[go: up one dir, main page]

KR960004115B1 - Method for purifying a polyphenylenether ether - Google Patents

Method for purifying a polyphenylenether ether Download PDF

Info

Publication number
KR960004115B1
KR960004115B1 KR1019910020739A KR910020739A KR960004115B1 KR 960004115 B1 KR960004115 B1 KR 960004115B1 KR 1019910020739 A KR1019910020739 A KR 1019910020739A KR 910020739 A KR910020739 A KR 910020739A KR 960004115 B1 KR960004115 B1 KR 960004115B1
Authority
KR
South Korea
Prior art keywords
polyphenylene ether
polymer
polymerization
aminocarboxylic acid
solvent
Prior art date
Application number
KR1019910020739A
Other languages
Korean (ko)
Other versions
KR930010068A (en
Inventor
고우이찌 호리구찌
사다오 이베
가즈오 쓰구마
Original Assignee
아사히가세이고오교 가부시끼가이샤
유미꾸라 레이이찌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아사히가세이고오교 가부시끼가이샤, 유미꾸라 레이이찌 filed Critical 아사히가세이고오교 가부시끼가이샤
Priority to KR1019910020739A priority Critical patent/KR960004115B1/en
Publication of KR930010068A publication Critical patent/KR930010068A/en
Application granted granted Critical
Publication of KR960004115B1 publication Critical patent/KR960004115B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/46Post-polymerisation treatment, e.g. recovery, purification, drying

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

내용 없음.No content.

Description

폴리페닐렌 에테르의 정제방법Method for Purifying Polyphenylene Ether

본 발명은 2,6-이치환 페놀의 산화적 중합에 의해 생성된 폴리페닐렌 에테르의 정제 방법에 관한 것이다.The present invention relates to a process for the purification of polyphenylene ethers produced by oxidative polymerization of 2,6-disubstituted phenols.

2,6-이치환 페놀의 산화적 중합에 의해 생성된 중합체인 폴리페닐렌 에테르는 기계적 성질, 전기적 성질, 내열성 등이 우수하며 수분을 거의 흡수하지 않는다. 따라서 열가소성 공업용 플라스틱으로서의 폴리페닐렌 에테르의 사용에 깊은 관심이 모아지고 있다.Polyphenylene ether, a polymer produced by the oxidative polymerization of 2,6-disubstituted phenol, has excellent mechanical properties, electrical properties, heat resistance, etc. and hardly absorbs moisture. Therefore, a great deal of attention has been paid to the use of polyphenylene ethers as thermoplastic industrial plastics.

일반적으로 이 폴리페닐렌 에테르는 유기 용매내에서 2,6-이치환 페놀의 산화적 중합에 의해 생성된다. 폴리페닐렌 에테르는 중합 용액으로부터 회수되며 중합 용액을 메탄올과 같은 불량 용매(poor solvent)와 접촉시킴으로써 정제한다. 사용된 촉매는 추출되거나 이러한 조작을 수행하기 전에 또는 그와 동시에 분해된다.Generally this polyphenylene ether is produced by oxidative polymerization of 2,6-disubstituted phenols in organic solvents. Polyphenylene ether is recovered from the polymerization solution and purified by contacting the polymerization solution with a poor solvent such as methanol. The catalyst used is decomposed before or simultaneously with extraction or performing this operation.

촉매를 추출하거나 분해시키는 몇가지 방법이 제시되어 있다. 미합중국 특허 제3,630,995호에는 촉매를 추출 또는 분해시키는 용매로서 염산과 같은 무기산 또는 아세트산과 같은 유기산을 사용하는 것이 제시되어 있다. 미합중국 특허 제4,058,504, 3,838,102, 4,237,265, 4,110,311, 4,026,870, 3,951,917, 4,088, 634, 4,116,939, 4,654,418 및 4,460,764호에는 용액 중합법으로 수득한 반응 생성물에 에틸렌디아민테트라 아세트산(EDTA)등과 같은 킬레이트화제를 첨가하는 것이 제시되어 있다. 미합중국 특허 제4,452,164호에는 특정 중합 매질을 사용한 침전 중합법으로 수득한 반응 생성물을 EDTA등과 같은 킬레이트화제 및 물로 세척하는 것이 제시되어 있다.Several methods of extracting or cracking the catalyst are presented. U.S. Patent No. 3,630,995 discloses the use of inorganic acids such as hydrochloric acid or organic acids such as acetic acid as solvents to extract or decompose the catalyst. U.S. Pat. Presented. US Pat. No. 4,452,164 discloses washing a reaction product obtained by precipitation polymerization using a specific polymerization medium with chelating agents such as EDTA and water.

그러나, 염산 또는 아세트산을 사용하는 방법은 수득한 중합체가 열성형 동안에 현저하게 변색된다는 단점이 있다. 용액 중합법에 의해 수득한 반응 생성물에 EDTA등과 같은 킬레이트화제를 첨가하는 방법은 정제 단계 동안에 폴리페닐에테르의 고유 점도를 감소시킨다.However, the method using hydrochloric acid or acetic acid has the disadvantage that the obtained polymer is markedly discolored during thermoforming. The addition of chelating agents, such as EDTA, to the reaction product obtained by solution polymerization reduces the intrinsic viscosity of the polyphenylethers during the purification step.

본 발명자들은 상기한 문제점을 갖지 않는 폴리페닐렌에테르의 분리 및 정제 방법에 대하여 광범위하며 심도 있는 연구를 행하였다. 그 결과 본 발명자들은 침전 중합법으로 수득한 반응 생성물에 아미노카르복실산 유도체를 첨가한 후 폴리페닐렌 에테르용 불량 용매로 세척함으로써 중합체를 정제시키는 폴리페닐렌 에테르의 정제 방법을 알아내었다. 이 방법은 중합체의 열성형 동안에 중합체가 변색되고 정제 단계에서 고유점도가 감소하는 결점이 없다. 이리하여 본 발명을 완성하였다.The present inventors have conducted extensive and in-depth studies on the method for separating and purifying polyphenylene ethers which do not have the above-mentioned problems. As a result, the present inventors have found a method for purifying polyphenylene ether to purify the polymer by adding an aminocarboxylic acid derivative to the reaction product obtained by the precipitation polymerization method and then washing with a poor solvent for polyphenylene ether. This method has the drawback that the polymer discolors during thermoforming of the polymer and the intrinsic viscosity is reduced in the purification step. This completes the present invention.

본 발명은 폴리페닐렌 에테르의 정제 방법을 제공한다. 이 방법은 구리이온, 할라이드이온 및 적어도 한가지 형태의 아민이 배합되어 구성된 촉매 존재하에 중합체가 침전되는 침전 중합법을 사용하여 2,6-이치환 페놀을 산화적 중합시켜 수득한 반응 생성물로부터 폴리페닐렌 에테르를 분리하고, 반응 생성물에 아미노 카르복실산 유도체를 가한후 폴리페닐렌 에테르용 불량 용매로 중합체를 세척하고, 생성된 폴리페닐렌 에테르를 정제하는 것을 특징으로 한다.The present invention provides a process for purifying polyphenylene ether. This method uses polyphenylene from reaction products obtained by oxidative polymerization of 2,6-disubstituted phenols using precipitation polymerization, in which a polymer precipitates in the presence of a catalyst composed of copper ions, halide ions and at least one type of amine. The ether is separated, an amino carboxylic acid derivative is added to the reaction product, the polymer is washed with a poor solvent for polyphenylene ether, and the resulting polyphenylene ether is purified.

본 발명의 방법에서 사용되는 2,6-이치환 페놀은 하기와 같은 일반식으로 나타내어진다.The 2,6-disubstituted phenol used in the method of the present invention is represented by the following general formula.

(상기식에서, R1은 탄소수 1∼4의 탄화수소 잔기를 나타내며 ; R2는 할로겐원자 또는 탄소수 1∼4의 탄화수소 잔기를 나타낸다.)(Wherein R 1 represents a hydrocarbon residue having 1 to 4 carbon atoms; R 2 represents a halogen atom or a hydrocarbon residue having 1 to 4 carbon atoms.)

이러한 페놀 화합물의 예로는, 2,6-디메틸페놀, 2-메틸-6-에틸페놀, 2,6-디에틸페놀, 2-에틸-6-n-프로필페놀, 2-메틸-6-클로로페놀, 2-에틸-6-브로모페놀, 2-메틸-6-이소프로필페놀, 2-메틸-6-n-프로필페놀, 2-에틸-6-브로모페놀, 2-메틸-6-n-부틸페놀, 2,6-디-n-프로필페놀, 2-에틸-6-클로로페놀 등이 있다. 이들 화합물은 단독으로 또는 혼합하여 사용할 수 있다. 실제 사용에서, 페놀 화합물은 소량의 o-크레졸, m-크레졸, p-크레졸, 2,4-디메틸페놀, 2-에틸페놀 등을 함유할 수 있다. 이들 중에서, 2,6-이치환 페놀, 2,6-디메틸 페놀이 특히 바람직하다.Examples of such phenolic compounds include 2,6-dimethylphenol, 2-methyl-6-ethylphenol, 2,6-diethylphenol, 2-ethyl-6-n-propylphenol, 2-methyl-6-chlorophenol , 2-ethyl-6-bromophenol, 2-methyl-6-isopropylphenol, 2-methyl-6-n-propylphenol, 2-ethyl-6-bromophenol, 2-methyl-6-n- Butylphenol, 2,6-di-n-propylphenol, 2-ethyl-6-chlorophenol and the like. These compounds can be used individually or in mixture. In practical use, the phenolic compound may contain small amounts of o-cresol, m-cresol, p-cresol, 2,4-dimethylphenol, 2-ethylphenol and the like. Among them, 2,6-disubstituted phenol and 2,6-dimethyl phenol are particularly preferable.

본 발명에서 사용되는 구리 이온의 원료로서, 제1구리염, 제2구리염 또는 이들의 혼합물을 사용할 수 있다.As a raw material of the copper ion used by this invention, a cuprous salt, a cupric salt, or a mixture thereof can be used.

제1구리 및 제2구리 화합물은 어느 것이나 실제로 사용할 수 있다. 화합물은 경제적인 면과 유용성의 측면에서 선택할 수 있다. 물론 가용성 구리염이 바람직하지만, 반응 혼합물에서 불용성 구리(제1구리 및 제2구리)가 아민과 함께 가용성 복합제를 형성하므로 일반적으로 불용성 화합물도 사용할 수 있다.Both the cuprous and cupric compounds may actually be used. The compound can be selected in terms of economics and usability. Soluble copper salts are of course preferred, but insoluble compounds (copper and cuprous) in the reaction mixture together with amines form soluble complexes and generally insoluble compounds can also be used.

본 발명에 사용되는 제1구리 화합물의 예로는 염화 제1구리, 브롬화 제1구리, 황산 제1구리, 질산 제1구리, 아지드화 제1구리, 아세트산 제1구리, 부티르산 제1구리, 톨루산 제1구리 등이 있다. 제2구리 화합물의 예로는 염화 제2구리 및 브롬화 제2구리와 같은 할로겐화 제2구리, 황산 제2구리, 질산 제2구리, 아세트산 제2구리, 아지드화 제2구리, 톨루엔 제2구리 등이 있다. 이들 중에서, 바람직한 제1구리 및 제2구리 화합물은 염화 제1구리, 염화 제2구리, 브롬화 제1구리 및 브롬화 제2구리이다. 이들 구리염은 산화물, 탄화물, 수산화물 등으로 부터 또는 할로겐이나 할로겐화 수소로부터 합성하여 사용할 수 있다. 구리 화합물의 양은 2,6-이치환 페놀 화합물 100몰에 대하여 0.005∼1.0, 바람직하게는 0.01∼0.5구리 그램 원자 범위이다.Examples of cuprous compounds used in the present invention include cuprous chloride, cuprous bromide, cuprous sulfate, cuprous nitrate, cuprous azide, cuprous acetate, cuprous butyrate, toll Cuprous acid, and the like. Examples of the cupric compound include cupric chloride and cupric bromide such as cupric chloride, cupric sulfate, cupric nitrate, cupric acetate, cuprous azide, cuprous toluene, and the like. There is this. Among them, preferred cuprous and cupric compounds are cuprous chloride, cupric chloride, cuprous bromide and cupric bromide. These copper salts can be synthesized from oxides, carbides, hydroxides, or the like or from halogens or hydrogen halides. The amount of copper compound is in the range of 0.005 to 1.0, preferably 0.01 to 0.5 copper gram atoms per 100 moles of 2,6-disubstituted phenol compound.

본 발명에 사용되는 할라이드 이온의 원료로서, 무기 할로겐화물, 할로겐, 할로겐화수소 및 이의 혼합물을 사용할 수 있다. 할라이드 이온으로서, 염소이온 및 브롬이온이 특히 바람직하다.As a raw material of the halide ions used in the present invention, inorganic halides, halogens, hydrogen halides and mixtures thereof can be used. As halide ions, chlorine ions and bromine ions are particularly preferred.

무기 할로겐화물의 예로는 염화나트륨, 브롬화나트륨, 염화칼륨, 브롬화칼륨 등과 같은 알칼리금속염, 염화마그네슘, 브롬화마그네슘, 염화칼슘, 브롬화칼슘 등과 같은 알칼리 토금속염이 있다. 할로겐으로서, 염소 및 브롬을 사용할 수 있다.Examples of inorganic halides include alkali metal salts such as sodium chloride, sodium bromide, potassium chloride, potassium bromide, and alkaline earth metal salts such as magnesium chloride, magnesium bromide, calcium chloride, calcium bromide, and the like. As the halogen, chlorine and bromine can be used.

할로겐화수소로서, 염산 및 브롬화수소산을 사용할 수 있다.As the hydrogen halide, hydrochloric acid and hydrobromic acid can be used.

본 발명에 사용되는 아민 성분의 예로서, 적어도 하나의 2차 알킬렌디아민, 적어도 하나의 3차 아민 및 적어도 하나의 2차 모노아민을 함유하는 아민 성분을 바람직하게 사용할 수 있다.As an example of the amine component used in the present invention, an amine component containing at least one secondary alkylenediamine, at least one tertiary amine and at least one secondary monoamine can be preferably used.

2차 알킬렌디아민은 다음과 같은 일반식으로 나타내어진다 :Secondary alkylenediamines are represented by the general formula:

R1HN-R2-NHR3 R 1 HN-R 2 -NHR 3

(상기식에서, R1과 R3는 각각 이소프로필기, 탄소수 4∼8의 3차 알킬기 또는 α-탄소원자상에 수소원자를 갖지 않는 시클로알킬기를 나타내며 ; R2는 탄소수 2∼4의 알킬렌기 또는 탄소수 3∼7의 시클로알킬렌기를 나타낸다.) 이들 화합물의 예로는 N,N'-디-t-부틸에틸렌디아민, N,N'-디-t-아실에틸렌디아민, N,N'-디이소프로필-에틸렌디아민 등이 있다. 사용되는 디아민의 양은 일반적으로 구리 그램 원자당 0∼4몰이다.(Wherein R 1 and R 3 each represent an isopropyl group, a C4-8 tertiary alkyl group or a cycloalkyl group having no hydrogen atom on the α-carbon atom; R 2 represents an alkylene group having 2-4 carbon atoms or Examples of these compounds include N, N'-di-t-butylethylenediamine, N, N'-di-t-acylethylenediamine, and N, N'-diiso. Propyl-ethylenediamine and the like. The amount of diamine used is generally from 0 to 4 moles per gram copper.

본 발명에 사용되는 3차 아민의 예로는 트리메틸아민, 트리에틸아민, 트리프로필아민, 트리부틸아민, 트리이소프로필아민, 디에틸메틸아민, 디메틸프로필아민, 알릴디에틸아민, 디메틸-n-부틸아민, 디에틸이소프로필아민 등과 같은 3차 지방족 고리 아민을 포함하는 3차 지방족 아민이 있다. 또한, N, N, N', N'-테트라알킬에틸렌디아민, N, N, N', N'-테트라알킬프로판디아민등과 같은 3차 지방족 폴리아민을 사용할 수 있다. 3차 지방족 폴리아민의 예로는 N, N, N', N'-테트라메틸에틸렌디아민과 N, N, N', N'-테트라메틸-1,3-디아미노프로판이 있다.Examples of tertiary amines used in the present invention include trimethylamine, triethylamine, tripropylamine, tributylamine, triisopropylamine, diethylmethylamine, dimethylpropylamine, allyldiethylamine, dimethyl-n-butyl Tertiary aliphatic amines, including tertiary aliphatic cyclic amines such as amines, diethylisopropylamine and the like. In addition, tertiary aliphatic polyamines such as N, N, N ', N'-tetraalkylethylenediamine, N, N, N', N'-tetraalkylpropanediamine and the like can be used. Examples of tertiary aliphatic polyamines are N, N, N ', N'-tetramethylethylenediamine and N, N, N', N'-tetramethyl-1,3-diaminopropane.

이들 3차 아민은 구리 그램 원자당 5∼100몰, 바람직하게는 10∼60몰의 양으로 사용할 수 있다.These tertiary amines can be used in amounts of 5 to 100 moles, preferably 10 to 60 moles per gram copper.

2차 모노 아민의 예로는 디메틸아민, 디에틸아민, 디-이소프로필아민 및 디-n-부틸아민과 같은 2차 지방족 아민 ; 디시클로헥실아민과 같은 2차 고리형 탄화수소 아민 ; 피페리딘, 피페라진 및 모르폴린과 같은 2차 지방족고리 아민 ; 디에탄올아민 및 디-이소프로판올아민과 같은 2차 알칸올아민 ; N-메틸에탄올아민, N-에틸에탄올아민 및 N-t-부틸에탄올아민과 같은 N-알킬알칸올아민 ; 및 N-페닐에탄올아민과 같은 N-아릴알칸올아민이 있다. 2차 모노아민의 양은 2,6-이치환페놀 100몰당 0.05∼10몰, 바람직하게는 0.1∼5몰 범위이다.Examples of secondary mono amines include secondary aliphatic amines such as dimethylamine, diethylamine, di-isopropylamine and di-n-butylamine; Secondary cyclic hydrocarbon amines such as dicyclohexylamine; Secondary aliphatic ring amines such as piperidine, piperazine and morpholine; Secondary alkanolamines such as diethanolamine and di-isopropanolamine; N-alkylalkanolamines such as N-methylethanolamine, N-ethylethanolamine and N-t-butylethanolamine; And N-arylalkanolamines such as N-phenylethanolamine. The amount of secondary monoamine is in the range of 0.05 to 10 moles, preferably 0.1 to 5 moles per 100 moles of 2,6-disubstituted phenol.

4차 암모늄염과 계면활성제는 반응속도를 증가시키고, 중합체의 입자 크기를 조절하며 용매간의 상분리를 향상시키기 위하여 반응계에 첨가할 수 있다.Quaternary ammonium salts and surfactants can be added to the reaction system to increase the reaction rate, control the particle size of the polymer and improve phase separation between solvents.

반응온도가 너무 낮으면 반응은 느리게 진행된다. 반대로, 반응온도가 너무 높으면 촉매가 불활성화 된다. 따라서, 반응온도는 일반적으로 0∼80℃, 바람직하게는 10∼60℃ 범위이다.If the reaction temperature is too low, the reaction proceeds slowly. Conversely, if the reaction temperature is too high, the catalyst is inactivated. Therefore, the reaction temperature is generally in the range of 0 to 80 캜, preferably 10 to 60 캜.

산소로는, 순수한 산소기체, 질소기체와 같은 불활성 기체와 산소기체를 임의의 비율로 함유하는 혼합기체, 공기 등을 사용할 수 있다. 압력으로는, 대기압 또는 가압을 사용할 수 있다.As the oxygen, a mixed gas containing an inert gas such as pure oxygen gas and nitrogen gas and an oxygen gas in an arbitrary ratio, air or the like can be used. As pressure, atmospheric pressure or pressurization can be used.

본 발명의 방법에 사용되는 중합 매질은 중합이 침전 중합법으로 수행되는 한 특별한 제한은 없다. 매질은 산화되는 2,6-이치환 페놀보다 산화에 대한 내성이 더욱 강하며 반응과정 동안에 발생되는 각종 라디칼과 반응하지 않는다. 그러나, 2,6-이치환 페놀 뿐만 아니라 촉매도 용해시킬 수 있는 매질이 바람직하다. 예를들면, 벤젠, 톨루엔, 에틸벤젠 및 크실렌과 같은 방향족 탄화수소 ; 클로로포름, 1,2-디클로로에탄, 트리클로로에탄, 클로로벤젠 및 디클로로벤젠과 같은 할로겐화 탄화수소 ; 니트로벤젠과 같은 니트로 화합물 등의 방향족 탄화수소가 중합체용 양호 용매(good solvent)로서 사용된다. 중합체용 불양 용매의 예로는 메탄올, 에탄올, 프로판올, 부탄올, 벤질알콜 및 시클로헥산올과 같은 알콜, 아세톤 및 메틸에틸케논과 같은 케톤 ; 에틸아세테이트 및 에틸포르메이트와 같은 에스테르 ; 테트라히드로푸란 및 디에틸 에테르와 같은 에테르 ; 디메틸포름아미드와 같은 아미드 등이 있다. 본 발명에서 이러한 양호 및 불량 용매는 각 형태의 한가지 용매 또는 한 형태의 2가지 이상의 다른 용매를 함유하는 양호-불량 용매 쌍으로서 사용된다. 불량 용매에 대한 중합체용 양호 용매의 혼합비를 선택함으로써 침전 중합법을 수행하며, 여기서 중합체는 반응이 진행됨에 따라 반응계에 입자로서 침전된다. 불량 용매에 대한 양호 용매의 비율은 중량비로 3 : 7∼9 : 1, 바람직하게는 4 : 6∼8 : 2이다. 침전 중합법에서, 평균 입자 지름이 1∼3000㎛이며 입자 지름 분포가 좁은 중합체 입자가 수득된다. 입자는 촉매 금속을 제거하기 위한 세척에서 적당한 모양으로 형태가 조절된다.The polymerization medium used in the process of the present invention is not particularly limited as long as the polymerization is carried out by precipitation polymerization. The medium is more resistant to oxidation than the oxidized 2,6-disubstituted phenol and does not react with the various radicals generated during the reaction. However, media that can dissolve not only 2,6-disubstituted phenols but also catalysts are preferred. Aromatic hydrocarbons such as, for example, benzene, toluene, ethylbenzene and xylene; Halogenated hydrocarbons such as chloroform, 1,2-dichloroethane, trichloroethane, chlorobenzene and dichlorobenzene; Aromatic hydrocarbons such as nitro compounds such as nitrobenzene are used as good solvents for polymers. Examples of poor solvents for polymers include alcohols such as methanol, ethanol, propanol, butanol, benzyl alcohol and cyclohexanol, ketones such as acetone and methylethylkenone; Esters such as ethyl acetate and ethyl formate; Ethers such as tetrahydrofuran and diethyl ether; Amides such as dimethylformamide, and the like. Such good and bad solvents are used in the present invention as good-bad solvent pairs containing one solvent in each form or two or more different solvents in one form. Precipitation polymerization is carried out by selecting the mixing ratio of the good solvent for the polymer to the poor solvent, wherein the polymer precipitates as particles in the reaction system as the reaction proceeds. The ratio of the good solvent to the bad solvent is 3: 7-9: 1 by weight, preferably 4: 6-8: 2. In the precipitation polymerization method, polymer particles having an average particle diameter of 1 to 3000 µm and a narrow particle diameter distribution are obtained. The particles are morphed into a suitable shape in a wash to remove the catalyst metal.

본 발명은 배치 중합법 및 연속 중합법 모두에 적용될 수 있다. 본 발명을 연속 침전 중합법에 적용하는 것이 바람직하며, 이는 중합 활성이 높을 뿐 아니라 분자량 분포가 좁고 열에 의한 변색이 거의 나타나지 않는 순수한 백색 중합체가 수득될 수 있기 때문이다.The present invention can be applied to both batch polymerization and continuous polymerization. It is preferable to apply the present invention to the continuous precipitation polymerization method, since a pure white polymer can be obtained which not only has high polymerization activity but also has a narrow molecular weight distribution and hardly discolors due to heat.

연속 침전 중합법의 한 예가 미합중국 특허 제3,789,054호에 기재되어 있다.One example of a continuous precipitation polymerization method is described in US Pat. No. 3,789,054.

즉, 상기의 연속법에서, 각각 다른 작용을 갖는 완전 혼합형의 2가지 중합 탱크를 조합하여 사용하여 반응이 진행됨에 따라 폴리페닐렌 에테르가 침전되는 페놀 화합물의 중합 반응에 의해 폴리페닐렌 에테르를 수득한다. 여기에서는 균일한 용액 상태로 반응이 진행되는 제1중합 탱크와 안정한 폴리페닐렌 에테르 입자가 분리되는 제2중합 탱크를 필요로 한다. 또한, 필요하다면, 제3중합 탱크를 설치하여 에이징 및 최종 성질을 조절하여 후처리 단계를 행함으로써 중합체 입자를 마무리한다. 이들 중합체 탱크 각각은 더욱 세부적인 제어를 행하기 위하여 다수의 탱크로 나뉘어질 수 있다.That is, in the above continuous method, a polyphenylene ether is obtained by a polymerization reaction of a phenol compound in which a polyphenylene ether is precipitated as the reaction proceeds by using a combination of two polymerization tanks of completely mixed type, each having a different action. do. This requires a first polymerization tank in which the reaction proceeds in a uniform solution state and a second polymerization tank in which stable polyphenylene ether particles are separated. In addition, if necessary, a third polymerization tank is installed to adjust the aging and final properties to perform the post-treatment step to finish the polymer particles. Each of these polymer tanks can be divided into a number of tanks for more detailed control.

이제, 상기의 탱크를 더욱 상세히 기술하겠다. 제1중합 탱크로는, 중합체가 분리되는 것을 방지하기 위하여 단량체의 전환도가 90% 이하로 억제되도록 산소기체의 유속과 반응 혼합물의 평균 체류 시간이 조절되며, 이와 동시에 반응 혼합물이 점도가 많이 증가되지 않은 균일한 용액이라는 특징을 이용하여 중합열이 충분히 제거되는 형태의 탱크를 이용할 수 있다. 제2중합 탱크에서는, 조성 매질을 조절함으로써, 즉, 양호/불량 배합과 중량비에 대한 그들의 중량을 조절함으로써 분리된 중합체 입자가 탱크의 벽, 교반원소 등에 부착되는 것을 방지할 수 있으며 이와 동시에 중합체 입자의 크기와 강성도는 반응 매질의 교반 상태와 산소기체의 공급속도를 적당하게 유지함으로 조절된다.Now, the tank will be described in more detail. In the first polymerization tank, the flow rate of the oxygen gas and the average residence time of the reaction mixture are controlled so that the degree of conversion of the monomer is suppressed to 90% or less in order to prevent the polymer from being separated, and at the same time, the reaction mixture increases in viscosity much. It is possible to use a tank in a form in which the heat of polymerization is sufficiently removed by using a feature of a uniform solution. In the second polymerization tank, it is possible to prevent the separated polymer particles from adhering to the tank wall, the stirring element, etc. by controlling the composition medium, that is, by adjusting their weight to good / poor blending and weight ratio, and at the same time The size and stiffness of are controlled by keeping the reaction medium agitated and supplying oxygen gas properly.

제3중합 탱크는 흔히 에이징 탱크로서의 중합성 역할을하여 후처리 과정의 여과 및 건조에 적당한 크기와 강성도의 중합체 입자가 수득된다. 제3중합 탱크에서, 교반 조건과 체류시간은 정밀하게 조절된다.The third polymerization tank often acts as a polymerizable role as an aging tank so that polymer particles of a size and stiffness suitable for filtration and drying in the post-treatment process are obtained. In the third polymerization tank, the stirring conditions and the residence time are precisely controlled.

이러한 연속 중합체의 가장 바람직한 범위의 조작 조건은 촉매, 2,6-이치환 페놀 및 매질의 형태, 특히 단량체인 2,6-이치환 페놀의 농도에 따라 선택될 수 있다. 예를 들면, 단량체의 농도는 중합 용액 총 양에 대하여 10∼40중량%일 수 있으며, 이는 균일 용액 중합법을 사용하는 경우와는 다르다. 특히, 단량체 농도는 20∼35중량%인 것이 바람직하며, 침전 형성계 내에서 연속 중합법의 특징이 이 범위 내에서 잘 나타내기 때문이다.The most preferred range of operating conditions for such continuous polymers may be selected depending on the type of catalyst, 2,6-disubstituted phenol and the medium, in particular the concentration of monomeric 2,6-disubstituted phenol. For example, the concentration of the monomer may be 10 to 40% by weight relative to the total amount of the polymerization solution, which is different from the case of using the homogeneous solution polymerization method. In particular, the monomer concentration is preferably 20 to 35% by weight, because the characteristics of the continuous polymerization method in the precipitation forming system are well represented within this range.

이 방법에서 중합 탱크로서 완전 혼합형 중합 탱크를 사용하는 이유는 2,6-이치환 페놀의 사화적 중합반응이 2,6-이치환 페놀과 산소 기체와의 접촉 효율을 증가시킬 필요가 있으므로 모든 반응 탱크에서 충분한 교반이 수행되어야 하기 때문이다. 즉, 반응 혼합물이 본 발명에서 사용되는 것만큼 점도가 낮은 경우에 혼합물의 유동 방향에서 반응 혼합물의 교반이 발생되지 않는 중합 탱크는 어느것이나 적당하지 않다.The reason for using the fully mixed polymerization tank as the polymerization tank in this method is that in all reaction tanks, the tetrahedral polymerization of 2,6-disubstituted phenol needs to increase the contact efficiency of 2,6-disubstituted phenol with oxygen gas. This is because sufficient stirring must be performed. That is, no polymerization tank is suitable in which agitation of the reaction mixture does not occur in the flow direction of the mixture when the reaction mixture has a viscosity as low as that used in the present invention.

환언하자면, 상기에 언급된 바와 같이, 이러한 중합법을 수행하기 위하여 적어도 2개의 완전 혼합형 반응탱크가 결합되어야 하며, 이 반응 탱크는 반응 탱크로서의 기능을 나타내도록 평균 체류 시간과 교반 상태를 갖는다.In other words, as mentioned above, at least two fully mixed reaction tanks must be combined to carry out this polymerization method, which has an average residence time and agitation to show its function as a reaction tank.

본 발명에서 사용되는 "아미노카르복실산 유도체"는 폴리알킬렌 폴리아민 폴리카르복실산, 시클로알킬렌폴리아민 폴리카르복실산, 폴리알킬렌 에테르 폴리아민 폴리카르복실산, 아미노폴리카르복실산, 아미노카르복실산, 이들 산의 알칼리 금속염, 이들 산의 알칼리 토금속염, 이들 산의 알칼리 금속염과 토금속염의 혼합물 등을 의미한다. 이들 아미노카르복실산 유도체는 단독으로 또는 혼합하여 사용할 수 있다. 아미노카르복실산 유도체에 속하는 상기 언급한 화합물 중에서, 바람직한 예로는 에틸렌 디아민 테트라아세트산, 니트펠로트리아세트산, 이미노디아세트산, 글리신, 디에틸렌 트리아민 펜타아세트산, 트리에틸렌 테트라이민 헥사아세트산, 1,2-디아미노시클로헥산 테트라아세트산, N-히드록시에틸렌에틸렌디아민, -N, N', N'-트리아세트산, 에틸렌 글리콜 디에틸에테르 디아민 테트라아세트산, 에틸렌 다아민 테트라프로피온산 및 그의 염이 있다. 특히, 에티렌 디아민 테트라아세트산(이하, "EDTA"라 한다) 및 그의 염, 니트릴로트리아세트산 및 그의 염, 디에틸렌 트리아민 펜타아세트산 및 그의 염 등이 더욱 바람직하다. EDTA염으로는, EDTA의 디-, 트리 - 및 테트라-나트륨염 및 EDTA의 디-, 트리- 및 테트라-칼륨염이 바람직하다. 이들 아미노카르복실산 유도체는 일반적으로 5∼50중량% 범위의 농도를 가진 수용액으로서 사용된다. 아미노카르복실산 유도체의 양으로는, 촉매로서 반응 생성물에 함유된 금속 이온에 대한 아미노카르복실산 유도체의 몰비가 1 : 1∼10 : 1, 바람직하게는 1 : 1∼5 : 1범위이다.As used herein, "aminocarboxylic acid derivatives" are polyalkylene polyamine polycarboxylic acids, cycloalkylenepolyamine polycarboxylic acids, polyalkylene ether polyamine polycarboxylic acids, aminopolycarboxylic acids, aminocarboxyl Acid, alkali metal salts of these acids, alkaline earth metal salts of these acids, mixtures of alkali metal salts and earth metal salts of these acids, and the like. These aminocarboxylic acid derivatives can be used individually or in mixture. Among the above-mentioned compounds belonging to the aminocarboxylic acid derivatives, preferred examples are ethylene diamine tetraacetic acid, nitfeltriacetic acid, imino diacetic acid, glycine, diethylene triamine pentaacetic acid, triethylene tetraimine hexaacetic acid, 1,2- Diaminocyclohexane tetraacetic acid, N-hydroxyethyleneethylenediamine, -N, N ', N'-triacetic acid, ethylene glycol diethylether diamine tetraacetic acid, ethylene diamine tetrapropionic acid and salts thereof. In particular, ethylene diamine tetraacetic acid (hereinafter referred to as "EDTA") and salts thereof, nitrilotriacetic acid and salts thereof, diethylene triamine pentaacetic acid and salts thereof, and the like are more preferable. As the EDTA salt, di-, tri- and tetra-sodium salts of EDTA and di-, tri- and tetra-potassium salts of EDTA are preferable. These aminocarboxylic acid derivatives are generally used as aqueous solutions having a concentration in the range of 5-50% by weight. As the amount of the aminocarboxylic acid derivative, the molar ratio of the aminocarboxylic acid derivative to the metal ions contained in the reaction product as a catalyst is in the range of from 1: 1 to 10: 1, preferably from 1: 1 to 5: 1.

본 발명에서는 침전 중합법에 의해 수득된 반응 생성물에 아미노카르복실산 유도체를 첨가함으로써 촉매금속을 제거하는 2가지 바람직한 방법이 있다. 하나의 방법으로, 아미노카르복실산 유도체 수용액만을 반응생성물에 첨가하고 유기상과 수성상과의 상 분리 없이 아미노카르복실산 유도체 수용액과 반응 생성물의 혼합물을 여과함으로써 촉매 금속을 제거한다. 다른 방법에서는, 반응 생성물에 아미노카르복실산 유도체 용액과 적당량의 물을 첨가함으로써 수성상으로부터 폴리페닐렌 에테르가 현탁되어 있는 유기상을 분리함으로써 촉매 금속을 제거한다. 본 발명에서는 어느 방법이나 사용할 수 있다. 그러나, 상 분리가 있는 방법에서는, 반응 생성물내의 폴리페닐렌 에테르가 20중량% 이상의 고농도인 경우 수성상으로부터 폴리페닐렌 에테르가 현탁되어 있는 유기상을 분리하기 어려우므로 중합체의 정제가 불충분하다. 따라서, 상분리를 포함하는 방법은 반응 생성물 내의 폴리페닐렌 에테르의 농도를 낮추어야만 하기 때문에 공업적으로 불리하다. 또한, 상 분리를 포함하는 방법은 분리된 수성상을 정제 처리 또는 열처리해야할 필요가 있으므로 경제적으로 불리하다. 따라서, 상분리가 없는 방법이 바람직하다.In the present invention, there are two preferred methods for removing the catalytic metal by adding an aminocarboxylic acid derivative to the reaction product obtained by the precipitation polymerization method. In one method, only the aqueous solution of the aminocarboxylic acid derivative is added to the reaction product and the catalyst metal is removed by filtering the mixture of the aqueous solution of the aminocarboxylic acid derivative and the reaction product without phase separation of the organic and aqueous phases. In another method, the catalyst metal is removed by separating the organic phase in which the polyphenylene ether is suspended from the aqueous phase by adding an aminocarboxylic acid derivative solution and an appropriate amount of water to the reaction product. In the present invention, any method can be used. However, in a method with phase separation, the purification of the polymer is insufficient because it is difficult to separate the organic phase in which the polyphenylene ether is suspended from the aqueous phase when the polyphenylene ether in the reaction product is at a high concentration of 20% by weight or more. Thus, methods involving phase separation are industrially disadvantageous because they must lower the concentration of polyphenylene ether in the reaction product. In addition, methods involving phase separation are economically disadvantageous as the separated aqueous phase needs to be purified or heat treated. Therefore, a method without phase separation is preferred.

본 발명에서는, 반응 생성물에 아미노카르복실산 유도체를 첨가한 후, 폴리페닐렌 에테르용 불량 용매로 세척함으로써 폴리페닐렌 에테르를 더욱 정제한다. 폴리페닐렌 에테르용 불량 용매로서, 본 발명에서는 폴리페닐렌 에테르를 용해시키지 않으나 아미노카르복실산 유도체와 촉매 금속의 킬레이트를 용해시키는 용매를 사용한다. 불량 용매 중의 아미노카르복실산 유도체와 촉매 금속의 킬레이트의 용해도가 높을수록 세척효율이 높으므로 아미노카르복실산 유도체와 촉매 금속의 킬레이트의 용해도가 높은 불량 용매가 바람직하다. 이러한 불량 용매의 예로는 메탄올, 에탄올, n-포로판올, 이소-프로판올, n-부탄올, sec-부탄올, 이소-부탄올, tert-부탄올, 벤질알콜, 시클로헥산을 등과 같은 알콜 ; 아세톤 및 메틸에틸케톤과 같은 케톤 ; 에틸 아세톤 및 에틸 프로메이트와 같은 에스테르 ; 테트라히드로푸란 및 디에틸 에테르와 같은 에테르 ; 및 디메틸포름아미드와 같은 아미드가 있다. 이러한 불량 용매 중에서, 메탄올이 바람직하다. 폴리페닐렌 에테르용 불량 용매로 세척하는 목적은 폴리페닐렌 에테르로부터 아미노카르복실산 유도체와 촉매 금속의 잔류의 킬레이트를 불량 용매로 추출하고자 하는 것이다. 따라서, 사용된 불량 용매의 양이 많고 세척시간이 길수록, 중합체 내의 촉매 금속의 양이 적어진다. 그러나, 과량의 불량 용매를 사용하고 너무 많은 시간동안 세척을 행하는 것은 경제적으로 불리하다. 불량 용매의 양이 동일한 경우, 중합체 내의 촉매 금속의 양이 감소하므로 그 양을 나누거나 세척 횟수를 증가시키는 것이 바람직하다. 본 발명에서는 불량 용매가 세척용으로 첨가될때 중합체 입자의 모양이 유지되므로 중합체 입자의 성질을 조절하기 위한 불량 용매의 첨가 속도, 첨가 순서 등과 같은 세척 조건에 제한은 없다. 사용되는 폴리페닐렌 에테르용 불량 용매의 양은 반응 생성물 내의 폴리페닐렌 에테르 건조 중량의 1∼10배, 바람직하게는 1∼7배이다. 폴리페닐렌 에테르용 불량 용매를 사용한 폴리페닐렌 에테르의 세척 회수는 1∼10배, 바람직하게는 2∼7배이다.In the present invention, the polyphenylene ether is further purified by adding an aminocarboxylic acid derivative to the reaction product, followed by washing with a poor solvent for the polyphenylene ether. As a poor solvent for polyphenylene ether, in the present invention, a solvent which does not dissolve the polyphenylene ether but dissolves the chelate of the aminocarboxylic acid derivative and the catalyst metal is used. The higher the solubility of the chelate of the aminocarboxylic acid derivative and the catalyst metal in the poor solvent, the higher the cleaning efficiency. Therefore, the poor solvent of the high solubility of the aminocarboxylic acid derivative and the chelate of the catalyst metal is preferable. Examples of such poor solvents include alcohols such as methanol, ethanol, n-porpanol, iso-propanol, n-butanol, sec-butanol, iso-butanol, tert-butanol, benzyl alcohol, cyclohexane and the like; Ketones such as acetone and methyl ethyl ketone; Esters such as ethyl acetone and ethyl promate; Ethers such as tetrahydrofuran and diethyl ether; And amides such as dimethylformamide. Of these poor solvents, methanol is preferred. The purpose of washing with poor solvents for polyphenylene ethers is to extract chelates of residues of aminocarboxylic acid derivatives and catalyst metals from polyphenylene ethers with poor solvents. Thus, the greater the amount of bad solvent used and the longer the wash time, the smaller the amount of catalyst metal in the polymer. However, it is economically disadvantageous to use excess bad solvent and wash for too much time. If the amount of bad solvent is the same, it is desirable to divide the amount or increase the number of washes since the amount of catalyst metal in the polymer is reduced. In the present invention, since the shape of the polymer particles is maintained when the poor solvent is added for washing, there is no limitation on the washing conditions such as the rate of addition of the bad solvent, the order of addition, etc. to control the properties of the polymer particles. The amount of poor solvent for the polyphenylene ether used is 1 to 10 times, preferably 1 to 7 times the dry weight of the polyphenylene ether in the reaction product. The number of washings of the polyphenylene ether using the poor solvent for the polyphenylene ether is 1 to 10 times, preferably 2 to 7 times.

반응 생성물로 부터 폴리페닐렌 에테르를 분리한 후에 불량 용매를 사용한 세척을 행하는 것이 바람직하다.It is preferable to carry out washing with a poor solvent after separating the polyphenylene ether from the reaction product.

바람직하게는, 20∼60℃의 온도에서 세척을 행한다.Preferably, washing is performed at a temperature of 20 to 60 ° C.

본 발명의 방법에서는 2,6-이치환 페놀의 산화적 중합에 의해 수득한 반응 생성물에 이미노카르복실산 유도체를 첨가하는 경우에 환원제를 사용할 수 있다. 사용되는 환원제로는 어떤 환원제나 사용할 수 있다. 그러나, 특히 바람직한 환원제의 예로는 이티온산나트륨, 아황산나트륨, 히드라진, 히드로퀴논 등이 있다. 환원제는 반응 생성물에 아미노카르복실산 유도체를 첨가하기 전 또는 후에 또는 아미노카르복실산 유도체를 반응 생성물에 첨가하는 동시에 첨가한다. 사용되는 환원제의 양은 2,6-이치환 페놀 양에 대하여 0.01∼5몰%, 바람직하게는 0.05∼3몰% 범위이다.In the process of the invention, a reducing agent can be used when an iminocarboxylic acid derivative is added to the reaction product obtained by oxidative polymerization of 2,6-disubstituted phenol. As the reducing agent used, any reducing agent can be used. However, examples of particularly preferred reducing agents include sodium itionate, sodium sulfite, hydrazine, hydroquinone and the like. The reducing agent is added before or after the addition of the aminocarboxylic acid derivative to the reaction product or simultaneously with addition of the aminocarboxylic acid derivative to the reaction product. The amount of reducing agent used is in the range of 0.01 to 5 mol%, preferably 0.05 to 3 mol% relative to the amount of 2,6-disubstituted phenol.

본 발명의 범위를 제한하지 않는 하기의 실시예를 참고로 하여 본 발명을 더욱 자세히 기술하겠다.The invention will be described in more detail with reference to the following examples which do not limit the scope of the invention.

색 지수(Colar Index)의 정의Definition of Color Index

310℃에서 압축 성형을 행한 0.5g의 중합체를 클로로포름에 용해시킨다. 생성된 용액의 부피를 총 100ml로 맞추고, 샘플 용액의 480nm에서의 흡광도를 25℃에서 측정하고, 하기에 나타낸 식에 따라 중합체의 색지수를 계산한다.0.5 g of the polymer subjected to compression molding at 310 ° C. is dissolved in chloroform. The resulting solution is adjusted to a total volume of 100 ml, the absorbance at 480 nm of the sample solution is measured at 25 ° C., and the color index of the polymer is calculated according to the formula shown below.

색 지수 값은 폴리페닐렌 에테르의 열산화도를 구하여 측정한 값이다. 이 값이 낮을수록, 열에 의한 중합체의 채색이 적어지며 중합체가 열산화에 대하여 더욱 안정해진다.The color index value is the value measured by calculating the thermal oxidation degree of the polyphenylene ether. The lower this value, the less coloring of the polymer by heat and the more stable the polymer is to thermal oxidation.

색 지수 =log(Io/I)/a·b×100Color index = log (Io / I) / ab × 100

상기 식중, Io : 입사광의 감도In the above formula, Io: sensitivity of incident light

I : 투과광의 감도I: sensitivity of transmitted light

a : 셀의 길이(cm)a: length of the cell (cm)

b : 샘플 용액의 농도(g/㎤)b: concentration of sample solution (g / cm 3)

[실시예 1]Example 1

100g(0.82몰)의 2,6-디메틸페놀을 240g의 크실렌, 80g의 부탄올 및 80g의 메탄올의 혼합물에 용해시킨다. Cu2O-HBr-디-n-부틸아민-디메틸-n-부탄아민-N, N'-디-t-부틸에틸디아민 형의 촉매와 트리옥틸메틸암모늄 클로라이드의 존재하에 25℃에서 6시간동안 산화적 중합반응을 행하여 폴리-(2,6-디메틸-1,4-페닐렌) 에테르의 중합 반응 용액을 수득한다. 촉매의 양은 0.100g(7.0×10-4몰)의 Cu2O, 0.458g(5.7 ×10-3몰)의 HBr, 0.996g(7.7×10-3몰)의 디-n-부틸아민, 3,644g(3.6×10-2몰)의 디메틸-n-부틸아민 및 0.155g(9.0×10-4몰)의 N, N'-디-t-부틸에틸디아민이다. Cu2O가 용해되어 있는 48% HBr수용액으로서 Cu2O를 공급한다. 트리옥틸메틸암모늄 클로라이드의 양은 0.11g이다.(중합 용액의 양에 대하여 0.022중량%)100 g (0.82 mole) of 2,6-dimethylphenol is dissolved in a mixture of 240 g xylene, 80 g butanol and 80 g methanol. Cu 2 O-HBr-di-n-butylamine-dimethyl-n-butanamine-N, N'-di-t-butylethyldiamine type catalyst and trioctylmethylammonium chloride in the presence of trioctylmethylammonium chloride for 6 hours at An oxidative polymerization reaction is carried out to obtain a polymerization reaction solution of poly- (2,6-dimethyl-1,4-phenylene) ether. The amount of catalyst was 0.100 g (7.0 x 10 -4 moles) of Cu 2 O, 0.458 g (5.7 x 10 -3 moles) of HBr, 0.996 g (7.7 x 10 -3 moles) of di-n-butylamine, 3,644 g (3.6 × 10 −2 moles) of dimethyl-n-butylamine and 0.155 g (9.0 × 10 −4 moles) of N, N′-di-t-butylethyldiamine. As a 48% HBr aqueous solution of Cu 2 O in the Cu 2 O it is dissolved supplies. The amount of trioctylmethylammonium chloride is 0.11 g (0.022 wt% based on the amount of the polymerization solution).

생성된 중합 혼합물은 중합체 입자가 침전되어 있는 현탁액이다.The resulting polymerization mixture is a suspension in which polymer particles are precipitated.

생성된 중합 현탁액에 2.27g(2.8×10-2몰)의 50% EDTA3K 수용액을 가한다. 또한, 160g의 메탄올을 현탁액에 가하여 중합체를 세척한다. 용액을 45℃에서 30분간 교반한후, 혼합물을 여과함으로써 용매로 젖어 있는 중합체를 수득한다. 240g의 메탄올을 중합체에 가하여, 메탄올 현탁액을 수득한다. 현탁액을 45℃에서 30분간 교반한 후, 교반 현탁액을 여과함으로써 중합체를 수득한다. 이어서, 동일한 방법을 2회 반복한 후 용매로 젖어 있는 생성된 중합체를 150℃에서 1시간동안 건조시킨다.To the resulting polymerization suspension is added 2.27 g (2.8 x 10 -2 moles) of a 50% aqueous solution of EDTA3K. In addition, 160 g of methanol is added to the suspension to wash the polymer. The solution is stirred at 45 ° C. for 30 minutes and then the mixture is filtered to give the polymer wetted with solvent. 240 g of methanol is added to the polymer to obtain a methanol suspension. The suspension is stirred at 45 ° C. for 30 minutes and then the stirring suspension is filtered to give the polymer. Subsequently, the same method is repeated twice, and the resulting polymer wetted with solvent is dried at 150 ° C. for 1 hour.

최종 중합체의 고유 점도를 30℃의 클로로포름 내에서 측정한다. 그 값은 0.57이었다. 중합체 내의 잔류구리의 양은 0.5ppm이다. 310℃에서 압축 성형하여 수득한 성형품의 색 지수는 3.0이었다.The intrinsic viscosity of the final polymer is measured in chloroform at 30 ° C. The value was 0.57. The amount of residual copper in the polymer is 0.5 ppm. The color index of the molded article obtained by compression molding at 310 ° C. was 3.0.

중합 반응 용액에 50% EDTA, 3K에서 수용액을 가하는 상기의 조작 단계 이후에 일부의 혼합물은 45℃에서 5시간 방치하고 나머지는 동일 온도에서 24시간 방치한다. 이후에, 조작을 계속한다. 조작을 끝마친후, 최종 중합체의 고유 점도를 측정한다. 조작 동안에 5시간동안 방치한 중합체의 고유점도는 0.57이었다. 24시간동안 방치한 중합체의 고유 점도는 0.57이었다. 이들 중합체의 고유 점도 사이에 차이는 없었다.After the above operation step of adding an aqueous solution at 50% EDTA, 3K to the polymerization reaction solution, some mixtures were left at 45 ° C. for 5 hours and the others were left at the same temperature for 24 hours. After that, the operation is continued. After the operation is completed, the intrinsic viscosity of the final polymer is measured. The intrinsic viscosity of the polymer left for 5 hours during the operation was 0.57. The inherent viscosity of the polymer left for 24 hours was 0.57. There was no difference between the intrinsic viscosities of these polymers.

[비교예 1]Comparative Example 1

실시예 1에서의 동일한 조작으로 수득한 생성된 중합 반응 현탁액에 11.6g(1.1×10-1몰)의 35% 염산과 100g의 물을 가한다. 현탁액을 45℃에서 30분간 교반한 후, 현탁액을 정치시켜 수성층을 제거한다. 생성된 용액을 여과함으로써 용매로 젖어 있는 중합체를 수득한다. 현탁액을 45℃에서 30분간 교반한 후, 교반 현탁액을 여과함으로써 중합체를 수득한다. 이어서, 동일한 과정을 2회 반복하여 용매로 젖어 있는 수득한 중합체를 150℃에서 1시간동안 건조시킨다.To the resulting polymerization reaction suspension obtained in the same manner as in Example 1 was added 11.6 g (1.1 × 10 −1 mole) of 35% hydrochloric acid and 100 g of water. The suspension is stirred at 45 ° C. for 30 minutes and then the suspension is left to remove the aqueous layer. Filtration of the resulting solution yields a polymer wetted with solvent. The suspension is stirred at 45 ° C. for 30 minutes and then the stirring suspension is filtered to give the polymer. Subsequently, the same procedure was repeated twice to dry the obtained polymer wetted with solvent at 150 ° C. for 1 hour.

최종 중합체의 고유 점도를 30℃의 클로로포름 용매내에서 측정한다. 그 값은 0.57이었다. 중합체 내의 잔류의 구리의 양은 1.0ppm 이었다. 310℃에서 압축 성형하여 수득한 성형품의 색지수는 6 이었다.The intrinsic viscosity of the final polymer is measured in chloroform solvent at 30 ° C. The value was 0.57. The amount of copper remaining in the polymer was 1.0 ppm. The color index of the molded article obtained by compression molding at 310 ° C. was 6.

생성된 중합 반응 현탁액에 35% 염산과 물을 가하는 상기 조작 단계 이후에, 혼합물의 일부를 45℃에서 5시간동안 방치하고 나머지 일부는 동일 온도에서 24시간동안 방치한다. 이후에 조작을 계속한다. 조작을 마친후, 최종 중합체의 고유 점도를 측정한다. 조작 동안 5시간동안 방치한 중합체의 고유 점도는 0.57이었다. 24시간동안 방치한 중합체의 고유 점도는 0.57이었다.After the above operation step of adding 35% hydrochloric acid and water to the resulting polymerization suspension, a portion of the mixture is left at 45 ° C. for 5 hours and the other part is left at the same temperature for 24 hours. After that, the operation continues. After the operation, the intrinsic viscosity of the final polymer is measured. The inherent viscosity of the polymer left for 5 hours during the operation was 0.57. The inherent viscosity of the polymer left for 24 hours was 0.57.

[비교예 2]Comparative Example 2

크실렌, 부탄올 및 메탄올 대신에 300g의 크실렌을 함유하는 중합 용매를 사용하는 것을 제외하고는 실시예 1과 동일한 조작을 행한다. 수득한 중합반응 생성물은 중합체를 함유하는 균일한 용액이다. 수득한 중합체의 고유 점도를 30℃의 클로로포름에서 측정한다. 그 값은 0.55이다. 중합체 내의 잔류 구리의 양은 1.5ppm이었다. 310℃에서 압축 성형하여 수득한 색지수는 3.5이었다.The same operation as in Example 1 was carried out except that a polymerization solvent containing 300 g of xylene was used instead of xylene, butanol and methanol. The resulting polymerization product is a homogeneous solution containing a polymer. The intrinsic viscosity of the obtained polymer is measured in chloroform at 30 ° C. The value is 0.55. The amount of residual copper in the polymer was 1.5 ppm. The color index obtained by compression molding at 310 ° C. was 3.5.

중합 반응 용액에 50% EDTA, 3K 수용액을 가하는 상기의 조작 단계 이후에, 혼합물의 일부는 45℃에서 5시간동안 방치하고 나머지는 동일 온도에서 24시간동안 방치한다. 이후에, 조작을 계속한다. 조작을 마친후, 최종 중합체의 고유 점도를 측정한다. 조작동안 5시간동안 방치한 중합체의 고유 점도는 0.48이었다. 24시간동안 방치한 중합체의 고유 점도는 0.38이었다. 분자량의 감소가 인정되었다.After the above operation step of adding 50% EDTA, 3K aqueous solution to the polymerization reaction solution, part of the mixture was left at 45 ° C. for 5 hours and the rest was left at the same temperature for 24 hours. After that, the operation is continued. After the operation, the intrinsic viscosity of the final polymer is measured. The inherent viscosity of the polymer left for 5 hours during the operation was 0.48. The inherent viscosity of the polymer left for 24 hours was 0.38. A decrease in molecular weight was recognized.

[실시예 2]Example 2

EDTA, 3K 대신에 4.12g(2.8×10-3몰)의 25% EDTA, 3Na 수용액을 사용하는 것을 제외하고는 실시예 1과 동일한 조작을 행한다. 수득한 중합체의 고유 점도를 30℃의 클로로포름을 용매내에서 측정한다. 그 값은 0.57이었다. 중합체 내의 잔류 구리양은 0.6ppm이었다. 310℃에서 압축 성형하여 수득한 성형품의 색지수는 3.2이었다.The same operation as in Example 1 was carried out except that 4.12 g (2.8 × 10 −3 mol) of 25% EDTA, 3Na aqueous solution was used instead of EDTA, 3K. The intrinsic viscosity of the obtained polymer was measured at 30 ° C. in chloroform. The value was 0.57. The amount of residual copper in the polymer was 0.6 ppm. The color index of the molded article obtained by compression molding at 310 ° C. was 3.2.

상기의 조작 단계 이후에, 중합 반응 용액에 25% EDTA, 3Na 수용액을 가하는 상기 조작 단계 이후에, 혼합물의 일부를 45℃에서 5시간동안 방치하고 나머지는 동일 온도에서 24시간동안 방치한다. 이후에 조작을 계속한다. 조작을 마친후, 최종 중합체의 고유 점도를 측정한다. 조작중에 5시간동안 방치한 중합체의 고유 점도는 0.57이었다. 24시간동안 방치한 중합체의 고유 점도는 0.57이었다. 이들 중합체의 고유 점도간에 차이는 없었다.After the above operation step, after the above operation step of adding 25% EDTA, 3Na aqueous solution to the polymerization reaction solution, part of the mixture was left at 45 ° C. for 5 hours and the rest was left at the same temperature for 24 hours. After that, the operation continues. After the operation, the intrinsic viscosity of the final polymer is measured. The inherent viscosity of the polymer left for 5 hours during the operation was 0.57. The inherent viscosity of the polymer left for 24 hours was 0.57. There was no difference between the intrinsic viscosities of these polymers.

[실시예 3]Example 3

EDTA, 3K 첨가후에 0.18g의 하이드로퀴논(1.64×10-3몰)을 가하는 것을 제외하고는 실시예 1과 동일한 조작을 행한다. 수득한 중합체의 고유 점도를 30℃의 클로로포름에서 측정한다. 그 값은 0.57이었다. 중합체 내의 잔류 구리의 양은 0.7ppm이었다. 310℃에서 압축 성형하여 수득한 성형품의 색지수는 2.6이었다.The same operation as in Example 1 was carried out except that 0.18 g of hydroquinone (1.64 x 10 -3 mol) was added after the addition of EDTA and 3K. The intrinsic viscosity of the obtained polymer is measured in chloroform at 30 ° C. The value was 0.57. The amount of residual copper in the polymer was 0.7 ppm. The color index of the molded article obtained by compression molding at 310 ° C. was 2.6.

중합 반응 용액에 50% EDTA, 3K 수용액을 가하는 상기 조작 단계후, 혼합물의 일부를 45℃에서 5시간동안 방치하고 나머지는 동일 온도에서 24시간동안 방치한다. 이후에, 조작을 계속한다. 조작을 마친후, 최종 중합체의 고유 점도를 측정한다. 조작중 5시간동안 방치한 중합체의 고유 점도는 0.57이었다. 24시간동안 방치한 중합체의 고유 점도는 0.57이었다. 이들 중합체의 고유 점도간에 차이는 없었다.After the above operation step of adding 50% EDTA, 3K aqueous solution to the polymerization reaction solution, part of the mixture was left at 45 ° C. for 5 hours and the rest was left at the same temperature for 24 hours. After that, the operation is continued. After the operation, the intrinsic viscosity of the final polymer is measured. The inherent viscosity of the polymer left for 5 hours during the operation was 0.57. The inherent viscosity of the polymer left for 24 hours was 0.57. There was no difference between the intrinsic viscosities of these polymers.

[실시예 4]Example 4

0.085g(5.0×10-4몰)의 염화 제2구리, 0.37(3.6×10-3몰)의 35% 염산, 1.09(8.5×10-3몰)의 디-n-부틸아민 및 3.31g(2.5×10-2몰)의 N, N, N',N'-테트라메틸-1,3-디아미노프로판을 함유하는 산화적 중합 촉매를 사용하는 것을 제외하고는 실시예 1과 동일한 조작을 행한다. 수득한 중합체의 고유 점도는 30℃의 클로로포름 용매내에서 측정한다. 그 값은 0.55이었다. 중합체 내의 잔류 구리의 양은 0.3ppm이었다. 310℃에서 압축 성형에 의해 수득한 성형품의 색 지수는 2.4이었다.0.085 g (5.0 x 10 -4 moles) of cupric chloride, 0.37 (3.6 x 10 -3 moles) of 35% hydrochloric acid, 1.09 (8.5 x 10 -3 moles) of di-n-butylamine and 3.31 g ( The same operation as in Example 1 was carried out except that an oxidative polymerization catalyst containing 2.5 × 10 −2 mol) of N, N, N ′, N′-tetramethyl-1,3-diaminopropane was used. . The intrinsic viscosity of the obtained polymer is measured in a chloroform solvent at 30 ° C. The value was 0.55. The amount of residual copper in the polymer was 0.3 ppm. The color index of the molded article obtained by compression molding at 310 ° C. was 2.4.

중합 반응 용액에 50% EDTA, 3K 수용액을 가하는 상기의 조작 단계 후에, 혼합물의 일부를 45℃에서 5시간동안 방치하고 나머지는 동일온도에서 24시간동안 방치한다. 이후에, 조작을 계속한다. 조작을 마친후, 최종 중합체의 고유 점도를 측정한다. 조작중 5시간동안 방치한 중합체의 고유 점도는 0.55이었다. 24시간동안 방치한 중합체의 고유 점도는 0.55이었다. 이들 중합체의 고유 점도간에 차이는 없었다.After the above operation step of adding 50% EDTA, 3K aqueous solution to the polymerization reaction solution, part of the mixture was left at 45 ° C. for 5 hours and the rest was left at the same temperature for 24 hours. After that, the operation is continued. After the operation, the intrinsic viscosity of the final polymer is measured. The inherent viscosity of the polymer left for 5 hours during the operation was 0.55. The inherent viscosity of the polymer left for 24 hours was 0.55. There was no difference between the intrinsic viscosities of these polymers.

상기에 기술한 바와 같이, 열성형 동안에 거의 변색되지 않으며 정제 단계 동안에 고유 점도가 감소하지 않은 폴리페닐렌 에테르가 본 발명에 의해 수득될 수 있다.As described above, polyphenylene ethers which are hardly discolored during thermoforming and which do not reduce intrinsic viscosity during the purification step can be obtained by the present invention.

Claims (9)

구리 이온, 할로겐 이온 및 1종 이상의 아민의 조합을 구성된 촉매의 존재하에, 불량의 용매에 대한 양호 용매의 비율이 중량비로 3 : 7∼9 : 1로 혼합된 용매중에서 생성되는 중합체를 입자로서 석출시키면서 2,6-디치환페놀을 산화 중합한 후, 반응 혼합물에 아미노카르복실산 유도체를 첨가하여 구리의 킬레이트를 형성시키고, 이어서 이 킬레이트를 용해시키는 폴리페닐렌에테르의 불량 용매로 생성된 중합체를 세정함을 특징으로 하는 폴리페닐렌에테르의 제조방법.In the presence of a catalyst composed of a combination of copper ions, halogen ions and one or more amines, the polymer produced in the solvent in which the ratio of the good solvent to the bad solvent is mixed in a weight ratio of 3: 7 to 9: 1 is precipitated as particles. After the oxidative polymerization of 2,6-disubstituted phenol while adding an aminocarboxylic acid derivative to the reaction mixture to form a chelate of copper, and then a polymer produced with a poor solvent of polyphenylene ether to dissolve the chelate Method for producing a polyphenylene ether, characterized in that the washing. 제 1 항에 있어서, 침전 중합법이 3개의 완전 혼합형 반응기를 사용하는 연속 중합법인 방법.The process according to claim 1, wherein the precipitation polymerization method is a continuous polymerization method using three completely mixed reactors. 제 1 항에 있어서, 2,6-이치환페놀이 2,6-디메틸페놀인 방법.The method of claim 1, wherein the 2,6-disubstituted phenol is 2,6-dimethylphenol. 제 1 항에 있어서, 아미노카르복실산 유도체가 에틸렌디아민테트라아세트산의 디-, 트리- 또는 테트라 나트륨염인 방법.The method of claim 1 wherein the aminocarboxylic acid derivative is a di-, tri- or tetra sodium salt of ethylenediaminetetraacetic acid. 제 1 항에 있어서, 아미노카르복실산 유도체가 에틸렌디아민테트라세트산의 디-, 트리- 또는 테트라 칼륨염인 방법.The method of claim 1 wherein the aminocarboxylic acid derivative is a di-, tri- or tetra potassium salt of ethylenediaminetetraacetic acid. 제 1 항에 있어서, 폴리페닐렌에테르의 불량 용매가 알콜인 방법.The method of claim 1 wherein the poor solvent of the polyphenylene ether is an alcohol. 제 6 항에 있어서, 알콜이 메탄올인 방법.The method of claim 6, wherein the alcohol is methanol. 제 1 항에 있어서, 사용되는 폴리페닐렌에테르의 불량 용매의 양이 폴리페닐렌에테르 건조 중량의 1∼10배인 방법.The method according to claim 1, wherein the amount of the poor solvent of the polyphenylene ether used is 1 to 10 times the dry weight of the polyphenylene ether. 제 1 항에 있어서, 침전 중합법으로 수득한 반응 생성물에 아미노카르복실산 유도체를 가한 후 폴리페닐렌에테르를 정제하는 경우, 상분리 없이 아미노카르복실산 유도체 수용액을 가한 후 반응 생성물과 아미노카르복실산 유도체 수용액의 혼합물을 여과하는 방법.The method of claim 1, wherein in the case of refining the polyphenylene ether after adding the aminocarboxylic acid derivative to the reaction product obtained by the precipitation polymerization method, the aqueous solution of the aminocarboxylic acid derivative is added without phase separation, and then the reaction product and the aminocarboxylic acid. A method of filtering a mixture of aqueous derivatives.
KR1019910020739A 1991-11-20 1991-11-20 Method for purifying a polyphenylenether ether KR960004115B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910020739A KR960004115B1 (en) 1991-11-20 1991-11-20 Method for purifying a polyphenylenether ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019910020739A KR960004115B1 (en) 1991-11-20 1991-11-20 Method for purifying a polyphenylenether ether

Publications (2)

Publication Number Publication Date
KR930010068A KR930010068A (en) 1993-06-22
KR960004115B1 true KR960004115B1 (en) 1996-03-26

Family

ID=19323172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910020739A KR960004115B1 (en) 1991-11-20 1991-11-20 Method for purifying a polyphenylenether ether

Country Status (1)

Country Link
KR (1) KR960004115B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8466253B1 (en) 2012-06-29 2013-06-18 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) process
US8492501B2 (en) 2011-05-17 2013-07-23 Sabic Innovative Plastics Ip B.V. Polycarbonate recovery from polymer blends by liquid chromatography

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492501B2 (en) 2011-05-17 2013-07-23 Sabic Innovative Plastics Ip B.V. Polycarbonate recovery from polymer blends by liquid chromatography
US8466253B1 (en) 2012-06-29 2013-06-18 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) process
WO2014003819A1 (en) * 2012-06-29 2014-01-03 Sabic Innovative Plastics Ip B.V. Poly(phenylene ether) process

Also Published As

Publication number Publication date
KR930010068A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
US3838102A (en) Removal of metallic catalyst residue from polyphenylene ethers
CN1164650C (en) The preparation method of polyphenylene ether
CA1278145C (en) Melt-capped polyphenylene ethers and method of preparation
US4806602A (en) Anhydride capping polyphenylene ether with carboxylic acid
US4116939A (en) Intrinsic viscosity control of polyphenylene ether reaction mixtures
US3642699A (en) Formation of polyphenylene ethers
US5214128A (en) Method for purifying a polyphenylene ether with amino carboxylic acid derivative
US6472499B1 (en) Preparation of high intrinsic viscosity poly(arylene ether) resins
US4110311A (en) Molecular weight control of polyphenylene ethers
GB1599474A (en) Quinone-coupled polyphenylene oxides
JP5196516B2 (en) Process for producing polyphenylene ether
KR960004115B1 (en) Method for purifying a polyphenylenether ether
US4743661A (en) Poly (phenylene ethers) and their preparation
TWI413654B (en) A process for the production of phenylene ether olygomer
US4626585A (en) Method of producing a polyphenylene ether protected against molecular weight degradation, where the copper salt employed in the coupling reaction can be reused
US4097458A (en) Method for preparing polyphenylene ethers
US3984374A (en) Catalyst removal from polyphenylene ether reaction solutions by aqueous extraction with ammonium salts
US4088634A (en) Process for isolation and purification of polyphenylene ethers
US4097459A (en) Method for preparing polyphenylene ethers
US4536567A (en) Removal of the catalyst from polyphenylene ethers
US4496679A (en) Stabilization of polyphenylene ether solutions
CN109929103B (en) Method for preparing high-intrinsic-viscosity polyphenyl ether
JP3241836B2 (en) Purification method of polyphenylene ether
JP3215196B2 (en) Purification method of polyphenylene ether
US3988298A (en) Catalyst removal from polyphenylene oxides by ammonia and carbon dioxide

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19911120

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19911120

Comment text: Request for Examination of Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 19950624

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 19950916

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 19950624

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

J2X1 Appeal (before the patent court)

Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL

PJ2001 Appeal

Appeal kind category: Appeal against decision to decline refusal

Decision date: 19960614

Appeal identifier: 1995201002427

Request date: 19951019

PB0901 Examination by re-examination before a trial

Comment text: Request for Trial against Decision on Refusal

Patent event date: 19951019

Patent event code: PB09011R01I

Comment text: Amendment to Specification, etc.

Patent event date: 19950823

Patent event code: PB09011R02I

G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

Comment text: Decision on Publication of Application

Patent event code: PG16051S01I

Patent event date: 19960229

B701 Decision to grant
PB0701 Decision of registration after re-examination before a trial

Patent event date: 19960614

Comment text: Decision to Grant Registration

Patent event code: PB07012S01D

Patent event date: 19960213

Comment text: Transfer of Trial File for Re-examination before a Trial

Patent event code: PB07011S01I

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19960902

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19960902

End annual number: 3

Start annual number: 1

PR1001 Payment of annual fee

Payment date: 19990312

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20000317

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20010321

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20020320

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20030311

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20030311

Start annual number: 8

End annual number: 8

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee