[go: up one dir, main page]

KR910006418B1 - Recycling of Alumina Supported Nickel Spent Catalyst - Google Patents

Recycling of Alumina Supported Nickel Spent Catalyst Download PDF

Info

Publication number
KR910006418B1
KR910006418B1 KR1019890011618A KR890011618A KR910006418B1 KR 910006418 B1 KR910006418 B1 KR 910006418B1 KR 1019890011618 A KR1019890011618 A KR 1019890011618A KR 890011618 A KR890011618 A KR 890011618A KR 910006418 B1 KR910006418 B1 KR 910006418B1
Authority
KR
South Korea
Prior art keywords
nickel
catalyst
alumina
spent catalyst
acid
Prior art date
Application number
KR1019890011618A
Other languages
Korean (ko)
Other versions
KR910004249A (en
Inventor
박태진
임태훈
하흥용
허창기
Original Assignee
한국과학기술연구원
박원희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원, 박원희 filed Critical 한국과학기술연구원
Priority to KR1019890011618A priority Critical patent/KR910006418B1/en
Publication of KR910004249A publication Critical patent/KR910004249A/en
Application granted granted Critical
Publication of KR910006418B1 publication Critical patent/KR910006418B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

내용없음.None.

Description

알루미나 담지 니켈 폐촉매의 재생방법Recycling of Alumina Supported Nickel Spent Catalyst

제1도는 본 발명의 재생공정도.1 is a regeneration process diagram of the present invention.

제2도는 본 발명에 의한 재생촉매와 세촉매의 내구성 시험도.2 is a durability test of the regeneration catalyst and the fine catalyst according to the present invention.

본 발명은 벤젠의 수소화에 의한 사이클로헥산 제조반응이나 일산화탄소의 메탄화 반응등에 사용되었던 알루미나에 담지된 니켈 폐촉매를 원래의 펠렛 형태 및 물리적 성질을 그대로 유지한 채 떨어진 반응활성을 재생하는 방법에 관한 것이다.The present invention relates to a method for regenerating the reaction activity of a nickel waste catalyst supported on alumina used in cyclohexane production by hydrogenation of benzene or methanation of carbon monoxide while maintaining the original pellet form and physical properties. will be.

알루미나에 담지된 니켈 촉매는 석유화학 산업에 있어 위의 두 공정 이외에도 각종 수소화 공정에 널리 사용되고 있다. 이러한 니켈 촉매는 반응물중에 잔류하는 황화합물 등에 의한 피독현상이나 탄소가 침착하는 코킹(coking)현상으로 인하여 반응활성을 점차로 잃어 일정기간이 지나게 되면 세촉매로 대체해야 한다.Nickel catalyst supported on alumina is widely used in various hydrogenation processes in addition to the above two processes in the petrochemical industry. The nickel catalyst gradually loses its reaction activity due to poisoning caused by sulfur compounds remaining in the reactants, or coking phenomenon in which carbon is deposited, and must be replaced with a tricatalyst after a certain period of time.

황은 니켈에 비가역적으로 흡착되어 촉매의 반응활성을 감소시키는데 일단 황에 의해 피독된 니켈 촉매는 일반적인 촉매 재생 방법으로 알려진 산소나 수소를 이용한 고온 열처리 방법으로는 재생이 되지 않는다(과학기술처 보고서 2N 368-3166-6 벤젠수소화 및 메탄화용 니켈 촉매의 개발, 1988). 황으로 피독된 알루미나에 담지된 니켈 촉매를 재생하는 방법으로 위의 산소 열처리 방법을 응용한 수 ppm정도의 산소를 함유한 질소 분위기 하에서 300-500℃에서 열처리 하는 방법이 소개되어 있으나 (미국특허 4,260,518) 불완전한 황의 제거 때문에 반응활성이 원래의 수준으로 재생되지는 않는다고 알려져 있다.(과학기술처 보고서 368-3166-6 벤젠수소화 및 메탄화용 니켈 촉매의 개발. 1988). 따라서 지금까지는 니켈 피촉매를 직접 재생하기 보다는 폐촉매를 산등으로 녹인 후에 니켈을 침전시켜 회수하여 재사용하는 방법이 실리카 담지 니켈 촉매의 경우에 주로 사용되어 왔다.(일본 특허등록번호 175,781)Sulfur is irreversibly adsorbed to nickel to reduce the catalytic activity. Once poisoned by sulfur, nickel catalysts are not regenerated by high temperature heat treatment using oxygen or hydrogen, which is known as a general catalyst regeneration method (Ministry of Science and Technology Report 2N 368). -3166-6 Development of nickel catalysts for benzene hydrogenation and methanation, 1988). As a method of regenerating the nickel catalyst supported on alumina poisoned with sulfur, a method of heat treatment at 300-500 ° C. under a nitrogen atmosphere containing several ppm of oxygen, which is applied to the above oxygen heat treatment method, has been introduced (US Pat. No. 4,260,518). It is known that the reaction activity is not restored to the original level due to incomplete removal of sulfur (Ministry of Science and Technology Report 368-3166-6 Development of nickel catalysts for benzene hydrogenation and methanation. 1988). Until now, rather than directly regenerating the nickel catalyst, the method of precipitating, recovering and reusing nickel after dissolving the spent catalyst with acid or the like has been mainly used for silica-supported nickel catalysts (Japanese Patent Registration No. 175,781).

본 발명은 벤젠수소화 공정에 사용된 폐촉매의 물리적 성질 및 펠렛 형태를 그대로 유지한 채 피독된 니켈성분을 산으로 추출해내고 추출된 양만큼의 니켈을 재담지 시키거나 약간을 더 추가 담지하여 원래의 반응활성을 회복시키는 방법이다.The present invention extracts the poisoned nickel component with an acid while maintaining the physical properties and pellets of the spent catalyst used in the benzene hydrogenation process and re-supports the amount of nickel extracted or adds a little more. It is a method of restoring reaction activity.

알루미나에 담지된 니켈 폐촉매는 산추출시에 니켈 뿐만 아니라 담체인 알루미나도 함께 녹아나와 촉매의 형태 및 강도 등을 그대로 유지하기가 어렵지만 본 발명에서는 니켈만을 좀더 선택적으로 추출하는 방법을 찾아 내어 본 발명을 완성했다.Nickel spent catalyst supported on alumina melts not only nickel but also alumina as a carrier during acid extraction, and thus it is difficult to maintain the form and strength of the catalyst as it is, but in the present invention, a method of selectively extracting only nickel is found. Completed.

수소화 공정에 사용되었던 알루미나에 담지된 니켈 폐촉매를 아무런 전처리 과정을 거치지 않은 상태 그대로 또는 산추출시에 니켈이 알루미나에 비해 훨씬 더 선택적으로 추출되도록 하기 위하여 300-500℃의 온도범위에서 수소를 60cc/min속도로 흘리면서 2-10시간 정도 환원시킨 폐촉매를 산용액에 담가 교반하면서 니켈을 추출한다. 니켈 추출용매로 사용되는 산용액은 질산, 염산, 황산 , 불산등의 무기산이 다 사용될 수 있으나 이중에서 질산이 가장 좋은 결과를 나타낸다.In order to allow nickel to be extracted much more selectively than alumina in the pre-treatment process or during acid extraction, the nickel waste catalyst supported on the alumina used in the hydrogenation process was subjected to 60cc of hydrogen at a temperature range of 300-500 ° C. The spent catalyst was reduced in 2-10 hours while flowing at the rate of / min, and the nickel was extracted while stirring in an acid solution. As the acid solution used as the nickel extractant, inorganic acids such as nitric acid, hydrochloric acid, sulfuric acid, and hydrofluoric acid may be used, but nitric acid has the best result.

추출시 산용액의 농도는 0.2-3.0M, 온도는 60-120℃, 추출시간은 1/4-2시간으로 하는 것이 유리한데, 그 이유는 상기한 범위를 벗어나게 되면 알루미나가 너무 많이 용해되어 촉매의 원래 형태가 유지되지 않거나 피독된 니켈이 촉매 중에 그대로 남아 있어 재담지 후에도 반응활성이 되살아 나지 않는 현상을 나타내기 때문이다. 니켈의 추출이 끝나면 추출용액을 여과기를 사용하여 걸러내고 건조로에서 100-120℃로 2시간 건조시킨 후에 환원장치에 넣어 300-500℃의 범위에서 수소를 60cc/min의 속도로 흘리면서 2-10시간의 환원과정을 거친다. 환원이 끝나면 재담지 시키려는 니켈의 양에 따라 함침용액인 질산니켈의 농도를 조절하여 1회 또는 2회에 걸쳐 니켈을 추가로 담지시킨다. 다시 이 촉매를 환원시키는데 환원과정시에 니켈입자의 소결현상을 막기 위하여 수소를 흘리면서 250℃에서 3시간, 온도를 400-500℃의 범위로 올려 2-4시간 환원시킨다. 마지막으로 0.01-0.6%의 산소를 함유한 질소로 상온에서 표면 안정화를 시켜 장기보관이 가능하도록 함으로써 재생과정이 끝나게 된다.When the acid solution concentration is 0.2-3.0M, temperature 60-120 ℃, extraction time is advantageously 1/4 to 2 hours, because the alumina is too much dissolved when the catalyst is out of the above range This is because the original form of is not retained or the poisoned nickel remains in the catalyst and thus exhibits a phenomenon in which the reaction activity is not revived even after reloading. After the extraction of nickel, the extraction solution is filtered using a filter, dried for 2 hours at 100-120 ° C in a drying furnace, and then placed in a reducing device, flowing hydrogen at a rate of 60 cc / min in the range of 300-500 ° C for 2-10 hours. Reduction process After the reduction, the concentration of nickel nitrate, which is impregnated solution, is adjusted according to the amount of nickel to be re-supported to further support nickel one or two times. In order to prevent the sintering of the nickel particles during the reduction process, the catalyst is reduced again and reduced to 2-4 hours at 250 ° C. for 3 hours and temperature in the range of 400-500 ° C. while flowing hydrogen. Finally, the regeneration process is completed by allowing the long term storage by surface stabilization at room temperature with nitrogen containing 0.01-0.6% oxygen.

[실시예 1]Example 1

상용 벤젠수소화 공정에 사용되며 반응활성이 세촉매에 비하여 10% 이하인 폐촉매 25g을 (UOP 제품H-4, 23% Ni/Al2O3)아무런 전처리 과정을 거치지 않고 0.5M 질산용액 1,000cc에 넣고 90℃에서 30분간 니켈을 추출한다. 이때에 니켈은 총 니켈함량에 대해 13%, 알루미나는 총 알루미나양에 대해 3.9% 추출된다. 추출된 촉매를 여과기로 걸러낸 후에 뜨거운 증류수 1500cc로 세척한다. 이 촉매를 여과지 위에 놓고 굴려서 표면의 물기를 제거한 후 450℃에서 60cc/min의 속도로 수소를 흘리면서 2시간 동안 환원시킨다.Used in commercial benzene hydrogenation process, 25g of waste catalyst with less than 10% reaction activity compared to three catalysts (U-4 H-4, 23% Ni / Al 2 O 3 ) was added to 1,000cc of 0.5M nitric acid solution without any pretreatment. Insert and extract nickel at 90 ° C for 30 minutes. At this time, nickel is extracted 13% with respect to the total nickel content, alumina is extracted 3.9% with respect to the total amount of alumina. The extracted catalyst was filtered through a filter and then washed with 1500 cc of hot distilled water. The catalyst was placed on a filter paper, rolled to remove water from the surface, and then reduced for 2 hours while flowing hydrogen at 450 ° C. at a rate of 60 cc / min.

환원이 끝나면 0.94M 질산니켈용액에 함침시켜 니켈을 재담지시킨다. 20분 동안의 함침이 끝나면 촉매를 꺼내어 여과지 위에 놓고 굴려서 표면에 묻어 있는 함침용액을 제거한 후에 100℃에서 3시간 동안 건조시킨다.After the reduction, the nickel is resupported by impregnation with 0.94 M nickel nitrate solution. After 20 minutes of impregnation, the catalyst is removed, placed on a filter paper, rolled to remove the impregnation solution on the surface, and then dried at 100 ° C. for 3 hours.

다시 온도를 올려 수소를 60cc/min 속도로 흘리면서 250℃에 3시간, 450℃에서 2시간동안 환원시킨 다음, 상온에서 0.05%의 산소를 함유한 질소로 표면 안정화를 시킨다.After raising the temperature again, hydrogen was reduced at a rate of 60 cc / min, reduced to 250 ° C. for 3 hours and 450 ° C. for 2 hours, and then surface stabilized with nitrogen containing 0.05% oxygen at room temperature.

이 재생 촉매중 0.3g을 취하여 연속화분식 반응기에 넣고, 20기압, 190℃에서 벤젠 수소화 반응을 진행시켰을 때 재생촉매의 반응활성은 세촉매의 103%수준으로 회복되고 표면적과 파괴강도 등의 물리적 성질은 표1에 나타난 바와 같이 큰 변화가 없었다.When 0.3 g of the regenerated catalyst was taken into a continuous reactor, the reaction activity of the regenerated catalyst was recovered to 103% of the three catalysts at 20 atm and 190 ° C, and the physical properties such as surface area and breaking strength were obtained. There was no significant change as shown in Table 1.

[실시예 2]Example 2

실시예 1에 사용된 것과 같은 폐촉매를 질산 추출전에 450℃에서 3시간 동안 60cc/min의 속도로 수소를 흘리면서 환원을 시켰다. 이 경우 질산 추출시에 니켈은 총니켈함량에 대하여 63%, 알루미나는 총알루미나양에 대해 3.4% 녹아나와 실시예 1에 비해 니켈만 선택적으로 더 많이 추출된다. 질산니켈 용액의 농도를 3.2M로 하여 니켈을 추가 담지하고 실시예 1과 같은 조건에서 재생촉매의 반응활성을 측정하였을 때 세촉매 반응활성의 110%를 나타내고, 기타 물리적 성질은 표1에 나타낸 바와 같았다.The waste catalyst as used in Example 1 was reduced while flowing hydrogen at a rate of 60 cc / min at 450 ° C. for 3 hours before nitric acid extraction. In this case, when nitric acid is extracted, 63% of nickel is dissolved in the total nickel content and 3.4% is dissolved in the total amount of alumina, and only nickel is selectively extracted more than in Example 1. When nickel nitrate was added at a concentration of 3.2 M, nickel was additionally supported, and the reaction activity of the regeneration catalyst was measured under the same conditions as in Example 1, indicating 110% of the tricatalyst reaction activity, and other physical properties are shown in Table 1. It was like

[실시예 3]Example 3

실시예 2에서 사용한 같은 폐촉매를 실시예 2와 같은 방법으로 재생한다. 단 이 경우 질산니켈 용액의 농도를 2.5M로 낮추어 2회에 걸쳐 함침한다. 벤젠수소화 실험을 한 결과 재생촉매는 세촉매의 114%에 해당하는 반응활성을 나타내었고, 기타 물리적 성질은 표1에 나타낸 바와 같았다.The same spent catalyst used in Example 2 was regenerated in the same manner as in Example 2. In this case, however, the concentration of the nickel nitrate solution was reduced to 2.5M and impregnated twice. As a result of the benzene hydrogenation experiment, the regeneration catalyst showed the reaction activity corresponding to 114% of the three catalysts, and the other physical properties were shown in Table 1.

[실시예 4]Example 4

실시예 1과 같은 방법으로 재생하였다. 단, 이 경우 질산의 농도를 1M로 하여 120℃에서 15분 동안 니켈을 추출하였다. 이 재생촉매는 벤젠수소화 반응에 있어 세촉매와 비교하여 102%의 반응활성을 나타내었고, 기타 물리적 성질은 표1에 나타낸 바와 같았다.Regeneration was carried out in the same manner as in Example 1. In this case, however, nickel was extracted at 120 ° C. for 15 minutes with the concentration of nitric acid being 1M. This regeneration catalyst showed a reaction activity of 102% in the benzene hydrogenation reaction compared to the three catalysts, and other physical properties were shown in Table 1.

[실시예 5]Example 5

0.5M 질산 대신 0.5M 황산을 사용하여 실시예 1과 같은 방법으로 폐촉매를 재생하였다. 이 재생촉매는 벤젠수소화 반응에 있어 세촉매와 비교하여 86%의 반응활성을 나타내었고, 기타 물리적 성질은 표1에 나타낸 바와 같았다.The waste catalyst was regenerated in the same manner as in Example 1 using 0.5 M sulfuric acid instead of 0.5 M nitric acid. This regeneration catalyst showed 86% reaction activity in the benzene hydrogenation reaction compared to the three catalysts, and the other physical properties were shown in Table 1.

[실시예 6]Example 6

0.5M 질산 대신 0.5M 염산을 사용하여 실시예 1과 같은 방법으로 폐촉매를 재생하였다. 이 재생촉매는 벤젠수소화 반응에 있어 세촉매와 비교하여 93%의 반응활성을 나타내었다. 기타 물기적 성질은 표1에 나타낸 바와 같았다.The waste catalyst was regenerated in the same manner as in Example 1 using 0.5 M hydrochloric acid instead of 0.5 M nitric acid. This regeneration catalyst showed 93% reaction activity in the benzene hydrogenation reaction compared to the three catalysts. Other physical properties were as shown in Table 1.

[실시예 7]Example 7

0.5M 질산 대신 0.5M 불산을 사용하여 실시예 1과 같은 방법으로 폐촉매를 재생하였다. 이 재생촉매는 벤젠 수소화 반응에 있어 세촉매와 비교하여 81%의 반응활성을 나타내었다. 기타 물리적 성질은 표1에 나타낸 바와 같았다.The waste catalyst was regenerated in the same manner as in Example 1 using 0.5M hydrofluoric acid instead of 0.5M nitric acid. This regeneration catalyst showed 81% reaction activity in the benzene hydrogenation reaction compared to the three catalysts. Other physical properties were as shown in Table 1.

[표 1]TABLE 1

실시예 1-7에 따른 재생촉매의 특성Characteristics of Regeneration Catalyst According to Example 1-7

Figure kpo00001
Figure kpo00001

벤젠수소화 반응조건 : 20기압, 190℃Benzene hydrogenation reaction conditions: 20 atmospheres, 190 ℃

수소/벤젠=15, 수소유속 :1ℓ/minHydrogen / benzene = 15, hydrogen flow rate: 1ℓ / min

[실시예 8]Example 8

세상용 촉매를(fresh H-4, UOP제품) 티오펜으로 일부러 피독시켜 반응활성을 완전히 제거한 다음 실시예 1과 같은 방법으로 촉매를 재생하였다. 단 이때는 함침 용액의 농도를 0.94M로 하여 2회에 걸쳐 니켈를 추가담지 하였다. 이 재생촉매는 벤젠수소화 반응에 있어 세촉매에 비해 103%의 반응활성을 나타내었다. 기타 물리적 성질은 표2에 나타낸 바와 같았다.The catalyst for the world (fresh H-4, manufactured by UOP) was poisoned with thiophene to completely remove the reaction activity, and then the catalyst was regenerated in the same manner as in Example 1. However, at this time, the concentration of the impregnation solution was 0.94M, and additionally, nickel was further supported twice. This regeneration catalyst showed 103% reaction activity in the benzene hydrogenation reaction compared to the three catalysts. Other physical properties were as shown in Table 2.

[표 2]TABLE 2

실시예 8에 따른 재생촉매의 특성Characteristics of Regeneration Catalyst According to Example 8

Figure kpo00002
Figure kpo00002

[실시예 9]Example 9

실시예 1의 재생촉매의 내구성을 세촉매와 비교하기 위하여 벤젠 1ℓ에 티오펜(thiophene)을 0.03mole첨가하여 벤젠수소화 반응을 상압, 220℃에서 진행하면서 반응활성이 떨어지는 속도를 비교한 바, 제2도에서 알 수 있는 바와 같이 세상용 촉매와 재생촉매가 거의 같았다.In order to compare the durability of the regeneration catalyst of Example 1 with 0.03 mole of thiophene to 1 L of benzene, the rate of deactivation of the benzene hydrogenation reaction at atmospheric pressure and 220 ° C. was compared. As can be seen from the second degree, the world catalyst and the regeneration catalyst were almost the same.

Claims (3)

알루미나 담지 니켈 폐촉매 중의 일부 니켈을 산용액으로 추출한 다음 수소 존재하에 가열환원하고 이어서 니켈함유 용액에 함침시켜 니켈을 추가시킨 후 다시 수소 존재하에 가열환원시킴을 특징으로 하는 알루미나 담지 니켈 폐촉매의 재생방법.Regeneration of an alumina-supported nickel spent catalyst characterized in that it extracts some nickel in the alumina-supported nickel spent catalyst and then heat-reduces it in the presence of hydrogen, and then impregnates the nickel-containing solution to add nickel and then heat-reduces it again in the presence of hydrogen. Way. 제1항에 있어서, 산 용액으로 질산, 염산, 황산, 불산을 단독 또는 2가지 이상을 혼합 사용함이 특징인 알루미나 담지 및 니켈 폐촉매의 재생방법.The method for regenerating an alumina-supported and nickel spent catalyst according to claim 1, wherein nitric acid, hydrochloric acid, sulfuric acid, and hydrofluoric acid are used alone or in combination of two or more as an acid solution. 제1항에 있어서, 산추출시 반응온도를 60-120℃하는 것이 특징인 알루미나 담지 및 니켈 폐촉매의 재생방법.The method for regenerating alumina supported and nickel spent catalyst according to claim 1, wherein the reaction temperature is 60-120 ° C. during acid extraction.
KR1019890011618A 1989-08-16 1989-08-16 Recycling of Alumina Supported Nickel Spent Catalyst KR910006418B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890011618A KR910006418B1 (en) 1989-08-16 1989-08-16 Recycling of Alumina Supported Nickel Spent Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890011618A KR910006418B1 (en) 1989-08-16 1989-08-16 Recycling of Alumina Supported Nickel Spent Catalyst

Publications (2)

Publication Number Publication Date
KR910004249A KR910004249A (en) 1991-03-28
KR910006418B1 true KR910006418B1 (en) 1991-08-24

Family

ID=19288951

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890011618A KR910006418B1 (en) 1989-08-16 1989-08-16 Recycling of Alumina Supported Nickel Spent Catalyst

Country Status (1)

Country Link
KR (1) KR910006418B1 (en)

Also Published As

Publication number Publication date
KR910004249A (en) 1991-03-28

Similar Documents

Publication Publication Date Title
US2704281A (en) Purification of noble metal-metal oxide composite
US4008174A (en) Process for regenerating a solid copper-chromium reactant used in the removal of hydrogen sulfide from hydrogen recycle gas
JPH0443704B2 (en)
JPH06256773A (en) Method for removing mercury in hydrocarbon by passing on preliminarily sulfurized catalyst
US2273864A (en) Reactivation of hydrogenating catalysts
KR101890044B1 (en) Regeneration catalyst for hydrotreating heavy oil or residue and preparation method thereof
US2734874A (en) Preparation of catalysts of vanadium
US4101451A (en) Enhancement of promoted copper catalyst
US2951034A (en) Desulfurization of hydrocarbons with a mixture of a group viii metal and group viii metal oxide or sulfide
US4343774A (en) Method for recovering valuable metals from deactivated catalysts
US4442221A (en) Process for regenerating a spent copper composite sulfur sorbent
NO143521B (en) R PROCEDURE FOR THE REGENERATION OF DEACTIVATED CATALYSTS
KR910006418B1 (en) Recycling of Alumina Supported Nickel Spent Catalyst
JP3486756B2 (en) Method for removing arsenic in hydrocarbons by passing over presulfurized capture material
JP2911961B2 (en) High concentration alcohol purification method and adsorbent for purification
US5674796A (en) Processes of regenerating Ni catalysts and of preparing Ni catalysts
US4409124A (en) Process for regenerating sulfur sorbent by oxidation and leaching
CA2432205C (en) Regeneration method of heterogeneous catalysts and adsorbents
US2806004A (en) Treatment of platinum-containing catalyst
CA1210746A (en) Recovering metal compounds from used catalysts obtained from hydroprocessing hydrocarbon feedstocks
CA1116582A (en) Process for extracting vanadium from deactivated catalysts
US3211642A (en) Hydrocracking and rejuvenation of hydrocracking catalyst
JPS6111278B2 (en)
US1980829A (en) Purification and regeneration of platinum catalysts
US3135699A (en) Process for regenerating a hydrogenation catalyst

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19890816

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19890816

Comment text: Request for Examination of Application

PG1501 Laying open of application
G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

Comment text: Decision on Publication of Application

Patent event code: PG16051S01I

Patent event date: 19910727

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19911112

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19911206

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19911206

End annual number: 3

Start annual number: 1

PR1001 Payment of annual fee

Payment date: 19940305

Start annual number: 4

End annual number: 5

PR1001 Payment of annual fee

Payment date: 19960627

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 19970619

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 19970619

Start annual number: 7

End annual number: 7

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee