[go: up one dir, main page]

KR960014510B1 - Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic - Google Patents

Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic Download PDF

Info

Publication number
KR960014510B1
KR960014510B1 KR1019940012854A KR19940012854A KR960014510B1 KR 960014510 B1 KR960014510 B1 KR 960014510B1 KR 1019940012854 A KR1019940012854 A KR 1019940012854A KR 19940012854 A KR19940012854 A KR 19940012854A KR 960014510 B1 KR960014510 B1 KR 960014510B1
Authority
KR
South Korea
Prior art keywords
less
hot rolling
iron loss
rolling
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019940012854A
Other languages
Korean (ko)
Other versions
KR960001147A (en
Inventor
박래은
박종태
우종수
Original Assignee
김만제
포항종합제철주식회사
신창식
재단법인산업과학기술연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김만제, 포항종합제철주식회사, 신창식, 재단법인산업과학기술연구소 filed Critical 김만제
Priority to KR1019940012854A priority Critical patent/KR960014510B1/en
Publication of KR960001147A publication Critical patent/KR960001147A/en
Application granted granted Critical
Publication of KR960014510B1 publication Critical patent/KR960014510B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

내용 없음.No content.

Description

열간압연조건 제어에 의한 자기특성이 우수한 무방향성 전기강판 제조방법Method for manufacturing non-oriented electrical steel sheet having excellent magnetic properties by controlling hot rolling conditions

본 발명은 각종 모터 및 소형 변압기 등 전기기기의 철심 재료로 사용되는 무방향성 전기강판 제조방법에 관한 것으로서, 보다 상세하게는 열간압연조건 제어를 통한 철손이 낮고 자속밀도가 높은 무방향성 전기강판의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing non-oriented electrical steel sheet used as iron core material of electric machines such as various motors and small transformers, and more particularly, to manufacture non-oriented electrical steel sheet having low iron loss and high magnetic flux density by controlling hot rolling conditions. It is about a method.

무방향성 전기강판에 요구되는 주요 자기특성으로는 철손과 자속밀도 그리고 투자율이 있다. 이러한 자기 특성중에 일반적으로 철손과 자속밀도는 Si함량에 따라 그 특성이 상배되는 특징 때문에 Si함량을 증가시킬 경우에 철손은 낮아져 유리하나 자속밀도도 낮아져 모터와 같은 전동기는 그 효율이 떨어지게 된다. 이런 특징 때문에 수요가들은 보다 중요시되는 자성확보 및 용도에 따라 경제적인 소재를 선택하는 방법을 취해왔지만, 철손과 자속밀도 모두를 요구조건으로 만족하기엔 미흡하였다. 예를 들어 단시간 순간적으로 사용되는 소형모터나 가전기기용 소재의 경우에는 Si함량을 낮추어 자속밀도를 보다 중요시 함으로써 철손의 증가분은 어느 정도 감수해야 했다. 따라서 철손 및 자속밀도의 요구조건을 동시에 만족시켜 줄 수 있는 무방향성 전기강판의 제조방법의 개발이 요구되었다.The main magnetic properties required for non-oriented electrical steel are iron loss, magnetic flux density and permeability. Among these magnetic properties, iron loss and magnetic flux density are generally higher than Si depending on the Si content. Therefore, when the Si content is increased, the iron loss is lowered, but the magnetic flux density is also lowered. Because of these characteristics, demanders have taken the method of selecting economical materials according to the more important magnetization and use, but they are insufficient to satisfy both iron loss and magnetic flux density as requirements. For example, in the case of small motors or home electronics materials that are used for a short time, the increase in iron loss had to be tolerated by lowering the Si content to make the magnetic flux density more important. Therefore, the development of a method for manufacturing non-oriented electrical steel sheet that can satisfy the requirements of iron loss and magnetic flux density at the same time was required.

이러한 자기 특성을 갖는 무방향성 전기강판 개발 사례로서 80년대초 신일본제철에서는 뉴코어(New Core)라 명명된 고능률 무방향성 전기강판을 개발하였다. 강의 성분중 S 성분을 낮추고 Sn이 0.1% 정도 그리고 Mn을 10% 이상 첨가하여 개발된 이 재료는 전자기적 특성면에 있어서 철손은 3.0w/Kg 이하로 우수하였으나 자속밀도가 1.69 Tesla 이하 수준으로 효율면에서 미흡하였다.As an example of the development of non-oriented electrical steel sheet having such magnetic properties, in the early 80's, Nippon Steel Co., Ltd. developed a high efficiency non-oriented electrical steel sheet named New Core. This material was developed by lowering the S component of steel, adding 0.1% Sn and 10% or more of Mn. The material has excellent iron loss of less than 3.0w / Kg in terms of electromagnetic properties, but its magnetic flux density is less than 1.69 Tesla. It was insufficient in cotton.

이에 비하면 80년대 중반에 자속밀도와 투자율이 높고 동시에 철손도 낮은 RSM 27이 가와사끼제철에 의해 개발되었는데, 이는 결정립 크기와 자성에 유리한 (100)면, (110) 결정면을 잘 발달시키는 Sb를 0.05%정도 함유한 강판이었다. 이 제품은 Si이 2.1% 정도 함유된 세미프로세스(Semi-Process)로 제조되는 소지로 수요가가 열처리후 철손이 2.8w/Kg 수준이고 자속밀도는 1.72Tesla 그리고 투자율이 2500 이상인 수준을 나타내는 고급 무방향성 천기강판이다.In comparison, RSM 27, which has high magnetic flux density, high permeability, and low iron loss, was developed by Kawasaki Steel in the mid-80s, which is 0.05% for Sb, which develops (100) and (110) crystal surfaces, which favor grain size and magnetism. It was the steel plate which contained about. This product is made of semi-process containing 2.1% of Si. It is a high-quality radish with a demand of 2.8w / Kg iron loss, 1.72Tesla and magnetic permeability of 2500 or higher after heat treatment. It is a oriented steel sheet.

이후 신일본제철에서는 철손이 2.9w/Kg 수준이며, 자속밀도가 1.69Tesla인 폴리 프로세서 (Fully-Process)로 제조되는 M 43을 개발하였으나 투자율은 앞서 언급한 뉴코어와 마찬가지로 미흡한 수준을 벗어나지 못하고 있다.Since then, Nippon Steel has developed M 43, which is made of Fully-Process with iron loss of 2.9w / Kg and magnetic flux density of 1.69Tesla, but the permeability is still inconsistent with New Core mentioned above. .

이와 같이 자기특성의 향성을 위해서는 최대의 특성을 나타낼 수 있는 적정 결정립 크기를 갖게 하고 지성에 유리한 집합조직, 특히 (200)면이나 (110)면을 잘 발달시켜야 하기 때문에 무방향성 전기강판을 제조하는 방법중에는 주로 비저항을 낮추어 철손을 저감하는 원소인 Si 또는 Al를 첨가하는 방법들이 주로 사용되어 왔었다.As described above, in order to produce magnetic properties, it is necessary to have an appropriate grain size that can exhibit the maximum characteristics and to develop a texture structure that is advantageous for intellect, especially the (200) or (110) plane. Among the methods, a method of adding Si or Al, which is an element that lowers specific resistance and reduces iron loss, has been mainly used.

또한, 상기 Si 또 Al 이외에도 Sn을 첨가하는 방법이 있는데, 그 대표적인 기술로 일본 공개 특허 공보(소) 63-23262에서는 Sn이 중량%로 0.02-0.20%, 그리고 Cu가 0.1-1.0% 함유에 의하여 철손은 낮추고 자속밀도는 높이는 방법에 게재되어 있다.In addition, there is a method of adding Sn in addition to Si and Al. As a representative technique, Japanese Patent Laid-Open No. 63-23262 uses 0.02-0.20% by weight of Sn and 0.1-1.0% by weight of Cu. How to lower iron loss and increase magnetic flux density?

그러나, 이러한 성분원소를 함유하는 무방향성 전기강판의 제조방법에서는 Sn에 의한 결정립성장 억제와 열연권취온도가 750℃ 이하로 낮은 경우에는 철손은 낮아도 자속밀도는 높지 않게 되는 단점이 있다.However, in the method for producing a non-oriented electrical steel sheet containing such a component element, there is a disadvantage that the magnetic flux density is not high even if the iron loss is low when the grain growth suppression by Sn and the hot-rolling winding temperature are lower than 750 ° C.

이상과 같이 철손 및 자기특성을 개선하는 방법들은 주로 합금 원소첨가에 의한 성분계 개발의 차원에 의한 것이었고, 제조공정상의 제조조건, 특히 열간압연조건에 대하여 특별히 거론된 바가 없었다.As mentioned above, the methods for improving the iron loss and the magnetic properties were mainly based on the development of the component system by the addition of alloying elements, and there was no particular discussion on the manufacturing conditions in the manufacturing process, in particular, the hot rolling conditions.

따라서, 본 발명은 합금원소 첨가만으로서 자기특성을 향상시키는 무방향성 전기강판의 제조방법과는 달리, Sn과 같은 합금원소가 첨가된 무방향성 전기강판의 성분계를 적절히 선정하고, 열간압연조건을 제어하므로서 철손이 낮으면서도 자속밀도가 높은 무방향성 전기강판을 제공하고자 하는데, 그 목적이 있다.Therefore, the present invention, unlike the manufacturing method of the non-oriented electrical steel sheet to improve the magnetic properties by only adding the alloying elements, appropriately select the component system of the non-oriented electrical steel sheet to which the alloying elements such as Sn is added, and controls the hot rolling conditions Therefore, to provide a non-oriented electrical steel sheet having a low magnetic loss and high magnetic flux density, the purpose is to.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명은 중량%로, C:0.15% 이하, Si:1.50% 이하, Mn:0.50% 이하, P:0.05-0.10%, S:0.01% 이하, N:0.008% 이하, Cu:0.05-0.50%, Al:0.5% 이하, Sn:0.05-0.30%, 잔부 Fe 및 기타 불가피한 불순물로 조성된 강 슬라브를 1150-1250℃의 온도 범위에서 재가열한 후, 열연 단계에서 오스테나이트와 페라이트의 2상 공존 구역에서 반드시 2패스 압연을 한 다음, 페라이트역에서 마무리 열간압연을 하고, 통상의 열연판 소둔, 산세, 냉간압연 및 최종 소둔함을 특징으로 하는 열간압연조건 제어에 의한 자기특성이 우수한 무방향성 전기강판의 제조방법에 관한 것이다.In the present invention, by weight%, C: 0.15% or less, Si: 1.50% or less, Mn: 0.50% or less, P: 0.05-0.10%, S: 0.01% or less, N: 0.008% or less, Cu: 0.05-0.50% Steel slab composed of not more than 0.5% Al, 0.05-0.30% Sn, residual Fe and other unavoidable impurities, after reheating in the temperature range of 1150-1250 ° C., followed by a two-phase coexistence zone of austenite and ferrite in the hot rolling step The non-oriented electrical steel sheet having excellent magnetic properties by controlling hot rolling conditions, which must be subjected to two-pass rolling at 0, followed by finishing hot rolling in a ferritic zone, followed by ordinary hot rolled sheet annealing, pickling, cold rolling and final annealing. It relates to a manufacturing method of.

이하, 본 발명 강 성분 및 조성의 수치 한정에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the numerical limitation of the steel component and composition of this invention is demonstrated in detail.

상기 C는 Si-C 조성도상에서 C 함량의 증가에 따라 오스테나이트상역이 넓혀져 높은 Si 함량 범위에서도 오스테나이트상역이 존재하게 되나, C 함량이 높을 경우에는 별도의 탈탄 공정을 필히 거쳐야 한다. 또 C 함량에 따라 오스테나이트상과 페라이트상의 경계구역에서 두상이 공존하는 혼합상 구역의 범위에 영향을 미치는 원소이며, 철손을 높이는 유해한 성분으로 자기시효의 원인이 되며, 또한, 탈탄 공정의 생략을 위해서는 0.015% 이하로 하는 것이 바람직하다.The C austenite phase is widened in accordance with the increase of the C content in the Si-C composition, so that the austenite phase exists even in a high Si content range, but if the C content is high, a separate decarburization process must be performed. It is an element that affects the range of the mixed phase zone where two phases coexist in the boundary region of austenite phase and ferrite phase depending on the C content. It is a harmful component that raises the iron loss and causes self-aging. In order to achieve this, the amount is preferably 0.015% or less.

상기 Si는 주로 비저항을 낮추어 철손을 감소시키는 원소로서, 강중의 Si 함량이 증가됨에 따라 철손이 낮아져 유리하지만, 자속밀도가 동시에 낮아지므로 그 함량을 1.5% 이하로 제한함이 바람직하다.The Si is an element mainly to lower the specific resistance to reduce the iron loss, the iron loss is advantageous as the Si content of the steel is increased, but the magnetic flux density is lowered at the same time, it is preferable to limit the content to 1.5% or less.

상기 Mn은 열연시의 취성 파괴를 방지하고, Al 함량의 저하에 의한 강의 고유 저항을 보상하여 철손을 저하시키기 위함이나 0.50% 이상이 되면 제품 제조 단가가 상승되므로 0.5% 이하로 함이 바람직하다.The Mn is to prevent brittle fracture at the time of hot rolling, to compensate for the intrinsic resistance of the steel due to the decrease in Al content, but to reduce the iron loss, but when the product manufacturing cost is increased to 0.50% or more, the Mn is preferably 0.5% or less.

상기 P는 비저항을 증가시켜 철손을 감소시키는 주요 원소이나, 0.05% 이하시에는 집합조직 형성에 불리하며, 0.10%를 초과하면 냉간압연이 곤란하고, 결정립 성장을 해치게 되므로 0.05-0.10% 범위로 함이 바람직하다.The P is a major element that increases the resistivity to reduce the iron loss, but when less than 0.05%, it is disadvantageous in forming the aggregate, and if it exceeds 0.10%, cold rolling is difficult and the grain growth is impaired, so the range is 0.05-0.10%. This is preferred.

상기 S는 Mn등을 적당량 함유시켜 슬라브 재가열시 가열온도를 비교적 저온으로 유지하여 MnS를 결정립 성장에 무해한 형태로 하기 위해 0.01% 이하로 함이 바람직하다.S is preferably 0.01% or less in order to contain a suitable amount of Mn to maintain the heating temperature at a relatively low temperature when reheating the slab to form MnS harmless to grain growth.

상기 N은 제강단계에서 함유되는 양을 낮게 하면 좋지만 규소강중의 질소함량 수준을 10 ppm 이하로 관리하는 것은 곤란하고 통상 30ppm을 상회하게 되므로 0.008% 이하로 한다.The N is good to lower the amount contained in the steelmaking step, but it is difficult to manage the nitrogen content level of the silicon steel to 10 ppm or less, and usually exceeds 30 ppm, so it is 0.008% or less.

상기 Cu는 내식성의 증가와 자성에 유리한 집합조직을 발달시키고 비저항을 증가시키는 원소로서, 미세한 석출물을 형성하여 결정립 성장과 자성에 유리한 집합조직의 발달을 저해하는 S를 조대한 CuS의 형태로 석출시킴으로써 자성이 향상되는 효과를 나타내는데, 그 함유량이 0.05% 이하에서는 자성이 저조하며, 0.5%이상에서는 열연전 표면 균열을 발생할 수 있기 때문에 Cu의 함량 범위를 0.05%-0.50%로 하는 것이 바람직하다. 상에 Al은 Si과 같이 비저항을 낮추어 철손을 저감시키는 중요한 원소이지만 강중에 N과 결합하여 AlN을 형성하므로 재가열시 AlN이 결정성장에 무해한 형태로 석출하도록 Al의 함량은 0.50% 이하로 제한함이 바람직하다.The Cu is an element that develops texture that is beneficial to corrosion resistance and magnetism and increases specific resistance. By forming fine precipitates, Cu is precipitated in the form of coarse CuS that inhibits grain growth and development of texture that is good for magnetism. It shows the effect of improving the magnetism, but the content of Cu is preferably 0.05% -0.50% because the magnetic content is low at 0.05% or less, and the surface cracks may occur before hot rolling at 0.5% or more. Al is an important element to reduce iron loss by lowering specific resistance like Si, but it combines with N in steel to form AlN, so the Al content is limited to 0.50% or less so that AlN precipitates in a form harmless to crystal growth when reheated. desirable.

상기 Sn은 소둔시 결정립계에 우선적으로 핵생성되는 자기특성에 불리한(111)면의 발달을 억제하고 자기 특성에 유리한(110)면의 발달을 조장하여 철손중 이력손실을 감소시키는 중요한 원소로 0.05% 이상이 되어야 효과를 나타낼 수 있지만, 0.3%를 초과하면 자기특성 효과가 포화되고 냉간압연성도 저하되며 제조원가도 상승되므로 0.05-0.30% 범위로 함이 바람직하다.Sn is an important element that reduces the hysteresis loss during iron loss by inhibiting the development of (111) planes, which are disadvantageous to the magnetic properties preferentially nucleated at the grain boundary during annealing, and promoting the development of (110) planes that are favorable to the magnetic properties. The above effect can be obtained, but if it exceeds 0.3%, the magnetic property effect is saturated, the cold rolling property is lowered, and the manufacturing cost is also increased, so it is preferable to be in the range of 0.05-0.30%.

이하, 본 발명의 제조방법에 대하여 상세히 설명한다.Hereinafter, the manufacturing method of the present invention will be described in detail.

통상 무방향성 전기강판을 규소 함량에 따라서 Si-C 상태도에서 오스테나이트상을 감싸는 루프형의 특이한 상영역이 나타나며, 탄소 함량에 따라 오스테나이트상 구역이 변화하며 오스테나이트와 페라이트가 공존하는 혼합상의 범위도 변화하게 된다.In general, a non-oriented electrical steel sheet exhibits a loop-shaped unusual phase region covering the austenite phase in Si-C state diagram according to the silicon content, and the range of the mixed phase in which the austenite phase region coexists according to the carbon content changes. Will also change.

따라서, Si 함량이 1.5중량%(이하,%라 함) 이하인 경우 열간압연시 반드시 2상 구역을 통과하게 되는데, 어떤 방법으로 이 구역을 지나느냐에 따라 형성되는 결정립의 방위 분포가 달라져 자기특성에 유리한 집합조직의 발달에 영향을 주게 되는 것이다.Therefore, if the Si content is less than 1.5% by weight (hereinafter, referred to as%), the hot rolling will necessarily pass through the two-phase zone, and the orientation distribution of the grains formed will depend on how it passes through this zone, which is advantageous for magnetic properties. The development of the collective will be affected.

즉, 열간압연시 변형이 오스테나이트역에서 시작되며 동적 재결정에 의해 균일 미세해진 오스테나이트 결정이 온도 저하에 따라 상변태 온도구간을 통과시 2상역에서 균일 미세한 오스테나이트와 변태된 페라이트의 혼합상이 공존하게 되는데 자성에 유리한 페라이트의 전형적인 압연 조직이 {200}110의 결정방위의 성분을 가진 페라이트를 다수 유지하도록 하는 것이 필요하다.In other words, during hot rolling, the deformation starts in the austenite region, and when the austenite crystals uniformly refined by dynamic recrystallization pass through the phase transformation temperature section as the temperature decreases, the mixed phase of the uniform fine austenite and the transformed ferrite coexists in the two phase region. It is necessary to allow a typical rolled structure of ferrite, which is advantageous for magnetism, to retain a large number of ferrites having a component of the crystal orientation of {200} 110.

따라서, 본 발명은 2상역의 온도 구간에서 2패스의 열간압연을 실시하므로서, 2상역에서 형성된 미세 균일 오스테나이트와 변태된 페라이트가 온도가 더 저하됨에 따라 각각 변태된 페라이트와 변형된 페라이트의 혼합조직으로 존재하게 될 때 {200}110의 결정방위 성분을 발달시켜 자기특성을 향상시키는 제조방법을 그 특징으로 하는 것이다.Therefore, the present invention is carried out by hot rolling of two passes in the temperature range of the two-phase zone, the mixed structure of the ferrite and the modified ferrite, respectively, as the fine uniform austenite and the transformed ferrite formed in the two-phase is further lowered in temperature. It is characterized by a manufacturing method for improving the magnetic properties by developing a crystal orientation component of {200} 110 when present.

상기한 조성을 갖는 강 슬라브를 재가열시 재가열온도는 1150-1250℃의 온도 범위로 하는 것이 바람직한데, 그 이유는 재가열온도가 1150℃ 이하에서는 오스테나이트상과 페라이트상의 혼합구역에서 2패스째 압연구간을 맞추기 곤란하고, 1250℃ 이상 가열시에는 미세한 CuS를 형성하므로 자성에 악영향을 미치기 때문이다.When reheating the steel slab having the above-mentioned composition, the reheating temperature is preferably in the temperature range of 1150-1250 ° C. The reason is that when the reheating temperature is 1150 ° C or lower, the second pass rolling section is carried out in the mixed zone of austenite and ferrite phases. This is because it is difficult to match and since it forms fine CuS when it heats 1250 degreeC or more, it has a bad influence on a magnetism.

열간압연은 4패스를 하는 것이 일반적이나 본 발명에서는 상기 2상 공존구역에서 2패스 열간압연을 하는데, 이때 2상 공존 구역의 온도는 C,Si의 함량에 따라 변화되며, 본 발명의 성분계 범위에서 통상은 1030-975℃의 온도 영역이 될 수 있다.Hot rolling is generally performed in four passes, but in the present invention, two-pass hot rolling is performed in the two-phase coexistence zone. In this case, the temperature of the two-phase coexistence zone is changed depending on the content of C and Si. Typically it can be in the temperature range of 1030-975 ° C.

상기한 열간압연은 통상적인 열간압연온도 범위에서 실시하여 페라이트의 전형적인 열간압연 조직인{200}100 집합조직이 발달하도록 할 수 있으나 페라이트단상 영역, 즉 800-900℃ 온도 범위에서 마무리 압연을 한 후, 700-750℃의 온도 범위에서 권취함이 보다 바람직하다.The hot rolling can be carried out in the usual hot rolling temperature range to allow the {200} 100 texture, which is a typical hot rolled structure of ferrite, to be developed, but after finishing rolling in the ferrite single phase region, that is, in the 800-900 ° C temperature range, It is more preferable to wind up in the temperature range of 700-750 degreeC.

상기 열연판 권취를 한후 통상적인 열연판 소둔을 실시할 수 있는데, 보다 바람직하게는 870-970℃에서 3-5분간 열연판 소둔 처리하는 것이다.After the hot rolled sheet is wound, conventional hot rolled sheet annealing may be performed, more preferably, hot rolled sheet annealing at 870-970 ° C. for 3-5 minutes.

상기 열연판 소둔 처리후 산세를 한 다음, 냉간압연을 하는데, 냉연은 1회 또는 800-950℃에서 중간 소둔을 포함한 2회 냉간압연을 함이 좋다.After the hot-rolled sheet annealing treatment and pickling, cold rolling, cold rolling is preferably performed once or two times cold rolling including the intermediate annealing at 800-950 ℃.

상기 냉연처리후, 최종 냉연판 소둔은 통상적인 냉연판 소둔을 실시할 수 있으나, 보다 바람직하게는 800-970℃에서 10분 이하로 소둔하며 결정립을 성장시키고 집합조직을 발달시킴이 좋다.After the cold rolling treatment, the final cold rolled sheet annealing can be carried out in a conventional cold rolled sheet annealing, more preferably annealing for 10 minutes or less at 800-970 ℃ to grow the grains and develop the texture.

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예 1Example 1

중량%로, C:0.005%, Si:1.10%, Mn:0.30%, P:0.005%, S:0.003%, N:0.002%, Cu:0.07%, Al:0.28% , Sn:0.07%, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성된 강 슬라브를, 1230℃, 1200℃,1150℃에서 재가열한 후, 하기 표1과 같은 열간압연온도 구간별로 변형 차수를 달리하며 2mm의 두께로 열간압연하고, 권취온도 효과를 얻기 위하여 건조한 질소 분위기의 700℃에서 1시간 유지한 다음 로냉하였다.By weight, C: 0.005%, Si: 0.1%, Mn: 0.30%, P: 0.005%, S: 0.003%, N: 0.002%, Cu: 0.07%, Al: 0.28%, Sn: 0.07%, Balance After reheating the steel slab composed of Fe and other unavoidable impurities at 1230 ° C., 1200 ° C. and 1150 ° C., the steel slabs were hot rolled to a thickness of 2 mm with different deformation orders for each hot rolling temperature section as shown in Table 1 below. In order to obtain the coiling temperature effect, the mixture was maintained at 700 ° C. in a dry nitrogen atmosphere for 1 hour and then cooled by furnace.

이후 910℃의 건조한 질소 분위기에서 5분간 열연판 소둔후 산세하여 0.5mm의 두께로 냉간압연을 한 다음, 수소 및 질소의 혼합가스 분위기로 하여, 870℃에서 150초, 910℃에서 90초로 2단 연속 소둔을 실시하였다. 다음, 제조된 냉연강판에 대하여 철손 및 자속밀도를 측정하고, 또한 결정립 크기 및 (200)면 강도를 측정하고, 그 결과를 하기 표2에 나타내었다.After annealing the hot rolled sheet for 5 minutes in a dry nitrogen atmosphere at 910 ° C., pickling and cold rolling to a thickness of 0.5 mm, followed by 150 seconds at 870 ° C. and 90 seconds at 910 ° C. as a mixed gas atmosphere of hydrogen and nitrogen. Continuous annealing was performed. Next, iron loss and magnetic flux density were measured for the manufactured cold rolled steel sheet, and grain size and (200) plane strength were measured, and the results are shown in Table 2 below.

상기 표2에 나타난 바와 같이, 재가열온도가 높은 발명재(a)의 경우보다 낮은 발명재(c)의 경우에 철손 및 자속밀도가 우수한데, 그 이유는 재가열온도가 낮은 경우에 용융 상태에서 고상화하는 조대한 석출물의 재용해가 없어서 결정립이 조금 더 조대화하게 되어 철손이 개선되기 때문인 것으로 판단된다.As shown in Table 2, the iron loss and the magnetic flux density are excellent in the case of the invention material (c) lower than that of the invention material (a) having a high reheating temperature, because the solid phase in the molten state at the low reheating temperature is low. The lack of coarse precipitates does not dissolve, making grains more coarse and iron loss improving.

또한, 재가열온도가 같은 발명재(b)와 비교재(d) 및 (e)의 경우에는 본 발명에서와 같이 2상 구역을 지나는 온도 범위에서 열간압연을 2패스 실시한 발명재(b)가 1패스 실시한 비교재(d) 및 (e)에 비하여 자기적 특성이 개선됨을 알 수 있다.In the case of the invention material (b) and the comparative materials (d) and (e) having the same reheating temperature, the invention material (b) subjected to two passes of hot rolling in the temperature range passing through the two-phase zone as in the present invention is 1 It can be seen that the magnetic properties are improved compared to the comparative materials (d) and (e) which were passed.

실시예2Example 2

중량%로, C:0.005%, Si:0.50%, Mn:0.30%, P:0.05%, S:0.003%, N:0.002%, Cu:0.07%, Al:0.28% , Sn:0.07%, 잔부 Fe 및 기타 불가피하게 첨가되는 불순물로 조성된 강 슬라브를, 1150℃, 1200℃의 온도에서 재가열하고 실시예 1과 같은 제조 방법으로 하되, 하기 표3과 같이 열간압연온도 구역을 달리하며 냉연강판을 제조한 후, 실시예 1과 동일한 방법으로 자기특성 및 결정립 크기, (200)면 강도를 측정하고, 그 결과를 하기 표 4에 나타내었다.By weight%, C: 0.005%, Si: 0.50%, Mn: 0.30%, P: 0.05%, S: 0.003%, N: 0.002%, Cu: 0.07%, Al: 0.28%, Sn: 0.07%, balance The steel slab composed of Fe and other unavoidably added impurities is reheated at a temperature of 1150 ° C. and 1200 ° C., and is manufactured according to the same method as Example 1, except that the cold rolled steel sheet is changed with different hot rolling temperatures as shown in Table 3 below. After the preparation, magnetic properties, grain size, and (200) plane strength were measured in the same manner as in Example 1, and the results are shown in Table 4 below.

상기 표4에 나타난 바와 같이, 실시예 1의 경우와 마찬가지로 재가열온도가 낮은 경우인 발명재(g)가 자성이 가장 우수하였으며, 열간압연 방법에 따른 결과에서는 본 발명에 따른 열간압연 방법을 실시한 경우인 발명재(f-g)의 경우 2상 구역에서 1패스만을 실시한 비교재(h-i)의 경우에 비하여 철손이 낮음을 알 수 있다.As shown in Table 4, as in Example 1, the invention material (g) having a low reheating temperature was excellent in magnetic properties, and in the result of the hot rolling method, the hot rolling method according to the present invention was performed. In the case of phosphorus invention material (fg), iron loss is low compared with the case of comparative material (hi) which performed only one pass in the 2-phase area | region.

상술한 바와 같이, 본 발명은 종래의 합금원소 첨가에 의한 무방향성 전기강판의 제조방법과는 달리, 통상의 무방향성 전기강판의 성분을 적절히 선정하고, 2상 구역에서 2패스 압연을 실시하는 열간아연조건을 제어하므로서, 철손이 낮으면서도 동시에 자속밀도가 높은 무방향성 전기강판을 제공하는 효과가 있는 것이다.As described above, the present invention, unlike the conventional method for producing non-oriented electrical steel sheet by the addition of alloying elements, appropriately select the components of the conventional non-oriented electrical steel sheet, hot rolling to perform two-pass rolling in the two-phase zone By controlling the zinc conditions, it is effective to provide a non-oriented electrical steel sheet having a low iron loss and high magnetic flux density.

Claims (1)

중량%로, C : 0.015% 이하, Si : 1.50% 이하, Mn : 0.50% 이하, P : 0.05-0.10%, S : 0.01% 이하, N : 0.008% 이하, Cu : 0.05-0.50%, Al : 0.5% 이하, Sn : 0.05-0.30%, 잔부 Fe 및 기타 불가피한 불순물로 조성된 강 슬라브를 1150-1200℃의 온도 범위에서 재가열한 후, 열연 단계에서 오스테나이트와 페라이트의 2상 공존 구역에서 반드시 2패스 압연을 한 다음, 페라이트역에서 마무리 열간압연을 하고, 이후 통상의 열연판 소둔, 산세, 냉간압연 및 소둔함을 특징으로 하는 열간압연조건 제어에 의한 자기특성이 우수한 무방향성 전기강판의 제조방법.By weight%, C: 0.015% or less, Si: 1.50% or less, Mn: 0.50% or less, P: 0.05-0.10%, S: 0.01% or less, N: 0.008% or less, Cu: 0.05-0.50%, Al: After reheating the steel slab composed of 0.5% or less, Sn: 0.05-0.30%, balance Fe and other unavoidable impurities in the temperature range of 1150-1200 ° C., in the two-phase coexistence zone of austenite and ferrite in the hot rolling step, After the pass rolling, finish hot rolling in a ferritic zone, and then a method for producing a non-oriented electrical steel sheet having excellent magnetic properties by controlling the hot rolling conditions characterized by the usual hot rolled sheet annealing, pickling, cold rolling and annealing .
KR1019940012854A 1994-06-08 1994-06-08 Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic Expired - Fee Related KR960014510B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940012854A KR960014510B1 (en) 1994-06-08 1994-06-08 Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940012854A KR960014510B1 (en) 1994-06-08 1994-06-08 Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic

Publications (2)

Publication Number Publication Date
KR960001147A KR960001147A (en) 1996-01-25
KR960014510B1 true KR960014510B1 (en) 1996-10-16

Family

ID=19384880

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940012854A Expired - Fee Related KR960014510B1 (en) 1994-06-08 1994-06-08 Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic

Country Status (1)

Country Link
KR (1) KR960014510B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010064943A (en) * 1999-12-20 2001-07-11 이구택 A method for manufacturing non grain oriented electrical steel sheet having high magnetic induction

Also Published As

Publication number Publication date
KR960001147A (en) 1996-01-25

Similar Documents

Publication Publication Date Title
US7846271B2 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
KR102353673B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR19980063732A (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method thereof
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2024500843A (en) Non-oriented electrical steel sheet and its manufacturing method
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
KR100395100B1 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties after heat treatment
KR101051744B1 (en) Oriented electrical steel with excellent magnetic properties and manufacturing method thereof
KR101051743B1 (en) Oriented electrical steel with excellent magnetic properties and manufacturing method thereof
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
KR960014510B1 (en) Method for manufacturing non-oriented electro magnetic steel plates with excellent magnetic characteristic
KR100479991B1 (en) A method for producing non-oriented silicon steel with low core loss
KR950004933B1 (en) Method of manufacturing non-oriented electrical steel sheet with excellent magnetic properties
KR100240993B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss
KR100340548B1 (en) A method for manufacturing non-oriented silicon steel sheet having superior magnetic property
KR101130725B1 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
KR100268853B1 (en) The manufacturing method of non oriented electric steel sheet with excellent magnetic properties
KR101665951B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20150062246A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20000043790A (en) Method for producing non-oriented electric strip with low iron loss
KR19990033508A (en) Manufacturing method of non-oriented electrical steel sheet
KR960003174B1 (en) Method for preparation of non-oriented electrical steel sheet having high flux-density
KR970007031B1 (en) Method for manufacturing orient electrical steel sheet having excellent magnetic properties
KR880000285B1 (en) Manufacturing method of non-oriented electrical steel sheet having excellent iron loss

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

St.27 status event code: A-2-2-Q10-Q13-nap-PG1605

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

FPAY Annual fee payment

Payment date: 20031002

Year of fee payment: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20041017

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20041017

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000