[go: up one dir, main page]

KR910001350B1 - Ceramic vessel and method for producing thereof - Google Patents

Ceramic vessel and method for producing thereof Download PDF

Info

Publication number
KR910001350B1
KR910001350B1 KR1019880003756A KR880003756A KR910001350B1 KR 910001350 B1 KR910001350 B1 KR 910001350B1 KR 1019880003756 A KR1019880003756 A KR 1019880003756A KR 880003756 A KR880003756 A KR 880003756A KR 910001350 B1 KR910001350 B1 KR 910001350B1
Authority
KR
South Korea
Prior art keywords
ceramic
solder material
metal
active metal
ceramic container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
KR1019880003756A
Other languages
Korean (ko)
Other versions
KR880012502A (en
Inventor
마사꼬 나까하시
마꼬또 시라까네
히로미쯔 따께다
따쯔오 야마자끼
쯔또무 오꾸또미
니와쇼찌
미끼오 오까와
미쯔다까 홈마
Original Assignee
가부시끼가이샤 도시바
아오이 죠이찌
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바, 아오이 죠이찌 filed Critical 가부시끼가이샤 도시바
Publication of KR880012502A publication Critical patent/KR880012502A/en
Priority to KR1019900021744A priority Critical patent/KR910001351B1/en
Application granted granted Critical
Publication of KR910001350B1 publication Critical patent/KR910001350B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • C04B2237/406Iron, e.g. steel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/80Joining the largest surface of one substrate with a smaller surface of the other substrate, e.g. butt joining or forming a T-joint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66215Details relating to the soldering or brazing of vacuum switch housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66261Specific screen details, e.g. mounting, materials, multiple screens or specific electrical field considerations
    • H01H2033/66276Details relating to the mounting of screens in vacuum switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49146Assembling to base an electrical component, e.g., capacitor, etc. with encapsulating, e.g., potting, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Abstract

내용 없음.No content.

Description

기밀성 세라믹 용기 및 그 제조방법Airtight ceramic container and manufacturing method thereof

제1(a)도-1(b)도는 종래의 기밀성 세라믹 용기의 제조방법을 설명하기 위한 도면.1 (a) -1-1 (b) are diagrams for explaining a conventional method for manufacturing an airtight ceramic container.

제2도 및 3도는 종래의 진공밸브의 단면도.2 and 3 are cross-sectional views of a conventional vacuum valve.

제4(a)도, 제4(b)도 및 제5(a)도 내지 제5(c)도는 본 발명에서 적합하게 사용할 수 있는 솔더재 박판을 나타내는 도면.4 (a), 4 (b) and 5 (a) to 5 (c) are views showing a solder material thin plate which can be suitably used in the present invention.

제6도는 제5(c)도의 솔더재 박판의 사용법을 나타내는 도면.6 is a view showing how to use the solder thin plate of FIG.

제7도 및 제8도는 본 발명의 한 실시예에 따라 얻은 진공밸브의 일례를 나타내는 단면도.7 and 8 are cross-sectional views showing an example of a vacuum valve obtained in accordance with an embodiment of the present invention.

제9도 내지 제11도는 본 발명의 기타 실시예를 통해서 얻은 진공밸브의 요부를 나타내는 단면도이다.9 to 11 are cross-sectional views showing main parts of vacuum valves obtained through other embodiments of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 세라믹 원통체 1',16 : 凸부1: Ceramic Cylindrical Body 1 ', 16: Part

2, 2a, 2b : 덮개 3a, 3b : 접점2, 2a, 2b: cover 3a, 3b: contact

4a : 고정단자 4b : 가동단자4a: fixed terminal 4b: movable terminal

5a : 고정도 전축 5b : 가동도 전축5a: high accuracy all axis 5b: movable degree all axes

6 : 아크실드 6' : 凹부6: arc shield 6 ':

7 : 벨로우(bellow) 11.14 : 은 솔더재7 bellow 11.14 silver solder material

13 : 스페이서 15 : 응력 완화부재13 spacer 15 stress relief member

31, 33 : 솔더재층 32 : 배리어층31, 33: solder material layer 32: barrier layer

본 발명은 기밀성(氣密性) 세라믹 용기(air-tight ceramic container), 그 제조방법 및 이 기밀성 세라믹 용기를 이용한 진공밸브의 제조방법에 관한 것이다.The present invention relates to an air-tight ceramic container, a method of manufacturing the same, and a method of manufacturing a vacuum valve using the airtight ceramic container.

세라믹은 뛰어난 내열성을 지닌 절연재이므로, 그 특성을 살려서 다양한 전기부품재료로 이용할 수 있다.Since ceramic is an insulating material having excellent heat resistance, it can be used as a variety of electrical component materials utilizing its characteristics.

진공밸브 등의 전기부품에 이용되는 기밀성 용기도 그 일례에 속한다.The airtight container used for electrical components, such as a vacuum valve, also belongs to the example.

이와 같은 기밀성 용기의 경우, 내부를 진공상태로 유지하거나 불활성 가스로 채운 상태로 사용한다. 따라서 이와 같은 내부 분위기를 유지하기 위하여 엄격할 기밀성을 유지해야 한다.In the case of such an airtight container, the inside is kept in a vacuum or filled with an inert gas. Therefore, in order to maintain such an internal atmosphere, strict confidentiality must be maintained.

종래의 기밀성 세라믹 용기는, 제1(a)도에 표시한 것처럼 세라믹 원통체(1)의 개구단부를 금속제의 덮개(2)로 봉착한 구조를 지니고 있다.The conventional hermetic ceramic container has a structure in which the open end of the ceramic cylindrical body 1 is sealed with a metal cover 2 as shown in FIG. 1 (a).

이와 같은 기밀성 세라믹 용기의 제조에 있어서는 세라믹 원통체(1)의 개구단면에 메탈라이징(metalizing)처리를 한 후 금속제 덮개를 브레이징(brazing)에 의해 접합하는 방법이 종래부터 이용되어왔다.In the manufacture of such an airtight ceramic container, a method has been conventionally used in which a metal lid is bonded by brazing after a metalizing treatment is performed on the open end face of the ceramic cylindrical body 1.

이러한 경우, 세라믹 원통체(l)와 금속제 덮개(2)는 열팽창계수가 다르므로, 그 접합부에 브리이징시의 가열로 열응력(thermal stress)이 발생한다.In this case, the ceramic cylindrical body 1 and the metal cover 2 have different thermal expansion coefficients, so that thermal stress is generated by heating at the joining portion thereof.

이 열응력이 크면, 세라믹 원통체(1)에 균열이 생겨서 충분한 기밀성을 얻을 수 없게 된다. 그래서 이 열응력을 낮추고 균열의 발생을 방지하기 위해, 다음과 같은 연구를 실시했다If this thermal stress is large, a crack will arise in the ceramic cylinder 1, and sufficient airtightness will not be obtained. Therefore, in order to lower the thermal stress and prevent the occurrence of cracks, the following study was conducted.

첫째로, 금속제 덮개로써 Mo,W 등의 열팽창계수가 작은 금속이나 인바아(inver), 코바아(kovar) 등의 열팽창계수가 작은 합금을 이용하는 것이다.First, as a metal cover, a metal having a small coefficient of thermal expansion such as Mo or W, or an alloy having a small coefficient of thermal expansion such as inver or kovar is used.

둘째로, 제1(a)도에 표시한 것처럼 금속제 덮개(2)의 단부를 구부러뜨리고 그 단면을 세라믹 원통체(1)의 단면에 접합(단면접합(endface-bonding))시킴으로써, 양자의 접합면적을 작게하는 것이다.Secondly, as shown in Fig. 1 (a), the ends of the metal cover 2 are bent and the end faces are bonded (endface-bonding) to the end faces of the ceramic cylindrical body 1, thereby joining them together. It is to reduce the area.

접합부에 발생하는 열응력의 크기는 양자의 접합면적에 비례하므로, 이 단면접합은 열응력을 낮추는데 기여한다.Since the magnitude of the thermal stress generated at the joint is proportional to the joint area of the two joints, this cross-sectional joint contributes to lowering the thermal stress.

이와 같은 단면접합에 있어서, 충분한 접합강도 및 기밀성을 얻기 위해서는, 제1(b)도에 표시한 것처럼 솔더층(solder layer) (8)이 덮개(2)의 단부에서 세라믹 원통체 단면을 향해서 확장되는 접합구조를 가질 필요가 있다.In such cross-sectional joining, in order to obtain sufficient bonding strength and airtightness, as shown in FIG. 1 (b), a solder layer 8 extends from the end of the lid 2 toward the ceramic cylindrical cross section. It is necessary to have a junction structure.

이어서, 상기 기밀성 세라믹 용기의 제조에 이용되고 있는 메탈라이징법에 대하여 설명한다. 종래에 실시되고 있는 메탈라이징법은 다음과 같다.Next, the metallizing method used for manufacture of the said airtight ceramic container is demonstrated. The metallizing method conventionally implemented is as follows.

① 세라믹 모재 표면에 Mo 또는 W를 주성분으로 하는 분말을 도포하고, 환원분위기에서 예를들면 1400-1700℃로 가열하여 세라믹 모재와 반응시켜서 메탈라이징하는 방법.① Method of metallizing by coating Mo- or W-based powder on the surface of ceramic base material and heating it to 1400-1700 ℃ in reducing atmosphere, for example.

필요에 따라 메탈라이징층 상에 Ni 등의 도금 처리를 한다. 이 방법에서는 메탈라이징을 위하여 매우 높은 고온에서의 처리를 필요로 하는 등의 번거로운 공정에 문제가 있다.If necessary, a plating treatment such as Ni is performed on the metallizing layer. This method is problematic for cumbersome processes such as requiring treatment at very high temperatures for metallization.

② 세라믹 모재 표면에 Au 또는 Pt를 배치하고 여기에 압력을 가하면서 가열하여 메탈라이징 하는 방법.② Method of metalizing by placing Au or Pt on the surface of ceramic base material and heating it under pressure.

이 방법에서는 고가의 귀금속을 사용하므로 접합부 면적이 큰 진공밸브에서는, 경제성의 문제가 발생한다. 더우기 기밀성을 높이기 위해 높은 압력을 필요로하므로 변형이 어려운 전자부품의 적용은 바람직하지 않다.In this method, expensive precious metals are used, so a problem arises in economics in a vacuum valve having a large junction area. Furthermore, application of electronic components that are difficult to deform is undesirable because high pressure is required to increase airtightness.

③ 세라믹 모재상에 Ti, Zr 등의 활성금속과 Ni, Cu 등의 천이금속을 이용하여 이들 합금의 융점보다 높은 온도로 열처리하여 메탈라이징하는 방법이다(일본 특개소 58-163093호).(3) A method of metallizing by heat treatment at a temperature higher than the melting point of these alloys using active metals such as Ti and Zr and transition metals such as Ni and Cu on a ceramic base material (Japanese Patent Laid-Open No. 58-163093).

이 방법은 활성금속으로서의 Ti, Zr을 이용하여 이 활성금속과 Cu, Ni 등의 천이금속과의 합금을 형성하면, 그 공정조성(eutectic composition)에 있어서 합금은 어떤 개체의 융점보다도 섭씨 수백도 정도 낮은 융점을 나타내는 것을 이용한 것이다. 이 방법에서는 활성금속이 세라믹 모재를 웨트(wet)시키므로, 가압을 거의 필요로 하지 않고 메탈라이징할 수 있다.This method uses Ti and Zr as active metals to form alloys of these active metals with transition metals such as Cu and Ni. In the eutectic composition, the alloys are several hundred degrees Celsius above the melting point of any individual. The lower melting point is used. In this method, since the active metal wets the ceramic base material, it can be metallized with little pressurization.

또한 활성금속의 효과에 의해 세라믹 모재에 대하여 강력한 밀착력으로 메탈라이징할 수 있는 이점이 있다.In addition, there is an advantage that can be metallized with a strong adhesion to the ceramic base material by the effect of the active metal.

①∼③ 중에서 어떤 메탈라이징법을 이용하더라도 상기 방법으로 기밀성 세라믹 용기를 제조하기 위해서는, 세라믹 원통체의 단면에 메탈라이징을 실시한뒤 덮개를 솔더링 해야 한다.In order to manufacture a gas-tight ceramic container by any of the above metallization methods from 1 to 3, the cover must be soldered after metallizing the cross section of the ceramic cylinder.

즉, 메탈라이징 공정과 용기의 기밀성을 확보하기 위하여 덮개의 솔더링을 별도로 실시해야되고, 공정이 복잡해지는 결점이 있다. 그래서, 상기와 같은 메탈라이징을 실시하지 않고 금속제 덮개를 세라믹 원통체의 개구단면에 솔더링함으로써 기밀성 세라믹 용기를 제조하는 방법을 연구하기에 이르렀다. 한편, 메탈라이징을 실시하지 않고 세라믹부재와 금속부재를 접합하는 방법으로 다음과 같은 일단계 접합법을 발명하였다(일본 특개소 59-32628호).That is, in order to secure the airtightness of the metallizing process and the container, the soldering of the cover must be performed separately, and the process is complicated. Thus, a method of manufacturing an airtight ceramic container by soldering a metal cover to an opening end surface of a ceramic cylinder without performing the above metallizing has been studied. On the other hand, the following one-step joining method was invented by joining a ceramic member and a metal member without performing metallization (Japanese Patent Laid-Open No. 59-32628).

즉 활성금속으로서 Ti 및/또는 Zr을 포함하는 저융점의 솔더재(solder material) (특히 Ag 솔더재)를 이용한 접합방법, 또는 활성금속박판과 Ag 솔더(Ag-solder)를 적층하고, 이것을 세라믹부재와 금속부재와의 사이에 삽입하여 가열하는 접합방법이다.That is, a bonding method using a low melting point solder material (particularly Ag solder material) containing Ti and / or Zr as the active metal, or laminating an active metal sheet and Ag solder (Ag-solder) It is a joining method which inserts and heats between a member and a metal member.

이 일단계 접합법은 메탈라이징을 필요로 하지 않기 때문에 공정을 간략화할 수 있다.This one-step joining method can simplify the process since it does not require metallizing.

그러나 상기 일단계 접합법의 경우, 제1(b)도에서 설명한 바와 같은 바람직한 접합구조를 얻을 수 없다. 이때문에 세라믹부재와 금속부재의 접합면적이 충분하게 큰 경우는, 대강 만족시킬 수 있는 접합특성을 얻을 수 있으나, 접합면적이 작으면, 충분한 접합특성을 얻을 수 없다. 따라서, 상술한 기밀성 세라믹 용기의 제조에 적용시키는 것은 부적당하다.However, in the case of the one-step joining method, it is not possible to obtain a preferable joining structure as described in FIG. 1 (b). For this reason, when the bonding area of a ceramic member and a metal member is sufficiently large, the joining characteristic which can satisfy | fill substantially can be obtained, but when the joining area is small, sufficient joining characteristic cannot be obtained. Therefore, it is inappropriate to apply to the manufacture of the gas-tight ceramic container described above.

즉, 제 1(c)도와 같이 덮개(2)의 단면보다 큰 솔더재 박판(solder thinfoil) (3)을 이용해서 솔더링해도, 용융솔더재에 의한 세라믹 표면의 웨트(wet)성이 충분하지 않으므로, 제1(d)도에 표시한 것과 같이 덮개(2)의 단면 바로 밑에만 솔더재층(solder layer)이 형성된다.That is, even when soldering using a solder thinfoil 3 larger than the cross section of the lid 2 as shown in FIG. 1 (c), the wettability of the ceramic surface by the molten solder material is not sufficient. As shown in FIG. 1 (d), a solder layer is formed only directly under the cross section of the lid 2.

그결과, 접합부에 간격이 생기기 쉽고 미세한 외부 압력에도 덮개(2)가 박리되는 문제를 야기시킨다.As a result, gaps tend to occur at the joints and cause a problem that the lid 2 is peeled off even at a minute external pressure.

상기의 기밀성 세라믹 용기를 이용한 종래의 진공밸브에 대하여 설명한다.A conventional vacuum valve using the above airtight ceramic container will be described.

진공밸브 구조의 일례를 제2도에 표시한다. 제2도에서 "1"은 세라믹 원통체이다. 이 원통체의 양개구단에는 Ag 솔더재(8a), (8b)를 통해서 금속제 덮개(2a), (2b)가 기밀로 접합되고, 내부가 진공으로 유지된 진공 용기를 구성하고 있다.An example of the vacuum valve structure is shown in FIG. In FIG. 2, "1" is a ceramic cylinder. Both lids of the cylindrical body are hermetically bonded to the metal lids 2a and 2b through Ag solder materials 8a and 8b to form a vacuum container in which the inside is kept in vacuum.

이 진공 용기안에는 고정도전축(fixed conductor rod) (5a) 및 가동 도전축(Movable conduct rod) (5b)이 서로 대칭되며 덮개(2a), (2b)를 관통하여 설치되어 있다.In this vacuum vessel, a fixed conductor rod 5a and a movable conduct rod 5b are symmetrical with each other and are installed through the covers 2a and 2b.

제2도에서 표시된 것처럼 고정도전축(5a)은 덮개(2a)에 고정되고, 가동도전축(5b)은 축방향으로 가동되어 있다. 고정도전축 및 가동도전축(5a), (5b)이 대향하는 단부에는 한쌍의 접점(3a), (3b)가 배치되어 있다. 접점(3a)은 고정접점, 접점(3b)은 가동접점이다.As shown in FIG. 2, the high-conduction shaft 5a is fixed to the lid 2a, and the movable conductive shaft 5b is movable in the axial direction. A pair of contacts 3a and 3b are disposed at the end portions of the high-precision shaft and the movable conductive shafts 5a and 5b that face each other. The contact 3a is a fixed contact, and the contact 3b is a movable contact.

접점(3b)은 도전축(5b)에 직접 솔더링되거나 또는 도시하지 않은 전극을 통해서 도전축(5b)에 솔더링 되어 있다.The contact 3b is directly soldered to the conductive shaft 5b or soldered to the conductive shaft 5b through an electrode (not shown).

또한 고정도전축(5a)의 끝부분은 고정단자(4a), 가동도전축(5b)의 다른 끝부분은 가동단자(4b)를 이룬다. 따라서 가동도전축(5b)의 축방향 이동에 의해 접점(3a), (3b)은 개폐된다.In addition, the end of the high-precision shaft (5a) is a fixed terminal (4a), the other end of the movable conductive shaft (5b) forms a movable terminal (4b). Therefore, the contacts 3a and 3b are opened and closed by the axial movement of the movable conductive shaft 5b.

가동도전축(5b)에는 벨로우(bellows) (7)가 부착되며 이 벨로우에 의해서 용기안을 진공기밀로 유지하면서 가동도전축(5b)의 축 방향으로 이동가능하게 되어있다.Bellows 7 are attached to the movable conductive shaft 5b, and the bellows are movable in the axial direction of the movable conductive shaft 5b while keeping the inside of the container in a vacuum-tight manner.

벨로우(7)의 상부에는 금속제의 아크실드(arc-shield) (도시하지 않음)가 설치되고 벨로우(7)가 아크 증기로 덮여지는 것을 방지한다.The upper portion of the bellows 7 is provided with a metal arc-shield (not shown) and prevents the bellows 7 from being covered with arc vapor.

진공용기안에는 상기한 접점(3a), (3b)을 덮도록 하여 금속제의 아크실드(6)가 설치되고 세라믹 원통체(1)가 아크 증기로 덮히는 것을 방지하고 있다.In the vacuum vessel, the above-mentioned contacts 3a and 3b are covered to prevent the metal arc shield 6 from being provided and the ceramic cylindrical body 1 being covered with arc vapor.

이에따라, 증발한 접점재료가 세라믹 원통체(1)의 내면에 부착되어 회로를 단락하는 것을 방지한다. 그런데. 상기 진공밸브에 있어서는, 아크실드를 진공용기의 소정 위치에 고정해야 한다.As a result, the evaporated contact material is attached to the inner surface of the ceramic cylinder 1 to prevent the short circuit. By the way. In the vacuum valve, the arc shield must be fixed to a predetermined position of the vacuum container.

이로인해서 세라믹 원통체(1)에 도시한 것과 같이 凸부(1')가 형성되어 있다. 이 凸부(l')는 아크실드(6)에 설치된 凹부(6')와 물리도록 배치되며 아크실드(6)의 탈락 또는 이동을 방지한다.As a result, the convex portion 1 'is formed as shown in the ceramic cylindrical body 1. The convex part 1 'is arranged to bite with the concave part 6' provided in the arc shield 6 and prevents the arc shield 6 from falling off or moving.

세라믹 원통체(1)에는 凹부를 형성하고 아크실드(6)에는 凸부를 설치하여 양자를 물리게하는 경우도 있다. 이 고정방법은, 세라믹 원통체(1)와 아크실드(6)과의 부착에 메탈라이징을 필요로하지 않으므로 경제적인 이점을 갖고 있다.The ceramic cylindrical body 1 may have a recessed part, and the arc shield 6 may have a recessed part to bit both. This fixing method has an economical advantage because no metallizing is required for attachment of the ceramic cylindrical body 1 and the arc shield 6.

그러나, 양자간에는 불가피하게 간격이 생기므로 진공밸브가 진동을 받을때 아크실드(6)의 진동 또는 이동을 피할 수 없다. 뿐만아니라 아크실드(6)의 凹부(6')의 트러블에 의해서 소정의 부착 위치에서 탈락하고, 내전압 특성, 차단 특성의 저하를 초래하는 결점이 있다. 아크실드(6)를 세라믹 원통체 (1)에 고정하는 제2방법은 세라믹 원통체(1)의 내면에 메탈라이징을 실시한후, 아크실드(6)를 세라믹 원통체(1)의 내면에 솔더링 하는 방법이 알려져 왔다.However, there is an inevitable gap between the two, so that the vibration or movement of the arc shield 6 cannot be avoided when the vacuum valve is subjected to vibration. In addition, there is a drawback of falling off at a predetermined attachment position due to trouble of the recess 6 'of the arc shield 6, resulting in a drop in the breakdown voltage characteristic and the breaking characteristic. The second method of fixing the arc shield 6 to the ceramic cylindrical body 1 is to metallize the inner surface of the ceramic cylindrical body 1, and then solder the arc shield 6 to the inner surface of the ceramic cylindrical body 1. How has been known.

메탈라이징방법으로는 상술한 ①-③의 방법이 이용되고 있다. 이 방법에 의하면 아크실드(6)의 탈락 또는 이동 트러블을 방지할 수 있다. 그러나, 상기 ①-③ 중에서 어떤 방법을 이용하더라도, 상술한 메탈라이징을 수반한 문제가 생긴다.As the metallizing method, the above-described methods of ①-③ are used. According to this method, the falling off or moving trouble of the arc shield 6 can be prevented. However, no matter which method is used in the above ①-③, there is a problem with the above-mentioned metallizing.

즉, ①의 방법에서는 고온처리 등의 번잡한 공정을 필요로 하는 문제가 있다.That is, the method of (1) has a problem of requiring complicated processes such as high temperature treatment.

②의 방법에서는 경제적 문제뿐만 아니라. 충분한 가압을 얻기위해 기구가 솔더링 로(爐)속에서 일정한 공간을 차지하므로 생산성에도 문제가 있다.In the method of ② not only economic problems. Productivity is also a problem because the apparatus occupies a certain space in the soldering furnace to obtain sufficient pressurization.

③의 방법에서는 바람직한 접합강도를 얻기가 곤란하다.In the method of (3), it is difficult to obtain the desired bonding strength.

아크실드(6)을 세라믹 원통체(1)에 부착하는 제3의 수단으로써 는 제3도에 표시된 방법이 알려져 있다.As a third means for attaching the arc shield 6 to the ceramic cylindrical body 1, the method shown in FIG. 3 is known.

즉 제3도에서 원통체를 분할한 2개의 세라믹부재(la), (1b)를 준비하고 그 대향단면(9a), (9b)에 메탈라이징을 실시한다. 그리고 상기 단면(9a), (9b) 사이에 아크실드(6a)에 설치된 프랜지를 삽입하고 기밀 봉착한다. 이 경우에도 메탈라이징 방법으로는 상술한 ①-③의 방법이 이용된다.In other words, two ceramic members la and 1b obtained by dividing the cylindrical body in FIG. 3 are prepared, and metallization is performed on the opposite end surfaces 9a and 9b. Then, the flange provided in the arc shield 6a is inserted between the end surfaces 9a and 9b and hermetically sealed. Also in this case, as the metallizing method, the above-described methods of ①-③ are used.

이 방법 또한 메탈라이징법을 이용하므로 상기 제2의 방법과 같은 결점이 존재한다. 뿐만아니라 메탈라이즈 부분이 증가하므로 경제성면에서도 불리하고, 기밀봉착을 요하는 부분이 증가하므로 기밀성 유지에 관련된 신뢰성면에도 불리하다.This method also uses a metallizing method, and therefore has the same drawbacks as the second method. In addition, since the metallized portion is increased, it is disadvantageous in terms of economics, and the portion requiring sealing is increased, which is disadvantageous in terms of reliability related to maintaining confidentiality.

본 발명은 상기 사정을 감안한 것으로써 그 첫번째 목적은 세라믹 원통체의 개구단면에 미리 메탈라이징을 실시하지 않고, 이 개구단면에 금속제 덮개의 주변 부위를 단면접합시킴으로써 접합강도가 높은 기밀성보호 유지기능을 지닌 기밀성 세라믹 용기를 제조할 수 있다.SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its first object is not to metallize the opening end face of the ceramic cylindrical body in advance, but by providing a periphery of the peripheral portion of the metal cover to the opening end face to achieve a high airtight protection protection function. A hermetic ceramic container can be produced.

본 발명에 있어서 두번째 목적은, 상기 기밀성 세라믹 용기를 이용하여 진공밸브를 제조할때 세라믹 원통체의 내면에 미리 메탈라이징을 실시하지 않고, 그 일부 내면과 아크실드를 간편한 방법으로 직접, 충분한 강도로 접합시킬 수 있는 진공밸브의 제조방법을 제공하는 것이다.A second object of the present invention is to directly fabricate the inner surface of the ceramic cylindrical body and the arc shield in a simple manner and at a sufficient strength, without metallizing the inner surface of the ceramic cylinder when the vacuum valve is manufactured using the airtight ceramic container. It is to provide a method of manufacturing a vacuum valve that can be bonded.

본 발명에 의한 기밀성 세라믹 용기의 제조방법은 세라믹 원통체의 개구단면에 Ti 및/Zr로 구성되는 활성금속을 0.1-10㎎/㎠량 만큼을 피착하므로써 활성금속층을 형성하는 공정과 이 활성금속층 상에 금속솔더재를 올려놓는 공정과, 상기 세라믹 원통체의 개구부를 봉착하기 위한 금속제 덮개를 그 주변부 단면이금속 솔더재에 접촉되도록 배치하는 공정과, 가열에 의해 상기 금속 솔더재를 용융시키고 금속제 덮개를 세라믹 원통체의 개구단면에 솔더링하는 공정 등을 구비하는 것을 특징으로 한다.The method of manufacturing an airtight ceramic container according to the present invention comprises the steps of forming an active metal layer by depositing an amount of 0.1-10 mg / cm 2 active metal composed of Ti and / Zr on the open end face of the ceramic cylinder and on the active metal layer. A step of placing a metal solder material on the substrate, a step of arranging a metal cover for sealing the opening of the ceramic cylindrical body so that its peripheral end surface is in contact with the metal solder material, and melting the metal solder material by heating to cover the metal cover material. And soldering to the opening end surface of the ceramic cylindrical body.

본 발명에 의한 진공밸브의 제조방법은 상기 방법에 의해 얻어진 기밀성 세라믹 용기와 이 용기의 외부에서 내부로 관통하도록 대칭으로 배치시켜서, 적어도 한쪽을 축방향으로 이동가능케 함으로써 개폐 가능하게된 한쌍의 도전축과, 이 한쌍의 도전축 선단에 설치된 금속제의 접점부재와, 진공 용기의 진공을 유지하면서 도전축의 축방향의 이동을 가능하게 하기 위한 벨로우와, 접점부재를 에워싸서 설치된 접점부재에서 증발한 금속의 세라믹 원통체 내면의 부착을 방지하는 금속제의 아크실드를 구비한 진공밸브를 제조할때 Ti 및/Zr로 구성되는 활성금속의 분말을 0.1-10㎎/㎠량 만큼 피착하므로써 활성금속층을 형성하는 공정과, 이 활성금속층상에 금속 솔더재를 올려놓는 공정과, 아크실드를 금속 솔더재에 접촉하도록 배치하는 공정과, 가열에 의한 금속 솔더재를 용융시키고 아크실드를 세라믹 원통체의 내면에 솔더링하는 공정 등을 구비한 것을 특징으로 하는 것이다.The vacuum valve manufacturing method according to the present invention comprises a hermetic ceramic container obtained by the above method and a pair of conductive shafts which are symmetrically disposed to penetrate from the outside to the inside, and which can be opened and closed by moving at least one of them in the axial direction. And a metal contact member provided at the tip of the pair of conductive shafts, a bellow for enabling the movement of the conductive shaft in the axial direction while maintaining the vacuum of the vacuum container, and a metal evaporated from the contact member provided by surrounding the contact member. Process of forming active metal layer by depositing 0.1-10mg / cm2 of active metal powder composed of Ti and / Zr when manufacturing vacuum valve with metal arc shield to prevent adhesion of inner surface of ceramic cylinder And a step of placing a metal solder material on the active metal layer, a step of arranging the arc shield in contact with the metal solder material, and heating. That the molten solder material and a metal having such a step of soldering the shield to the arc inner surfaces of the ceramic cylinder will be characterized.

본 발명에의 이해에 필요한 작용 설명을 포함한 상세한 설명을 하기로 한다. 우선, 본 발명의 중심을 이루는 접합방법에 관하여 설명한다.Detailed descriptions, including explanations of operations required for understanding the present invention, will be given below. First, the joining method which forms the center of this invention is demonstrated.

본 발명에 있어서는 세라믹 원통체와 금속부재를 접합할때 미리 세라믹 원통체의 접합면에 Ti, Zr등의 활성금속층을 피착한다. 이것은 단순한 피착이며 특히 메탈라이징 처리를 하지 않는다는 점에서 종래의 기술과는 다르다.In the present invention, when joining the ceramic cylindrical body and the metal member, an active metal layer such as Ti or Zr is deposited on the joint surface of the ceramic cylindrical body in advance. This is a simple deposit and differs from the prior art in that it is not particularly metallized.

즉, 미리 형성하는 것은 활성금속층이고 메탈라이즈층은 아니다. 이 활성금속층 상에서 금속부재를 솔더링함으로써 이때의 가열로 활성금속이 세라믹 원통체와 반응한다. 이에따라 메탈라이즈와 동시에 솔더링이 이루어지게 된다. 이 접합방법은 미리 메탈라이즈 처리를 하지 않는다는 점에서 일단계 접합법이라 할 수 있다.In other words, the preformed layer is an active metal layer and not a metallization layer. By soldering a metal member on the active metal layer, the active metal reacts with the ceramic cylinder by heating at this time. This leads to metallization and soldering at the same time. This joining method is a one-step joining method in that metallization is not performed in advance.

특히 중요한 것은 상기 일단계 접합방법에 있어서 활성금속을 세라믹 표면에 밀착한 상태에서 피착함과 동시에 그 피착량을 0.1-10㎎/㎠로 한정하는 것이다. 따라서 세라믹부재의 표면에 활성금속판을 단순히 올려놓고 이용해온 종래의 예와는 다르다.In particular, in the one step bonding method, the active metal is deposited in a state of being in close contact with the ceramic surface and the deposition amount thereof is limited to 0.1-10 mg / cm 2. Therefore, it differs from the conventional example which used the active metal plate simply on the surface of the ceramic member.

이러한 특징에 의해서 제1b도에서 설명한 것과 같은 바람직한 접합부 구조를 얻을 수 있다.By such a feature, a preferable junction structure as described in FIG. 1B can be obtained.

그 이유는, 활성금속을 피착시키고 피착량을 상기 범위로하므로써 세라믹부재 표면이 양호하게 메탈라이징 되기 때문이다.The reason is that the surface of the ceramic member is well metalized by depositing the active metal and the deposition amount in the above range.

예를들면 알루미나 세라믹 원판의 표면에 활성금속의 분말을 도포한후, 72%의 Ag-Cu, Ag 솔더재를 배치하여 진공상태에서 가열하여 솔더재의 확산을 조사한 결과 활성금속 분말의 도포량을 0.1-10㎎/㎠로 했을때 솔더재가 적당하게 확산되며, 양호한 메탈라이징을 실시할 수 있음이 확인되었다.For example, after the active metal powder is coated on the surface of the alumina ceramic disc, 72% Ag-Cu and Ag solder materials are placed and heated in a vacuum state to investigate the diffusion of the solder material. When 10 mg / cm <2> was settled, it was confirmed that a soldering material spread | dispersed moderately and can perform favorable metallization.

이와 같이 양호한 메탈라이징을 실시한 결과 단면접합과 같이 접합면적이 작은 경우에도 충분한 접합강도를 지니며, 간격이 없는 양호한 접합이 가능해진다.As a result of good metallizing as described above, even when the bonding area is small, such as end face bonding, sufficient bonding strength can be achieved and good bonding without gaps can be achieved.

이에 반해서 활성금속 분말의 피착량이 너무 적거나 많으면 솔더링시에 양호한 메탈라이징을 실시할 수 없고 솔더재의 확산이 나빠진다. 따라서 소기의 특성을 지닌 접합을 얻을 수 없다.On the other hand, if the deposition amount of the active metal powder is too small or too large, good metallization cannot be performed at the time of soldering, and diffusion of the solder material is worsened. Therefore, no joint with desired characteristics can be obtained.

상기 접합법을 적용함으써, 본 발명에서는 세라믹 원통체와 금속제 덮개와의 사이에 접합연적을 증대시키지 않고 기밀성에 뛰어난 신뢰성 높은 기밀성 세라믹 용기를 얻을 수 있다.By applying the above joining method, in the present invention, a highly reliable airtight ceramic container excellent in airtightness can be obtained without increasing the joining time between the ceramic cylindrical body and the metal lid.

상기 접합방법을 아크실드와 세라믹 원통체 내면과의 접합에 적용하므로써 간편한 방법으로 탈락될 염려가 없는 아크실드를 고정할 수 있다.By applying the joining method to the joining of the arc shield and the inner surface of the ceramic cylindrical body, it is possible to fix the arc shield without fear of falling off in a simple manner.

상기 접합법에 있어서 세라믹 원통체의 접합면에 활성금속 분말을 피착하기 위한 방법으로는 다음 방법을 예로 들 수 있다.In the said joining method, the following method is mentioned as a method for depositing an active metal powder on the joining surface of a ceramic cylinder.

제1방법은, 세라믹 원통체의 접합면에 대하여 바인더 및 용제를 혼합한 유기계 접착제를 미리 도포해 두고, 이 접착제층에 환성금속 분말을 분무하여 부착시키는 방법이다.The first method is a method in which an organic adhesive, in which a binder and a solvent are mixed, is applied in advance to a joint surface of a ceramic cylindrical body, and sprayed and attached to the adhesive layer a cyclic metal powder.

사용할 바인더 및 용제는 특별히 한정되지 않으나 열처리 공정에서 완전히 분해하여 제거되는 것이 바람직 하다.The binder and the solvent to be used are not particularly limited, but are preferably completely decomposed and removed in the heat treatment process.

예를들면 바인더로는 폴리비닐알콜, 에틸셀룰로오스 등이고 용제로는 에탄올 테트라린 등을 들 수 있다.For example, polyvinyl alcohol, ethyl cellulose, etc. are mentioned as a binder, and ethanol tetralin etc. are mentioned as a solvent.

제2방법은, 활성금속의 분말, 유기계 바인더 및 용제를 혼합한 혼합물을 조제하고 이 혼합물은 금속매시등으로 구성된 스크린을 통해서 세라믹 원통체의 접합면에 도포하는 방법이다. 바인더 및 용제로는 상기한 것을 이용한다.The second method is a method of preparing a mixture of a powder of an active metal, an organic binder and a solvent, and applying the mixture to a joint surface of a ceramic cylinder through a screen made of a metal mash. As the binder and the solvent, those mentioned above are used.

제3의 방법은 증착 또는 스퍼터링 등에 의해 세라믹 원통체의 접합면이 활성금속을 피착하는 방법이다. 피착방법 중에서 도포법 또는 분무법을 이용하는 경우에는 입자가 너무 크면 유동성이 저하되므로 0.1-10㎛으로 하는 것이 바람직하다. 또한 활성금속으로써 Ti, Zr의 혼합물을 이용하는 경우 그 혼합비율은 특별히 한정되지 않으며 임의대로 설정할 수 있다.The third method is a method in which a joining surface of a ceramic cylinder deposits an active metal by vapor deposition, sputtering, or the like. In the case of using the coating method or the spraying method among the deposition methods, if the particles are too large, the fluidity is lowered, so it is preferable to set it to 0.1-10 탆. In addition, when using the mixture of Ti and Zr as an active metal, the mixing ratio is not specifically limited, It can set arbitrarily.

한편 활성금속 분말을 피착해야할 세라믹 원통체의 표면조도(粗度)는 0.1-l0㎛로 하는 것이 바람직하다. 표면조도가 너무 크면 접합강도가 불충분해지는 경우가 있다. 접합법에서 이용하는 금속 솔더재로는 예를들면 Ag-Cu계, Ag-Cu-Sn계, Ag-Cu-Zn계 등의 Ag 솔더재가 바람직하다.On the other hand, it is preferable that the surface roughness of the ceramic cylinder to which the active metal powder is to be deposited is 0.1-10 탆. Too large a surface roughness may result in insufficient bonding strength. As a metal solder material used by the joining method, Ag solder material, such as Ag-Cu system, Ag-Cu-Sn system, Ag-Cu-Zn system, is preferable, for example.

솔더링시에 있어서는 활성금속 분말이 피착된 세라믹 원통체의 접합면상에 솔더재를 배치하고, 접합해야할 금속부재(금속제 덮개 또는 아크실드)를 솔더재에 접촉시킨후 솔더재의 융점 이상의 온도로 가열한다. 이때의 열처리 분위기를 진공 또는 아르곤 가스 등의 비산화성 분위기가 바람직하다.At the time of soldering, a solder material is disposed on the joint surface of the ceramic cylinder on which the active metal powder is deposited, and the metal member (metal cover or arc shield) to be joined is brought into contact with the solder material and heated to a temperature higher than the melting point of the solder material. The heat treatment atmosphere at this time is preferably a non-oxidizing atmosphere such as vacuum or argon gas.

이어서 본 발명에 의한 기밀성 세라밀 용기의 제조방법에 대해서 설명한다. 이 경우에 세라믹 원통체(1)의 재질은 특별히 한정되지 않는다.Next, the manufacturing method of the airtight ceramyl container which concerns on this invention is demonstrated. In this case, the material of the ceramic cylindrical body 1 is not specifically limited.

예를들면 Al2O3등의 산화물계 세라믹, A1N과 Si3N4등의 질화물계 세라믹을 이용할 수 있다.For example, the nitride-based ceramics such as Al 2 O 3 such as an oxide-based ceramic, A1N and Si 3 N 4 can be used.

금속제 덮개(2)로는 열팽창계수가 세라믹 원통체에 가까운 재질의 것을 이용하는 것이 바람직하다. 그 이유는 상술한 것과 같이 접합시의 열응력을 낮출 수 있기 때문이다. 바람직한 재질로는, Mo, W 코바, 인바 등을 들 수 있다.As the metal cover 2, it is preferable to use a material whose thermal expansion coefficient is close to that of the ceramic cylinder. This is because the thermal stress at the time of joining can be reduced as mentioned above. Preferable materials include Mo, W Koba, Invar, and the like.

또한 세라믹 원통체(1)과 금속제 덮개(2)와 접합하는 접합면적을 작게하여 열응력을 작게하기 위해 제1도에 표시한 것처럼 단면접합을 이용한다.In addition, in order to reduce the bonding area to be bonded to the ceramic cylindrical body 1 and the metal cover 2 to reduce the thermal stress, cross-sectional bonding is used as shown in FIG.

상술한 것과 같이 본 발명에서는 단면접합에 있어서도 충분한 접합강도와 기밀성을 얻을 수 있다.As described above, in the present invention, sufficient bonding strength and airtightness can be obtained even in cross-sectional joining.

그런데 본 발명에 의한 기밀성 세라믹 용기의 제조에 있어서는 세라믹 원통체(1)와 금속제 덮개와 솔더링할때 제4a도 또는 4b도에 표시한 솔더재 박판을 이용하는 것이 바람직하다.By the way, in manufacture of the airtight ceramic container by this invention, when soldering with the ceramic cylindrical body 1 and a metal cover, it is preferable to use the thin solder material plate shown in FIG. 4A or 4B.

도시한바 대로 이들 솔더재 박판은 윗면만이 요철이 있는 거친 표면이 되고 아랫면은 매끄러운 표면이 된다. 제4b도의 솔더재 박판에서는 凸부를 관통하는 구멍이 뚫려있다.As shown in the figure, these solder thin sheets have rough surfaces with irregularities only on the top and smooth surfaces on the bottom. In the thin solder material sheet of FIG. 4B, a hole penetrating the concave portion is drilled.

이 솔더재 박판을 이용하여 솔더재 부착시에는 그 매끄러운 아랫면을 세라믹 원통체(1)의 접합면에 접촉시키고, 凹凸이 있는 윗면을 금속제 덮개(2)의 단면에 접촉시킨다. 이 상태에서 솔더링을 실시하므로써 다음과 같은 효과를 얻을 수 있다.When the solder material is attached by using the thin solder material plate, the smooth lower surface is brought into contact with the joint surface of the ceramic cylindrical body 1, and the upper surface with the fin is brought into contact with the end face of the metal cover 2. By soldering in this state, the following effects can be obtained.

솔더링시에는 그 가열에 따라서 세라믹 원통체(2)에서 불순물의 분해가스, 흡착가스 등이 용기 내부로 방출된다. 따라서 용기내에 진공상태 등 소기의 분위기를 달성하기 위해서는 솔더링이 완료되는 동안에 이들 가스를 외부로 배출해야 한다.At the time of soldering, decomposition gas of the impurity gas, adsorption gas, etc. are discharged | emitted from the ceramic cylinder 2 to the inside of the container by the heating. Therefore, in order to achieve a desired atmosphere such as a vacuum in the container, these gases must be discharged to the outside while the soldering is completed.

상기 솔더재 박판을 이용한 경우 솔더재 박판의 금속제 덮개와의 사이에는 凹凸에 의한 간격이 생긴다. 따라서 상기의 가스는 이 간격을 통해서 외부로 배출되어 진공 등의 바람직한 용기내 분위기를 얻을 수 있다.When the said solder material thin plate is used, the space | interval by 이 arises between the metal cover of the solder material thin plate. Therefore, the above gas is discharged to the outside through this interval to obtain a preferable atmosphere in the container such as a vacuum.

즉 상기 솔더재 박판 윗면 凹凸에 의해서 가스배출로가 확보되는 것이다. 이 효과로는 제4b도와 같이 관통구멍의 설치에 의해 더욱 커진다.That is, the gas discharge path is secured by the upper surface 凹凸 of the solder material sheet. This effect is further increased by installation of the through holes as shown in FIG. 4B.

그러나 이 배출로는 솔더링에 의한 윗면의 凹凸에 의해서 봉착완료시에는 완전히 폐쇄되고 충분한 기밀성을 갖추어야 한다.However, this discharge path should be completely closed and sealed enough when the sealing is completed by the upper surface of the solder.

이와 같은 관점뿐만 아니라 솔더재 박판을 접합부에 배치했을때의 안정성 관점에서도 凹凸의 깊이 또는 높이는 20㎛-5㎜가 적당하다.Not only such a viewpoint, but also the viewpoint of stability at the time of arrange | positioning a thin solder material plate in a junction part, 20 micrometers-5 mm are suitable for depth or height.

솔더재 박판은 아랫면을 매끄럽게 하므로써 용융 솔더재에 대한 웨트성이 약한 세라믹 단면에 대해서도 우수한 접합을 얻을 수 있다.By thinning the lower surface of the solder material sheet, excellent bonding can be obtained even on a ceramic cross section where the wettability to the molten solder material is weak.

만일 솔더재 박판과 세라믹 원통체 표면과의 사이에도 간격이 존재하면 용융 솔더재는 웨트성에 약한 접합면상에 충분히 확산될 수 없으므로 우수한 접합을 얻을 수 없으며 기밀불량의 발생원인이 된다.If there is a gap between the thin plate of solder material and the surface of the ceramic cylindrical body, the molten solder material cannot be sufficiently diffused on the joint surface which is weak in wettability, and thus excellent bonding cannot be obtained and cause leakage failure.

이처럼 제4a도, 4b도의 솔더재 박판은 금속에 접하는 윗면에 凹凸을 형성해서 가스의 배출로를 확보함과 동시에 세라믹에 접하는 아랫면을 매끄럽게 해서 우수한 접합성을 확보한 것이다.As described above, the thin solder material plates of FIGS. 4A and 4B form a fin on the upper surface in contact with the metal to secure a gas discharge path, and smooth the lower surface in contact with the ceramic to secure excellent bonding.

제5a도는 바람직한 솔더재 박관의 다른예를 나타낸 것이다. 도시한 바대로 이 솔더재 박팍은 2개의 솔더재층(31) (32) 사이에 솔더재 보다도 융점이 높은 금속으로 구성되는 배리어(barrier)층을 개재시킨 적층구조를 갖는다. 두개의 솔더재층(31) (32)는 같은 것이거나 또는 다른것이라도 상관없다. 이같은 솔더재 박판을 이용하여 얻을 수 있는 효과 및 작용은 다음과 같다.5A shows another example of a preferred solder material tube. As shown in the figure, this solder material thin film has a lamination structure between two solder material layers 31 and 32 with a barrier layer made of a metal having a higher melting point than that of the solder material. The two solder material layers 31 and 32 may be the same or different. The effects and actions that can be obtained by using such a solder material thin plate are as follows.

솔더재를 이용한 다른 종류간의 접합기술은 확산접합 또는 용융 용접과 달리 피접합 재료끼리 반응시키고 합금층을 형성시키는 것이 아니다. 따라서 취약한 합금층의 생성에 의한 강도저하를 초래하지 않는 이점을 갖고 있다.Different types of joining techniques using solder materials, unlike diffusion bonding or fusion welding, do not react the materials to be joined and form an alloy layer. Therefore, it has the advantage of not causing a decrease in strength due to the formation of a weak alloy layer.

그러나 피접합부 재료의 종류에 따라서는 이들 부재의 구성원소가 용응 솔더재 중에 급속하게 확산해서 서로 반응하여 취약한 합금층을 형성하는 경우가 있다. 그래서 제5a도의 솔더재 박판에서는 배리어층(32)를 설치하므로써, 용융 솔더재 중에 용출하여 확산되어온 원소가 서로 접촉하는 것을 저지하고 취약한 합금층의 형성을 방지한다.However, depending on the type of material to be joined, the components of these members may rapidly diffuse in the fusion solder material and react with each other to form a weak alloy layer. Therefore, in the solder material thin plate of FIG. 5A, by providing the barrier layer 32, the elements which are eluted and diffused in the molten solder material are prevented from contacting each other and the formation of a weak alloy layer is prevented.

즉 배리어층(32)는 융점이 높으므로 솔더재층(31), (33)이 용융했을때에도 용융하지 않고 남는다. 따라서 양측의 피용접부재에서 확산해온 원소 상호간 접촉은 저지된다. 배리어층(32)의 두께는 특별히 한정되지 않는다. 그러나 확실하게 배리어로 작용하여 취급하기 쉬운 범위는 약 0.01-5㎜이다.That is, since the barrier layer 32 has a high melting point, it remains without melting even when the solder material layers 31 and 33 melt. Therefore, contact between the elements diffused from the welded members on both sides is prevented. The thickness of the barrier layer 32 is not specifically limited. However, the range which acts as a barrier surely and is easy to handle is about 0.01-5 mm.

제5a도의 구성과 제4a도, 제4b도의 구성을 조합시킨 구성으로 솔더재 박판을 이용해도 좋다. 그와 같은 솔더재 박판의 예를 제5b도, 제5c도에 나타낸다. 이 경우에는 제4a도, 제4b도에서 설명한 가스배출도 동시에 실시할 수 있다.You may use a thin solder material plate with the structure which combined the structure of FIG. 5A, the structure of FIG. 4A, and FIG. 4B. An example of such a solder material thin plate is shown in FIG. 5B and FIG. 5C. In this case, the gas discharge described in FIGS. 4A and 4B can be simultaneously performed.

제6도는 제5c도의 솔더재 박판을 이용해서 본 발명에 의한 기밀성 세라믹 용기를 제조하는 상태를 표시한다. 제6도로 제5a도-제5c도의 솔더재 박판을 이용해서 얻을 수 있는 상기 이외의 별도의 효과를 이해할 수 있다.FIG. 6 shows a state of manufacturing the airtight ceramic container according to the present invention using the thin solder material plate of FIG. 5C. The other effects other than the above which can be obtained by using the solder material thin plate of FIG. 6 and FIG. 5A-FIG. 5C can be understood.

배리어층(32)는 솔더재 부착의 가열에 의해서도 용융되지 않고 기계적 강도를 유지한다. 따라서 금속제 덮개(2)의 위치 맞춤이 다소 어긋나더라도 배리어층(32)가 연결재로 기능하여 소기의 기밀성 용기를 얻을 수 있다.The barrier layer 32 does not melt even by heating of the solder material attachment and maintains mechanical strength. Therefore, even if the metal cover 2 is slightly misaligned, the barrier layer 32 functions as a connection material, and a desired airtight container can be obtained.

본 발명에 의한 진공밸브의 제조방법은 제2도에서 설명한 진공밸브를 제조할때, 상술한 접합방법을 이용해서 아크실드를 세라믹 원통체(1)의 내면에 직접 접합하는 것이다. 따라서 이 경우에도 양자 사이에는 충분한 강도를 지닌 우수한 접합을 얻을 수 있고 아크실드의 탈락 및 이동 등이 방지되므로 내전압 특성의 변동을 억제하는 등 신뢰성을 향상시킬 수 있다.In the manufacturing method of the vacuum valve according to the present invention, when manufacturing the vacuum valve described in FIG. 2, the arc shield is directly bonded to the inner surface of the ceramic cylindrical body 1 using the above-described joining method. Therefore, even in this case, excellent bonding with sufficient strength can be obtained, and dropping and movement of the arc shield can be prevented, thereby improving reliability such as suppressing fluctuations in the breakdown voltage characteristic.

또한 미리 메탈라이징 처리를 할 필요가 없으므로 공정의 간략화를 꾀할 수 있다.In addition, since the metallizing treatment is not required in advance, the process can be simplified.

이 진공 밸브의 제조에 있어서도 제5a도에 표시한 솔더재 박판을 이용하므로서 상술한 효과를 얻을 수 있다.Also in manufacture of this vacuum valve, the above-mentioned effect can be acquired by using the solder material thin plate shown in FIG. 5A.

아크실드 내면의 표면조도는 내전압 특성에 중요한 영향을 미치므로 내전압 특성을 저하시키지 않게 하기위해 0.1-l0㎛으로 하는 것이 바람직하다.Since the surface roughness of the inner surface of the arc shield has an important effect on the withstand voltage characteristic, it is preferable to set it to 0.1-l0 탆 so as not to lower the withstand voltage characteristic.

다음 실시예를 통해서 본 발명을 보다 구체적으로 설명한다.The present invention will be described in more detail with reference to the following examples.

[실시예 1]Example 1

(기밀성 세라믹 용기의 제조)(Manufacture of Airtight Ceramic Container)

다음과 같은 방법으로 제1도에 표시한 기밀성 세라믹 용기를 제조했다.The airtight ceramic container shown in FIG. 1 was manufactured as follows.

외경 60㎜, 내경 50㎜, 높이 60㎜인 Al2O3제 세라믹 원통체 (1)를 준비했다.An Al 2 O 3 ceramic cylindrical body 1 having an outer diameter of 60 mm, an inner diameter of 50 mm, and a height of 60 mm was prepared.

또한 입경 5㎛ 이하의 Ti 분말 및 Zr 분말을 9 : 1의 비율로 혼합하고 이것을 에틸셀룰로오스의 에탄올 용액과 혼합하여 활성금속 페이스트를 조제했다.Further, Ti powder and Zr powder having a particle diameter of 5 µm or less were mixed at a ratio of 9: 1, and this was mixed with an ethanol solution of ethyl cellulose to prepare an active metal paste.

이어서 이 페이스트를 세라믹 원통체(1)의 양단 개구단면에 도포했다. 이때 활성금속의 피착량이 1㎎/㎠가 되도록 페이스트의 도포량을 조절했다.Subsequently, this paste was applied to the open end faces of both ends of the ceramic cylindrical body 1. At this time, the coating amount of the paste was adjusted so that the deposition amount of the active metal was 1 mg / cm 2.

세라믹 원통체(1)의 페이스트 도포면에 두께 50㎛의 Ag 솔더재(72% Ag-Cu)를 배치했다. 코바(Ni-Co-Fe 합금)로 구성된 금속제 덮개(2)를 제1도에서 설명한대로 솔더재상에 배치했다.Ag solder material (72% Ag-Cu) having a thickness of 50 µm was disposed on the paste coated surface of the ceramic cylinder 1. A metal cover 2 composed of Koba (Ni-Co-Fe alloy) was disposed on the solder material as described in FIG.

이렇게해서 얻어진 제4도와 같은 적층체를 진공로(2×10-5Torr) 속에서 850℃로 5분간 가열하여 금속성 덮개(2)를 세라믹 원통체의 개구단면에 접합했다.The laminated body obtained in this way like FIG. 4 was heated at 850 degreeC for 5 minutes in the vacuum furnace (2x10 <-5> Torr), and the metallic cover 2 was bonded to the opening end surface of the ceramic cylinder.

이렇게 얻어진 기밀성 세라믹 용기를 냉각시킨후 로에서 꺼내어 접합부의 상태를 조사했다.After cooling the airtight ceramic container thus obtained, it was taken out of the furnace and the state of the joint was investigated.

그결과 금속제 덮개(2)와 세라믹 원통체를 접합하고 있는 솔더재층(8)은 메탈라이즈된 세라믹면을 향하여 확산되어 있으며, 제1b도에 표시한 우수한 접합구조로 견고하게 고정되어 있다.As a result, the solder material layer 8 joining the metal cover 2 and the ceramic cylindrical body is diffused toward the metallized ceramic surface, and is firmly fixed by the excellent bonding structure shown in FIG.

이 기밀성 세라믹 용기에 대한 헬륨(He) 가스 누출시험에 의해 접합부의 기밀성을 평가했을 때 He 가스 누출량은 10-10Torr,1/sec 이하이고, 유출은 없었다.When the airtightness of the joint was evaluated by the helium (He) gas leak test on the airtight ceramic container, the amount of He gas leak was 10 -10 Torr, 1 / sec or less, and no leakage occurred.

[실시예 2]Example 2

(기밀성 세라믹 용기의 제조)(Manufacture of Airtight Ceramic Container)

제4a도에 표시한 것처럼 원면에 높이 50㎛의 凹凸을 갖고, 외경 50㎜, 내경 40㎜, 두께 100㎛의 도너츠 형태의 Ag 솔더재 박판(72% Ag-Cu)을 준비했다.As shown in FIG. 4A, a donut-shaped thin Ag solder material plate (72% Ag-Cu) having a 의 of 50 µm in height and having an outer diameter of 50 mm, an inner diameter of 40 mm and a thickness of 100 µm was prepared.

외경 50㎜, 내경 40㎜, 높이 60㎜의 Al2O3제 세라믹 원통체를 준비했다. 세라믹 원통체(1)의 양단 개구단면에 1㎎/㎠ 만큼의 Ti 분말을 도포했다. 이 Ti 도포면에 Ag 솔더재 박판을 배치했다.An Al 2 O 3 ceramic cylindrical body having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 60 mm was prepared. Ti powder as much as 1 mg / cm 2 was applied to the open end face of both ends of the ceramic cylindrical body 1. The Ag solder material thin plate was arrange | positioned at this Ti coating surface.

실시예 1과 같이 Ni-Fe 합금으로 구성된 금속제 덮개(2)를 솔더재 박판상에 배치하고 진공로(2×10-5Torr) 속에서 880℃로 6분간 가열하여 금속성 덮개(2)를 세라믹 원통체의 개구단면에 접합했다.As in Example 1, the metal cover 2 made of Ni-Fe alloy was placed on a thin sheet of solder material and heated for 6 minutes at 880 ° C. in a vacuum furnace (2 × 10 -5 Torr) to heat the metal cover 2 in a ceramic cylinder. It joined to the opening end surface of a sieve.

이렇게 얻은 기밀성 세라믹 용기를 냉각한뒤 진공로에서 꺼내어 조사해본 결과 내부 진공도도 높고 접합 상태가 양호하였다.The airtight ceramic container thus obtained was cooled and then removed from the vacuum furnace and examined, and the internal vacuum degree was high and the bonding state was good.

[실시예 3]Example 3

(기밀성 세라믹 용기의 제조)(Manufacture of Airtight Ceramic Container)

제4b도와 같이 원면에 높이 100㎛의 凸부 및 凸부에 설치된 관통구멍을 갖고 외경 40㎜, 내경 30㎜, 두께 100㎛의 도너츠 형태의 Ag 솔더재 박판(72% Ag-Cu)을 준비했다.As shown in FIG. 4B, a donut-shaped thin Ag solder material plate (72% Ag-Cu) having an outer diameter of 40 mm, an inner diameter of 30 mm, and a thickness of 100 μm was prepared, having through holes provided in the concave portion and the concave portion having a height of 100 μm on the surface. .

또, 외경 40㎜, 내경 30㎜, 높이 40㎜의 Al2O3제 세라믹 원통체(1)를 준비했다.In addition, an Al 2 O 3 ceramic cylindrical body 1 having an outer diameter of 40 mm, an inner diameter of 30 mm, and a height of 40 mm was prepared.

상기 세라믹 원통체(1)의 양단 개구단면에 1㎛/㎠ 만큼의 Ti 분말을 도포했다. 이 Ti 도포면에 Ag 솔더재 박판을 배치했다.Ti powder of 1 µm / cm 2 was applied to the open end surface of both ends of the ceramic cylindrical body 1. The Ag solder material thin plate was arrange | positioned at this Ti coating surface.

실시예 1과 같이 하여 Ni-Fe 합금으로 구성된 금속제 덮개(2)를 솔더재 박판상에 배치하고 진공로(2×10-5Torr) 속에서 850℃로 6분간 가열하여 금속성 덮개(2)를 세라믹 원통체의 개구단면에 접합했다.In the same manner as in Example 1, the metal cover 2 made of Ni-Fe alloy was placed on a thin plate of solder material and heated for 6 minutes at 850 ° C. in a vacuum furnace (2 × 10 -5 Torr) to ceramic It joined to the opening end surface of a cylindrical body.

이렇게 얻어진 기밀성 세라믹 용기를 냉각후에 진공로에서 꺼내어 조사한 결과 내부의 진공도도 높고 접합상태도 우수했다.The airtight ceramic container thus obtained was taken out of the vacuum furnace after cooling and irradiated, and as a result, the degree of vacuum was high and the bonding state was excellent.

[실시예 4]Example 4

실시예 4 및 실시예 5에서는 제5a도의 솔더재 박판에서 배리어층(32)의 효과를 조사했다.In Example 4 and Example 5, the effect of the barrier layer 32 in the thin solder material plate of FIG. 5A was investigated.

제5a도와 같이 4% Ti-69% Ag-Cu로 구성되는 두께 50㎛의 Ag 솔더재층(31)과 72% Ag-Cu로 구성된 두께 50㎛의 Ag 솔더재층(33) 사이에 13% Cr-Fe로 구성된 두께 50㎛의 배리어층(32)을 설치한 솔더재 박판을 제작했다.As shown in FIG. 5A, between the 50-micrometer-thick Ag solder material layer 31 composed of 4% Ti-69% Ag-Cu and the 50-micron-thick Ag solder material layer 33 composed of 72% Ag-Cu, 13% Cr- A thin solder material plate provided with a barrier layer 32 having a thickness of 50 μm made of Fe was produced.

외경 40㎜, 내경 30㎜, 높이 60㎜의 Al2O3제 세라믹 원통체(1)를 준비했다.An Al 2 O 3 ceramic cylindrical body 1 having an outer diameter of 40 mm, an inner diameter of 30 mm, and a height of 60 mm was prepared.

상기 세라믹 원통체(1)의 개구단면에 솔더재 박판을 배치했다.A thin solder material plate was disposed on the open end face of the ceramic cylindrical body 1.

표면에 Ni 도금을 한 Ni-Fe 합금으로 구성된 금속제 덮개(2)를 솔더재 박판상에 배치하고 진공로(2×10-5Torr) 속에 넣어서 850℃에서 10분간 가열하여 금속성 덮개(2)를 세라믹 원통체의 개구단면에 접합했다.The metal cover (2) made of Ni-Fe alloy with Ni plating on the surface was placed on a thin plate of solder material and placed in a vacuum furnace (2 × 10 -5 Torr) and heated at 850 ° C. for 10 minutes to prepare the metal cover (2) in ceramic. It joined to the opening end surface of a cylindrical body.

이렇게 얻어진 기밀성 세라믹 용기를 냉각시킨뒤 진공로에서 꺼내 조사해본 결과 접합면 전면에 걸쳐서 우수하게 접합되었다.The airtight ceramic container thus obtained was cooled and then taken out of a vacuum furnace and examined to obtain excellent bonding over the entire bonding surface.

비교를 위하여 1% Ti-71% Ag-Cu로 구성된 두께 100㎛의 솔더재 박판을 이용하고, 그 이외는 상기와 같은 조건에서 접합실험을 했다.For comparison, a 100 μm thick solder material plate composed of 1% Ti-71% Ag-Cu was used, except that bonding experiments were conducted under the same conditions as described above.

그결과 부분적으로 접합불량의 부분이 있었다. 이 접합불량은 금속제 덮개(2)의 Ni 도금층에서 확산된 Ni가 솔더재 중의 Ti와 합금을 형성한 것으로 생각된다.As a result, there was a partial defect in bonding. This poor bonding is considered that Ni diffused from the Ni plating layer of the metal cover 2 formed an alloy with Ti in the solder material.

[실시예 5]Example 5

제5c도와 같이 두께 40㎛의 4% Ti-69% Ag-Cu 솔더재층(31)과 두께 20㎛의 Mo 배리어층(32)과, 두께 40㎛ 72%이고 하면에 가스배출용 깊이 1.5mm의 凹부를 형성한 Ag-Cu 솔더재층(33)과를 순차적층하고 솔더재 박판을 제작했다.4C Ti-69% Ag-Cu solder material layer 31 having a thickness of 40㎛, Mo barrier layer 32 having a thickness of 20㎛, as shown in FIG. The Ag-Cu solder material layer 33 which formed the convex part was layered sequentially, and the solder material thin plate was produced.

외경 50㎜, 내경 40㎜, 높이 60㎜의 Al2O3제 세라믹 원통체(1)와 42% Fe-Ni제의 금속성 덮개(2)를 준비했다.An Al 2 O 3 ceramic cylindrical body 1 having an outer diameter of 50 mm, an inner diameter of 40 mm, and a height of 60 mm and a metallic lid 2 made of 42% Fe-Ni were prepared.

이어서 제6도와 같이 세라믹 원통체(1), 솔더재 박판 및 금속제 덮개(2)를 배치하여 진공로(2×10-5Torr) 속에 넣어서 850℃로 10분간 가열하여 금속성 덮개(2)를 세라믹 원통체형의 개구단면에 접합했다.Subsequently, as shown in FIG. 6, the ceramic cylindrical body 1, the thin plate of solder material and the metal cover 2 were placed and placed in a vacuum furnace (2 × 10 -5 Torr) and heated at 850 ° C. for 10 minutes to thereby heat the ceramic cover 2. It joined to the cylindrical opening end surface.

이렇게해서 얻은 기밀성 세라믹 용기를 진공로에서 꺼내어 조사한 결과, 금속제 덮개(2)의 위치가 다소 어긋났는데도 불구하고 배리어층(32)에 의해 연속제가 유지되었으며 기밀성도 우수하게 유지되었다.The airtight ceramic container obtained in this way was taken out of the vacuum furnace, and examined. As a result, although the position of the metal lid 2 was slightly shifted, the continuous agent was retained by the barrier layer 32 and the airtightness was also excellent.

[실시예 6-8]Example 6-8

(진공 밸브의 제조)(Manufacture of Vacuum Valve)

제7도 및 제8도에 표시한 진공밸브를 제조했다. 상기 도면에서 제2도 및 제3도와 같은 부분에는 동일한 참조번호를 부여했다.The vacuum valve shown in FIG. 7 and FIG. 8 was manufactured. In the drawings, the same reference numerals are given to the same parts as those in FIGS. 2 and 3.

외경 123㎜, 내경 110㎜. 높이 170㎜의 Al2O3제 세라믹 원통체(1)를 준비하고 그 내면(21)을 연마처리 했다.Outer diameter 123 mm, inner diameter 110 mm. An Al 2 O 3 ceramic cylindrical body 1 having a height of 170 mm was prepared, and the inner surface 21 thereof was polished.

연마처리의 정도는 0.1㎛(실시예 6), 0.5㎛(실시예 7), 10㎛(실시예 8)의 표면조도를 갖추도록 조정했다.The degree of polishing was adjusted to have surface roughnesses of 0.1 탆 (Example 6), 0.5 탆 (Example 7), and 10 탆 (Example 8).

이어서 평균 입경 3.5㎛의 Ti분말을 준비하고 이 Ti분말을 연마처리한 세라믹 원통체 내면(21)의 필요부분(아크실드(6)를 접합할 부분)에 균일하게 도포하여 활성금속 피착층(12)을 형성했다.Subsequently, a Ti powder having an average particle diameter of 3.5 µm was prepared, and the Ti powder was uniformly applied to the required portion (part to which the arc shield 6 was to be bonded) on the inner surface of the ceramic cylindrical body polished with the active metal coating layer 12 Formed).

도포량은 1㎎/㎠이고 도포방법으로는 금속매시를 통하여 도포하였다. 그러나 필요부분 이외를 마스킹한뒤, 스퍼터링 및 진공증착 또는 이온 프레이팅 등으로 부착시키는 방법을 이용해도 좋다.The coating amount was 1 mg / cm 2 and the coating method was applied through a metal mash. However, after masking other than necessary parts, you may use the method of adhering by sputtering, vacuum deposition, or ion plating.

제8도와 같이 상기 Ti 도포면(21)과(sus제) 아르실드(8)에 설치된 凸부(10) 사이에 두께 0.2㎜의 은솔더재를 삽입시켜서 솔더링하였다.As shown in FIG. 8, a silver solder material having a thickness of 0.2 mm was inserted and soldered between the Ti coated surface 21 and the concave portion 10 provided on the (sustained) arshield 8.

이 원재료 부착은 진공도(2×10-5Torr), 온도 850℃에서 6분간 실시했다. 그결과 실시예 6, 7, 8중의 어떤 예에서도 아크실드는 형태없이 완전히 접속되었다.This raw material adhesion was performed for 6 minutes at a vacuum degree (2 × 10 -5 Torr) and a temperature of 850 ° C. As a result, in any of Examples 6, 7, and 8, the arc shield was completely connected without a shape.

상기 실시예 6-8에서 얻은 진공밸브에 대해서 승강법에 의한 인펄스 내전압 시험을 실시했다.The in-pulse withstand voltage test by the elevating method was performed about the vacuum valve obtained in the said Example 6-8.

그결과 제2도와 같이 종래의 진공밸브인 인펄스 내전압 값을 100%로 한 경우 모두 130%의 높은 값을 얻었다.As a result, as shown in FIG. 2, when the in-pulse withstand voltage of the conventional vacuum valve was 100%, all high values of 130% were obtained.

이 결과는 세라믹 원통체 내면에 凸부(10)를 설치하지 않은 것과. 완전한 기밀성을 얻은 것과의 상승효과에 의한 것이다.The result is that the concave portion 10 is not provided on the inner surface of the ceramic cylinder. This is due to the synergistic effect of achieving complete confidentiality.

[실시예 9]Example 9

(진공밸브의 제조)(Manufacture of vacuum valve)

아크실드(6)와 세라믹 원통체(1)과의 사이에 제9도와 같이 접합구조를 형성했다. 이경우 아크실드(6)에는 제6도의 凸부(10)를 설치하지 않는다. 그대신 sus제 아크실드(6)의 접합부와 세라믹 원통체의 내면(21)과의 사이에 sus제의 스페이서(13)와 은 솔더재(14)를 삽입시켰다.A junction structure was formed between the arc shield 6 and the ceramic cylindrical body 1 as shown in FIG. In this case, the arc shield 6 is not provided with the concave portion 10 of FIG. Instead, a sus spacer 13 and a silver solder material 14 were inserted between the junction of the sus arc shield 6 and the inner surface 21 of the ceramic cylinder.

연마처리에 의해 세라믹 원통체 내면(21)의 표면조도는 0.5㎛로 했다. 또한 그 접합 예정부분에는 실시예 4 내지 6과 같이 활성금속 분말로써 입경 3.5㎛의 평균입경을 지닌 Ti 분말을 1㎎/㎠만큼 부착시켜서 활성금속층(12)을 형성했다.By the polishing treatment, the surface roughness of the inner surface of the ceramic cylindrical body 21 was 0.5 μm. In addition, the active metal layer 12 was formed by attaching Ti powder having an average particle size of 3.5 μm as an active metal powder by 1 mg / cm 2 to the joining scheduled portion as in Examples 4 to 6.

이들을 진공도(2×10-5Torr), 온도 850℃에서 6분간의 조건으로 은 솔더재(11), (14)를 용융시켜서 활성금속 분말을 삽입시켜 세라믹 원통체(1)의 내면(21)과의 접합을 실시했다.They were melted under the conditions of vacuum (2 × 10 -5 Torr) and a temperature of 850 ° C. for 6 minutes to melt the silver solder materials 11 and 14 to insert the active metal powder into the inner surface 21 of the ceramic cylinder 1. Joining was performed.

그결과 얻은 진공밸브에 대하여 150kgf의 충격 하중을 10만회 반복했으나 아크실드의 이동 또는 형태 이상 발생은 없었다.As a result, the shock load of 150 kgf was repeated 100,000 times with respect to the resultant vacuum valve, but there was no movement or abnormality of the arc shield.

인펄스 내전압 시험(승강법)에 의한 내전압 실험을 실시한 결과 제2도의 종래의 진공밸브인 인펄스 내전압값을 100%로 하여 140%의 값을 얻을 수 있었다.As a result of the withstand voltage test by the inpulse withstand voltage test (elevation method), a value of 140% was obtained by setting the inpulse withstand voltage value of the conventional vacuum valve of FIG.

[실시예 10, 11][Examples 10 and 11]

(진공밸브의 제조)(Manufacture of vacuum valve)

세라믹 원통체(l)와 아크실드(6)와의 접합에서 응력 완화기구를 설치했다.A stress relief mechanism was provided at the joining of the ceramic cylindrical body 1 and the arc shield 6.

즉 실시예 10에서는 세라믹 원통체(1)와 아크실드(6)와의 사이에 응력 완화부재(15)를 삽입시켰다. 실시예 11에서는 아크실드(6)의 일부에 凸부(16)을 설치하고 이 凸부(16)에 응력 완화작용을 시켰다.That is, in Example 10, the stress relaxation member 15 was inserted between the ceramic cylinder 1 and the arc shield 6. In Example 11, the recessed part 16 was provided in a part of the arc shield 6, and the stressed part 16 was made to stress relief.

세라믹 원통체(1)와 아크실드(6)에서는 열팽창계수가 약 한자리수가 다르므로 솔더재에 있어서 가열방법, 조건에 따라서는 아크실드에 열의 왜곡이 발생하는 경우가 있다. 그래서 제10도 또는 11도의 구조에 의해서 열응력을 완화시키도록 한 것이다.Since the thermal expansion coefficient is about one digit different in the ceramic cylinder 1 and the arc shield 6, heat distortion may occur in the arc shield depending on the heating method and conditions in the solder material. Therefore, the thermal stress is alleviated by the structure of FIG. 10 or 11 degrees.

응력 완화기구를 채택한 점을 제외하면 모두 실시예 6-8과 같은 조건에서 아크실드의 접합을 실시하고, 진공밸브를 제조했다.Except for adopting the stress relaxation mechanism, the arc shields were bonded under the same conditions as in Example 6-8 to manufacture vacuum valves.

그결과 얻은 진공밸브에 대해서 동일한 인펄스 내전압 시험을 했을때 실시예 10에서는 l35%, 실시예 11에서는 140%의 값을 얻었다.When the same in-pulse withstand voltage test was carried out on the resultant vacuum valve, the values of l35% in Example 10 and 140% in Example 11 were obtained.

어떤 진공밸브에 있어서도 아크실드의 왜곡은 없었다.There was no distortion of the arc shield in any vacuum valve.

[실시예 12,13][Examples 12 and 13]

(진공밸브의 제조)(Manufacture of vacuum valve)

실시예 6-11에서는 모두 평균입경이 3.5㎛의 활성금속 분말을 이용하고 있다. 그래신 활성금속의 입경을 변화시켜 그 영향을 조사했다. 즉, 평균입경이 1㎛(실시예 12), 10㎛(실시예 13)의 활성금속 분말을 이용하고 그 이외는 모두 실시예 9와 동일하게 실시했다.In Example 6-11, the active metal powder of 3.5 micrometers in average particle diameter is used. The effect was investigated by changing the particle size of the active metal. In other words, the active metal powders having an average particle diameter of 1 µm (Example 12) and 10 µm (Example 13) were used in the same manner as in Example 9 except for the above.

그결과 평균 입경이 l㎛(실시예 12), 10㎛(실시예 13)의 어떤 경우에서도 실시예 7(3.5㎛)일때와 동일한 뛰어난 접합상태를 보였다.As a result, in any case where the average particle diameter was 1 μm (Example 12) and 10 μm (Example 13), the same excellent bonding state as in Example 7 (3.5 μm) was obtained.

[실시예 14, 15], [비교예 1, 2][Examples 14 and 15], [Comparative Examples 1 and 2]

(진공밸브의 제조)(Manufacture of vacuum valve)

활성금속 분말의 도포량 영향을 조사하기 위해 도포량을 0.01㎎/㎠(비교예 1), 0.l㎎/㎠(실시예 14), 10㎎/㎠(실시예 15), 50㎎/㎠(비교예 2)로 하고 그 이외는 모두 실시예 9와 동일하게 실시했다.To investigate the effect of the coating amount of the active metal powder, the coating amount was 0.01 mg / cm 2 (Comparative Example 1), 0.1 mg / cm 2 (Example 14), 10 mg / cm 2 (Example 15), 50 mg / cm 2 (comparative). Example 2) was carried out and the same procedure as in Example 9 was performed except for the above.

그결과 비교예 1(0.01㎎/㎠)에서는 아크실드와 세라믹부재와의 접합상태가 충분하지 못했고 충격을 주면 실드의 이동을 볼 수 있었다.As a result, in Comparative Example 1 (0.01 mg / cm 2), the bonding state between the arc shield and the ceramic member was not sufficient and the movement of the shield could be seen when the impact was applied.

또, 인펄스 내전압 시험에서도 내압값에 편차가 생겼다. 비교예 2(50㎎/㎠)에 있어서도 접합에 불충분했으며 양호한 접합을 얻을 수 없었다.In addition, the variation in the breakdown voltage also occurred in the in-pulse withstand voltage test. Also in Comparative Example 2 (50 mg / cm 2), bonding was insufficient and good bonding could not be obtained.

그결과 인펄스 내압값에도 편차가 확인되었다.As a result, the deviation was also confirmed in the in-pulse withstand voltage value.

이와 반대로 실시예 14, 15(0,1㎎/㎠, 10㎎/㎠)에서는 아크실드의 이동도 없었고 인펄스 내압값의 변동도 없었다.On the contrary, in Examples 14 and 15 (0,1 mg / cm 2 and 10 mg / cm 2), there was no movement of the arc shield and no change in the impulse withstand voltage value.

[실시예 16]Example 16

이 실시예에서는 활성금속 분말로 Ti : Zr=1 : 1의 혼합분말을 이용했고 그 이외는 모두 실시예 9와 동일하게 실시 했다.In this example, a mixed powder of Ti: Zr = 1: 1 was used as the active metal powder, except that all were carried out in the same manner as in Example 9.

그결과 아크실드의 이동도 없었고 인펀스 내전압 특성도 130%로 양호했다.As a result, there was no movement of the arc shield and the inductance withstand voltage characteristic was good at 130%.

상술한 바와 같이 본 발명에 의하면 세라믹 원통체의 개구단면에 미리 메탈라이징을 하지 않고 이 개구단면에 금속성 덮개의 주변부를 단면 접합함으로써 충분한 접합강도와 높은 기밀성 유지기능을 지닌 기밀성 세라믹 용기를 제조할 수 있다.As described above, according to the present invention, an airtight ceramic container having sufficient bonding strength and high airtightness retention function can be manufactured by cross-sectional joining the peripheral portion of the metallic cover to the opening end face without metalizing the opening end face of the ceramic cylinder in advance. have.

이 기밀성 세라믹 용기 내부에 아크실드를 고정한 진공밸브를 제조할때에 간편한 방법으로 이용되며, 충분한 강도로 아크실드를 접합하고 내전압 특성이 안정화된 진공밸브를 제조할 수 있다.It is used as a convenient method when manufacturing the vacuum valve in which the arc shield is fixed inside the hermetic ceramic container, and it is possible to manufacture the vacuum valve in which the arc shield is bonded with sufficient strength and the voltage resistance is stabilized.

Claims (8)

세라믹 원통체 개구단면에 Ti 및/Zr로 구성된 활성금속을 0.1-10㎎/㎠의 양만큼 피착시킴으로써, 활성금속층을 형성하는 공정과, 이 활성금속층 상에 금속 솔더재를 올려놓는 공정과, 세라믹 원통체의 개구부를 봉착하기 위한 금속제 덮개를 그 주변부 단면에 금속 솔더재에 접촉하도록 배치하는 공정과, 가열에 의해 금속 솔더재를 용융시키고 금속제 덮개를 세라믹 원통체의 개구단면에 솔더링하는 공정으로 구성된 것을 특징으로 하는 기밀성 세라믹 용기의 제조방법.Depositing an active metal composed of Ti and / Zr in an amount of 0.1-10 mg / cm 2 on the ceramic cylindrical opening end surface, forming an active metal layer, placing a metal solder material on the active metal layer, and ceramic Arranging a metal cover for sealing the opening of the cylindrical body in contact with the metal solder material on its periphery end face; melting the metal solder material by heating and soldering the metal cover to the opening end surface of the ceramic cylinder. A method for producing an airtight ceramic container, characterized in that. 제1항에 있어서, 활성금속을 피착하기 위해 활성금속의 분말을 포함한 페이스트를 도포하는 방법을 이용하는 것을 특징으로 하는 기밀성 세라믹 용기의 제조방법.The method of manufacturing an airtight ceramic container according to claim 1, wherein a method of applying a paste containing a powder of the active metal is used to deposit the active metal. 제1항에 있어서, 활성금속을 피착하기 위해 점착제를 도포한 세라믹 원통체의 개구단면에 활성금속 분말을 산포하여 부착시키는 방법을 이용하는 것을 특징으로 하는 기밀성 세라믹 용기의 제조방법.The method of manufacturing a gas-tight ceramic container according to claim 1, wherein a method of dispersing and attaching the active metal powder to an opening end surface of the ceramic cylinder coated with an adhesive to deposit the active metal is used. 제2항 또는 3항에 있어서, 활성금속 분말로써 평균 입경이 10㎛ 이하인 것을 이용하는 것을 특징으로 하는 기밀성 세라믹 용기의 제조방법.The method for manufacturing an airtight ceramic container according to claim 2 or 3, wherein the active metal powder has an average particle diameter of 10 µm or less. 제1항에 있어서, 금속 솔더재로써 윗면에는 세라믹 용기의 개구단면의 폭방향을 따라서 凸부를 설치하고 아랫면은 평활한 금속 솔더재 박판을 이용하는 것을 특징으로 하는 기밀성 세라믹 용기의 제조방법.The method of manufacturing a gas-tight ceramic container according to claim 1, wherein the upper surface is provided with a metal solder material along the width direction of the open end surface of the ceramic container, and the lower surface is a thin metal solder material thin plate. 제5항에 있어서, 금속 솔더재로써 세라믹 용기의 개구단면 솔더재의 폭방향을 따라서 관통구멍을 설치한 금속 솔더재 박관을 이용하는 것을 특징으로 하는 기밀성 세라믹 용기의 제조방법.The method of manufacturing a gas-tight ceramic container according to claim 5, wherein as the metal solder material, a metal solder material tube provided with a through hole along the width direction of the open end solder material of the ceramic container is used. 제5항 또는 제6항 중 어느 한 항에 있어서, 금속 솔더재로써 두층의 금속 솔더재 사이에 이들 금속 솔더재보다도 융점이 높은 금속으로 구성되는 배리어층을 삽입시킨 적층구조의 금속 솔더재 박판을 이용하는 것을 특징으로 하는 기밀성 세라믹 용기의 제조방법.The thin metal solder material thin plate according to any one of claims 5 and 6, wherein a barrier layer made of a metal having a higher melting point than these metal solder materials is inserted between two metal solder materials as the metal solder material. A method for producing an airtight ceramic container, characterized in that it is used. 제1항, 제2항, 제3항, 제5항, 제6항 중 어느 한 항에 따른 방법에 의해 제조된 기밀성 세라믹 용기.A hermetic ceramic container made by the method according to any one of claims 1, 2, 3, 5 and 6.
KR1019880003756A 1987-03-02 1988-04-02 Ceramic vessel and method for producing thereof Expired KR910001350B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900021744A KR910001351B1 (en) 1987-04-02 1990-12-24 Manufacturing method of vacuum valve using airtight ceramic container

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP7961887 1987-04-02
JP?62-79618 1987-04-02
JP62-79618 1987-04-02
JP17284587 1987-07-13
JP62-172843 1987-07-13
JP62-172845 1987-07-13
JP17284387 1987-07-13
JP63-49758 1988-03-04
JP63049758A JP2752079B2 (en) 1987-04-02 1988-03-04 Method of manufacturing airtight ceramic container

Publications (2)

Publication Number Publication Date
KR880012502A KR880012502A (en) 1988-11-28
KR910001350B1 true KR910001350B1 (en) 1991-03-04

Family

ID=27303064

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019880003756A Expired KR910001350B1 (en) 1987-03-02 1988-04-02 Ceramic vessel and method for producing thereof

Country Status (2)

Country Link
JP (1) JP2752079B2 (en)
KR (1) KR910001350B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976520B1 (en) * 2019-01-10 2019-05-10 주식회사 유성엔지니어링 Evacuator for tank and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6551421B1 (en) * 2000-11-20 2003-04-22 Honeywell International Inc. Brazing foil performs and their use in the manufacture of heat exchangers
US20060219756A1 (en) * 2003-08-02 2006-10-05 Kaoru Tada Active binder for brazing, part for brazing employing the binder, brazed product obtained with the binder, and silver brazing material
JP6146707B2 (en) * 2013-03-27 2017-06-14 パナソニックIpマネジメント株式会社 Ceramic-metal bonded body and method for manufacturing the same
WO2024257835A1 (en) * 2023-06-14 2024-12-19 京セラ株式会社 Joined body of metal and insulator, use thereof, and method for producing joined body of metal and insulator
JP7585450B1 (en) * 2023-12-22 2024-11-18 株式会社東芝 Ceramic sealing parts and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133761U (en) * 1975-04-18 1976-10-28

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101976520B1 (en) * 2019-01-10 2019-05-10 주식회사 유성엔지니어링 Evacuator for tank and method for manufacturing the same

Also Published As

Publication number Publication date
KR880012502A (en) 1988-11-28
JP2752079B2 (en) 1998-05-18
JPH01111784A (en) 1989-04-28

Similar Documents

Publication Publication Date Title
US4917642A (en) Air-tight ceramic container
EP0654174B1 (en) Sealed conductive active alloy feedthroughs
JP3870824B2 (en) SUBSTRATE HOLDER, SENSOR FOR SEMICONDUCTOR MANUFACTURING DEVICE, AND PROCESSING DEVICE
KR910007016B1 (en) Components for semiconductor
US12074099B2 (en) Microelectronics package assemblies and processes for making
US4500383A (en) Process for bonding copper or copper-chromium alloy to ceramics, and bonded articles of ceramics and copper or copper-chromium alloy
KR910001350B1 (en) Ceramic vessel and method for producing thereof
EP0129314B1 (en) Bonding metal to ceramic
US6156978A (en) Electrical feedthrough and its preparation
KR910001351B1 (en) Manufacturing method of vacuum valve using airtight ceramic container
US3371406A (en) Hermetic electrical lead-in assembly
JPH0749152B2 (en) Method for manufacturing envelope of rectifying element
JP3302121B2 (en) Manufacturing method of vacuum valve
JP2851881B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JPH06151642A (en) Ic package
JPH03254030A (en) Vacuum valve joining method and its vacuum valve
JP2642386B2 (en) Vacuum valve and method of manufacturing the same
US3100339A (en) Method of making composite bodies
JPH0779014B2 (en) Vacuum valve manufacturing method
JP2818210B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2848867B2 (en) Jointed body of alumina ceramics and iron-nickel alloy and joining method thereof
JP2631397B2 (en) Package for storing semiconductor elements
JPH10255606A (en) Manufacture of vacuum valve
JPH0256955A (en) Connection structure between parts for semiconductor devices
JPH02208957A (en) Electronic equipment sealing material

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

St.27 status event code: A-0-1-A10-A12-nap-PA0109

PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

R17-X000 Change to representative recorded

St.27 status event code: A-3-3-R10-R17-oth-X000

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

T11-X000 Administrative time limit extension requested

St.27 status event code: U-3-3-T10-T11-oth-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

T11-X000 Administrative time limit extension requested

St.27 status event code: U-3-3-T10-T11-oth-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

G160 Decision to publish patent application
PG1605 Publication of application before grant of patent

St.27 status event code: A-2-2-Q10-Q13-nap-PG1605

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U11-oth-PR1002

Fee payment year number: 1

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 5

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 6

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 7

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 8

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

PN2301 Change of applicant

St.27 status event code: A-5-5-R10-R13-asn-PN2301

St.27 status event code: A-5-5-R10-R11-asn-PN2301

FPAY Annual fee payment

Payment date: 19990225

Year of fee payment: 9

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 9

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee

St.27 status event code: A-4-4-U10-U13-oth-PC1903

Not in force date: 20000305

Payment event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

PC1903 Unpaid annual fee

St.27 status event code: N-4-6-H10-H13-oth-PC1903

Ip right cessation event data comment text: Termination Category : DEFAULT_OF_REGISTRATION_FEE

Not in force date: 20000305

R18-X000 Changes to party contact information recorded

St.27 status event code: A-5-5-R10-R18-oth-X000