[go: up one dir, main page]

KR920010575B1 - Position correction system for fine positioning of robot - Google Patents

Position correction system for fine positioning of robot Download PDF

Info

Publication number
KR920010575B1
KR920010575B1 KR1019900003895A KR900003895A KR920010575B1 KR 920010575 B1 KR920010575 B1 KR 920010575B1 KR 1019900003895 A KR1019900003895 A KR 1019900003895A KR 900003895 A KR900003895 A KR 900003895A KR 920010575 B1 KR920010575 B1 KR 920010575B1
Authority
KR
South Korea
Prior art keywords
sensor
robot
attachment device
sensing
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
KR1019900003895A
Other languages
Korean (ko)
Other versions
KR910017259A (en
Inventor
김문상
Original Assignee
한국과학기술연구원
박원희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 박원희 filed Critical 한국과학기술연구원
Priority to KR1019900003895A priority Critical patent/KR920010575B1/en
Publication of KR910017259A publication Critical patent/KR910017259A/en
Application granted granted Critical
Publication of KR920010575B1 publication Critical patent/KR920010575B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

내용 없음.No content.

Description

로보트의 미세한 위치설정을 위한 위치보정시스템Position correction system for fine positioning of robot

제1도는 센싱시스템이 부착된 로보트핸드의 구성도.1 is a block diagram of a robot hand to which a sensing system is attached.

제2도는 레이저를 이용한 광학식 비접촉 프로브(Probe)의 일반적 구성도.2 is a general configuration of an optical non-contact probe (Probe) using a laser.

제3a도 및 제3b도는 본 발명에 따른 비접촉 센싱을 위한 센서들의 배치도.3a and 3b are layout views of sensors for contactless sensing according to the present invention.

제4a도 및 제4b도는 본 발명에 따른 센싱의 기본원리를 도시한 설명도.4a and 4b are explanatory diagrams showing the basic principle of sensing according to the present invention.

제5도는 본 발명에 따른 스터드용접 로보트시스템의 구성도.5 is a block diagram of a stud welding robot system according to the present invention.

제6도는 다중-태스킹 시스템의 구조도.6 is a structural diagram of a multi-tasking system.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 레이저(또는 광학식) 디스플레이스먼트 센서 2,12 : 센서부착장치1: laser (or optical) displacement sensor 2, 12: sensor attachment device

3 : 스터드 4 : 용접건3: stud 4: welding gun

5 : 로보트 핸드 7 : 광원5: robot hand 7: light source

8 : 시준렌즈 9 : 집광렌즈8: collimating lens 9: condenser lens

10 : CCD-화상감지기 11 : 전원 및 신호처리기10: CCD-image sensor 11: power supply and signal processor

13 : 작업대상물 14 : 로보트콘트롤러13: Work Object 14: Robot Controller

15 : RS 232 C 인터페이스 포트 16 : 케이블15: RS 232 C interface port 16: cable

17 : 다중-태스킹 시스템 18 : 퍼스널 컴퓨터17 multi-tasking system 18 personal computer

19 : 데이터 수집시스템19: data collection system

본 발명은 일반적인 로보트 시스템에 레이저(또는 광학) 디스플레이스먼트 센서를 부착하여 로보트운동이 정밀한 작업을 수행할 때에 대상물체와 로보트사이의 상대거리의 비접촉적인 거리센싱을 실현하여 미세조정과 보정을 위한 위치보정 시스템에 관한 것이다.According to the present invention, a laser (or optical) displacement sensor is attached to a general robot system to realize a non-contact distance sensing of a relative distance between an object and a robot when the robot motion is precisely performed. A position correction system.

일반적으로 대량생산라인에서의 로보트의 활용은 대상공작물의 제작정도 및 조립오차 그리고 로보트자체의 정밀도 등을 인해 사전에 교시된 포인트에서 매우 큰 상대반복 오차를 감수하여야 한다.In general, the use of robots in mass production lines has to bear a very large relative repetition error at points taught in advance due to the manufacturing accuracy, assembly error, and accuracy of the robot itself.

생산성향상을 위한 작업정도가 높아짐에 따라 종래의 반복단순작업을 탈피하여 로보트 활용에 센서시스템을 이용한 위치보정시스템의 도입을 통하여 로보트에 지능성을 부가하는 프로세서가 요구되고 있다. 실제 대량생산라인에서의 센싱시스템의 활용에 있어서 가장 중요한 면은 센서작동의 간편성, 신속성, 정확성 및 견고성이다.As the degree of work for improving productivity increases, a processor is required to add intelligence to the robot through the introduction of a position correction system using a sensor system in order to use the robot by avoiding the conventional simple work. In practice, the most important aspects of the use of sensing systems in mass production lines are the simplicity, speed, accuracy and robustness of sensor operation.

종래의 고가의 센셍시스템과는 달리 본 발명의 주요목적은 레이저 디스플레이스먼트 센서를 사용하여 이러한 특성에 부합되면서도 저렴하며 특히 센싱시간이 단축되는 비접촉식 센싱시스템을 제공하는 것이다.Unlike the conventional expensive sensing system, the main object of the present invention is to provide a non-contact sensing system that meets these characteristics and is inexpensive, and in particular, shortens the sensing time by using a laser displacement sensor.

본 발명의 다른 목적은 레이저 디스플레이스먼트 센서를 이용하여 구성된 센싱 메카니즘을 로보트에 장착하여 로보트의 작업대상물을 비접촉으로 센싱한 후 산업용 컴퓨터에서 이를 처리하여 로보트의 보정량을 송신하므로서 로보트시스템에 위치보정기능을 부여하는 것이다.Another object of the present invention is to mount the sensing mechanism configured using the laser displacement sensor to the robot by sensing the robot's workpieces in a non-contact manner, and then processed by the industrial computer to transmit the correction amount of the robot while the position correction function in the robot system To give.

본 발명의 이러한 목적 및 다른 특징들은 첨부된 도면에 의거하여 이하에 상세히 기술된다.These and other features of the present invention are described in detail below with reference to the accompanying drawings.

제1도는 본 발명에 따른 센싱시스템이 스터트용접용 로보트 핸드에 적용된 일실시예를 개략적으로 도시하여 보인 것으로, 여기에서는 로보트 핸드(5)의 선단부에 용접건(4)이 설치되어 있고 그 용접건(4)의 일측에는 레이저(광학식) 디스플레이스먼트 센서(1)가 별도의 센서 부착장치(2)에 의해 후기할 사용목적에 적합한 형태로 부착된 일예를 보여주고 있다. 도면중 미설명 부호 6은 작업대상물, 3은 스터드이다.1 schematically shows an embodiment in which the sensing system according to the present invention is applied to a stud welding robot hand, in which a welding gun 4 is installed at the tip of the robot hand 5 and the welding is performed. One side of the gun 4 shows an example in which the laser (optical) displacement sensor 1 is attached by a separate sensor attachment device 2 in a form suitable for later use. In the drawings, reference numeral 6 denotes a workpiece, and 3 denotes a stud.

제2도는 레이저를 이용한 광학식 비접촉 거리측정 프로브의 일반적 구성을 나타낸 것이다. 레이저광원(7)에서 시준렌즈(8)를 거쳐 피측정물로 투사된 빛이 피측정물의 표면에서 반사되어 그 일부가 집광렌즈(9)에 의해 CCD-화상감지기(10)위에 상을 맺게 되면 그 상의 위치로부터 피측정표면의 상대적인 위치를 산출할 수 있게 된다. 광원으로서 레이저를 사용함으로서 측정정밀도를 높일 수 있으며 측정거리의 범위도 비교적 넓게 설정할 수 있다.2 shows a general configuration of an optical non-contact ranging probe using a laser. When the light projected from the laser light source 7 through the collimation lens 8 onto the object under test is reflected from the surface of the object under test, part of it forms an image on the CCD-image sensor 10 by the condenser lens 9. The relative position of the surface under measurement can be calculated from the position on the image. By using the laser as a light source, the measurement accuracy can be increased and the range of the measurement distance can be set relatively wide.

제3a도 및 제3b도는 본 발명에 따른 비접촉 센싱을 위한 센서들이 사용목적 또는 공작물의 정확도에 따라 다른 형태를 취할 수 있는 배치상황을 보여준다.3a and 3b show an arrangement in which the sensors for contactless sensing according to the invention may take different forms depending on the purpose of use or the accuracy of the workpiece.

제3a도에서는 본 발명에 적용된 작업대상물(13)이 100-105°의 각도를 가지고 절곡되어 있어서 용접건(4)의 진입 방향으로서 측정이 요구되는 경우를 나타내고 있다. 이 경우에는 각(各)방향으로의 센싱이 필요하며 센서(1)(1′)도 작업대상물(13)의 두면에 대하여 각각 수직으로 배치되어야 한다. 따라서 센서(1)는 작업대상물(13)의 경사면(13a)에 대하여 수직으로 배치되도록 센서부착장치(2)의 일측면에 부착되며 센서(1′)는 작업대상물(13)의 수평면(13b)에 대하여 수직으로 배치되도록 센서부착장치(2)의 타측면에 부착된다. 따라서, 제4a도의 센싱의 기본원리도에 도시한 바와같이 S1,S2로 표시된 센싱값은 다음의 계산을 거쳐 로보트의 좌표계에 대한 보정량(Xtc,Ytc)으로 계산된후 로보트에 보내진다. e로 표시된 백터값은 최종적인 요구 보정량, 즉 S1과 S2의 합이다.FIG. 3A shows a case in which the workpiece 13 applied to the present invention is bent at an angle of 100-105 ° so that measurement is required as the entry direction of the welding gun 4. In this case, sensing in the angular direction is required, and the sensors 1 and 1 'should also be disposed perpendicular to the two surfaces of the workpiece 13, respectively. Accordingly, the sensor 1 is attached to one side of the sensor attachment device 2 so as to be disposed perpendicularly to the inclined surface 13a of the workpiece 13, and the sensor 1 ′ is the horizontal plane 13b of the workpiece 13. It is attached to the other side of the sensor attachment device (2) so as to be perpendicular to the. Therefore, as shown in the basic principle of sensing in FIG. 4A, the sensing values represented by S1 and S2 are calculated as the correction amounts Xtc and Ytc for the coordinate system of the robot through the following calculation and then sent to the robot. The vector value indicated by e is the final required correction amount, that is, the sum of S1 and S2.

Figure kpo00001
Figure kpo00001

그러나 작업대상물(13)의 각도가 직각에 가깝거나, 로보트 용접건(4)에 수직한 작업대상물(13)의 수직한면의 로보트에 대한 위치정밀도가 높은 경우(약 ±1mm 이내), 제3b도에 도시한 바와같이 S2 방향으로의 센싱을 생략할 수 있다. 따라서 용접건(4)의 진입방향은 센서(1)(1′)를 부착하지 않고 두개의 센서(1)(1′)가 센서부착장치(2)의 한쪽에만 설치되어 한방향만으로 중복적인 센싱이 이루어질 수 있다. 이는 작업대상물(13)의 경사면(13a)과 수평면(13b)이 서로 수직에 가까운 경우 tanθ 값이 0에 수렴하여 ,θ가 0에 가깝지 않더라도 S2의 값이 무시할만 하면 Xtc에 대한 S2의 영향이 감소하기 때문이다. 제4b도에서 S1, S2로 표시된 값은 각 센서에 대한 각각의 측정량이며 이상적인 경우 두값은 같다. 그러나 여러가지 원인으로 두 센서의 측정량은 상이하며 경우에 따라서는 측정불량이 일어난다. 이러한 경우를 위해 센서를 두개씩 부착하였으며 양호한 측정치를 선택하여 사용하는 방법을 취했다. 보통의 경우의 센싱값(S1,S2)은 다음과 같이 처리되어 로보트 좌표계에 대한 보정량(Xtc, Ytc)으로 계산처리된다.However, when the angle of the workpiece 13 is close to the right angle or the positional accuracy of the robot on the vertical surface of the workpiece 13 perpendicular to the robot welding gun 4 is high (within about ± 1 mm), FIG. As shown in FIG. 2, sensing in the S2 direction may be omitted. Therefore, the entry direction of the welding gun 4 is not attached to the sensor (1) (1 '), and two sensors (1) (1') are installed on only one side of the sensor attachment device (2) so that the redundant sensing in only one direction is achieved. Can be done. This is because when the inclined surface 13a and the horizontal surface 13b of the workpiece 13 are perpendicular to each other, the tanθ value converges to zero. Because it decreases. In Fig. 4b, the values indicated by S1 and S2 are the respective measurands for each sensor. However, due to various reasons, the measured quantities of the two sensors are different, and in some cases, measurement failure occurs. For this case, two sensors were attached and a good measure was chosen and used. In the normal case, the sensing values S1 and S2 are processed as follows and calculated as the correction amounts Xtc and Ytc for the robot coordinate system.

Figure kpo00002
Figure kpo00002

본 발명은 제5도에 도시한 바와같이 산업용 로보트와 데이터 수집시스템(19) 및 RS232C 인터페이스 포트(15)와 연결된 다중-태스킹시스템(17)(multi-tasking system)으로 구성된다. 데이터 수집시스템(19)은 센서신호를 디지탈신호로 변환시켜 퍼스널컴퓨터(18)와 연결되고 다중-태스킹시스템(17)은 각 로보트 콘트롤러(14)와의 통신으로 인한 시간지연을 줄이기 위하여 설치하였다.The invention consists of a multi-tasking system 17 connected to an industrial robot and data collection system 19 and an RS232C interface port 15 as shown in FIG. The data collection system 19 converts the sensor signal into a digital signal and is connected to the personal computer 18, and the multi-tasking system 17 is installed to reduce time delay due to communication with each robot controller 14.

제6도는 다중-태스킹 시스템(17)의 구조도이다. Intel 80186마이크로프로세서와 Z 8030 직렬식통신제어 장치로 구성된 RIC 카드(Card)는 로보트와의 송수신 및 센싱신호의 처리 및 계산을 실시간(real time)으로 처리하기 위하여 사용되었다. 도시한 바와같이 여러대의 로보트제어기들이 ARTIC 인터페이스에 연결되었고 각 로보트를 위한 개별적인 실행 프로그램이 있다.6 is a structural diagram of a multi-tasking system 17. The RIC card, which consists of an Intel 80186 microprocessor and a Z 8030 serial communication control device, was used to process and calculate and send and receive sensing signals to and from the robot in real time. As shown, several robot controllers are connected to the ARTIC interface and there is a separate executable program for each robot.

전술한 바와같이 구성된 본 발명에 따른 로보트의 미세위치설정을 위한 위치보정시스템은 비접촉식 레이저 디스플레이스먼트 센서를 사용함으로서 신속하고 정확한 센싱을 실현하였고, 센서를 2개로 조합하여 구성함으로서 작업대상물의 굴곡등으로 인한 오차를 최소화하고, 교시(Trach-in)와 보정을 위한 손쉬운 소프트웨어를 장작하여 온라인가동이 가능하게 되며, 다중 태스킹 시스템을 사용하여 여러대의 로보트를 동시에 제어할 수 있는 효과가 있다.The position correction system for fine positioning of the robot according to the present invention configured as described above realizes quick and accurate sensing by using a non-contact laser displacement sensor, and by combining the two sensors, the bending of the workpiece, etc. Minimize the error, and easy to operate the software for teaching (Trach-in) and correction is possible to operate online, it is possible to control multiple robots at the same time using a multi-tasking system.

Claims (5)

센서(1)(1′), 로보트 콘트롤러(14), RS232C 인터페이스포트(15), 케이블(16), 다중-태스킹 시스템(17), 퍼스날컴퓨터(18) 및 데이터 수집시스템(19)으로 이루어진 하드웨어 시스템과 여기로부터 입수된 신호를 처리하여 로보트와의 커뮤니케이숀을 실현시키기 위한 콘트롤 소프트웨어 패키지로 구성되어 로보트가 작업시 작업대상물과의 상대위치를 센서부착장치에 부착된 비접촉식 센서에 의해 감지하여 이를 컴퓨터에서 처리한 후 실시간으로 로보트와 커뮤니케이숀한 후 보정시켜 주는 것을 특징으로 로보트의 미세한 위치설정을 위한 위치보정시스템.Hardware consisting of a sensor (1 '), robot controller (14), RS232C interface port (15), cable (16), multi-tasking system (17), personal computer (18), and data acquisition system (19). It is composed of a control software package for processing the system and the signals obtained from it to realize communication with the robot.The robot detects the relative position with the workpiece during operation by a non-contact sensor attached to the sensor attachment device. Position correction system for fine positioning of the robot, characterized in that after the processing in the computer and the robot and communication in real time to correct. 제1항에 있어서, 시간지연을 최대로 줄이기 위하여 로보트 콘트롤러(14)와의 커뮤니케이숀을 다중-태스킹기법으로 처리한 것을 특징으로 하는 시스템.The system according to claim 1, characterized in that communication with the robot controller (14) is processed by a multi-tasking technique in order to minimize the time delay. 제1항에 있어서, 상기 센서(1)(1′)는 비접촉식 거리측정 센서로서, 두개의 센서중 한 센서(1)는 작업대상물(13)의 경사면에 수직으로 대향하도록 센서부착장치(2)의 일측면에 부착되며 다른 센서(1′)는 작업대상물(13)의 수평면에 수직으로 대향하도록 센서부착장치(2)의 타측면에 부착되어 두방향으로 센싱이 이루어지거나, 또는 두개의 센서(1)(1′)가 센서부착장치(2)의 한쪽면에 모두 설치되어 한방향만으로 센싱이 이루어지는 것을 특징으로 하는 시스템.The sensor attachment device (2) according to claim 1, wherein said sensor (1) (1 ') is a non-contact ranging sensor, wherein one of the two sensors (1) faces perpendicular to the inclined surface of the workpiece (13). It is attached to one side of the other sensor (1 ') is attached to the other side of the sensor attachment device (2) so as to face perpendicular to the horizontal plane of the workpiece 13, the sensing is made in two directions, or two sensors ( 1) The system, characterized in that (1 ') is installed on both sides of the sensor attachment device (2), the sensing is performed in only one direction. 제1항에 있어서, 상기 시스템소프트웨어는 퍼스널컴퓨터에서 비접촉식 센서에서의 센서신호를 A/D변환 한 후 로보트 공구좌표계의 대응보정량으로 변환하여 2대이상의 로보트와 실시간으로 다중-태스킹기법을 사용하여 상기 로보트공구의 위치를 보정하는 일련의 프로그램패키지인 것을 특징으로 하는 시스템.The system software of claim 1, wherein the system software converts a sensor signal from a non-contact sensor into a corresponding correction amount of a robot tool coordinate system in a personal computer and uses the multi-tasking technique in real time with two or more robots. A system characterized by a series of program packages for calibrating the position of the robot tool. 제1항에 있어서, 상기 센서는 대상물을 표면을 측정할 수 있도록 광학 또는 레이저 디스플레이스먼트센서가 1차원, 2차원형태로 조합되는 것을 특징으로 하는 시스템.2. The system of claim 1, wherein the sensor is a combination of optical or laser displacement sensors in one or two dimensional form to measure an object surface.
KR1019900003895A 1990-03-22 1990-03-22 Position correction system for fine positioning of robot Expired KR920010575B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900003895A KR920010575B1 (en) 1990-03-22 1990-03-22 Position correction system for fine positioning of robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900003895A KR920010575B1 (en) 1990-03-22 1990-03-22 Position correction system for fine positioning of robot

Publications (2)

Publication Number Publication Date
KR910017259A KR910017259A (en) 1991-11-05
KR920010575B1 true KR920010575B1 (en) 1992-12-07

Family

ID=19297272

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900003895A Expired KR920010575B1 (en) 1990-03-22 1990-03-22 Position correction system for fine positioning of robot

Country Status (1)

Country Link
KR (1) KR920010575B1 (en)

Also Published As

Publication number Publication date
KR910017259A (en) 1991-11-05

Similar Documents

Publication Publication Date Title
US20050273199A1 (en) Robot system
US5071252A (en) Method for contactless profiling normal to a surface
KR960001641B1 (en) Method of measuring three-dimensional position of workpiece
JPH03213251A (en) Workpiece position detecting device
JPS6332306A (en) Non-contact three-dimensional automatic dimension measuring method
CN110624732A (en) Automatic workpiece spraying system
US11433551B2 (en) Measurement system and method for positioning accuracy of a robotic arm
KR920010575B1 (en) Position correction system for fine positioning of robot
CN209491778U (en) Integral type robot zero-bit three-dimensional pose calibration system
Tang et al. Robot calibration using a single laser displacement meter
JP2011102767A (en) Non-contact type position/attitude measuring method, non-contact type position/attitude measuring device, and semiconductor mounting device equipped with the non-contact type position/attitude measuring device
Decker et al. Dynamic measurement of position and orientation of robots
JPH0731536B2 (en) Teaching data correction robot
Podoloff et al. An accuracy test procedure for robotic manipulators utilizing a vision based, 3-D position sensing system
JPH01153907A (en) Visual sensor attitude correction system utilizing image processor
JP2661118B2 (en) Conversion method of object coordinates and visual coordinates using image processing device
JPS59205282A (en) Method of correcting origin of multi-joint robot
JPH04140691A (en) Positioner
JPH0146275B2 (en)
JP2005181023A (en) Apparatus and method for measuring height difference and inclination angle between planes
KR100225883B1 (en) Position and posture correction method of sensor attached to industrial robot and measuring jig used
JPS63285410A (en) Position detecting system of work for robot
Liu et al. Study on the Robotic Arm Trajectory Compensation System with Deviation Sensing
JPS6166915A (en) Noncontacting type automatic size measuring method
KR100210371B1 (en) How to Master Robot

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

T11-X000 Administrative time limit extension requested

St.27 status event code: U-3-3-T10-T11-oth-X000

G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

St.27 status event code: A-2-2-Q10-Q13-nap-PG1605

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

FPAY Annual fee payment

Payment date: 19970619

Year of fee payment: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 19981208

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 19981208

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

P22-X000 Classification modified

St.27 status event code: A-4-4-P10-P22-nap-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301