KR910010168B1 - Amorphous thin film manufacturing device - Google Patents
Amorphous thin film manufacturing device Download PDFInfo
- Publication number
- KR910010168B1 KR910010168B1 KR1019900021941A KR900021941A KR910010168B1 KR 910010168 B1 KR910010168 B1 KR 910010168B1 KR 1019900021941 A KR1019900021941 A KR 1019900021941A KR 900021941 A KR900021941 A KR 900021941A KR 910010168 B1 KR910010168 B1 KR 910010168B1
- Authority
- KR
- South Korea
- Prior art keywords
- reaction vessel
- thin film
- substrate
- electrodes
- magnetic field
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/517—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
내용 없음.No content.
Description
제1도는 본 발명에 관한 일실시예를 도시한 장치의 횡단면도.1 is a cross-sectional view of an apparatus showing one embodiment according to the present invention.
제2도는 종래장치의 측단면도.2 is a side cross-sectional view of a conventional apparatus.
* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings
1 : 반응용기 21~2n: 전극1: reaction vessel 2 1 ~ 2 n : electrode
4 : 저주파전원 5 : 코일4: low frequency power source 5: coil
6 : 교류전원 7 : 반응가스도입관6: AC power supply 7: Reaction gas introduction pipe
8 : 배기구멍 9 : 진공펌프8: exhaust hole 9: vacuum pump
10 : 기판10: substrate
본 발명은, 태양전지, 연료전지, 박막반도체, 전자사진 감광체나 광센서등의 각종 전자디바이스에 사용되는 비정질박막의 제조장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing amorphous thin films used in various electronic devices such as solar cells, fuel cells, thin film semiconductors, electrophotographic photosensitive members, and optical sensors.
제2도에는, 종래로부터 사용되고 있는 반도체박막의 제조장치를 도시하고 있으며, 예를들면, 일본국 특허공개 소화 57-04771호 공보등에 기재되어 있는 공지의 기술이다.FIG. 2 shows a conventional apparatus for manufacturing a semiconductor thin film, which is a known technique described in, for example, Japanese Patent Laid-Open No. 57-04771.
동도면에 있어서, 기밀한 반응용기(01)내에 방전공간을 형성하기 위한 전극(02)(03)이 상하방향에 설치되어 있고, 이 전극(02)(03)은 고주파전원(04)에 전기적으로 접속되어 있다. 상기 반응용기(01)의 외주에는 상기 방전공간내의 전계방향과 평행한 자계를 발생시키기 위한 코일(05)이 수평으로 배치되어 있고, 교류전원(06)과 전기적으로 접속되어 있다. 배기구멍(07)은 도시하지 않은 진공펌프에 연통되어 있고, 반응가스도 입관(08)은, 모노실란(SiH4)과 수소가스(H2)의 봄베에 각각 연통되어 있다. 또한, (09)는 히이터로서, 기판(10)을 가열하기 위한 것이다.In the same figure, electrodes 02 and 03 for forming a discharge space in the hermetically sealed reaction vessel 01 are provided in the vertical direction, and the electrodes 02 and 03 are electrically connected to the high frequency power supply 04. Is connected. A coil 05 for generating a magnetic field parallel to the electric field direction in the discharge space is arranged horizontally on the outer circumference of the reaction vessel 01, and is electrically connected to the AC power supply 06. The exhaust hole 07 communicates with a vacuum pump (not shown), and the reaction gas inlet tube 08 communicates with a cylinder of monosilane (SiH 4 ) and hydrogen gas (H 2 ), respectively. In addition, (09) is a heater for heating the board | substrate 10. As shown in FIG.
그런데, 전극(02)상에 기판(10)을 재치시켜서, 반응용기(01)의 내부를 1㎜Hg정도로 감압한 후, 모노실란과 수소가스와의 혼합가스를 반응가스도입관(08)으로부터 반응용기(01)내에 공급하면서, 전극(02)(03)사이에 13.5M㎐의 고주파전압을 인가한다.By the way, the substrate 10 is placed on the electrode 02, the pressure inside the reaction vessel 01 is reduced to about 1 mmHg, and then the mixed gas of monosilane and hydrogen gas is discharged from the reaction gas introduction pipe 08. While supplying into the reaction vessel 01, a high frequency voltage of 13.5 MΩ is applied between the electrodes 02 and 03.
한편, 코일(05)에는 50 또는 60㎐의 상업용 교류전압을 인가하고, 전극(02)(03)사이에 약 100가우스의 자계를 발생시킨다. 또한, 기판(10)은 히이터(09)에 의해서 300℃정도로 가열해 놓는다.On the other hand, a commercial AC voltage of 50 or 60 mA is applied to the coil 05 to generate a magnetic field of about 100 gauss between the electrodes 02 and 03. In addition, the board | substrate 10 is heated to about 300 degreeC by the heater 09.
반응가스도입관(08)으로부터 반응용기(01)내에 도입된 모노실란등의 가스는, 전극(02)(03)사이의 방전공간에서 분해되고, 코일(05)에 의해서 발생된 변동하는 자계에 의해서 교반되면서 기판(10)의 표면에 부착되어서 비정질박막을 형성한다.Gases such as monosilane introduced into the reaction vessel 01 from the reaction gas introduction pipe 08 are decomposed in the discharge space between the electrodes 02 and 03 and subjected to the fluctuating magnetic field generated by the coil 05. While agitated, it is attached to the surface of the substrate 10 to form an amorphous thin film.
상기한 종래의 장치에서는 2매의 전극(02)(03)사이에 발생하는 전계의 방향과 평행하게 코일(05)에서 발생시킨 변동자계를 인가하므로, 전극(02)(03)사이의 방전공간에 존재하는 실리콘등의 이온이 교반되어 기판(10)상에 비교적 균일한 비정질박막이 형성된다.In the above-described conventional apparatus, since the variable magnetic field generated in the coil 05 is applied in parallel with the direction of the electric field generated between the two electrodes 02 and 03, the discharge space between the electrodes 02 and 03 is applied. Ions such as silicon present in the agitation are stirred to form a relatively uniform amorphous thin film on the substrate 10.
그러나,But,
① 기판(10)이 놓여지는 장소는, 전극(02)위이며, 전극(02)(03)사이의 방전공간내에 위치하게 된다. 이 때문에 기본적으로 높은 에너지를 가진 이온이 직접 기판에 충돌하게 된다.The place where the substrate 10 is placed is on the electrode 02 and is located in the discharge space between the electrodes 02 and 03. Because of this, ions with high energy basically collide directly with the substrate.
즉, 전극(02)(03)사이의 전계(E)에 의해서 전하(q)의 이온에는 클롱(Coulomb)력(F1=qE)이 작용하고, 이온입자가 기판(10)에 직접 충돌하여 형성되고 있는 비정질박막에 손상을 입히게 된다.That is, a coulomb force (F 1 = q E) acts on the ions of the charge q by the electric field E between the electrodes 02 and 03, and the ion particles collide directly with the substrate 10. It damages the amorphous thin film being formed.
② 코일(05)에 의해서 발생되는 변동자계(B)의 방향이 방전공간에 발생한 전계(E)와 평행하기 때문에, 방전공간내에 있는 이온 및 전자는 라아머어(Larmor)운동에 의해서 선회운동을 일으키나, 그 선회운동에 의한 교반작용이 너무 크게 되어 매우 큰 전력을 필요로 한다.(2) Since the direction of the variable magnetic field (B) generated by the coil (05) is parallel to the electric field (E) generated in the discharge space, the ions and electrons in the discharge space are rotated by the lamor motion. However, the stirring action by the swinging movement is too large, requiring very large electric power.
③ 전극사이에 기판을 배치하기 때문에, 기판의 형상은 평행판형상으로 한정된다.(3) Since the substrate is arranged between the electrodes, the shape of the substrate is limited to the parallel plate shape.
본 발명의 장치에서는 반응용기와, 상기 반응용기안을 감압해서 상기 반응용기내로 반응가스를 도입하는 수단과, 상기 반응용기내에서 방사상으로 복수매 배치된 방전용 전극과, 상기 방전용 전극이 인접하는 것끼리의 사이에 글로우방전용 전압을 공급하는 전원과, 상기 복수매의 방전용 전극을 내포하여 상기 방전용 전극사이에 발생된 전계와 직교하는 방향의 자계를 발생시키는 축심을 가진 코일과, 상기 코일에 자계발생용의 전류를 공급하는 교류전원을 가지고, 상기 방전용 전극의 단면을 향해서 배치된 기판의 표면에 비정질박막을 형성하도록 하였다.In the apparatus of the present invention, a reaction vessel, means for introducing the reaction gas into the reaction vessel by depressurizing the reaction vessel, a plurality of discharge electrodes disposed radially in the reaction vessel, and the discharge electrode are adjacent to each other. A coil having a power supply for supplying a glow discharge voltage between the ones, an axial center containing a plurality of discharge electrodes, and generating a magnetic field in a direction orthogonal to an electric field generated between the discharge electrodes; An amorphous power supply was formed on the surface of a substrate having an alternating current power supply for supplying a current for generating magnetic fields to the coil, and facing the end face of the discharge electrode.
본 발명에서는, 글로우방전 플라즈마를 발생시키는 전극을, 반응용기내에 방사상으로 배치하였다. 또, 이들 인접하는 것들 사이에 발생하는 방전용 전계와 직교하는 방향으로 자계를 발생시켰다.In this invention, the electrode which generate | occur | produces a glow discharge plasma was arrange | positioned radially in the reaction container. In addition, a magnetic field was generated in a direction orthogonal to the electric field for discharge generated between these adjacent ones.
하전입자는 방전전계로부터 부여된 클롱력과, 자계에 의해서 부여된 로오렌쯔력에 초기속도를 부여한 형태로 전계와 직교하는 방향으로 드리프트하나, 전계공간을 나온 곳에서 클롱력이 약해져서 로오렌쯔력에 의한 사이클로트론 운동에 의해서 라아머어궤도를 그리면서 날아간다.The charged particles drift in the direction orthogonal to the electric field in the form of giving the initial velocity to the klong force imparted from the discharge electric field and the loorent force imparted by the magnetic field. Fly while drawing the Lamor Armored Orbit by cyclotron motion.
한편, 전기적으로 중성인 라디칼입자는 하전입자군의 궤도로부터 직진하려고 하나, 하전입자(특히 이온)와 충돌하여, 그 진로를 수정시킨다. 또한, 이 자계는 변동하고 있으므로, 라디칼입자는 균일하게 비산한다. 따라서, 상기 방전용 전극의 단면을 향해서 기판의 표면에는 균일한 비정질박막이 형성되게 된다.On the other hand, the electrically neutral radical particles try to go straight from the orbit of the charged particle group, but collide with the charged particles (especially ions) to correct the course. In addition, since this magnetic field is fluctuating, radical particles scatter uniformly. Therefore, a uniform amorphous thin film is formed on the surface of the substrate toward the end face of the discharge electrode.
이하, 본 발명을 제1도에 도시한 일실시예의 장치에 의해서 설명한다.Hereinafter, the present invention will be described by the apparatus of one embodiment shown in FIG.
(1)은 반응용기이고, 그 속에 글로우방전 플라즈마를 발생시키기 위한 전극(21)~(2n)이 방사상으로 배치되어 있다. (4)는 저주파전원이고, 직류나 고주파전원이어도 되며, 예를들면 60㎐의 상용 주파수를 사용하여 상기 전극(21)~(2n)에 교호로 접속되어 있다. 코일(5)은 상기 반응용기(1)를 에워싸는 것이고, 교류전원(6)에 접속되어 있다. (7)은 반응가스도입관이고, 도시하지 않은 봄베와 연통하여, 모노실란과 아르곤의 혼합가스를 상기 반응용기(1)에 공급하는 것이다. 배기구멍(8)은 진공펌프(9)와 연통하고 있고, 반응용기(1)안의 가스를 배기하는 것이다.(1) is a reaction vessel, in which electrodes 2 1 to 2 n for generating a glow discharge plasma are arranged radially. Reference numeral 4 denotes a low frequency power supply, and may be a direct current or a high frequency power supply, and is alternately connected to the electrodes 2 1 to 2 n using, for example, a commercial frequency of 60 Hz. The coil 5 surrounds the reaction vessel 1 and is connected to an AC power source 6. Reference numeral (7) is a reaction gas introduction pipe, which communicates with a bomb (not shown) to supply a mixed gas of monosilane and argon to the reaction vessel (1). The exhaust hole 8 communicates with the vacuum pump 9 and exhausts the gas in the reaction vessel 1.
그런데, 원통형상의 기판(10)을 도시한 바와 같이 전극(21)~(2n)이 형성하는 원통의 내부에, 즉, 전극(21)~(2n)의 단면을 향해서 거리가 거의 같게 적당한 수단으로 저지한다. 진공펌프(9)를 구동해서 반응용기(1)안을 배기한 후, 반응가스도입관(7)으로부터 모노실란과 아르곤의 혼합가스를 공급한다. 상기 혼합가스를 반응용기(1)내에 충만시켜서 압력을 0.05 내지 0.5Torr로 유지하고, 저주파전원(4)으로부터 전극(21) 내지 (2n)의 인접하는 것들 사이에 글로우방전 플라즈마가 발생하도록 전압을 인가한다.By the way, in the interior of the cylinder for forming the electrode (2 1) ~ (2 n ) , as shown the substrate 10 is a cylindrical shape, that is, the distance is substantially toward the end surface of the electrode (2 1) ~ (2 n ) Equally deter by appropriate means. After driving the vacuum pump 9 to evacuate the reaction vessel 1, the mixed gas of monosilane and argon is supplied from the reaction gas introduction pipe 7. Filling the mixed gas into the reaction vessel (1) to maintain a pressure of 0.05 to 0.5 Torr, so that a glow discharge plasma is generated between the low-frequency power source (4) between the adjacent of the electrode (2 1 ) to (2 n ) Apply voltage.
한편, 코일(5)에는, 예를들면 100㎐의 교류전압을 인가하고, 전극(21)~(2n)사이에 발생하는 전계(E)와 직교하는 방향(여기서는, 제1도의 지면에 대해서 수직인 방향)의 자계(B)를 발생시킨다. 또한, 그 자속밀도는 10가우스정도이면 된다.On the other hand, for example, an alternating voltage of 100 kV is applied to the coil 5, and the direction orthogonal to the electric field E generated between the electrodes 2 1 to 2 n (here, in the plane of FIG. Magnetic field B in a direction perpendicular to the direction of the magnetic field B. The magnetic flux density may be about 10 gauss.
반응가스도입관(7)으로부터 공급된 가스중 모노실란가스는, 전극(21)~(2n)사이에 발생하는 글로우방전 플라즈마에 의해서 라디칼 Si로 분해되어, 기판(10)의 표면에 부착되어서 박막을 형성한다.The monosilane gas in the gas supplied from the reaction gas introducing pipe 7 is decomposed into radical Si by a glow discharge plasma generated between the electrodes 2 1 to 2 n , and adheres to the surface of the substrate 10. To form a thin film.
이때, 아르곤이온등의 하전입자는 전극(21)~(2n)사이에서 전계(E)에 의한 클롱력(F1=qE)과 로오렌쯔력[F2=q(V×B)]에 의해서 소위 E×B 드리프트운동을 일으킨다. 또한, V는 하전입자의 속도이다. 즉, 하전입자는 E×B 드리프트에 의해서 초기속도가 부여된 형태로 전극(21)~(2n)과 직교하는 방향으로 비산하여, 기판(10)을 향해서 날아간다. 그러나, 전극(21)~(2n)사이에 발생하는 전계의 영향이 작은 방전공간의 바깥쪽에는 코일(5)에 의해서 발생된 자계(B)에 의한 사이클로트론 운동에 의해서 라이머어궤도를 그리면서 날아간다.At this time, charged particles such as argon ions have a clock force (F 1 = qE) and a Lorentz force [F 2 = q (V × B)] caused by an electric field (E) between the electrodes 2 1 to 2 n . Causes a so-called E × B drift movement. In addition, V is the speed of charged particles. That is, the charged particles fly in the direction orthogonal to the electrodes 2 1 to 2 n in the form of the initial velocity given by E × B drift, and fly toward the substrate 10. However, the outer surface of the discharge space where the influence of the electric field generated between the electrodes 2 1 to 2 n is small, the reamer track is drawn by the cyclotron motion caused by the magnetic field B generated by the coil 5. Fly away.
따라서, 아르곤이온등의 하전입자가 기판(10)에 직접 충돌하는 일은 없어진다.Therefore, charged particles such as argon ions do not directly collide with the substrate 10.
한편, 전기적으로 중성인 라디칼 Si는 자계(B)의 영향을 받지 않고, 상기 하전입자군의 궤도로부터 기판(10)에 이르러서, 그 표면에 비정질박막을 형성한다. 이때, 라디칼 Si는 라아머어궤도를 날아가는 하전입자와 충돌하기 때문에, 전극(21)~(2n)의 단면을 향해서 배치된 기판(10)의 표면에 넓은 형태로 비정질박막을 형성한다.On the other hand, the electrically neutral radical Si reaches the substrate 10 from the trajectory of the charged particle group without being affected by the magnetic field B, and forms an amorphous thin film on the surface thereof. At this time, since the radical Si collides with the charged particles flying through the lamor orbit, an amorphous thin film is formed on the surface of the substrate 10 arranged toward the end faces of the electrodes 2 1 to 2 n .
또한, 자계(B)를 변동시키고 있고, 전극단면과의 거리도 거의 같게 하고 있으므로, 기판(10)의 표면에 균일하게 비정질박막을 형성시키는 일이 가능해진다.In addition, since the magnetic field B is varied and the distance to the electrode end surface is substantially the same, the amorphous thin film can be uniformly formed on the surface of the substrate 10.
또한, 전극(21)~(2n)의 길이는, 반응용기(1)의 길이가 허용하는 한 길게 해도 하등문제가 없으므로, 길이가 긴 원통형상의 기판(10)이어도 그 표면에 균일한 비정질박막을 형성하는 일이 가능해진다.In addition, the length of the electrodes 2 1 to 2 n does not cause any problem even if the length of the reaction vessel 1 is allowed to be as long as possible, so that even a long cylindrical substrate 10 has a uniform amorphous surface. It becomes possible to form a thin film.
또한, 도시하지는 않았으나, 원통형상의 기판(10)을 전극(21)~(2n)을 내포하도록 배치해도 된다. 이와같이 하면, 기판의 내면에 비정질박막을 형성하는 것도 가능하다.Further, although not shown, it may be disposed a substrate 10 having a cylindrical shape so as to pose the electrode (2 1) ~ (2 n ). In this way, it is also possible to form an amorphous thin film on the inner surface of the substrate.
또한, 상기 실시예에서는 코일(5)을 반응용기(1) 바깥에 배치하였으나, 이것은 반응용기(1)속에 배치하도록 해도 관계없으며, 전극의 단면을 이루는 곡면도 원통형에 한정되지 않으며, 그 일부분이거나 원면이어도 관계없다.In addition, in the above embodiment, the coil 5 is disposed outside the reaction vessel 1, but this may be arranged in the reaction vessel 1, and the curved surface constituting the cross section of the electrode is not limited to a cylindrical shape, or a portion thereof. It may be cotton.
본 발명에 의하면, 태양전지, 연료전지, 전자사진 감광체등의 각종 디바이스의 제조에 있어서, 원통 혹은 곡면을 가진 기판의 표면에 균일하게 비정질박막을 형성할 수 있으므로, 산업상 매우 가치가 있는 것이다.Industrial Applicability According to the present invention, in the production of various devices such as solar cells, fuel cells, electrophotographic photosensitive members, an amorphous thin film can be uniformly formed on the surface of a substrate having a cylinder or a curved surface, which is very valuable industrially.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019900021941A KR910010168B1 (en) | 1986-05-09 | 1990-12-27 | Amorphous thin film manufacturing device |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61-106313 | 1986-05-09 | ||
JP61-106315 | 1986-05-09 | ||
JP61106313A JPH0697657B2 (en) | 1986-05-09 | 1986-05-09 | Amorphous thin film forming equipment |
JP61-106314 | 1986-05-09 | ||
JP61160127A JPS6314876A (en) | 1986-07-08 | 1986-07-08 | Amorphous thin film forming device |
JP61-160127 | 1986-07-08 | ||
JP61183902A JPS6338580A (en) | 1986-08-05 | 1986-08-05 | Method and apparatus for forming film |
JP61-183902 | 1986-08-05 | ||
KR1019870004508A KR910002819B1 (en) | 1986-05-09 | 1987-05-08 | Forming method and device of amorphous thin film |
KR1019900021941A KR910010168B1 (en) | 1986-05-09 | 1990-12-27 | Amorphous thin film manufacturing device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019870004508A Division KR910002819B1 (en) | 1986-05-09 | 1987-05-08 | Forming method and device of amorphous thin film |
Publications (1)
Publication Number | Publication Date |
---|---|
KR910010168B1 true KR910010168B1 (en) | 1991-12-17 |
Family
ID=27526270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019900021941A Expired KR910010168B1 (en) | 1986-05-09 | 1990-12-27 | Amorphous thin film manufacturing device |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR910010168B1 (en) |
-
1990
- 1990-12-27 KR KR1019900021941A patent/KR910010168B1/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4891095A (en) | Method and apparatus for plasma treatment | |
KR930001351A (en) | Plasma Processors and Methods Using Electromagnetic RF Connections | |
KR20190103558A (en) | Manufacturing method for linear ICP plasma source and an antenna module for RF plasma source | |
US6909086B2 (en) | Neutral particle beam processing apparatus | |
KR950000310B1 (en) | Plasma CVD Equipment | |
JPH04236781A (en) | Plasma cvd device | |
US5519213A (en) | Fast atom beam source | |
KR910002819B1 (en) | Forming method and device of amorphous thin film | |
KR910010168B1 (en) | Amorphous thin film manufacturing device | |
JPS62263236A (en) | Formation of amorphous thin film and its system | |
JP2567892B2 (en) | Plasma processing device | |
JPH0670978B2 (en) | Amorphous thin film forming equipment | |
JPH0697657B2 (en) | Amorphous thin film forming equipment | |
JPS6314876A (en) | Amorphous thin film forming device | |
JPH0760797B2 (en) | Amorphous thin film forming equipment | |
JPH04108534A (en) | Method and apparatus for gaseous phase synthesis of minute particle by creeping plasma cvd | |
JPS6333575A (en) | Electron cyclotron plasma cvd device | |
KR100239698B1 (en) | Plasma chemical vapor deposition system | |
JPS6365623A (en) | Plasma processor | |
JPS6377119A (en) | Plasma processor | |
JPS62260837A (en) | Method of forming amorphous thin film | |
RU2095307C1 (en) | High-frequency ozonator | |
KR100599144B1 (en) | Electromagnetic Resonance Device for Electromagnetic Induction Accelerator | |
WO2023191324A1 (en) | Large linear plasma source, large linear charged particle beam source using same, and grid for large linear charged particle beam source | |
JPH01100923A (en) | Ion treating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
PA0107 | Divisional application |
St.27 status event code: A-0-1-A10-A16-div-PA0107 St.27 status event code: A-0-1-A10-A18-div-PA0107 |
|
PA0201 | Request for examination |
St.27 status event code: A-1-2-D10-D11-exm-PA0201 |
|
R17-X000 | Change to representative recorded |
St.27 status event code: A-3-3-R10-R17-oth-X000 |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
St.27 status event code: A-1-2-D10-D21-exm-PE0902 |
|
T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
T11-X000 | Administrative time limit extension requested |
St.27 status event code: U-3-3-T10-T11-oth-X000 |
|
P11-X000 | Amendment of application requested |
St.27 status event code: A-2-2-P10-P11-nap-X000 |
|
P13-X000 | Application amended |
St.27 status event code: A-2-2-P10-P13-nap-X000 |
|
G160 | Decision to publish patent application | ||
PG1605 | Publication of application before grant of patent |
St.27 status event code: A-2-2-Q10-Q13-nap-PG1605 |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
St.27 status event code: A-1-2-D10-D22-exm-PE0701 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
St.27 status event code: A-2-4-F10-F11-exm-PR0701 |
|
PR1002 | Payment of registration fee |
Fee payment year number: 1 St.27 status event code: A-2-2-U10-U11-oth-PR1002 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Not in force date: 19941218 Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE St.27 status event code: A-4-4-U10-U13-oth-PC1903 |
|
PC1903 | Unpaid annual fee |
Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE Not in force date: 19941218 St.27 status event code: N-4-6-H10-H13-oth-PC1903 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |
|
R18-X000 | Changes to party contact information recorded |
St.27 status event code: A-5-5-R10-R18-oth-X000 |
|
P22-X000 | Classification modified |
St.27 status event code: A-4-4-P10-P22-nap-X000 |