, 인지질의 상전이 온도 근처인 37 내지 40℃에서 충분히 수화시킨 후 강하게 교반하여 중첩된 다층막 리포좀(MLV)을 제조한다.Phospholipids were dissolved in an organic solvent in a glass vial, and nitrogen gas was blown to form a thin film in the vial, and a buffer solution (pH 8.0) in which the drug, fluorescent substance or peptide to be captured was dissolved, was added thereto. After sufficiently hydrated at 37 to 40 ° C. near the phase transition temperature of, the mixture was vigorously stirred to prepare a superposed multilayer membrane liposome (MLV).

(2) SUV 및 FTV의 제조(2) manufacturing of SUVs and FTVs

이미 만들어진 MLV를 초음파분쇄기(sonicator)를 이용하여 소형 단층막 리포좀(SUV)을 제조한다. 이렇게 하여 제조된 SUV를 상온에서 2 내지 12시간 동안 방치한 후, 이를 액체질소로 급격히 냉동시키고, 다시 상온에서 천천히 해동한다. 이러한 과정을 3 내지 4회 반복하여 동결-해동 리포좀(FTV)을 제조한다.The prepared MLVs are made of small monolayer membrane liposomes (SUVs) using a sonicator. The SUV thus prepared is left at room temperature for 2 to 12 hours, then rapidly frozen with liquid nitrogen, and then thawed slowly at room temperature. This process is repeated 3-4 times to prepare freeze-thaw liposomes (FTV).

(3) SPLV의 제조(3) manufacture of SPLV

안정한 다중층막 리포좀(SPLV)은 인지질을 에테르 용액에 용해시켜 완충용액을 첨가하고 초음파분쇄하여 안정한 에멀젼을 만든 다음 단계별로 감압하여 에테르를 제거하면서 제조한다.Stable multilayer membrane liposomes (SPLV) are prepared by dissolving phospholipids in ether solution, adding a buffer solution, pulverizing ultrasonically to form a stable emulsion, and then depressurizing stepwise to remove ether.

pH 민감도의 측정Measurement of pH Sensitivity

리포좀내에 12.5mM의 8-아미노나프탈렌-1,3,6-트리설폰산 이중나트륨염(ANTS), 45mM의 p-크실렌비스(피리디늄)브로마이드(DPX), 68mM NaCl 및 10mM HEPES 완충용액(pH 8.0)을 포획시키고, 포획되지 않은 ANTS와 DPX는 세파덱스 G-50컬럼(1×20㎝)을 통과시켜 리포좀 용액만을 모아서 실험에 사용한다. 리포좀내의 인지질 농도는 바스코브스키(Vaskovsky)의 방법으로 측정한다[참조:Vaskovsky, V. E., Kostetsky, E. Y. and Vasendin, I. M., J. Chromatogr., 114 : 129(1975)].12.5 mM 8-aminonaphthalene-1,3,6-trisulfonic acid bisodium salt (ANTS), 45 mM p-xylenebis (pyridinium) bromide (DPX), 68 mM NaCl and 10 mM HEPES buffer (pH) in liposomes 8.0) and uncaptured ANTS and DPX were passed through Sephadex G-50 column (1 × 20 cm) to collect only liposome solution and used for the experiment. Phospholipid concentrations in liposomes are measured by the method of Vaskovsky (Vaskovsky, V. E., Kostetsky, E. Y. and Vasendin, I. M., J. Chromatogr., 114: 129 (1975)).

pH 민감도 실험에서 컬럼을 통과시킨 후 형광의 세기를 '0% 누출(leakage)'이라 하고, 트리톤 X-100(Triton X-100)으로 리포좀 용액을 파괴시키고 난 후 얻어지는 형광의 세기를 '100% 누출'이라 하여, 각각의 pH값(7.5, 6.9, 6.4, 5.9, 5.4, 4.9 및 4.5)을 가지고 있는 완충용액 2ml에 농축된 리포좀(30μM)을 넣어서 상온과 37℃에서 30분간 반응시킨 후,나타내는 형광의 세기를 관찰하여 pH 민감도를 측정한다. 이 때, 형광의 측정은 분광형광계(spectrofluorometer, FP-777, JASCO, Japan)를 사용하여 여기파장(excitation) 360nm와 발산파장(emission) 545nm에서 측정한다.In the pH sensitivity experiment, the intensity of fluorescence after passing through the column is called '0% leakage' and the intensity of fluorescence obtained after destroying the liposome solution with Triton X-100 is '100%'. Leak ', concentrated liposome (30μM) in 2ml of the buffer solution having each pH value (7.5, 6.9, 6.4, 5.9, 5.4, 4.9 and 4.5) and reacted for 30 minutes at room temperature and 37 ℃, PH sensitivity is measured by observing the intensity of fluorescence shown. In this case, fluorescence is measured at an excitation wavelength of 360 nm and an emission wavelength of 545 nm using a spectrofluorometer (FP-777, JASCO, Japan).

투과성(permeability)의 측정Measurement of permeability

리포좀내에 ANTS/DPX를 포획시키고, pH 7.4의 HEPES 완충용액에 4℃와 37℃의 온도조건에 보관하면서 리포좀내에서 빠져나오는 ANTS/DPX의 양을 시간별로 형광의 세기를 관찰하여 투과성을 측정한다.Capture ANTS / DPX in liposomes, and measure the permeability by observing the intensity of fluorescence over time by measuring the amount of ANTS / DPX exiting the liposomes while keeping them at 4 ° C and 37 ° C in HEPES buffer at pH 7.4. .

혈장(plasma)과의 상호작용Interaction with Plasma

리포좀 용액의 생체내 안정성을 검토하기위해 사람의 혈장을 추출하여 리포좀의 3배 정도의 양을 리포좀 용액에 첨가하여 리포좀내에서 빠져나오는 ANTS/DPX의 양을 분광형광계(spectrofluorometer, JASCO, FP-777, JAPAN)를 이용하여 시간별로 관찰하여 측정한다. 이 때, 혈장이 존재하는 상태인 37℃에서 리포좀에서 빠져나오는 ANTS의 양을 0시간때의 형광의 세기와 비교하여 계산한다.In order to examine the stability of liposome solution in vivo, human plasma was extracted and 3 times the amount of liposome was added to liposome solution and the amount of ANTS / DPX released from liposome was measured by spectrofluorometer (JASCO, FP-777). , JAPAN) to observe by time and measure. At this time, the amount of ANTS released from the liposome at 37 ° C. in the presence of plasma is calculated by comparing the intensity of fluorescence at 0 hours.

간세표 표적 실헌Agenda target

pH에 민감한 리포좀의 조성에 8몰%의 갈락토세레브로사이드와 플로오르씬 이소티오시아네이트(fluorescein isothiocyanate : FITC)가 표지된 인지질을 0.1 내지 0.2몰%를 함유시켜 표적리포좀을 만들고, 이를 쥐(mouse)의 꼬리 정맥에 주사하여 리포좀의 생체내 분포를 조사한다. 리포좀을 주사하고 2시간 후 각 장기를 절취하여 균질화한 후, 각 장기의 FITC의 양을 분광형광계 (JASCO FP-777)(Ex : 485, Em : 520nm)를 사용하여 측정한다.A target liposome was prepared by containing 0.1-0.2 mol% of phospholipids labeled with 8 mol% of galactoserebroside and fluorescein isothiocyanate (FITC) in the composition of pH-sensitive liposomes. In vivo distribution of liposomes is examined by injection into the tail vein of the mouse. Two hours after injecting liposomes, each organ was excised and homogenized, and the amount of FITC in each organ was measured using a spectrofluorometer (JASCO FP-777) (Ex: 485, Em: 520 nm).

이하, 실시예에 의하여 본 발명을 보다 구체적으로 설명하고자 한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

이들 실시예는 오로지 본 발명을 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 국한되는 것이 아니라는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples according to the gist of the present invention.

[실시예 1]Example 1

갈락토스 잔기를 이용해 표적하기 위해, 전술한 pH에 민감한 리포좀 조성에 8 내지 10몰%의 갈락토세레브로사이드(galactocerebroside)를 첨가시켜 pH에 따른 민감도 변화와 간세포를 표적할 수 있는 능력을 조사하였다. PE/DPPA ; POPE/CHOH, DOG 및 DPPA ; DOPE/DPG 및 CHOH 등 여러가지 양쪽성 물질을 6 : 4 내지 8 : 2, 바람직하게는 7 : 3의 몰 비율로 혼합하여 전술한 리포좀 제조방법에 따라 제조된 FTV, SPLV 및 MLV의 각 리포좀내로 포획되는 물질의 양을 측정하여 비교하였다. 그 결과, FTV로 만들어진 리포좀이 가장 우수한 안정성과 포획을 나타내었으며, FTV를 가지고 pH 민감도를 측정한 결과, 37℃에서는 pH에 따라서 많은 누출을 보였다[참조 : 제1도].In order to target using galactose residues, 8 to 10 mol% of galactocerebroside was added to the above-described pH-sensitive liposome composition to investigate the change in sensitivity according to pH and the ability to target hepatocytes. PE / DPPA; POPE / CHOH, DOG and DPPA; Various amphoteric substances such as DOPE / DPG and CHOH are mixed in a molar ratio of 6: 4 to 8: 2, preferably 7: 3, and captured into each liposome of FTV, SPLV and MLV prepared according to the liposome preparation method described above. The amount of material to be measured was compared and compared. As a result, liposomes made of FTV showed the best stability and capture, and the pH sensitivity was measured with FTV.

DPPA이 함량을 20%로 줄이더라고, pH에 대한 민감도가 다소 떨어지지만 유사한 결과를 얻었으며, DOPA를 사용했을 경우에는 중성 pH에서도 많은 누출을 보여 안정성에 문제가 있으므로 이 조성으로 사용할 경우에는 안정성을 보완해 하였다. DPPA 대신에 DPG 또는 DOG를 사용했을 경우에도, pH 감소에 따라 누출되는 정도가 증가하는 것을 확인하였으나, DOG의 경우에는 중성 pH 부근에서도 많은 누출을 보이고 있어 DOPA 와 마찬가지로 안정성에 문제가 있었다. CHOH를 사용했을 경우에는 중성 pH에서 거의 누출이 일어나지 않고 암세포와 같은 pH 부근에서 급격한 누출을 보였다. 또한, 갈락토세레브로사이드가 존재할 때, pH 6.5 근처에서는 pH에 대한 민감도는 좋으나, 그 이하로 떨어질때는 갈락토세레브로사이드가 없을 때보다 다소 떨어졌다. 그러나, CHOH 를 함유하고 있는 경우에는 갈락토세레브로사이드가 있을 때 pH민감도는 증가하므로, 암세포와 같은 환경인 pH 6.5 내지 6.0, 37℃의 조건을 접하면 많은 누출이 야기되어 암세포를 표적할 수 있을 것으로 추측되었다. 따라서, pH 민감도 측정 결과 우수한 결과를 나타낸 것은 POPE/DPPA, POPE/CHOH 또는 DOPE/CHOH 등을 지적할 수 있었다.Although DPPA reduced the content to 20%, the sensitivity to pH was slightly decreased, but similar results were obtained.When DOPA was used, it showed a lot of leakage even at neutral pH, causing stability problems. Supplemented. Even when using DPG or DOG instead of DPPA, it was confirmed that the degree of leakage increases with the decrease in pH, but DOG showed a lot of leakage even near the neutral pH, so there was a problem in stability like DOPA. When CHOH was used, there was almost no leakage at neutral pH, and a rapid leakage was observed near the pH such as cancer cells. In addition, when galactoserebroside is present, the sensitivity to pH is good near pH 6.5, but falls below that when galactoserebroside is not present. However, in the case of containing CHOH, the pH sensitivity increases when galactoserebroside is present. Therefore, when exposed to conditions such as cancer cells, pH 6.5 to 6.0 and 37 ° C., many leaks may occur and target cancer cells. It was supposed to be. Therefore, it was possible to point out that POPE / DPPA, POPE / CHOH or DOPE / CHOH, etc. that showed excellent results as a result of pH sensitivity measurement.

[실시예 2]Example 2

갈락토세레브로사이드 대신에 락토세레브로사이드(lactocerebroside)를 첨가시키는 것을 제외하고는 실시예 1과 동일하게 리포좀을 제조하였다.Liposomes were prepared in the same manner as in Example 1 except for adding lactocerebroside instead of galactoserebroside.

[실시예 3]Example 3

실시예 1에서 제조된 리포좀을 4℃와 37℃에서 보관하면서, 리포좀내에서 빠져나오는 ANTS/DPX의 양을 시간별로 측정했다. 그 결과, 4℃에 보관했을때는 오랜시간 동안 보관할 수 있지만(제2(a)도), 37℃에서는 매우 빠른 누출을 보였고, 리포좀의 인지질 조성에 따라서 빠져나오는 속도에 차이를 보였다(제2(b)도). DOPA와 DOG를 사용했을 경우에는 pH 민감도에서 볼 수 있듯이 다른 조성에 비해 매우 빠른 누출을 야기시켰다.While storing the liposomes prepared in Example 1 at 4 ° C and 37 ° C, the amount of ANTS / DPX escaping from the liposomes was measured over time. As a result, when stored at 4 ℃ can be stored for a long time (second (a)), but at 37 ℃ showed a very fast leak, depending on the phospholipid composition of liposomes showed a difference in the exit rate (second ( b) degrees). The use of DOPA and DOG resulted in very rapid leaks compared to other compositions, as shown by pH sensitivity.

인지질의 경우에는 POPE를 사용하는 것이 가장 안정성이 우수하였고, 인지질에 첨가되는 양쪽성 물질로는 DPPA, DPG, CHOH를 사용하는 것이 안정성이 우수하였다. 따라서, 가장 우수한 안정성을 갖는 조성으로는 POPE/CHOH 또는 POPE/DPG라고 할 수 있다.In the case of phospholipids, the use of POPE was the most stable, and the use of DPPA, DPG, CHOH as the amphoteric substance added to the phospholipids was excellent. Therefore, the composition having the highest stability may be referred to as POPE / CHOH or POPE / DPG.

[실시예 4]Example 4

혈장에 존재하는 상태에서 리포좀의 안정성을 살펴본 결과, 양쪽성 물질로서 지방산을 사용한 리포좀보다 이중사슬 구조를 지닌 DPG 및 CHOH를 사용한 것이 안정성이 우수하였다[참조 : 제3도]. 이는 일반적인 지방산은 혈장에 존재하는 알부민에 의하여 흡수되는 바, 이중사슬 구조를 가지는 DPG 및 CHOH를 사용했을때는 알부민의 작용이 거의 일어나지 않아 혈장내에서 오래 유지할 수 있었다고 볼 수 있었다. 제3도에서 보듯이, 혈장이 존재하는 상태에서 24시간 후의 누출을 비교했을 때 CHOH를 사용한 리포좀에서 가장 안정하였다.As a result of examining the stability of liposomes in the presence of plasma, the use of DPG and CHOH having a double-chain structure was superior to that of liposomes using fatty acids as amphoteric substances (see FIG. 3). This is because general fatty acids are absorbed by albumin present in plasma. When DPG and CHOH having a double-chain structure are used, albumin almost does not occur, and thus it can be maintained in plasma. As shown in Figure 3, the most stable in liposomes using CHOH when comparing the leakage after 24 hours in the presence of plasma.

혈장이 존재하는 상태의 안정성에도 투과성 측정 결과와 동일한 결과를 얻었는데, pH 민감도가 큰 경우의 리포좀에서 안정성이 떨어졌다. 혈장내의 안정성에서는 POPE/DPG, POPE/CHOH의조성이 가장 우수한 것으로 지적되었다.The same results as in the measurement of permeability were obtained for the stability in the presence of plasma, but the stability was poor in liposomes with high pH sensitivity. It was pointed out that the composition of POPE / DPG and POPE / CHOH was the best in stability in plasma.

[실시예 5]Example 5

실시예 1에서 제조된 리포좀에서 간세포 표적능력을 생체외 및 생체내에서 측정하였다. 이들 표적조성으로 생체외 실험에서는 간세포주를 이용하여 흡수되는 정도를 비교하였을 때, 표적 리포좀이 훨씬 많이 흡수되었다. 생체내 실험에서는 쥐(mouse)의 꼬리정맥에 주사 2시간 후에 각 장기를 절취하여 비교하였을 때, 다른 조직에 비해서도 간세포에 훨씬 많이 흡수되엇다. 간세포의 경우에는 70% 이상이 들어갔으며, 혈장내에는 10% 정도 존재하고 신장에 15% 정도가 존재하는 것을 알았다[참조 : 제4도]. 따라서, pH에 민감한 리포좀 조성에 8 내지 10몰% 갈락토세레브로사이드가 함유된 표적조성으로 된 리포좀의 경우 pH에도 민감하고, 간조직을 표적할 수 있는 새로운 이중 표적 리포좀이라는 것을 알 수 있었다.Hepatocyte targetability was measured in vitro and in vivo in the liposomes prepared in Example 1. In these experiments, the target liposomes were absorbed much more when compared to the extent of absorption using hepatocytes in vitro. In vivo experiments showed that the organs were excised into the tail vein of the mouse 2 hours after injection, and compared to other tissues. In the case of hepatocytes, more than 70% were found, about 10% in plasma and about 15% in kidney [Ref. 4]. Therefore, it can be seen that the target composition liposomes containing 8 to 10 mol% galactoserebroside in the pH-sensitive liposome composition are new dual target liposomes that are sensitive to pH and can target liver tissue.

이상에서 상세히 설명하고 입증하였듯이, pH]에 민감한 모든 리포좀의 조성에 8 내지 10몰% 갈락토세레브로사이드 또는 락토세레브로사이드를 함유시켰을 때, 암세포와 같은 환경에서 많은 누출을 야기시키고, 간세포를 표적할 수 있어 간세포의 암조직을 표적하는 이중표적 리포좀을 제조했다. 이들 리포좀으로 간암 뿐만 아니라, 다른 조직을 표적하여 다른 조직의 암을 치료하는 좋은 모델이 될 것이다.As described and demonstrated in detail above, when the composition of all liposomes sensitive to pH] contains 8 to 10 mol% galactose cerbroside or lactocerebroside, it causes a lot of leakage in the environment such as cancer cells, A dual target liposome was prepared that could be targeted to cancer tissue of hepatocytes. These liposomes will be a good model for treating cancer of other tissues by targeting other tissues as well as liver cancer.

Claims (6)

(ⅰ) 포스파티딜에탄올아민-β-올레일-γ-팔미토일(POPE) 및 (ⅱ) 디팔미토일포스파티딜산(DPPA) 및 골레스테롤헤미석시네이트(CHOH)로 구성된 그룹으로부터 선택되는 1종의 화합물을 6 : 4 내지 8 : 2의 몰비율로 혼합하고, 이에 대해 8 내지 10몰%의 갈락토스기를 함유하는 지질을 추가로 혼합하여, 간세포 및 암세포를 동시에 표적할 수 있는 리포좀을 제조하는 방법.(Iii) one selected from the group consisting of phosphatidylethanolamine-β-oleyl-γ-palmitoyl (POPE) and (ii) dipalmitoylphosphatidyl acid (DPPA) and cholesterol hemisuccinate (CHOH) A method of preparing a liposome capable of simultaneously targeting hepatocytes and cancer cells by mixing the compound at a molar ratio of 6: 4 to 8: 2, and further mixing lipids containing 8 to 10 mol% of galactose groups thereto. 제1항에 있어서, 갈락토스기를 함유하는 지질은 갈락토세레브로사이드 또는 락토세레브로사이드인 것을 특징으로 하는 방법.The method of claim 1, wherein the lipid containing a galactose group is galactosereveloside or lactocerebroside. 제1항에 있어서, 리포좀은 다층막 리포좀(MLV), 소형 단층막 리포좀(SPLV) 및 동결-해동 리포좀(FTV)으로 구성된 그룹으로부터 선택된 1종임을 특징으로 하는 방법.The method of claim 1, wherein the liposome is one selected from the group consisting of multilayer membrane liposomes (MLV), small monolayer membrane liposomes (SPLV), and freeze-thaw liposomes (FTV). 포스파티딜에탄올아민-β-올레올-γ-팔미토일(POPE) 및 콜레스테롤헤미석시네이트(CHOH)을 6 : 4 내지 8 : 2의 몰비율로 혼합하고, 이에 대해 8 내지 10몰%의 갈락토스기를 함유하는 지질을 추가로 혼합하여, 간세포 및 암세포를 동시에 표적할 수 있는 리포좀을 제조하는 방법.Phosphatidylethanolamine- [beta] -oleol- [gamma] -palmitoyl (POPE) and cholesterol hemisuccinate (CHOH) were mixed at a molar ratio of 6: 4 to 8: 2 with respect to 8 to 10 mol% of galactose groups A method for producing a liposome capable of simultaneously targeting the liver cells and cancer cells by further mixing the containing lipids. 제4항에 있어서, 갈락토스기를 함유하는 지질은 갈락토세레브로사이드 또는 락토세레브로사이드인 것을 특징으로 하는 방법.5. The method of claim 4, wherein the lipid containing galactose group is galactosereveloside or lactocerebroside. 제4항에 있어서, 리포좀은 다층막 리포좀(MLV), 소형 단층막 리포좀(SPLV) 및 동결-해동 리포좀(FTV)으로 구성된 그룹으로부터 선택된 1종임을 특징으로 하는 방법.The method of claim 4, wherein the liposome is one selected from the group consisting of multilayer membrane liposomes (MLV), small monolayer membrane liposomes (SPLV), and freeze-thaw liposomes (FTV).
KR1019930018391A 1993-09-13 1993-09-13 A process for preparing ph-sensitive liposome targetting liver cell Expired - Fee Related KR970001650B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930018391A KR970001650B1 (en) 1993-09-13 1993-09-13 A process for preparing ph-sensitive liposome targetting liver cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930018391A KR970001650B1 (en) 1993-09-13 1993-09-13 A process for preparing ph-sensitive liposome targetting liver cell

Publications (2)

Publication Number Publication Date
KR950007836A KR950007836A (en) 1995-04-15
KR970001650B1 true KR970001650B1 (en) 1997-02-13

Family

ID=19363456

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930018391A Expired - Fee Related KR970001650B1 (en) 1993-09-13 1993-09-13 A process for preparing ph-sensitive liposome targetting liver cell

Country Status (1)

Country Link
KR (1) KR970001650B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059262A3 (en) * 2009-11-13 2011-10-27 경북대학교 산학협력단 Uses of apoptotic cell-targeting peptides, label substances and liposomes containing a therapeutic agent for preventing, treating or therapeutically diagnosing apoptosis-related diseases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011059262A3 (en) * 2009-11-13 2011-10-27 경북대학교 산학협력단 Uses of apoptotic cell-targeting peptides, label substances and liposomes containing a therapeutic agent for preventing, treating or therapeutically diagnosing apoptosis-related diseases

Also Published As

Publication number Publication date
KR950007836A (en) 1995-04-15

Similar Documents

Publication Publication Date Title
Nayar et al. Generation of pH-sensitive liposomes: use of large unilamellar vesicles containing N-succinyldioleoylphosphatidylethanolamine
Kirpotin et al. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphosphatidylethanolamine vesicles triggered by cleavage of surface-grafted poly (ethylene glycol)
Ishida et al. Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells
Simoes et al. On the mechanisms of internalization and intracellular delivery mediated by pH-sensitive liposomes
Malik Solubilization and interaction studies of bile salts with surfactants and drugs: a review
Huang et al. Thiocholesterol-based lipids for ordered assembly of bioresponsive gene carriers
AU718460B2 (en) Ionophore-mediated liposome loading of weakly basic drug
US6177059B1 (en) GPIb-lipid complex and uses thereof
Zhang et al. Pharmaco attributes of dioleoylphosphatidylethanolamine/cholesterylhemisuccinate liposomes containing different types of cleavable lipopolymers
Silvander et al. Effects of PEG-lipids on permeability of phosphatidylcholine/cholesterol liposomes in buffer and in human serum
Bergstrand et al. Interactions between pH-sensitive liposomes and model membranes
AU2013268379B2 (en) pH-sensitive carrier and method for production thereof, pH-sensitive medicine and pH-sensitive pharmaceutical composition each containing said carrier, and culture method using said pH-sensitive medicine or said pH-sensitive pharmaceutical composition
Eastman et al. Influence of phospholipid asymmetry on fusion between large unilamellar vesicles
CA2362485A1 (en) Encapsulation of bioactive complexes in liposomes
Straubinger [28] pH-sensitive liposomes for delivery of macromolecules into cytoplasm of cultured cells
Caracciolo et al. Transfection efficiency boost by designer multicomponent lipoplexes
Frézard et al. Permeability of lipid bilayer to anthracycline derivatives. Role of the bilayer composition and of the temperature
Aleandri et al. Fusion of gemini based cationic liposomes with cell membrane models: implications for their biological activity
JP5241711B2 (en) Amphiphilic molecule, molecular assembly containing the same, and use thereof
Kono et al. Design of fusogenic liposomes using a poly (ethylene glycol) derivative having amino groups
US6316260B1 (en) Tetraether lipid derivatives and liposomes and lipid agglomerates containing tetraether lipid derivatives, and use thereof
KR970001650B1 (en) A process for preparing ph-sensitive liposome targetting liver cell
JP2003514843A (en) Modular targeted liposome delivery system
Wasankar et al. Liposome as a drug delivery system-a review
Xu et al. Preparation and characterization of stable pH-sensitive vesicles composed of α-tocopherol hemisuccinate

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

St.27 status event code: A-2-2-Q10-Q13-nap-PG1605

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

S14-X000 Exclusive voluntary license recorded

St.27 status event code: A-4-4-S10-S14-lic-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

S16-X000 Recordation of exclusive voluntary license cancelled

St.27 status event code: A-4-4-S10-S16-lic-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

FPAY Annual fee payment

Payment date: 20080107

Year of fee payment: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20090214

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20090214

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000