[go: up one dir, main page]

KR840004825A - Broadband Gap p Amorphous Silicon Alloy with Oxygen and Devices Using the Same - Google Patents

Broadband Gap p Amorphous Silicon Alloy with Oxygen and Devices Using the Same Download PDF

Info

Publication number
KR840004825A
KR840004825A KR1019830001784A KR830001784A KR840004825A KR 840004825 A KR840004825 A KR 840004825A KR 1019830001784 A KR1019830001784 A KR 1019830001784A KR 830001784 A KR830001784 A KR 830001784A KR 840004825 A KR840004825 A KR 840004825A
Authority
KR
South Korea
Prior art keywords
alloy
band gap
oxygen
state density
amorphous silicon
Prior art date
Application number
KR1019830001784A
Other languages
Korean (ko)
Inventor
카넬라 빈센트
Original Assignee
원본미기재
에너지 컨버전 디바이시즈, 아이 엔 시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원본미기재, 에너지 컨버전 디바이시즈, 아이 엔 시 filed Critical 원본미기재
Publication of KR840004825A publication Critical patent/KR840004825A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • H10D62/834Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge further characterised by the dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/40Crystalline structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/10Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
    • H10F71/103Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

내용 없음No content

Description

산소를 갖는 광대역 갭 p 비결정 실리콘 합금 및 이를 이용한 소자Broadband Gap p Amorphous Silicon Alloy with Oxygen and Devices Using the Same

본 내용은 요부공개 건이므로 전문내용을 수록하지 않았음As this is a public information case, the full text was not included.

제1도는 본 발명의 광전 소자를 만들기 위하여 본 발명의 방법을 실시하는데 이용되는 글로우 방전 용착 장치의 개략도.1 is a schematic diagram of a glow discharge welding apparatus used to implement the method of the present invention to make the photoelectric device of the present invention.

제2도는 제1도의 선 2―2를 따라 취해진 제1도의 장치의 일부에 대한 단면도.FIG. 2 is a cross-sectional view of a portion of the apparatus of FIG. 1 taken along line 2-2 of FIG.

제4도는 본 발명의 p―i―n광전 소자의 단면도.4 is a cross-sectional view of a p-i-n photoelectric device of the present invention.

Claims (47)

기질상에 최소한 실리콘을 포함하는 재료를 용착하고, 그 재료에 최소한 하나의 상태 밀도 감소 원소와 P―형 도우펀트를 사용하고, 대역 갭 증가 원소를 도입하는 개선된 광 대역 갭 P 비결정 실리콘 해금 제조 방법에 있어서, 상기 대역 갭 증가 원소가 산소로 되어 산소를 1―30%의 범위로 포함하는 P―형 비결정 실리콘 합금을 만들어내는 것을 특징으로 하는 방법.Fabrication of an improved broad bandgap P amorphous silicon anneal that deposits at least a silicon-containing material on a substrate, employs at least one state density reducing element and a P-type dopant in the material, and introduces a bandgap increasing element. The method according to claim 1, wherein the band gap increasing element becomes oxygen to produce a P-type amorphous silicon alloy containing oxygen in the range of 1-30%. 제1항에 있어서, 상기 최소한 하나의 상태 밀도 감소 원소는 수소인 것을 특징으로 하는 방법.The method of claim 1 wherein the at least one state density reducing element is hydrogen. 제1항에 있어서, 상기 최소한 하나의 상태 밀도 감소 원소는 불소인 것을 특징으로 하는 방법.The method of claim 1 wherein said at least one state density reducing element is fluorine. 제3항에 있어서, 제2의 상태 밀도 감소 원소를 도입하고, 그 원소가 수소인 것을 또한 특징으로 하는 방법.4. A method according to claim 3, wherein a second state density reducing element is introduced and the element is hydrogen. 제4항에 있어서, 상기 두 상태 밀도 감소 원소 모두가 산소와 거의 동시에 상기 용착된 합금에 사용되는 것을 또한 특징으로 하는 방법.5. The method of claim 4, wherein both state density reducing elements are used in the deposited alloy at about the same time as oxygen. 제1항에서 제5항까지의 어느 한 항에 있어서, 상기 P―형 도우펀드가 불소인 것을 또한 특징으로 하는 방법.The method of claim 1, wherein the P-type dopant is also fluorine. 제1항에서 제6항 까지의 어느 한 항에 있어서, 상기 합금이 최소한 SiH4B2H6및 산소의 혼합물로 부터 글로우 방전 용착되어지는 것을 또한 특징으로 하는 방법.The method according to claim 1, wherein the alloy is glow discharged from at least a mixture of SiH 4 B 2 H 6 and oxygen. 제7항에 있어서, 상기 혼합물에서 산소의 농도는 0.01―1%의 범위내인 것을 또한 특징으로 하는 방법.8. The method of claim 7, wherein the concentration of oxygen in the mixture is further in the range of 0.01-1%. 제8항에 있어서, 상기 산소는 상기 혼합물 내에서 아르곤 가스로 희석되는 것을 또한 특징으로 하는 방법.9. The method of claim 8, wherein the oxygen is further diluted with argon gas in the mixture. 제7항에서 제9항 까지의 어느 한 항에 있어서, 상기 혼합물이 94.6%의 SiH4, 대략 5.2%의 B2H6및 대략 0.2%의 산소를 포함하는 방법.The method of claim 7, wherein the mixture comprises 94.6% SiH 4 , approximately 5.2% B 2 H 6 and approximately 0.2% oxygen. 제1항에서 제6항까지의 어느 한 항에 있어서, 상기 합금이 최소한 SiF4, SiH4, B2H6및 산소의 혼합물로 부터 글로우 방전용착되는 것을 또한 특징으로 하는 방법.The method according to claim 1, wherein the alloy is also glow discharge welded from a mixture of at least SiF 4 , SiH 4 , B 2 H 6 and oxygen. 제11항에 있어서, 상기 혼합물에서 산소의 농도가 0.01―1%범위내인 것을 또한 특징으로 하는 방법.12. The method of claim 11, wherein the concentration of oxygen in the mixture is in the range of 0.01-1%. 제12항에 있어서, 상기 산소가 상기 혼합물에서 아르곤가스로 희석되어지는 것을 또한 특징으로 하는 방법.13. The method of claim 12, wherein said oxygen is diluted with argon gas in said mixture. 제1항에서 제13항가지의 어느 한 항에 있어서, 상기 산소의 사용량에 비해 작은량의 제2대역 갭 증가 원소를 사용하고, 그 제2 대역 갭 증가 원소가 탄소인 것을 또한 특징으로 하는 방법.The method according to any one of claims 1 to 13, further comprising using a small amount of the second band gap increasing element relative to the amount of oxygen used, and wherein the second band gap increasing element is carbon. . 제1항에 따른 방법으로 만들어지는 것을 특징으로하는 비결정 합금.An amorphous alloy made by the method according to claim 1. 제2항에 따른 방법으로 만들어지는 것을 특징으로하는 비결정 합금.An amorphous alloy made by the method according to claim 2. 제3항에 따른 방법으로 만들어지는 것을 특징으로하는 비결정 합금.Amorphous alloy made by the method according to claim 3. 제4항에 따른 방법으로 만들어지는 것을 특징으로하는 비결정 합금.An amorphous alloy made by the method according to claim 4. 제5항에 따른 방법으로 만들어지는 것을 특징으로하는 비결정 합금.Amorphous alloy made by the method according to claim 5. 제14항에 따른 방법으로 만들어지는 것을 특징으로하는 비결정 합금.An amorphous alloy made by the method according to claim 14. 실리콘을 포함하고 최소한 하나의 상태 밀도 감소 원소와 P―형 도우펀트를 사용하는 개선된 광대역 갭 P 비결정 실리콘 합금에 있어서, 그 개선점은 상기 합금이 그안에 최소한 하나의대역 갭 증가 원소를 사용하고, 그 원소가 산소이며, 사기 합금이 산소를 1―30%의 범위내로 포함하는 것이 특징인 합금.In an improved broadband gap P amorphous silicon alloy comprising silicon and using at least one state density reducing element and a P-type dopant, the improvement is that the alloy uses at least one band gap increasing element therein, The alloy is characterized in that the element is oxygen, and the fructose alloy contains oxygen in the range of 1-30%. 제21항에 있어서, 상기 최소한 하나의 상태 밀도 감소원소가 수소인 것이 또한 특정한 합금.22. The alloy of claim 21, wherein the at least one state density reducing element is hydrogen. 제21항에 있어서, 상기 최소한 하나의 상태 밀도 감소원소가 불소인 것이 또한 특정한 합금.22. The alloy of claim 21, wherein the at least one state density reducing element is fluorine. 제23항에 있어서, 사용되는 또 하나의 상태 밀도 감소원소가 사용되고, 그 원소가 수소인 것이 또한 특정한 합금.24. The alloy of claim 23, wherein another state density reducing element used is used and the element is hydrogen. 제21항에서 제24항까지의 어느 한 항에 있어서, 상기 P―형 도우펀트가 불소인 것이 특징인 합금.The alloy according to any of claims 21 to 24, wherein the P-type dopant is fluorine. 제21항에서 제25항까지의 어느 한 항에 있어서, 산소의 농도에 비해 또 하나의 대역 갭 증가 원소가 농도가 낮으며, 그 원소가 탄소인 것이 특징인 합금.The alloy according to any one of claims 21 to 25, wherein another zone gap increasing element has a lower concentration than that of oxygen, and the element is carbon. 방사선이 출돌하여 전하 캐리어를 생성하는 순수한 활성광감응성 층을 형성하는 비결정 반도체 합금체를 포함하는 기질상에 용착되는 여러 재료의 중첨된 층을 포함하는 광감응성 소자에 있어서, 상기 순수층에 인접한 광 대역 갭 P 비결정 실리콘 합금층이 최소한 하나의 상태 밀도 감소 원소, P―형 도우펀트, 및 최소한 하나의 대역 갭 증가 원소를 포함하고, 상기 대역 갭 증가 원소는 산소이며, 상기 광 대역 갭 비결정 실리콘 합금이 상기 산소를 1―30%의 범위내로 포함하는 것을 특징으로 하는 개선된 소자.A photosensitive device comprising a superimposed layer of various materials deposited onto a substrate comprising an amorphous semiconductor alloy body in which radiation is incident to form a pure active photosensitive layer that generates charge carriers, the light adjacent to the pure layer. The band gap P amorphous silicon alloy layer includes at least one state density reducing element, a P-type dopant, and at least one band gap increasing element, the band gap increasing element is oxygen, and the wide band gap amorphous silicon alloy An improved device comprising this oxygen in the range of 1-30%. 제27항에 있어서, n―형 비결정 실리콘 합금층이 상기 순수층에 상기 광 대역 밴드 갭 P 비결정 실리콘 합금층의 반대측으로 인접해 있는 것을 특징으로 하는 소자.28. The device of claim 27, wherein an n-type amorphous silicon alloy layer is adjacent to the pure layer opposite to the wide band band gap P amorphous silicon alloy layer. 제28항에 있어서, 이면 반사층이 상기 기질에 인접하고 상기 기질과 상기 비결정 실리콘 합금층의 하나와의 사이에 놓이는 것을 또한 특징으로 하는 소자.29. The device of claim 28, wherein a back reflective layer is adjacent to the substrate and lies between the substrate and one of the amorphous silicon alloy layers. 제27항에서 제29항까지의 어느 한 항에 있어서, 상기 상태 밀도 감소 원소가 수소인 것을 또한 특징으로 하는 소자.The device according to any one of claims 27 to 29, wherein the state density reducing element is hydrogen. 제27항에서 제29항까지의 어느 한 항에 있어서, 상기 상태 밀도 감소 원소가 불소인 것을 또한 특징으로 하는 소자.The device according to any one of claims 27 to 29, wherein the state density reducing element is fluorine. 제31항에 있어서, 상기 광 대역 갭 P 비결정 실리콘 합금층이 또 하나의 상태 밀도 감소 원소를 포함하며, 그 원소가 수소인 것을 또한 특징으로 하는 소자.32. The device of claim 31, wherein the wide band gap P amorphous silicon alloy layer comprises another state density reducing element, wherein the element is hydrogen. 제27항에서 제32항 까지의 어느 한 항에 있어서, 상기 P―형 도우펀트가 불소인 것을 또한 특정으로 하는 소자.33. A device in accordance with any one of claims 27 to 32 wherein the P-type dopant is also fluorine. 제27항에서 제33항 까지의 어느 한 항에 있어서, 상기 광 대역 갭 P 비결정 실리콘 합금층이 또 하나의 대역 갭 증가 원소를 상기 산소의 농도에 비해 작은 농도로 포함하고, 그 원소가 탄소인 것을 특징으로 하는 소자.34. The method according to any one of claims 27 to 33, wherein the wide band gap P amorphous silicon alloy layer contains another band gap increasing element at a smaller concentration than the concentration of oxygen, and the element is carbon. Device characterized in that. 기질상에 용착되는 비결정 반도체 합금이 복수 층들로 형성되는 다중 셀 광전 소자에 있어서, 직렬로 배열되는 다수의 단일셀 유니트로 구성되고, 그 단일 셀각각은 제1의 도우핑된 비결정 반도체 합금층, 그 제1의 도우핑된 층에 용착되는 순수 비결정 반도체 합금체, 상기 순수 합금체에 용착되며, 상기 제1의 도우핑된 비결정 반도체 합금층에 대한 반대 도전성인 또 하나의 도우핑된 비결정 반도체 합금층을 포함하고, 상기 단일 셀 유니트들 중의 최소한 하나의 상기 도우핑된 비결정 반도체 합금층들 중 최소한 하나는 최소한 하나의 상태 밀도 감소 원소, P―형 도우펀트, 및 최소한 하나의 대역 갭 증가 원소를 포함하며, 그 대역 갭 증가 원소는 산소로 되고, 상기 광 대역 갭 P 비결정 실리콘 합금이 상기 산소를 1―30%의 범위로 포함하는 것을 특징으로 하는 다중셀 광전소자.A multi-cell photovoltaic device in which an amorphous semiconductor alloy deposited on a substrate is formed of a plurality of layers, comprising a plurality of single cell units arranged in series, each single cell comprising a first doped amorphous semiconductor alloy layer, A pure amorphous semiconductor alloy deposited on the first doped layer, another doped amorphous semiconductor alloy deposited on the pure alloy and opposite in conductivity to the first doped amorphous semiconductor alloy layer At least one of the doped amorphous semiconductor alloy layers of at least one of the single cell units comprises at least one state density reducing element, a P-type dopant, and at least one band gap increasing element. Wherein the band gap increasing element is oxygen, and the wide band gap P amorphous silicon alloy includes the oxygen in the range of 1-30%. Multi-cell photoelectric device. 제35항에 있어서, 상기 광대 역 갭 P 비결정 실리콘 합금은 또 하나의 대역 갭 증가 원소를 상기 산소의 농도에 비해 작은 농도로 포함하고, 그 또 하나의 대역 갭 증가 원소가 탄소인 것을 특징으로 하는 소자.36. The method of claim 35, wherein the wide-gap P amorphous silicon alloy includes another band gap increasing element at a smaller concentration than the concentration of oxygen, and the another band gap increasing element is carbon. device. 제35항 또는 제36항 중의 어느 한 항에 있어서, 상기 상태 밀도 감소 원소가 수소인 것을 또한 특징으로 하는 소자.37. An element according to any one of claims 35 to 36, wherein said state density reducing element is hydrogen. 제35항 또는 제36항 중의 어느 한 항에 있어서, 상기 상태 밀도 감소 원소가 불소인 것을 또한 특징으로 하는 소자.37. An element according to any one of claims 35 to 36, wherein said state density reducing element is fluorine. 제38항에 있어서, 상기 광 대역 갭 P 비결정 실리콘 합금이 또 하나의 상태 밀도 감소 원소를 포함하고, 그 원소가 수소인 것을 또한 특징으로 하는 소자.39. The device of claim 38, wherein the wide band gap P amorphous silicon alloy comprises another state density reducing element, wherein the element is hydrogen. 제35항에서 제39항 까지의 어느 한 항에 있어서, 상기 기질에 바로 인접한 이면 반사층을 또한 특징으로 하는 소자.40. The device of any one of claims 35 to 39, further comprising a back reflective layer immediately adjacent the substrate. 제40항에 있어서, 상기 광 대역 갭 P 비결정 실리콘 합금층이 상기 이면 반사층의 상기 기질에 반대편 측데 인접해 있는 것을 또한 특징으로 하는 소자.41. The device of claim 40, wherein the wide band gap P amorphous silicon alloy layer is adjacent to the opposite side of the substrate of the back reflective layer. 제40항에 있어서, 상기 광 대역 갭 P 비결정 실리콘 합금층이 상기 기질에 대한 최상부의 비결정 반도체 합금층을 형성하는 것을 또한 특징으로 하는 소자.41. The device of claim 40, wherein the wide band gap P amorphous silicon alloy layer forms a top amorphous semiconductor alloy layer for the substrate. 제35항에서 제42항까지의 어느 한 항에 있어서, 상기 순수 합금체 각각은 대역 갭을 가지며 그 순수 합금체 중의 최소한 하나는 특정한 광 감응 파장 특성에 대해 조절된 대역 갭을 갖는 것을 또한 특징으로 하는 소자.43. The method of any one of claims 35 to 42, wherein each of the pure alloys has a band gap and at least one of the pure alloys has a band gap adjusted for a particular light sensitive wavelength characteristic. Element. 제43항에 있어서, 상기 최소한 하나의 순수 합금체는 감소된 대역 갭을 갖는 것을 또한 특징으로 하는 소자.44. The device of claim 43, wherein said at least one pure alloy has a reduced band gap. 제44항에 있어서, 상기 최소한 하나의 순수 합금체는 게르마늄, 주석 또는 납의 그룹에서 선정된 최소한 하나의 대역 갭 감소 원소를 포함하는 것을 또한 특징으로 하는 소자.45. The device of claim 44, wherein the at least one pure alloy comprises at least one band gap reducing element selected from the group of germanium, tin or lead. 제43항에 있어서, 상기 최소한 하나의 순수 합금체는 증가된 대역 갭을 갖는 것을 또한 특징으로 하는 소자.The device of claim 43, wherein the at least one pure alloy has an increased band gap. 제46항에 있어서, 상기 최소한 하나의 순수 합금체는 탄소와 질소의 그룹에서 선정된 최소한 하나의 대역 갭 증가 원소를 포함하는 것을 또한 특징으로 하는 소자.The device of claim 46, wherein the at least one pure alloy comprises at least one band gap increasing element selected from the group of carbon and nitrogen. ※참고사항 : 최초출원 내용에 의하여 공개하는 것임.※ Note: It is to be disclosed based on the initial application.
KR1019830001784A 1982-04-28 1983-04-27 Broadband Gap p Amorphous Silicon Alloy with Oxygen and Devices Using the Same KR840004825A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US37257982A 1982-04-28 1982-04-28
US372,579 1982-04-28

Publications (1)

Publication Number Publication Date
KR840004825A true KR840004825A (en) 1984-10-24

Family

ID=23468765

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019830001784A KR840004825A (en) 1982-04-28 1983-04-27 Broadband Gap p Amorphous Silicon Alloy with Oxygen and Devices Using the Same

Country Status (8)

Country Link
JP (1) JPS58199710A (en)
KR (1) KR840004825A (en)
AU (1) AU1368883A (en)
DE (1) DE3314197A1 (en)
FR (1) FR2526223A1 (en)
GB (1) GB2124826A (en)
IT (1) IT8320731A0 (en)
NL (1) NL8301440A (en)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59130483A (en) * 1982-12-24 1984-07-27 Ricoh Co Ltd Thin film solar battery
NL8501769A (en) * 1984-10-02 1986-05-01 Imec Interuniversitair Micro E BIPOLAR HIGH-JUNCTION TRANSISTOR AND METHOD FOR THE MANUFACTURE THEREOF.
US6380480B1 (en) * 1999-05-18 2002-04-30 Nippon Sheet Glass Co., Ltd Photoelectric conversion device and substrate for photoelectric conversion device
JP4565105B2 (en) * 2005-05-02 2010-10-20 独立行政法人 宇宙航空研究開発機構 Optical thin film for solar cell and method for producing the same
US9105776B2 (en) 2006-05-15 2015-08-11 Stion Corporation Method and structure for thin film photovoltaic materials using semiconductor materials
US8017860B2 (en) 2006-05-15 2011-09-13 Stion Corporation Method and structure for thin film photovoltaic materials using bulk semiconductor materials
US8071179B2 (en) 2007-06-29 2011-12-06 Stion Corporation Methods for infusing one or more materials into nano-voids if nanoporous or nanostructured materials
US7919400B2 (en) 2007-07-10 2011-04-05 Stion Corporation Methods for doping nanostructured materials and nanostructured thin films
US8759671B2 (en) 2007-09-28 2014-06-24 Stion Corporation Thin film metal oxide bearing semiconductor material for single junction solar cell devices
US8287942B1 (en) 2007-09-28 2012-10-16 Stion Corporation Method for manufacture of semiconductor bearing thin film material
US8058092B2 (en) 2007-09-28 2011-11-15 Stion Corporation Method and material for processing iron disilicide for photovoltaic application
US8614396B2 (en) 2007-09-28 2013-12-24 Stion Corporation Method and material for purifying iron disilicide for photovoltaic application
US8187434B1 (en) 2007-11-14 2012-05-29 Stion Corporation Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration
US8440903B1 (en) 2008-02-21 2013-05-14 Stion Corporation Method and structure for forming module using a powder coating and thermal treatment process
US8075723B1 (en) 2008-03-03 2011-12-13 Stion Corporation Laser separation method for manufacture of unit cells for thin film photovoltaic materials
US8772078B1 (en) 2008-03-03 2014-07-08 Stion Corporation Method and system for laser separation for exclusion region of multi-junction photovoltaic materials
US7939454B1 (en) 2008-05-31 2011-05-10 Stion Corporation Module and lamination process for multijunction cells
US8642138B2 (en) 2008-06-11 2014-02-04 Stion Corporation Processing method for cleaning sulfur entities of contact regions
US9087943B2 (en) 2008-06-25 2015-07-21 Stion Corporation High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material
US8003432B2 (en) 2008-06-25 2011-08-23 Stion Corporation Consumable adhesive layer for thin film photovoltaic material
US8207008B1 (en) 2008-08-01 2012-06-26 Stion Corporation Affixing method and solar decal device using a thin film photovoltaic
US7855089B2 (en) 2008-09-10 2010-12-21 Stion Corporation Application specific solar cell and method for manufacture using thin film photovoltaic materials
US8501521B1 (en) 2008-09-29 2013-08-06 Stion Corporation Copper species surface treatment of thin film photovoltaic cell and manufacturing method
US8008112B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk chloride species treatment of thin film photovoltaic cell and manufacturing method
US8476104B1 (en) 2008-09-29 2013-07-02 Stion Corporation Sodium species surface treatment of thin film photovoltaic cell and manufacturing method
US8008110B1 (en) 2008-09-29 2011-08-30 Stion Corporation Bulk sodium species treatment of thin film photovoltaic cell and manufacturing method
US8026122B1 (en) 2008-09-29 2011-09-27 Stion Corporation Metal species surface treatment of thin film photovoltaic cell and manufacturing method
US8394662B1 (en) 2008-09-29 2013-03-12 Stion Corporation Chloride species surface treatment of thin film photovoltaic cell and manufacturing method
US8236597B1 (en) 2008-09-29 2012-08-07 Stion Corporation Bulk metal species treatment of thin film photovoltaic cell and manufacturing method
US8383450B2 (en) 2008-09-30 2013-02-26 Stion Corporation Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials
US7910399B1 (en) 2008-09-30 2011-03-22 Stion Corporation Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
US7947524B2 (en) 2008-09-30 2011-05-24 Stion Corporation Humidity control and method for thin film photovoltaic materials
US8425739B1 (en) 2008-09-30 2013-04-23 Stion Corporation In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials
US7863074B2 (en) 2008-09-30 2011-01-04 Stion Corporation Patterning electrode materials free from berm structures for thin film photovoltaic cells
US8741689B2 (en) 2008-10-01 2014-06-03 Stion Corporation Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials
US20110018103A1 (en) 2008-10-02 2011-01-27 Stion Corporation System and method for transferring substrates in large scale processing of cigs and/or cis devices
US8435826B1 (en) 2008-10-06 2013-05-07 Stion Corporation Bulk sulfide species treatment of thin film photovoltaic cell and manufacturing method
US8003430B1 (en) 2008-10-06 2011-08-23 Stion Corporation Sulfide species treatment of thin film photovoltaic cell and manufacturing method
USD625695S1 (en) 2008-10-14 2010-10-19 Stion Corporation Patterned thin film photovoltaic module
US8168463B2 (en) 2008-10-17 2012-05-01 Stion Corporation Zinc oxide film method and structure for CIGS cell
US8344243B2 (en) 2008-11-20 2013-01-01 Stion Corporation Method and structure for thin film photovoltaic cell using similar material junction
USD628332S1 (en) 2009-06-12 2010-11-30 Stion Corporation Pin striped thin film solar module for street lamp
USD662040S1 (en) 2009-06-12 2012-06-19 Stion Corporation Pin striped thin film solar module for garden lamp
USD632415S1 (en) 2009-06-13 2011-02-08 Stion Corporation Pin striped thin film solar module for cluster lamp
USD662041S1 (en) 2009-06-23 2012-06-19 Stion Corporation Pin striped thin film solar module for laptop personal computer
USD652262S1 (en) 2009-06-23 2012-01-17 Stion Corporation Pin striped thin film solar module for cooler
US8507786B1 (en) 2009-06-27 2013-08-13 Stion Corporation Manufacturing method for patterning CIGS/CIS solar cells
USD627696S1 (en) 2009-07-01 2010-11-23 Stion Corporation Pin striped thin film solar module for recreational vehicle
US8398772B1 (en) 2009-08-18 2013-03-19 Stion Corporation Method and structure for processing thin film PV cells with improved temperature uniformity
US8809096B1 (en) 2009-10-22 2014-08-19 Stion Corporation Bell jar extraction tool method and apparatus for thin film photovoltaic materials
US8859880B2 (en) 2010-01-22 2014-10-14 Stion Corporation Method and structure for tiling industrial thin-film solar devices
US8263494B2 (en) 2010-01-25 2012-09-11 Stion Corporation Method for improved patterning accuracy for thin film photovoltaic panels
US9096930B2 (en) 2010-03-29 2015-08-04 Stion Corporation Apparatus for manufacturing thin film photovoltaic devices
US8461061B2 (en) 2010-07-23 2013-06-11 Stion Corporation Quartz boat method and apparatus for thin film thermal treatment
US8628997B2 (en) 2010-10-01 2014-01-14 Stion Corporation Method and device for cadmium-free solar cells
US8728200B1 (en) 2011-01-14 2014-05-20 Stion Corporation Method and system for recycling processing gas for selenization of thin film photovoltaic materials
US8436445B2 (en) 2011-08-15 2013-05-07 Stion Corporation Method of manufacture of sodium doped CIGS/CIGSS absorber layers for high efficiency photovoltaic devices

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1123525A (en) * 1977-10-12 1982-05-11 Stanford R. Ovshinsky High temperature amorphous semiconductor member and method of making same
US4178415A (en) * 1978-03-22 1979-12-11 Energy Conversion Devices, Inc. Modified amorphous semiconductors and method of making the same
EP0035146B1 (en) * 1980-02-15 1988-10-12 Matsushita Electric Industrial Co., Ltd. Semiconductor photoelectric device

Also Published As

Publication number Publication date
FR2526223A1 (en) 1983-11-04
GB2124826A (en) 1984-02-22
NL8301440A (en) 1983-11-16
DE3314197A1 (en) 1983-11-03
AU1368883A (en) 1983-11-03
IT8320731A0 (en) 1983-04-21
JPS58199710A (en) 1983-11-21
GB8311175D0 (en) 1983-06-02

Similar Documents

Publication Publication Date Title
KR840004825A (en) Broadband Gap p Amorphous Silicon Alloy with Oxygen and Devices Using the Same
US4471155A (en) Narrow band gap photovoltaic devices with enhanced open circuit voltage
KR890003499B1 (en) Method for continuously manufacturing P-type semiconductor alloy
JP2814351B2 (en) Photoelectric device
EP0141537A1 (en) Solar cell made from amorphous superlattice material
US4453173A (en) Photocell utilizing a wide-bandgap semiconductor material
KR840004986A (en) Semiconductor photoelectric conversion device and manufacturing method thereof
US4451838A (en) Semiconductor photoelectric conversion device
US4144094A (en) Radiation responsive current generating cell and method of forming same
US5923049A (en) Trichromatic sensor
CA2204124C (en) Trichromatic sensor
EP0241226A2 (en) Semiconductor device and method of making it
US5053844A (en) Amorphous silicon photosensor
JPS60210826A (en) Solar battery
US4672148A (en) Thin-film solar cells
JPH11274527A (en) Photovoltaic device
JPS6118183A (en) Solid-state photodetecting device
Nakamura et al. Staebler-Wronski effects in hydrogenated amorphous Si1− xGex
JPS55157276A (en) Amorphous thin film solar battery
KR870003582A (en) Light receiving element
JPS62256481A (en) Semiconductor device
JPS6143872B2 (en)
JPS59202673A (en) Superposed photodetector
JP3197674B2 (en) Photovoltaic device
JPH0794768A (en) Photovoltaic device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19830427

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid