[go: up one dir, main page]

KR940009945B1 - Chemical vapor growth apparatus - Google Patents

Chemical vapor growth apparatus Download PDF

Info

Publication number
KR940009945B1
KR940009945B1 KR1019910023356A KR910023356A KR940009945B1 KR 940009945 B1 KR940009945 B1 KR 940009945B1 KR 1019910023356 A KR1019910023356 A KR 1019910023356A KR 910023356 A KR910023356 A KR 910023356A KR 940009945 B1 KR940009945 B1 KR 940009945B1
Authority
KR
South Korea
Prior art keywords
gas
reaction
semiconductor wafer
head
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
KR1019910023356A
Other languages
Korean (ko)
Other versions
KR920012537A (en
Inventor
아키마사 유우키
다카아키 가와하라
토오루 야마구치
고이치로 츠타하라
Original Assignee
미쓰비시덴키 가부시키가이샤
시키모리야
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 미쓰비시덴키 가부시키가이샤, 시키모리야 filed Critical 미쓰비시덴키 가부시키가이샤
Publication of KR920012537A publication Critical patent/KR920012537A/en
Application granted granted Critical
Publication of KR940009945B1 publication Critical patent/KR940009945B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

내용 없음.No content.

Description

화학기상 성장장치Chemical vapor growth apparatus

제 1 도는 이 발명의 실시예 1에 의한 화학기상 성장장치를 표시하는 단면 구성도,1 is a cross-sectional configuration diagram showing a chemical vapor growth apparatus according to a first embodiment of the present invention,

제 2 도는 이 발명의 실이예 1에 의한 화학기상 성장장치의 반응실내에 있어서의 흐름의 모양을 표시하는 설명도.2 is an explanatory diagram showing the state of flow in the reaction chamber of the chemical vapor growth apparatus according to Example 1 of the present invention.

제 3 도는 이 발명의 실시예 1에 관한 가스헤드를 표시하는 설명도.3 is an explanatory diagram showing a gas head according to the first embodiment of the present invention.

제 4 도는 제 3 도의 가스헤드에 의해 형성된 반응생성막의 두께의 분포를 표시하는 조감도.4 is a bird's eye view showing the distribution of the thickness of the reaction product film formed by the gas head of FIG.

제 5 도는 이 발명의 실시예 1에 관한 다른 가스헤드를 표시하는 설명도.5 is an explanatory diagram showing another gas head according to the first embodiment of the present invention.

제 6 도는 제 5 도의 가스헤드에 의해 형성된 반응생성막의 두께의 분포를 표시하는 조감도.6 is a bird's eye view showing the distribution of the thickness of the reaction product film formed by the gas head of FIG.

제 7 도는 제 3 도의 가스헤드에 의해 형성된 다른 반응생성막의 두께의 분포를 표시하는 조감도.7 is a bird's eye view showing the distribution of the thickness of another reaction product film formed by the gas head of FIG.

제 8 도는 제 3 도의 가스헤드에 의해 형성된 다른 반응생성막의 두께의 분포를 표시하는 조감도.8 is a bird's eye view showing the distribution of the thickness of another reaction product film formed by the gas head of FIG.

제 9 도는 이 발명의 실시예 2에 의한 화학기상 성장장치를 표시하는 단면 연결구성도.9 is a cross-sectional view showing a chemical vapor growth apparatus according to a second embodiment of the present invention.

제 10 도는 이 발명의 실시예 3에 의한 화학기상 성장장치를 표시하는 개략 구성도.10 is a schematic block diagram showing a chemical vapor growth apparatus according to a third embodiment of the present invention.

제 11 도는 이 발명의 실시예 4에 의한 화학기상 성장장치를 표시하는 개략 구성도.11 is a schematic block diagram showing a chemical vapor growth apparatus according to a fourth embodiment of the present invention.

제 12 도는 이 발명의 실시예 5에 의한 화학기상 성장장치를 표시하는 단면 구성도 및 평면도.12 is a cross-sectional configuration and plan view showing a chemical vapor growth apparatus according to a fifth embodiment of the present invention.

제 13 도는 종래의 화학기상 성장장치를 표시하는 단면 구성도.13 is a cross-sectional view showing a conventional chemical vapor growth apparatus.

제 14 도는 종래의 연속형 화학기상 성장장치를 표시하는 구성도.14 is a block diagram showing a conventional continuous chemical vapor growth apparatus.

제 15 도는 종래의 연속형 화학기상 성장장치의 성막반응부를 표시하는 단면 구성도.15 is a cross-sectional view showing the film forming reaction portion of the conventional continuous chemical vapor growth apparatus.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1: 반도체 웨이퍼 2: 스테이지1: semiconductor wafer 2: stage

3: 히터 4: 반응실3: heater 4: reaction chamber

5: 가스헤드 6a: N2가스분출구5: gas head 6a: N 2 gas outlet

6b: 반응가스분출구 6c: N2가스분출구6b: reaction gas outlet 6c: N 2 gas outlet

B: 반응가스 C: N2가스.B: reaction gas C: N 2 gas.

17: 간막이 17a: 간막이17: The membrane 17a: The membrane

17b: 간막이 6a: N2가스분출구17b: partition 6a: N 2 gas outlet

6b: 반응가스분출구 6c: N2가스분출구6b: reaction gas outlet 6c: N 2 gas outlet

B: 반응가스 C: N2가스.B: reaction gas C: N 2 gas.

이 발명은 피처리물로서의 반도체 웨이퍼에 박막을 형성할때 사용하는데 적합한 화학기상 성장장치에 관한 것이다.The present invention relates to a chemical vapor growth apparatus suitable for use in forming a thin film on a semiconductor wafer as a workpiece.

종래 이 종류의 화학기상 성장장치로는, 예를 들면, 특개평 2-283696호 공보에 기지된 것이 있다. 제 13 도는 이와 같은 종래의 화학기상 성장장치를 표시하는 단면 구성도이고 도면에서, 2는 반응생성막(도시하지않음)이 형성되는 반도체 웨이퍼 1을 보지하고 있는 가열용 스테이지, 3은 이 스테이지(2)를 가열하기 위한 히터, 4는 반응가스에 의해 박막이 형성되는 반도체 웨이퍼(1)을 낱장으로 처리하는 반응실, 5는 스테이지(2)가 간격을 두고 설치되어, 반응가스(B)를 공급하기 위한 다수의 가스분출구(6)를 갖는 가스헤드, 7은 반응실(4)를 둘러싸고 있는 반응실 측벽, 8은 배기링, 9는 배기실, 10은 반응실벽(7)에 설치되어 배기 A를 도출하기 위한 배기구, 11은 배기배출구, 12는 배기플랜지, 13은 배기저항판, 14는 스테이지(2)의 열이 전도에 의해 외부로 도망하는 것을 방지하기 위해서와, 스테이지를 회전시키기 위한 스테이지 간극이다. 또 15는 N2분출구, 16은 N2분출링.As a conventional chemical vapor growth apparatus of this kind, there is one known from Japanese Patent Laid-Open No. 2-283696. FIG. 13 is a cross-sectional configuration diagram showing such a conventional chemical vapor growth apparatus, in which FIG. 2 is a heating stage holding semiconductor wafer 1 on which a reaction generation film (not shown) is formed, and 3 is this stage ( A heater for heating 2), a reaction chamber for processing a semiconductor wafer 1 in which a thin film is formed by a reaction gas in a sheet, and 5, a stage 2 is provided at intervals, and the reaction gas B A gas head having a plurality of gas outlets 6 for supplying, 7 is a reaction chamber side wall surrounding the reaction chamber 4, 8 is an exhaust ring, 9 is an exhaust chamber, 10 is installed in the reaction chamber wall 7, and exhausted. An exhaust port for deriving A, an exhaust outlet port, 11 an exhaust flange, 13 an exhaust resistance plate, and 14 an exhaust port for preventing the heat of the stage 2 from escaping to the outside by conduction, and for rotating the stage. It's a stage gap. 15 is the N 2 spout, and 16 is the N 2 spout ring.

이와 같이 구성된 종래의 화학기상 성장장치에 있어서는 미리 스테이지(2)상에서 가열된 반도체 웨이퍼(1)에 대해, 가스분출구(6)으로부터 분출된 반응가스(B)를 공급함으로써, 반도체 웨이퍼상에 반응생성막을 형성할 수가 있다.In the conventional chemical vapor growth apparatus configured as described above, reaction reaction is generated on the semiconductor wafer by supplying the reaction gas B ejected from the gas ejection opening 6 to the semiconductor wafer 1 previously heated on the stage 2. A film can be formed.

종래의 화학기상 성장장치는 이상과 같이 구성되어 있으므로, 반응생성막의 성장속도가 가스헤드(5)로부터 반도체 웨이퍼(1)에 공급되는 가스농도에 의존하기 때문에 반응생성막의 막의 두께를 균일하게 할 경우에, 반도체 웨이퍼(1)상의 임의의 부위에서 반응가스(B)의 농도를 안정하고도 균일하게 하기 위해 반응가스(B)의 흐름을 안정하고도 균일하게 할 필요가 있었다.Since the conventional chemical vapor growth apparatus is configured as described above, since the growth rate of the reaction generation film depends on the gas concentration supplied from the gas head 5 to the semiconductor wafer 1, the thickness of the reaction generation film is made uniform. In order to stabilize and uniformize the concentration of the reaction gas B at any site on the semiconductor wafer 1, it was necessary to make the flow of the reaction gas B stable and uniform.

또, 반응가스(B)는 기상반응에 의해 반응생성물(D)가 생기고, 이것이 반응실내벽 각부에 부착해서 다음에 내부벽으로부터 박리되어 떨어져, 반도체 웨이퍼(1) 위에 부착하므로, 제품의 수율저하의 원인이 되었었다.In addition, the reaction gas (B) generates a reaction product (D) due to the gas phase reaction, which adheres to each part of the inner wall of the reaction chamber, then peels off from the inner wall and adheres to the semiconductor wafer (1), thereby reducing the yield of the product. It was the cause.

또는 수율저하를 피하기 위해, 반응생성물(D)를 제거하기 위해 반응실청소를 빈번하게 해야하며 생산성이 저하한다는 문제점이 있었다. 그래서 반응생성물(D)의 발생을 감소시키고 또한 배기(A)와 함께 반응실(4)로부터 외부로 송출할 필요가 있었다.Alternatively, in order to avoid a decrease in yield, the reaction chamber needs to be frequently cleaned to remove the reaction product (D), and there is a problem that productivity is lowered. Therefore, it was necessary to reduce the generation of the reaction product D and to send it out from the reaction chamber 4 together with the exhaust A.

이 발명은, 상기와 같은 문제점을 해소하기 위해 발명된 것으로, 반응실내의 반응가스의 흐름과 조성을 제어할 수가 있고, 따라서 균일한 막의 두께를 갖는 반응생성막을 얻을 수가 있고 더우기 반응실내부에의 이물질의 부착을 감소시킬 수 있는 화학기상 성장장치를 제공하는 것을 목적으로 한다.The present invention has been invented to solve the above problems, and it is possible to control the flow and composition of the reaction gas in the reaction chamber, so that a reaction product film having a uniform film thickness can be obtained, and moreover, foreign matter into the reaction chamber. It is an object of the present invention to provide a chemical vapor growth apparatus that can reduce the adhesion of.

이 발명에 관한 화학기상 성장장치는, 반응가스를 공급하는 가스헤드를 다분활해서 중앙부로부터 반응가스를 공급하고, 단부에서 불활성가스를 같은 분출속도로 공급하는 것이다.In the chemical vapor growth apparatus according to the present invention, the gas head for supplying the reaction gas is multiplied to supply the reaction gas from the center portion, and the inert gas is supplied at the end at the same blowing rate.

이 발명에 있어서의 화학기상 성장장치는, 가스헤드의 단부의 반응가스를 불활성 가스로 치환할 수가 있기 때문에, 반응실내의 흐름을 교란시키지 않고, 균일한 막을 형성할 수 있다.In the chemical vapor growth apparatus of the present invention, since the reaction gas at the end of the gas head can be replaced with an inert gas, a uniform film can be formed without disturbing the flow in the reaction chamber.

그리고 웨이퍼 표면에서 멀리 떨어진 지점에서의 불필요한 반응이 억제되기 때문에 반응실내벽에 부착하는 이물질의 발생을 감소시킬 수 있다.In addition, since unnecessary reaction at a point far from the wafer surface is suppressed, generation of foreign matter adhering to the reaction chamber inner wall can be reduced.

[실시예 1]EXAMPLE 1

이하 이 발명을 도면에 표시하는 실시예에 따라 상세히 설명한다.Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings.

제 1 도는 이 발명의 한 실시예에 의한 화학기상 성장장치를 표시하는 구성도, 제 2 도는 이 발명의 한 실시예에 의한 화학기상 성장장치의 반응실내의 흐름을 표시하는 설명도이다.FIG. 1 is a block diagram showing a chemical vapor growth apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory view showing a flow in a reaction chamber of the chemical vapor growth apparatus according to an embodiment of the present invention.

도면중 제 13 도와 같은 부재에 대해서는 동일부호를 붙치고 설명은 생략한다.In the drawings, the same members as those in the thirteenth drawing are denoted by the same reference numerals and description thereof will be omitted.

제 1 도, 제 13 도에 있어서, 6a와 6b는 간막이(17)을 두어, 각각 N2가스(불활성가스)(C)와 반응가스인 TEOS와 O3를 포함하는 N2가스(B)를 분출하는 가스분출구이다. 각각 균일하고 그리고 같은 속도로 가스가 분출되고 있기 때문에, 반응실내의 유속분포는, 제 2 도에 표시하는 바와 같이, 단일 분출구를 갖는 종래의 가스헤드를 사용한 반응실과 같고, 균일한 두께의 속도경계층과 온도경계층이 형성된다.FIG. 1, according to claim 13 also, 6a and 6b are a N 2 gas (B) containing TEOS and O 3 is placed a partition (17), respectively, N 2 gas (inert gas) (C) and a reactive gas It is a gas outlet which blows out. Since the gas is ejected at a uniform and the same velocity, the flow velocity distribution in the reaction chamber is the same as that of the reaction chamber using a conventional gas head having a single ejection opening, as shown in FIG. An over temperature boundary layer is formed.

도면중, E는 반응가스농도의 경계선, F는 온도분포의 경계선, H는 불필요한 반응발생영역을 표시하고 있다. TEOS-O3혼합기의 반응이 활발해지기 위한 필요온도의 경계를 표시하는 온도경계선 F는, 스테이지 표면에 거의 평행해서 존재하고 있다.In the figure, E denotes the boundary line of the reaction gas concentration, F denotes the boundary line of the temperature distribution, and H denotes an unnecessary reaction occurrence region. The temperature boundary line F indicating the boundary of the temperature required for the reaction of the TEOS-O 3 mixer to become active is present in almost parallel to the stage surface.

한편, 웨이퍼 표면근방의 TEOS-O3농도는, 간막이(17)의 반경이 조절되어 있고 주위 N2의 영향을 받지 않고, 단일분출의 경우와 같다.On the other hand, the TEOS-O 3 concentration near the wafer surface is the same as in the case of single ejection, with the radius of the partition 17 being controlled and not affected by the surrounding N 2 .

단, 웨이퍼 표면에서 떨어진 지점에서는 주위 N2에 의해 희석되기 때문에, TEOS-O3농도는 저하되어 있다. 이때 주변부에서의 온도는 TEOS-O3가 반응하기에는 충분히 높으나, TEOS-O3농도가 낮기 때문에 반응생성물이 발생하지 않는 영역(H)가 생긴다.However, since the dilution by the ambient N 2 in the position apart from the wafer surface, TEOS-O 3 concentration is reduced. At this time, the temperature at the periphery is high enough for TEOS-O 3 to react, but because the concentration of TEOS-O 3 is low, a region (H) where reaction products do not occur is generated.

종래의 단일분출의 경우는, 이 영역은 웨이퍼(1)의 성막에 기여하지 않는 불필요한 반응이 일어나는 영역으므로 이 발명에 의해 반응실내벽에 부착하는 반응생성물(D)의 생성량을 저감할 수가 있다.In the case of the conventional single ejection, this area is an area where unnecessary reactions occur that do not contribute to the film formation of the wafer 1, and according to the present invention, the production amount of the reaction product D adhering to the reaction chamber inner wall can be reduced.

여기서, 가스헤드(5) 중앙부의 반응가스(B)를 공급하는 부분과, 외주부의 N2가스(C)를 공급하는 부분의 크기와, 반도체 웨이퍼(1)상에 형성되는 막의 두께분포에 대해 실제의 데이터를 기초로 설명을 한다.Here, the size of the portion supplying the reaction gas B at the center of the gas head 5, the portion supplying the N 2 gas C at the outer circumference, and the thickness distribution of the film formed on the semiconductor wafer 1 The explanation is based on actual data.

제 3 도는 중앙부의 반응가스공급부의 직경이 110mm, 전체의 외경이 150mm의 원형의 가스헤드(5)와 여기에 7mm의 간격을 두고 대향하는 반도체 웨이퍼(1)와, 스테이지(2)를 표시하는 설명도이고, 제4도는 제3도의 상태에서 성막을 했을때, 반도체 웨이퍼(1)상에 형성된 반응생성막의 두께분포를 표시하는 조감도이다.3 shows a circular gas head 5 having a diameter of the reaction gas supply portion 110 mm in the center portion and a total outer diameter of 150 mm, a semiconductor wafer 1 facing each other at a distance of 7 mm, and a stage 2. 4 is an explanatory view showing the thickness distribution of the reaction product film formed on the semiconductor wafer 1 when the film is formed in the state shown in FIG.

이와 마찬가지로, 제 5 도는 중앙부의 반응가스공급부의 직경이 90mm, 전체의 외경이 150mm의 원형의 가스헤드(5)와 이것에 7mm의 간격을 두고 대향하는 반도체 웨이퍼(1)과 스테이지(2)를 표시하는 설명도이고, 제 6 도는 제 5 도의 상태에서 성막을 했을때에 반도체 웨이퍼(1)상에 형성된 반응생성막의 두께분포를 표시하는 조감도이다.Similarly, FIG. 5 shows a circular gas head 5 having a diameter of the reaction gas supply portion of the central portion of 90 mm and an overall outer diameter of 150 mm, and a semiconductor wafer 1 and a stage 2 facing each other at a distance of 7 mm. FIG. 6 is an explanatory view showing the thickness distribution of the reaction product film formed on the semiconductor wafer 1 when the film is formed in the state shown in FIG.

제 4 도는 제 3 도에 있어서, 반응가스 B의 가스헤드(5)상의 평균유속과, N2가스(C)의 가스헤드(5)상의 평균유속을 같게(약 26mm/sec)해서 성막을 했을때의 반도체 웨이퍼(1)상에 형성된 반응생성막의 두께분포를 표시하는 조감도로, 이것에 의하면 반도체 웨이퍼(1)상의 중앙부와 외주부의 막의 두께가 같고 가스헤드(5)의 중앙부로부터 공급된 반응가스(B)가 반도체 웨이퍼(1)의 전면에 도달한 것을 알 수 있다.In FIG. 4, in FIG. 3, the film was formed with the average flow velocity on the gas head 5 of the reaction gas B and the average flow velocity on the gas head 5 of the N 2 gas C being the same (about 26 mm / sec). This is a bird's eye view showing the thickness distribution of the reaction generation film formed on the semiconductor wafer 1 at this time. It can be seen that (B) has reached the entire surface of the semiconductor wafer 1.

제 6 도는 제 5 도에 있어서, 반응가스(B)의 가스헤드(5)상의 평균유속과, N2가스(C)의 가스헤드(5)상의 평균유속을 같게(약 26mm/sec)해서 성막을 했을때의 반도체 웨이퍼(1)상에 형성된 반응생성막의 두께분포를 표시하는 조감도로, 이것에 의하면 반도체 웨이퍼(1)상의 중앙부에 비해 외주부에서는 막의 두께가 저하되어 있고, 가스헤드(5)의 중앙부에서 공급된 반응가스(B)가 반도체 웨이퍼(1)의 전면에는 달하지 않고 반도체 웨이퍼(1)의 외주부에는 가스헤드 외주부로부터의 N2가스(C)가 확산에 의해 달해 있기 때문에, 막의 두께가 얇아진 것을 알 수가 있다.FIG. 6 is a film in which the average flow velocity on the gas head 5 of the reaction gas B and the average flow rate on the gas head 5 of the N 2 gas C are the same (about 26 mm / sec) in FIG. Is a bird's eye view showing the distribution of the thickness of the reaction product film formed on the semiconductor wafer 1 in accordance with this. According to this, the thickness of the film is reduced in the outer peripheral portion compared to the center portion on the semiconductor wafer 1, Since the reaction gas B supplied from the central portion does not reach the entire surface of the semiconductor wafer 1, and the N 2 gas C from the gas head outer peripheral portion reaches the outer peripheral portion of the semiconductor wafer 1 by diffusion, the thickness of the film is increased. You can see that it became thin.

이상의 결과로부터, 이 가스헤드(5)와 반도체 웨이퍼(1)의 간격이 7mm이고 가스헤드(5)의 외경이 150mm인 경우, 가스헤드(5) 중앙부의 반응가스공급부의 크기가 110mm경(經)까지는 공급된 반응가스(b)가 반도체 웨이퍼(1)상의 전면에 도달하고 균일한 두께의 반응생성막이 형성되나, 그 이하의 크기에서는 가스헤드(5) 중앙부의 반응가스공급부로부터 공급되는 반응가스(b)가 반도체 웨이퍼(1)의 전면에 달하지 않게 되므로, 반도체 웨이퍼(1)의 주변부에서 막의 두께가 저하한다.From the above results, when the distance between the gas head 5 and the semiconductor wafer 1 is 7 mm and the outer diameter of the gas head 5 is 150 mm, the size of the reaction gas supply portion at the center of the gas head 5 is 110 mm. Up to), the supplied reaction gas (b) reaches the entire surface on the semiconductor wafer 1 and a reaction generation film having a uniform thickness is formed, but at a size smaller than that, the reaction gas supplied from the reaction gas supply portion in the center of the gas head (5) Since (b) does not reach the entire surface of the semiconductor wafer 1, the thickness of the film decreases at the periphery of the semiconductor wafer 1.

따라서 상술한 가스헤드(5)와 반도체 웨이퍼(1)의 간격 및 가스헤드의 외경에 있어서는, 가스헤드(5) 중앙부의 반응가스공급부의 크기는 110mm경까지 작게할 수 있고, 그 면적에 따른 분만큼 반도체 웨이퍼(1)상에 도달하지 못하고 배기되었던, 성막에 기여하지 않는 반응가스(B)를 감소시킬 수가 있다.Therefore, in the above-described distance between the gas head 5 and the semiconductor wafer 1 and the outer diameter of the gas head, the size of the reaction gas supply portion at the center of the gas head 5 can be reduced to a diameter of 110 mm, and according to the area thereof. As a result, it is possible to reduce the reaction gas B that does not contribute to the film formation, which has been exhausted without reaching the semiconductor wafer 1.

단 가스헤드(5) 중앙부의 반응가스공급부의 반도체 웨이퍼(1)상에 균일하게 성막할 수 있는 최소의 크기는, 가스헤드(5)와 반도체 웨이퍼(1)의 간격 가스헤드의 외경 및 가스의 공급량에 의해 결정되는 것으로, 상기의 치에 한정되는 것은 아니다.However, the minimum size that can be formed uniformly on the semiconductor wafer 1 of the reaction gas supply portion in the center of the gas head 5 is the outer diameter of the gas head 5 and the semiconductor wafer 1 between the outer diameter of the gas head and the gas. It is determined by the supply amount, and is not limited to the above value.

다음에, 가스헤드(5) 중앙부의 반응가스공급부로부터의 반응가스(B)의 가스헤드(5)상의 평균유속과, 가스헤드(5) 외주부로부터의 N2가스(C)의 가스헤드(5)상의 평균유속의 비와, 반도체 웨이퍼(1)상에 형성되는 반응생성막의 두께의 분포에 대해 실제의 데이터를 기초로해서 설명을 한다.Next, the average flow velocity on the gas head 5 of the reaction gas B from the reaction gas supply part in the center of the gas head 5, and the gas head 5 of the N 2 gas C from the outer peripheral part of the gas head 5. The distribution of the average flow velocity of the? Phase and the thickness of the reaction product film formed on the semiconductor wafer 1 will be described based on the actual data.

제 4 도, 제 7 도 제 8 도는 각각 전기 제3도의 구성으로, 가스유속을 변경해서 성막을 했을때에 반도체 웨이퍼(1)상에 형성된 반응생성막의 두께분포를 표시하는 조감도이다.4, 7 and 8 are the bird's-eye view which shows the thickness distribution of the reaction production | generation film formed on the semiconductor wafer 1, when the film | membrane was formed by changing the gas flow velocity in the structure of FIG.

제 4 도는 상술한 바와 같이, 반응가스(B)의 가스헤드(5)상의 평균유속과 N2가스(C)의 가스헤드(5)상의 평균유속의 비를 1:1로 해서 성막을 했을때의 두께분포로, 이것에 의하면, 반도체 웨이퍼 1상의 중앙부의 막두께와 외주부의 막두께는 같아져 있다.4, when the film formation is performed with the ratio of the average flow velocity on the gas head 5 of the reaction gas B and the average flow velocity on the gas head 5 of the N 2 gas C as 1: 1. According to this, according to this, the film thickness of the center part on the semiconductor wafer 1 and the film thickness of the outer peripheral part are equal.

제 7 도는 제 3 도에 있어서, 반응가스(B)의 가스헤드(5)사의 평균유속과 N2가스(C)의 가스헤드(5)상의 평균유속의 비를 1:0.77로 해서 성막을 했을때의 두께분포로, 이것에 의하면, 반도체 웨이퍼(1)상의 중앙부의 막두께에 대해 외주부의 두께는 얇아져 있다. 이것은 가스헤드(5)의 외주부로부터 공급되는 N2가스(C)의 유속이 가스헤드(5) 중앙부로부터 공급되는 반응가스(B)의 유속에 비해 작기 때문에, 반응가스(B)와 N2가스(C)의 경계가 N2가스(C)의 흐름에 의해 반도체 웨이퍼(1)로 밀어올려지는 것이 약하게 되므로, 반도체 웨이퍼(1)상의 외주부에서 반응가스(B)의 농도가 엷어지기 때문이다.In FIG. 7, in FIG. 3, the film was formed with a ratio of the average flow rate of the gas head 5 of the reaction gas B and the average flow rate of the N 2 gas C on the gas head 5 as 1: 0.77. With the thickness distribution at the time, according to this, the thickness of the outer peripheral part becomes thinner with respect to the film thickness of the center part on the semiconductor wafer 1. This is because the flow rate of the N 2 gas C supplied from the outer circumferential portion of the gas head 5 is smaller than the flow rate of the reaction gas B supplied from the center of the gas head 5, so that the reaction gas B and the N 2 gas are present. This is because the boundary of (C) is weakly pushed up to the semiconductor wafer 1 by the flow of the N 2 gas C, so that the concentration of the reaction gas B becomes thin at the outer circumferential portion on the semiconductor wafer 1.

제 8 도는 제 3 도에 있어서, 반응가스(B)의 가스헤드(5)상의 평균유속과 N2가스(C)의 가스헤드(5)상의 평균유속의 비를 1:1.19로 해서 성막을 했을때의 두께분포로, 이것에 의하면 반도체 웨이퍼(1)상의 중앙부의 두께에 대해 외주부의 두께는 두껍게 되어 있다. 이것은 가스헤드(5)의 외주부로부터 공급되는 N2가스(C)의 유속이 가스헤드(5) 중앙부로부터 공급되는 반응가스(B)의 유속에 비해 크기 때문에, 반응가스(B)와 N2가스(C)의 경계가 N2가스(C)의 흐름에 의해 반도체 웨이퍼(1)에 밀어올려지는 힘이 강하게 됨으로, 반도체 웨이퍼(1)상의 외주부에서 반응가스(B)의 농도가 진하게 되기 때문이다.In FIG. 8, in FIG. 3, the film was formed with a ratio of the average flow rate on the gas head 5 of the reaction gas B and the average flow rate on the gas head 5 of the N 2 gas C as 1: 1.19. With the thickness distribution at the time, according to this, the thickness of the outer peripheral part becomes thick with respect to the thickness of the center part on the semiconductor wafer 1. This is because the flow rate of the N 2 gas C supplied from the outer circumferential portion of the gas head 5 is larger than the flow rate of the reaction gas B supplied from the center of the gas head 5, so that the reaction gas B and the N 2 gas are present. This is because the force of the boundary of (C) being pushed up to the semiconductor wafer 1 by the flow of the N 2 gas (C) becomes strong, so that the concentration of the reaction gas (B) increases in the outer peripheral portion on the semiconductor wafer (1). .

이상의 결과로부터 가스헤드(5) 중앙부의 반응가스공급부로부터 공급되는 반응가스(B)의 가스헤드(5)상의 평균유속에 대해, 가스헤드(5)외주의 N2가스공급부로부터 공급되는 N2가스(C)의 가스헤드(5)상의 평균유속을 변화시킴으로써, 반도체 웨이퍼(1)상에 형성되는 반응생성막의 외주부의 막의 두께를 중앙부의 두께에 대해 변화시킬 수가 있다.From the above results N 2 gas supplied from the gas head 5 of the outer N 2 gas supply unit for average flow rate on the reaction gas (B) the gas head 5 of which is supplied from the reaction gas supply part of the central portion the gas head 5 By changing the average flow velocity on the gas head 5 in (C), the thickness of the outer peripheral portion of the reaction product film formed on the semiconductor wafer 1 can be changed with respect to the thickness of the central portion.

따라서, 어떤 요인으로해서 반도체 웨이퍼(1)상에 형성되는 반응생성막의 두께에 원주방향의 불균일이 발생했을때 가스헤드(5) 외주부의 N2가스공급부로부터 공급되는 N2가스(C)의 유속을 변화시켜서 두께의 불균일을 해소하는 방향으로 두께를 변화시킴으로써, 반도체 웨이퍼(1)상에 형성되는 반응생성막의 두께분포를 균일하게 할 수가 있다.Therefore, when the nonuniformity in the circumferential direction occurs in the thickness of the reaction product film formed on the semiconductor wafer 1 due to some factor, the flow rate of the N 2 gas C supplied from the N 2 gas supply part of the outer circumference of the gas head 5 is caused. The thickness distribution of the reaction product film formed on the semiconductor wafer 1 can be made uniform by changing the thickness in the direction in which the thickness unevenness is eliminated by changing the.

[실시예 2]EXAMPLE 2

제 9 도는 이 발명의 제2의 실시예에 의한 화학기상 성장장치를 표시하는 단면 구성도이고, 도면중 제 1 도와 같은 부재에 대해서는 동일부호를 붙치고, 설명은 생략한다.9 is a cross-sectional configuration diagram showing a chemical vapor growth apparatus according to a second embodiment of the present invention. In the drawings, the same members as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

도면에서 6a와 6b는 N2가스를 분출하는 N2가스분출구, 6b는 반응가스인 TEOS 와 O3를 포함하는 N2가스를 분출하는 반응가스분출구이다.In figure 6a and 6b is N 2 gas jet port, 6b for ejecting N 2 gas is a reaction gas outlet for ejecting N 2 gas containing a reaction gas of TEOS and O 3.

분출구(6a)와 (6b), 분출구(6a)와 (6c)는 간막이 (17a)(17b)로 간막이되고, N2가스분출구(6a)와 반응가스분출구(6b)는 균일하고 같은 속도로 가스가 분출되고, N2가스분출구(6c)로부터는 다른 분출구에 비해 빠른 속도로 N2가스가 분출된다.The jets 6a and 6b and the jets 6a and 6c are partitioned into partitions 17a and 17b, and the N 2 gas jets 6a and the reactive gas jets 6b are uniform and at the same speed. is ejected, N 2 gas jet port (6c) are from the N 2 gas is ejected at a faster rate than the other outlet.

예를 들면, 외경 150mm의 가스헤드에 있어서, 간막이(17a)를 90mm경, 간막이(17b)를 120mm경으로 하고, 다시 가스의 분출유속을 6a:6b:6c=1:1:1.2로 설정한다. 이때 만약 분출유속비가 6a:6b:6c=1:1:1이었으면, 제 6 도에 표시하는 바와 같이 반도체 웨이퍼(1)의 주변부의 막의 두께가 저하되나 분출구(6c)의 유속이 높기 때문에, 제 8 도에 표시되어 있는 빠른 분출유속에 의한 막의 두께가 상승하는 효과에 의해 상쇄되어, 균일한 두께분포가 실현 가능하다.For example, in a gas head having an outer diameter of 150 mm, the diaphragm 17a is set to a diameter of 90 mm, the diaphragm 17b is set to a diameter of 120 mm, and the flow rate of the gas is set to 6a: 6b: 6c = 1: 1: 1.2. . At this time, if the ejection flow rate ratio is 6a: 6b: 6c = 1: 1: 1, as shown in FIG. 6, the thickness of the film at the periphery of the semiconductor wafer 1 decreases, but the flow rate of the ejection opening 6c is high. The film thickness is canceled by the effect of increasing the thickness of the film due to the rapid jet flow rate shown in FIG. 8, so that uniform thickness distribution can be realized.

이것에 의해 반응가스의 필요한 공급량은 더욱 감소하고 또 불필요한 기상에서의 반응도 억제할 수 있다.As a result, the required supply amount of the reaction gas is further reduced, and the reaction in the gaseous phase which is unnecessary can also be suppressed.

[실시예 3]EXAMPLE 3

제10도는 이 발명의 제3의 실시예에 의한 화학기상 성장장치를 표시하는 개략 구성도이고, 도면중, 제1도와 같은 부재에 대해서는 동일부호를 붙치고 설명은 생략한다.FIG. 10 is a schematic configuration diagram showing a chemical vapor growth apparatus according to a third embodiment of the present invention. In the drawings, the same members as those in FIG. 1 are denoted by the same reference numerals and description thereof will be omitted.

도면에서 6a는 N2가스를 분출하는 N2가스분출구, 6b와 6d는 반응가스인 TEOS와 O3를 포함하는 N2가스를 분출하는 분출구이다. 분출구(6a)와 (6b), 분출구(6a)와 (6d)는 간막이(17a)(17c)로 구분되고, 반응가스분출구(6b)와 (6d)에서 분출되는 반응가스는 매스플콘트롤러(19a),(19b)(19c)에 의해 조성이 조정되어 각각의 분출속도의 대소는 밸브(18a)(18b)에 의해 조절된다. N2가스분출구(6a)로부터 분출되는 N2가스분출속도는 매스플로콘트롤로(19d)에 의해 제어된다.In figure 6a is N 2 gas jet port, 6b and 6d for ejecting N 2 gas is a jet port for ejecting N 2 gas containing a reaction gas of TEOS and O 3. The ejection openings 6a and 6b, the ejection openings 6a and 6d are divided into partitions 17a and 17c, and the reaction gas ejected from the reaction gas ejection openings 6b and 6d is a mass controller 19a. The composition is adjusted by (b), (19b), (19c), and the magnitude | size of each ejection speed is adjusted by valve | bulb 18a (18b). The N 2 gas ejection rate ejected from the N 2 gas ejection port 6a is controlled by the mass flow controller 19d.

이와 같이 구성되어 있으므로, 반도체 웨이퍼(1) 중앙부의 두께분포는 제 7 도, 제 8 도에 표시한 분출유속에 의한 두께의 변화효과에 의해, 임의로 제어할 수가 있어 보다 균일성이 우수한 막의 두께분포의 실현이 가능해진다.Since it is comprised in this way, the thickness distribution of the center part of the semiconductor wafer 1 can be arbitrarily controlled by the effect of the thickness change by the ejection flow velocity shown to FIG. 7, FIG. Can be realized.

또 여기서는 반응가스분출구(6b)와 (6d)의 유속비를 변화시키기 위해, 밸브(18a)와 (18b)를 사용했으나, 이것에 한하는 것이 아니라, 예를 들면, 유로저항이 큰 세관을 설치하고 길이를 조절함으로써 유속비를 변화시킬 수가 있다. 또는 매스플로콘트롤러를 각각 2조 사용해서 유량비의 콘트롤을 해도 꼭같은 효과를 기대할 수 있다.In addition, although the valves 18a and 18b were used to change the flow rate ratio of the reaction gas ejection openings 6b and 6d here, it is not limited to this, but for example, a tubing having a large flow resistance is provided. The flow rate ratio can be changed by adjusting the length. Alternatively, two sets of massflow controllers can be used to control the flow rate ratio.

[실시예 4]EXAMPLE 4

제 11 도는 이 발명의 제4의 실시예에 의한 화학기상 성장장치를 표시하는 개략 구성도이고, 도면중, 제1도와 동일한 부재에 대해서는 동일부호를 붙치고 설명은 생략한다.11 is a schematic configuration diagram showing a chemical vapor growth apparatus according to a fourth embodiment of the present invention. In the drawings, the same members as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

도면에서 19e는 외주부의 N2가스류(C)에 반응억제가스인 이소부텐(C4H8)을 정량적으로 첨가하기 위한 매스플로콘트롤러이다.In the figure, 19e is a mass flow controller for quantitatively adding isobutene (C 4 H 8 ), which is a reaction inhibiting gas, to the N 2 gas stream (C) of the outer circumference.

이소부텐(C4H8)은 O3의 열분해에 의해 생긴 O원자와의 반응성이 높기 때문에, O원자의 TEOS와의 반응을 막을 수가 있다. 주변부의 N2가스류 C에 포함된 이소부텐(C4H8)은 기판으로부터 떨어진 곳에서 발생하고, TEOS와 반응함으로써 분말의 전구물질(前驅物質)을 발생시키는 O원자를 포획하기 위해 분말의 발생은 감소한다.Since isobutene (C 4 H 8 ) has a high reactivity with O atoms generated by pyrolysis of O 3, the reaction of O atoms with TEOS can be prevented. Isobutene (C 4 H 8 ) contained in the N 2 gas stream C in the periphery occurs at a distance from the substrate and reacts with TEOS to capture O atoms that generate precursors of the powder. The occurrence is reduced.

여기서는, 반응억제가스로서 이소부텐(C4H8)을 사용해서 설명했으나, O원자를 효과적으로 포획할 수 있는 화학종이면 똑같은 효과가 기대된다. 예를 들면 C2H4, C3H6등의 탄화수소, 메탄올, 에탄올 등의 알코올이 있다.Here, although isobutene (C 4 H 8 ) was used as the reaction inhibiting gas, the same effect is expected as long as it is a chemical species capable of effectively trapping O atoms. Examples thereof include hydrocarbons such as C 2 H 4 and C 3 H 6 , and alcohols such as methanol and ethanol.

[실시예 5]EXAMPLE 5

지금까지는 동심원상의 성막장치를 사용해서 설명했으나, 다음으로 연속형 화학기상 성장장치에 이 발명을 이용한 경우를 설명한다.The above has been described using a concentric film forming apparatus, but the case where the present invention is used in a continuous chemical vapor growth apparatus will be described next.

제 14 도는 종래의 연속형 화학기상 성장장치를 표시하는 구성도이고, 제 15 도는 동장치의 성막반응부를 표시하는 단면 구성도이다.FIG. 14 is a block diagram showing a conventional continuous chemical vapor growth apparatus, and FIG. 15 is a cross-sectional block diagram showing a film forming reaction part of the device.

도면에 있어서, 1은 반응생성막(도시하지 않음)이 형성되는 반도체 웨이퍼, 2는 반도체 웨이퍼(1)을 보지, 반송하는 스테이지, 3은 이 스테이지(2)하고, 여기에 실려있는 반도체 웨이퍼(1)을 소정의 온도까지 가열하기 위한 히터, 5는 반응가스(B)를 반도체 웨이퍼(1)에 균일하게 공급하기 위해, 반도체 웨이퍼(1)에 대향하는 면의 전면에 복수의 슬리트를 설치해 구성되는 가스헤드, 20은 복수개의 가스헤드(5)를 덮는 것같이 설치되어 배기(A)를 빼기 위한 배기커버이다.In the drawings, 1 is a semiconductor wafer on which a reaction generation film (not shown) is formed, 2 is a stage for holding and conveying the semiconductor wafer 1, 3 is a stage 2, and a semiconductor wafer loaded thereon ( The heater for heating 1) to a predetermined temperature, 5, in order to uniformly supply the reaction gas B to the semiconductor wafer 1, a plurality of slits are provided on the entire surface of the surface facing the semiconductor wafer 1 The gas head 20 which is comprised is provided as if covering the some gas head 5, and is an exhaust cover for removing the exhaust A. As shown in FIG.

종래의 연속형 화학기상 성장장치는 이상과 같이 구성되어 있으므로, 가스헤드(5)의 끝부분으로부터 반도체 웨이퍼(1)에 향해 공급된 반응가스(B)는 반도체 웨이퍼(1)에 도달하는 일없이 배기(A)로서 흐른다. 여기서 반응가스(B)는 가상반응에 의해 반응생성물(D)를 생성하고, 이 반응생성물(D)가 가스헤드(5)가 배기커버(20)등에 부착해, 다음에 떨어져서 반도체 웨이퍼(1)상에 부착하기 때문에, 제품의 수율저하의 원인이 되었었다. 또 정기적으로 장치를 세워서 반응생성물(D)의 제거를 하게 해 장치의 가동율저하의 원인이 되었었다.Since the conventional continuous chemical vapor growth apparatus is configured as described above, the reaction gas B supplied from the end of the gas head 5 toward the semiconductor wafer 1 does not reach the semiconductor wafer 1. Flow as exhaust (A). Here, the reaction gas (B) generates a reaction product (D) by an imaginary reaction, and the reaction product (D) is attached to the exhaust cover (20) by the gas head (5), and then falls off to the semiconductor wafer (1). Since it adhered to a phase, it was a cause of the yield fall of a product. In addition, the device was set up regularly to remove the reaction product (D), which caused a decrease in the operation rate of the device.

제12a, b 도는 각각 이 발명의 제5의 실시예에 의한 연속형 화학기상 성장장치를 표시하는 단면구성도 및 평면도이다. 가스헤드(5)는 종래와 같이 반도체 웨이퍼(1)에 대향하는 면의 전면 슬리트를 갖고 있으나, 슬리트 중앙부로부터만, 반응가스(B)가 공급되고, 배기(A)에 가까운 가스헤드의 양단부의 슬리트로부터는 N2가스(C)가 반응가스(B)와 같은 유속으로 공급된다.12A and 12B are cross-sectional views and plan views respectively showing a continuous chemical vapor growth apparatus according to a fifth embodiment of the present invention. The gas head 5 has a front face slitting of the surface facing the semiconductor wafer 1 as in the prior art, but the reaction gas B is supplied only from the center of the slitting, and the gas head 5 closes to the exhaust A. From the slits at both ends, N 2 gas (C) is supplied at the same flow rate as the reaction gas (B).

이때, 가스헤드(5)의 중앙부에서 공급된 반응가스(B)는 반도체 웨이퍼(1)에만 도달해서, 성막반응을 한다. 가스헤드(5)의 양단부로부터 공급될 N2가스(C)는, 반응가스(B)와 같은 유속임으로, 반응가스 B의 흐름을 교란시키지 않고, 반도체 웨이퍼(1)에 도달하는 일없이 배기된다.At this time, the reaction gas B supplied from the center part of the gas head 5 reaches only the semiconductor wafer 1, and performs a film-forming reaction. The N 2 gas C to be supplied from both ends of the gas head 5 is exhausted without reaching the semiconductor wafer 1 without disturbing the flow of the reaction gas B at the same flow rate as the reaction gas B. .

이와 같이, 이 발명에 의하면 종래 가스헤드(5)로부터 공급되어 반도체 웨이퍼(1)에 도달하지 않고 배기되는 반응가스(B)를 불활성인 N2가스(C)로 치환하였으므로, 반응가스(B)의 기상반응에 의해 발생하는 반응생성물(D)가 가스헤드(5)나 배기커버(20)에 부착하는 일없이 제품의 수율, 장치의 가동율 등를 향상시킬 수 있다.As described above, according to the present invention, since the reaction gas B supplied from the gas head 5 and exhausted without reaching the semiconductor wafer 1 is replaced with an inert N 2 gas C, the reaction gas B It is possible to improve the yield of the product, the operation rate of the device, and the like without the reaction product (D) generated by the gas phase reaction of being attached to the gas head 5 or the exhaust cover 20.

또, 필요한 반응가스의 공급량이 반응가스가 공급되는 슬리트의 면적에 따라 감소하기 때문에, 사용하는 반응가스를 절약할 수가 있다.In addition, since the required supply amount of the reaction gas decreases with the area of the slits to which the reaction gas is supplied, the reaction gas to be used can be saved.

또 이상 설명한 연속형 화학기상 성장장치의 스테이지, 히터, 가스헤드, 배기커버등의 형상 배치는 이에 한하는 것이 아니고 또 가스헤드 양단으로부터 공급하는 가스도 N2가스 대신에 성막에 관여하지 않는 불활성가스를 사용해도 가능하다.The shape arrangement of the stage, the heater, the gas head, the exhaust cover, and the like of the continuous chemical vapor growth apparatus described above is not limited thereto, and the gas supplied from both ends of the gas head is also inert gas that does not participate in film formation instead of N 2 gas. You can also use

또 이번에는 일부에서 TEOS-O3를 예로해서 설명했으나 이것에 한하는 것이 아니라 기상반응을 해서 발진(發塵)하는 반응가스를 사용하는 경우에 적용할 수 있는 것도 사실이다. 또, 외주부에 N2대신에 다른 불활성가스를 흘려도 같은 효과를 기대할 수 있다.In addition, this time, some have described TEOS-O 3 as an example, but it is also true that it can be applied to the case of using a reaction gas that is oscillated by gas phase reaction. Moreover, the same effect can be expected even if it flows other inert gas instead of N <2> in an outer peripheral part.

이상과 같이, 이 발명에 의하면 가스헤드를 중앙부의 반응가스분출구와 단부의 불활성가스분출구로 분리하고, 상기 반응가스분출구와 이 가스분출구에 인접하는 상기 불활성가스분출구로부터 분출되는 각 가스의 유속이 같아지도록 했기 때문에 균일한 막의 두께를 유지하면서 적은 반응가스로 성막시킬 수 있는 효과가 있다.As described above, according to the present invention, the gas head is separated into a reaction gas outlet at the center and an inert gas outlet at the end, and the flow rates of the gases ejected from the reaction gas outlet and the inert gas outlet adjacent to the gas outlet are the same. Since it is possible to form a film with a small amount of reaction gas while maintaining a uniform film thickness.

또, 반응실내부에의 이물질의 부착을 감소시킬 수가 있다.In addition, adhesion of foreign matter to the reaction chamber can be reduced.

Claims (1)

반응가스에 의해 박막이 형성된 반도체 웨이퍼를 매수 별로 처리하는 반응실, 상기 반응실내에 놓여지는 상기 반도체 웨이퍼의 주변에 대향해서 설치되는 상기 반도체 웨이퍼에 상기 반응가스를 공급하는 가스헤드 및 상기 반도체 웨이퍼를 가열하는 스테이지로 구성되는 화학기상 성장장치에 있어서, 상기 가스헤드가 중앙부의 반응가스분출구와 단부의 불활성 가스분출구로 분리되고, 상기 반응가스분출구와 이 가스분출구에 인접해 있는 상기 불활성가스분출구로부터 분출되는 각 가스의 유속이 같아지도록 한 것을 특징으로 하는 화학기상 성장장치.A reaction chamber for processing a semiconductor wafer on which a thin film is formed by a reaction gas for each sheet, a gas head for supplying the reaction gas to the semiconductor wafer provided to face the periphery of the semiconductor wafer placed in the reaction chamber, and the semiconductor wafer. In the chemical vapor growth apparatus comprising a stage for heating, the gas head is separated into a reaction gas outlet at the center and an inert gas outlet at the end, and is ejected from the reaction gas outlet and the inert gas outlet adjacent to the gas outlet. Chemical vapor growth apparatus characterized in that the flow rate of each gas to be the same.
KR1019910023356A 1990-12-28 1991-12-18 Chemical vapor growth apparatus Expired - Fee Related KR940009945B1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP90-408754 1990-12-28
JP40875490 1990-12-28
JP1679391 1991-03-20
JP91-16793 1991-03-20
JP91-160349 1991-07-01
JP3160349A JPH04348031A (en) 1990-12-28 1991-07-01 Chemical vapor growth equipment

Publications (2)

Publication Number Publication Date
KR920012537A KR920012537A (en) 1992-07-27
KR940009945B1 true KR940009945B1 (en) 1994-10-19

Family

ID=26353190

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019910023356A Expired - Fee Related KR940009945B1 (en) 1990-12-28 1991-12-18 Chemical vapor growth apparatus

Country Status (3)

Country Link
US (2) US5669976A (en)
JP (1) JPH04348031A (en)
KR (1) KR940009945B1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360265B2 (en) * 1996-04-26 2002-12-24 東京エレクトロン株式会社 Plasma processing method and plasma processing apparatus
US6312790B1 (en) 1997-12-18 2001-11-06 Ppg Industries Ohio, Inc. Methods and apparatus for depositing pyrolytic coatings having a fade zone over a substrate and articles produced thereby
US20020127343A1 (en) * 1997-12-18 2002-09-12 Kutilek Luke A. Methods and apparatus for forming a graded fade zone on a substrate and articles produced thereby
US6649214B2 (en) 1997-12-18 2003-11-18 Ppg Industries Ohio, Inc. Compositions and methods for forming coatings of selected color on a substrate and articles produced thereby
US7507479B2 (en) * 1998-08-13 2009-03-24 Ppg Industries Ohio, Inc. Compositions and methods for forming coatings of selected color on a substrate and articles produced thereby
JP2000349078A (en) 1999-06-03 2000-12-15 Mitsubishi Electric Corp Chemical vapor deposition apparatus and method for manufacturing semiconductor device
US6849306B2 (en) * 2001-08-23 2005-02-01 Konica Corporation Plasma treatment method at atmospheric pressure
US20050224899A1 (en) * 2002-02-06 2005-10-13 Ramsey Craig C Wireless substrate-like sensor
US7289230B2 (en) * 2002-02-06 2007-10-30 Cyberoptics Semiconductors, Inc. Wireless substrate-like sensor
US20050233770A1 (en) * 2002-02-06 2005-10-20 Ramsey Craig C Wireless substrate-like sensor
US20050224902A1 (en) * 2002-02-06 2005-10-13 Ramsey Craig C Wireless substrate-like sensor
CA2409056C (en) * 2002-10-21 2010-02-02 Gabe Coscarella Cleanout with drainage capabilities
JP4880175B2 (en) * 2002-12-06 2012-02-22 富士通株式会社 Vapor growth apparatus and vapor growth method
KR100536797B1 (en) * 2002-12-17 2005-12-14 동부아남반도체 주식회사 Chemical vapor deposition apparatus
US7118781B1 (en) * 2003-04-16 2006-10-10 Cree, Inc. Methods for controlling formation of deposits in a deposition system and deposition methods including the same
US7371436B2 (en) * 2003-08-21 2008-05-13 Tokyo Electron Limited Method and apparatus for depositing materials with tunable optical properties and etching characteristics
JP4550507B2 (en) * 2004-07-26 2010-09-22 株式会社日立ハイテクノロジーズ Plasma processing equipment
GB2450261A (en) * 2006-02-21 2008-12-17 Cyberoptics Semiconductor Inc Capacitive distance sensing in semiconductor processing tools
US7893697B2 (en) * 2006-02-21 2011-02-22 Cyberoptics Semiconductor, Inc. Capacitive distance sensing in semiconductor processing tools
DE112007002309T5 (en) * 2006-09-29 2009-07-30 Cyberoptics Semiconductor, Inc., Beaverton Substrate-like particle sensor
JP4981485B2 (en) * 2007-03-05 2012-07-18 株式会社ニューフレアテクノロジー Vapor phase growth method and vapor phase growth apparatus
US7778793B2 (en) * 2007-03-12 2010-08-17 Cyberoptics Semiconductor, Inc. Wireless sensor for semiconductor processing systems
JP5034594B2 (en) * 2007-03-27 2012-09-26 東京エレクトロン株式会社 Film forming apparatus, film forming method, and storage medium
US20080246493A1 (en) * 2007-04-05 2008-10-09 Gardner Delrae H Semiconductor Processing System With Integrated Showerhead Distance Measuring Device
US20090015268A1 (en) * 2007-07-13 2009-01-15 Gardner Delrae H Device and method for compensating a capacitive sensor measurement for variations caused by environmental conditions in a semiconductor processing environment
JP5347294B2 (en) * 2007-09-12 2013-11-20 東京エレクトロン株式会社 Film forming apparatus, film forming method, and storage medium
WO2011121507A1 (en) * 2010-03-29 2011-10-06 Koolerheadz Gas injection device with uniform gas velocity
TR201903701T4 (en) * 2011-03-23 2019-04-22 Pilkington Group Ltd The apparatus for deposition of thin film coatings and the deposition method for using this apparatus.
US9695510B2 (en) * 2011-04-21 2017-07-04 Kurt J. Lesker Company Atomic layer deposition apparatus and process
US9388494B2 (en) * 2012-06-25 2016-07-12 Novellus Systems, Inc. Suppression of parasitic deposition in a substrate processing system by suppressing precursor flow and plasma outside of substrate region
KR101482630B1 (en) * 2012-11-07 2015-01-14 삼성디스플레이 주식회사 Vapor deposition apparatus
MX378928B (en) * 2014-10-30 2025-03-11 Centro De Investigacion En Mat Avanzados S C Aerosol injection nozzle and its method of use for depositing different coatings using aerosol-assisted chemical vapor deposition.

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854443A (en) * 1973-12-19 1974-12-17 Intel Corp Gas reactor for depositing thin films
JPS5354181A (en) * 1976-10-28 1978-05-17 Fujitsu Ltd Chemical evaporation apparatus
JPS591671A (en) * 1982-05-28 1984-01-07 Fujitsu Ltd Plasma cvd device
JPS6164122A (en) * 1984-09-05 1986-04-02 Toshiba Corp Equipment for treating sample
JPS61189624A (en) * 1985-02-19 1986-08-23 Toshiba Corp Cvd apparatus
JPS6353932A (en) * 1986-08-22 1988-03-08 Nec Corp Apparatus for growing thin film semiconductor wafer
JPS6372877A (en) * 1986-09-12 1988-04-02 Tokuda Seisakusho Ltd Vacuum treatment device
US4892753A (en) * 1986-12-19 1990-01-09 Applied Materials, Inc. Process for PECVD of silicon oxide using TEOS decomposition
US5000113A (en) * 1986-12-19 1991-03-19 Applied Materials, Inc. Thermal CVD/PECVD reactor and use for thermal chemical vapor deposition of silicon dioxide and in-situ multi-step planarized process
US4741354A (en) * 1987-04-06 1988-05-03 Spire Corporation Radial gas manifold
US5221556A (en) * 1987-06-24 1993-06-22 Epsilon Technology, Inc. Gas injectors for reaction chambers in CVD systems
JPH01223724A (en) * 1988-03-02 1989-09-06 Mitsubishi Electric Corp Chemical vapor growth device
JPH01286306A (en) * 1988-05-12 1989-11-17 Mitsubishi Electric Corp Crystal growth device
JPH02142525A (en) * 1988-11-24 1990-05-31 Matsushita Electric Ind Co Ltd Anti-freezing device for dish washer
JPH02200784A (en) * 1989-01-30 1990-08-09 Koujiyundo Kagaku Kenkyusho:Kk Cvd electrode
JPH02222134A (en) * 1989-02-23 1990-09-04 Nobuo Mikoshiba Thin film forming equipment
JPH02234419A (en) * 1989-03-07 1990-09-17 Koujiyundo Kagaku Kenkyusho:Kk Plasma electrode
JPH088257B2 (en) * 1989-04-13 1996-01-29 三菱電機株式会社 Atmospheric pressure CVD equipment
JPH0676276B2 (en) * 1989-04-25 1994-09-28 三菱電機株式会社 Chemical vapor deposition equipment
US4950156A (en) * 1989-06-28 1990-08-21 Digital Equipment Corporation Inert gas curtain for a thermal processing furnace
US4993358A (en) * 1989-07-28 1991-02-19 Watkins-Johnson Company Chemical vapor deposition reactor and method of operation
JPH03281780A (en) * 1990-03-30 1991-12-12 Hitachi Ltd CVD equipment
US5698036A (en) * 1995-05-26 1997-12-16 Tokyo Electron Limited Plasma processing apparatus

Also Published As

Publication number Publication date
US6022811A (en) 2000-02-08
US5669976A (en) 1997-09-23
JPH04348031A (en) 1992-12-03
KR920012537A (en) 1992-07-27

Similar Documents

Publication Publication Date Title
KR940009945B1 (en) Chemical vapor growth apparatus
EP0637058B1 (en) Method of supplying reactant gas to a substrate processing apparatus
JP2930960B2 (en) Atmospheric pressure chemical vapor deposition apparatus and method
US4612077A (en) Electrode for plasma etching system
US5702531A (en) Apparatus for forming a thin film
US10381461B2 (en) Method of forming a semiconductor device with an injector having first and second outlets
KR20150122680A (en) Chemical vapor deposition device
JP2003309075A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JPH09246192A (en) Thin film gas phase growing device
EP0540082A1 (en) LPCVD reactor for high efficiency, high uniformity deposition and a method of such deposition
KR20230100634A (en) Semiconductor processing device with wafer edge purging
JPH0492414A (en) Thin film formation device
JPH0196924A (en) Film formation by thermochemical vapor deposition process
JP2943407B2 (en) Continuous transportation treatment device of high-temperature melt and its method
US6994887B2 (en) Chemical vapor deposition apparatus and film deposition method
KR100686724B1 (en) Chemical Vapor Deposition Equipment
CN115110064A (en) Gas input equipment and gas input method
JPH04154117A (en) Low pressure cvd system
JPH01109714A (en) Vapor-phase epitaxy appratus
US6210483B1 (en) Anti-notch thinning heater
JPH02283696A (en) Chemical gaseous phase growth device
JPH11154670A (en) Chemical-vapor deposition film forming device
JPH04320025A (en) Chemical vapor growth apparatus
JPH07193016A (en) Chemical vapor deposition reactor
JPS61263214A (en) Reaction processor

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

St.27 status event code: A-2-2-Q10-Q13-nap-PG1605

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 10

R17-X000 Change to representative recorded

St.27 status event code: A-5-5-R10-R17-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 11

FPAY Annual fee payment

Payment date: 20051011

Year of fee payment: 12

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 12

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20061020

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20061020

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000