KR20250010892A - Mg-doped La0.7Sr0.3-xMgxMnO3 ceramics and its manufacturing method - Google Patents
Mg-doped La0.7Sr0.3-xMgxMnO3 ceramics and its manufacturing method Download PDFInfo
- Publication number
- KR20250010892A KR20250010892A KR1020230091082A KR20230091082A KR20250010892A KR 20250010892 A KR20250010892 A KR 20250010892A KR 1020230091082 A KR1020230091082 A KR 1020230091082A KR 20230091082 A KR20230091082 A KR 20230091082A KR 20250010892 A KR20250010892 A KR 20250010892A
- Authority
- KR
- South Korea
- Prior art keywords
- mno
- ceramics
- doped
- mixture
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/016—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/632—Organic additives
- C04B35/634—Polymers
- C04B35/63404—Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B35/63416—Polyvinylalcohols [PVA]; Polyvinylacetates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3213—Strontium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3262—Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/02—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
- H01C7/022—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
- H01C7/023—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
- H01C7/025—Perovskites, e.g. titanates
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
본 발명은 우수한 전기전도 특성을 나타내는 La0.7Sr0.3MnO3 (LSMO) 에 Sr2+를 이온반경이 다른 Mg2+로 치환시키는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스 및 이의 제조방법에 관한 것으로, La0.7Sr0.3MnO3 (LSMO) 에 MgO를 첨가함으로써, 종래의 고상반응법에 비해 짧은 시간 내에 제조가 가능하므로 생산성이 높은 효과가 있고, 상온에서 온도변화에 따른 전기저항이 선형적으로 감소하는 NTCR(negative temperature coefficient of resistance)특징을 나타내므로 온도센서용 서미스터 소재로의 활용이 가능할 것으로 기대된다.The present invention relates to Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics characterized by replacing Sr 2+ with Mg 2+ having a different ionic radius in La 0.7 Sr 0.3 MnO 3 (LSMO) exhibiting excellent electrical conductivity characteristics, and a method for producing the same. By adding MgO to La 0.7 Sr 0.3 MnO 3 (LSMO), it is possible to produce the ceramics in a short period of time compared to a conventional solid-state reaction method, thereby exhibiting high productivity. In addition, it is expected that the ceramics can be utilized as a thermistor material for temperature sensors since it exhibits a NTCR (negative temperature coefficient of resistance) characteristic in which the electrical resistance linearly decreases with temperature change at room temperature.
Description
본 발명은 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스 및 이의 제조방법에 관한 것으로, 보다 상세하게는 우수한 전기전도 특성을 나타내는 La0.7Sr0.3MnO3 (LSMO)에 Sr2+를 이온반경이 다른 Mg2+로 치환시킴으로써, 실온 부근에서 온도변화에 따른 전기저항이 선형적으로 감소하는 NTCR(negative temperature coefficient of resistance)특성을 갖는 것을 특징으로 하는 세라믹스와 그 제조방법에 관한 것이다.The present invention relates to Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics and a method for producing the same, and more specifically, to ceramics characterized by having a NTCR (negative temperature coefficient of resistance) characteristic in which the electrical resistance linearly decreases with temperature change near room temperature by substituting Sr 2+ with Mg 2+ having a different ionic radius in La 0.7 Sr 0.3 MnO 3 (LSMO) exhibiting excellent electrical conductivity characteristics, and a method for producing the same.
페로브스카이트 구조를 갖는 망간계 화합물, R1-xAxMnO3(R=rare-earth, A=alkaline-earth 원소)은 구성 원소와 제조방법에 따른 자성상태의 변화 및 인가 온도와 자계에 의한 금속-비금속 천이특성을 나타낸다. Manganese compounds with a perovskite structure, R 1-x A x MnO 3 (R = rare-earth, A = alkaline-earth element), show changes in magnetic state depending on the constituent elements and manufacturing method, and metal-nonmetal transition characteristics depending on the applied temperature and magnetic field.
특히 비특허문헌 1, 2에서 알려진 바와 같이 외부 자기장 인가에 따른 초거대 자기저항(colossal magnetoresistance)특성을 이용하여 자기장 센서, magnetic random access memory (MRAM), spintronic 소자 등으로의 응용을 위한 활발한 연구가 진행되고 있으며, 특허문헌 1 내지 2와 같은 다양한 특허들이 출원되고 있다. In particular, as known from non-patent documents 1 and 2, active research is being conducted for applications to magnetic field sensors, magnetic random access memory (MRAM), spintronic devices, etc. by utilizing the colossal magnetoresistance characteristics according to the application of an external magnetic field, and various patents such as patent documents 1 and 2 are being applied for.
LaMnO3는 MnO6 산소 8면체 구조의 중심에 3개의 t2 g와 2개의 eg 궤도로 분리된 5개의 3d-궤도를 갖는 Mn3+가 위치하며, 3d4 (t3 2g, e1 g)의 전자 배열을 갖는다. La3+ 이온에 Sr2+ 이온을 치환하면 전기적 중성상태를 유지하기 위해 Mn 이온의 일부가 Mn3+에서 Mn4+로 변환되며, 이때 Mn4+ 이온의 전자 배열은 3d3 (t3 2g, e0 g)이 된다. 따라서 La3+ 이온에 Sr2+ 이온을 치환함에 따라 정공 도핑이 유도된다. Mn3+와 Mn4+ 이온이 혼재하는 경우 Mn3+-O-Mn4+ 배열에서 인접한 산소이온을 매개로 한 이중 교환(double exchange, DE) 상호작용에 의해 높은 자기저항 특성을 나타낸다. LaMnO 3 has Mn 3+ at the center of the MnO 6 oxygen octahedral structure, which has five 3d orbitals separated by three t 2 g and two e g orbitals, and has an electron configuration of 3d 4 (t 3 2g , e 1 g ). When Sr 2+ ions are substituted for La 3+ ions, some of the Mn ions are converted from Mn 3+ to Mn 4+ to maintain electrical neutrality, and at this time, the electron configuration of the Mn 4+ ion becomes 3d 3 (t 3 2g , e 0 g ). Therefore, hole doping is induced by substituting Sr 2+ ions for La 3+ ions. When Mn 3+ and Mn 4+ ions are mixed, high magnetoresistance characteristics are exhibited due to double exchange (DE) interaction mediated by adjacent oxygen ions in the Mn 3+ -O-Mn 4+ arrangement.
일반적으로 R1-xAxMnO3에 대한 연구는 다양한 R3+ 원소에 대해 A2+원소 치환과 조성변화에 의한 정공(hole) 도핑과 Mn4+ 생성 그리고 DE 상호작용에 의한 전자기적 특성 고찰이 주로 진행되어 왔으며, 결정립, 결정입계, 기공 그리고 격자 왜곡 등의 구조적 변화에 따른 연구는 부족한 실정이다. In general, studies on R 1-x A x MnO 3 have mainly focused on hole doping and Mn 4+ generation by substitution of A 2+ elements and compositional changes for various R 3+ elements, and examination of electromagnetic properties by DE interaction. However, studies on structural changes such as grains, grain boundaries, pores, and lattice distortion are insufficient.
본 발명에서는 우수한 전기전도 특성을 나타내는 La0.7Sr0.3MnO3 (LSMO) 물질을 선택한 후, Sr2+를 이온반경이 다른 Mg2+로 치환함에 따른 구조적, 전기적 특성을 관찰하여 온도센서용 서미스터로 활용 가능한 세라믹스를 제조하였다.In the present invention, a La 0.7 Sr 0.3 MnO 3 (LSMO) material exhibiting excellent electrical conductivity was selected, and then the structural and electrical characteristics were observed by substituting Sr 2+ with Mg 2+ having a different ionic radius, thereby manufacturing a ceramic that can be used as a thermistor for a temperature sensor.
본 발명은 우수한 전기전도 특성을 나타내는 La0.7Sr0.3MnO3 (LSMO) 물질을 선택한 후, Sr2+를 이온반경이 다른 Mg2+로 치환함에 따른 구조적, 전기적 특성을 관찰하여 온도센서로 가능한 서미스터용 세라믹스를 제조하기 위해 안출된 것으로서, Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스 및 그 제조방법을 제공하는 것을 목적으로 한다.The present invention was devised to manufacture a thermistor ceramic that can be used as a temperature sensor by selecting a La 0.7 Sr 0.3 MnO 3 (LSMO) material exhibiting excellent electrical conductivity properties and observing the structural and electrical properties according to substitution of Sr 2+ with Mg 2+ having a different ionic radius, and the purpose of the present invention is to provide Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics and a manufacturing method therefor.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 본 발명의 기재로부터 당해 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있다.The technical problems to be achieved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by a person having ordinary skill in the art from the description of the present invention.
상기의 과제를 달성하기 위하여 본 발명의 바람직한 실시예는 La2O3, SrCO3, MgO, Mn2O3의 원료를 혼합하는 단계(S1); 상기 혼합된 원료에 분산매를 첨가하여 혼합물을 분쇄하는 단계(S2); 상기 분쇄된 혼합물의 고상반응을 위해 하소하는 단계(S3); 상기 하소한 혼합물 분말에 바인더를 혼합하여 소결하는 단계(S4); 및 상기 소결한 혼합물을 냉각하는 단계(S5);를 포함하는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법을 과제의 해결 수단으로 한다.In order to achieve the above object, a preferred embodiment of the present invention is a method for manufacturing Mg-doped La 0.7 Sr 0.3 - x Mg x MnO 3 ceramics, characterized by including the steps of (S1) mixing raw materials of La 2 O 3 , SrCO 3 , MgO, and Mn 2 O 3 ; the step of (S2) adding a dispersion medium to the mixed raw materials and pulverizing the mixture ; the step of (S3) calcining the pulverized mixture for a solid-state reaction ; the step of ( S4 ) mixing a binder into the calcined mixture powder and sintering it ; and the step of ( S5 ) cooling the sintered mixture.
상기 원료 혼합 단계(S1)에서, 원료인 La2O3, SrCO3, MgO, Mn2O3은 La0.7Sr0.3-xMgxMnO3의 조성식에 따라 화학양론적으로 칭량하여 혼합하며, La0.7Sr0.3-xMgxMnO3에서 x는 0.05 ≤ x ≤ 0.2인 것을 특징으로 한다. In the above raw material mixing step (S1), the raw materials La 2 O 3 , SrCO 3 , MgO, and Mn 2 O 3 are stoichiometrically weighed and mixed according to the composition formula of La 0.7 Sr 0.3-x Mg x MnO 3 , and it is characterized in that in La 0.7 Sr 0.3-x Mg x MnO 3 , x is 0.05 ≤ x ≤ 0.2.
상기 혼합물 분쇄 단계(S2)에서, 혼합물 100 중량부에 대하여 분산매 30 내지 50 중량부를 혼합한 다음 지르코니아 볼밀을 이용하여 22시간 내지 26시간 동안 혼합 분쇄하는 것을 특징으로 하며, 상기 분산매는 메탄올, 에탄올, 아이소프로필알콜, 아세톤 및 증류수 중에서 선택된 1종 또는 그 이상의 혼합 용매인 것을 특징으로 한다.In the above mixture grinding step (S2), 30 to 50 parts by weight of a dispersion medium are mixed with 100 parts by weight of the mixture, and then the mixture is ground for 22 to 26 hours using a zirconia ball mill. The dispersion medium is characterized in that it is one or more mixed solvents selected from methanol, ethanol, isopropyl alcohol, acetone, and distilled water.
상기 하소 단계(S3)에서, 분쇄한 혼합물은 840℃ 내지 860℃에서 110분 내지 130분 동안 하소하는 것을 특징으로 한다.In the above calcination step (S3), the pulverized mixture is characterized by being calcined at 840°C to 860°C for 110 to 130 minutes.
상기 소결 단계(S4)에서, 하소한 혼합물 분말 100 중량부에 대하여 바인더 3 내지 5 중량부를 첨가하여 혼합한 혼합물을 1,200℃ 내지 1400℃에서 150분 내지 210분 동안 소결하며, 상기 바인더는 PVA(polyvinylalcohol), PEG(polyethyleneglycol), 메틸셀룰로스(methyl cellulose) 에틸셀룰로스(ethyl cellulose) 중에서 선택된 1종 또는 그 이상의 혼합물인 것을 특징으로 한다.In the above sintering step (S4), 3 to 5 parts by weight of a binder are added to 100 parts by weight of the calcined mixture powder, and the mixed mixture is sintered at 1,200°C to 1,400°C for 150 to 210 minutes, and the binder is characterized in that it is a mixture of one or more selected from PVA (polyvinylalcohol), PEG (polyethyleneglycol), methyl cellulose, and ethyl cellulose.
상기 냉각 단계(S5)에서, 상기 소결한 혼합물을 실온으로 냉각하는 것을 특징으로 한다.In the above cooling step (S5), the sintered mixture is characterized by cooling to room temperature.
상기 방법으로 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스는 상온 비저항이 35 Ω-cm 내지 50 Ω-cm이고, B25/65정수가 380K 내지 400K 인 것을 특징으로 한다.The La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) ceramics manufactured by the above method are characterized by having a room temperature resistivity of 35 Ω-cm to 50 Ω-cm and a B 25/65 constant of 380 K to 400 K.
한편, 본 발명의 바람직한 실시예는 상기의 방법에 의해 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2)이 제조되는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스를 과제의 다른 해결 수단으로 한다.Meanwhile, a preferred embodiment of the present invention provides another solution to the problem, which is a Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramic characterized in that La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) is manufactured by the above method.
본 발명에 따른 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스는 종래의 고상반응법에 비해 짧은 시간 내에 제조가 가능하므로 생산성이 높은 효과가 있다.The La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) ceramics according to the present invention can be manufactured in a short period of time compared to the conventional solid-state reaction method, thereby having the effect of high productivity.
또한 본 발명에 따른 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스는 우수한 전기전도 특성을 나타내는 La0.7Sr0.3MnO3 (LSMO) 물질을 선택한 후, Sr2+를 이온반경이 다른 Mg2+로 치환함에 따라 La0.7Sr0.3-xMgxMnO3의 전기저항이 상온에서 선형적으로 감소하는 NCTR특성을 나타내므로 온도센서용 서미스터 소재로 활용 가능 할 수 있다.In addition, the La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) ceramics according to the present invention exhibit NCTR characteristics in which the electrical resistance of La 0.7 Sr 0.3-x Mg x MnO 3 linearly decreases at room temperature by selecting a La 0.7 Sr 0.3 MnO 3 (LSMO) material exhibiting excellent electrical conductivity characteristics and then replacing Sr 2+ with Mg 2+ having a different ionic radius, so that it can be utilized as a thermistor material for a temperature sensor.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the description of the claims.
도 1은 본 발명의 바람직한 실시예에 따라 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 제조 공정을 설명하기 위한 공정블럭도이다.
도 2는 본 발명의 바람직한 실시예에 의한 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 Mg2+ 첨가량에 따른 X-선 회절 모양을 나타낸 것이다.
도 3은 본 발명의 바람직한 실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 Mg2+ 첨가량에 따른 표면 미세구조를 SEM 사진(배율 x 20,000)으로 나타낸 것이다.
도 4는 본 발명의 바람직한 실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 Mg2+ 첨가량에 따른 상온 비저항을 나타낸 것이다.
도 5는 본 발명의 바람직한 실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 Mg2+ 첨가량과 온도에 따른 전기저항을 나타낸 것이다.
도 6은 본 발명의 바람직한 실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 Mg2+ 첨가량에 따른 B25/65-정수를 나타낸 것이다.
도 7은 본 발명의 바람직한 실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 Mg2+ 첨가량에 따른 ln (R·T-1) vs 1/T1/4 곡선을 나타낸 것이다.Figure 1 is a diagram showing a preferred embodiment of the present invention of Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2). This is a process block diagram explaining the manufacturing process of ceramics.
Figure 2 is a diagram showing a preferred embodiment of La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) according to the present invention. This shows the X-ray diffraction pattern according to the amount of Mg 2+ added to the ceramics.
Figure 3 is a La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured according to a preferred embodiment of the present invention. The surface microstructure of ceramics according to the amount of Mg 2+ added is shown in SEM photographs (magnification x 20,000).
Figure 4 is a diagram showing La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured according to a preferred embodiment of the present invention. This shows the room temperature resistivity according to the amount of Mg 2+ added to the ceramics.
FIG. 5 is a diagram showing a La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured according to a preferred embodiment of the present invention. This shows the electrical resistance of ceramics according to the amount of Mg 2+ added and temperature.
Figure 6 is a graph of La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured according to a preferred embodiment of the present invention. This shows the B 25/65 -integer according to the amount of Mg 2+ added to ceramics.
Figure 7 is a graph of La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured according to a preferred embodiment of the present invention. This shows the ln (R·T -1 ) vs 1/T 1/4 curve according to the amount of Mg 2+ added to ceramics.
이하에서, 본 발명의 바람직한 실시예를 첨부된 도면을 참조로 하여 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings.
본 명세서에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.The terms used in this specification are selected from the most widely used general terms possible while considering the functions of the present invention, but they may vary depending on the intention of engineers working in the field, precedents, the emergence of new technologies, etc. In addition, in certain cases, there are terms arbitrarily selected by the applicant, and in this case, the meanings thereof will be described in detail in the description of the relevant invention. Therefore, the terms used in the present invention should be defined based on the meanings of the terms and the overall contents of the present invention, rather than simply the names of the terms.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms defined in commonly used dictionaries, such as those defined in common usage, should be interpreted as having a meaning consistent with the meaning they have in the context of the relevant art, and will not be interpreted in an idealized or overly formal sense unless expressly defined in this application.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.When a part of a specification is said to "include" a component, this does not mean that it excludes other components, but rather that it may include other components, unless otherwise stated.
수치 범위는 상기 범위에 정의된 수치를 포함한다. 본 명세서에 걸쳐 주어진 모든 최대의 수치 제한은 낮은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 낮은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 최소의 수치 제한은 더 높은 수치 제한이 명확히 쓰여져 있는 것처럼 모든 더 높은 수치 제한을 포함한다. 본 명세서에 걸쳐 주어진 모든 수치 제한은 더 좁은 수치 제한이 명확히 쓰여져 있는 것처럼, 더 넓은 수치 범위 내의 더 좋은 모든 수치 범위를 포함할 것이다.The numerical ranges are inclusive of the numbers defined in the above ranges. Every maximum numerical limitation given throughout this specification will include every lower numerical limitation, as if that lower numerical limitation were expressly written out. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if that higher numerical limitation were expressly written out. Every numerical limitation given throughout this specification will include every better numerical range within that broader numerical range, as if that narrower numerical limitation were expressly written out.
이하, 본 발명의 실시예를 상세히 기술하나, 하기 실시예에 의해 본 발명이 한정되지 아니함은 자명한다. Hereinafter, examples of the present invention will be described in detail, but it is obvious that the present invention is not limited to the following examples.
본 발명의 바람직한 실시예는 La2O3, SrCO3, MgO, Mn2O3 의 원료를 혼합하는 단계(S1); 상기 혼합된 원료에 분산매를 첨가하여 혼합물을 분쇄하는 단계(S2); 상기 분쇄된 혼합물의 고상반응을 위해 하소하는 단계(S3); 상기 하소한 혼합물 분말에 바인더를 혼합하여 소결하는 단계(S4); 및 상기 소결한 혼합물을 냉각하는 단계(S5);를 포함한다.A preferred embodiment of the present invention comprises a step (S1) of mixing raw materials of La 2 O 3 , SrCO 3 , MgO, and Mn 2 O 3 ; a step (S2) of adding a dispersion medium to the mixed raw materials and pulverizing the mixture ; a step (S3) of calcining the pulverized mixture for a solid-state reaction ; a step (S4) of mixing a binder into the calcined mixture powder and sintering it ; and a step (S5) of cooling the sintered mixture.
참고로, 본 발명의 명세서의 기재 내용에서 문맥의 흐름이 자연스럽도록 하기위해 'Mg가 도핑된 La0.7Sr0.3-xMgxMnO3'을 'LSMMO'로, 그리고 'La0.7Sr0.3MnO3'을 'LSMO'로 단독 또는 혼용하여 표기함에 유의하여야 한다. For reference, in order to ensure a natural flow of context in the description of the specification of the present invention, it should be noted that 'Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ' is written as 'LSMMO' and 'La 0.7 Sr 0.3 MnO 3 ' is written as 'LSMO', either singly or in combination.
이하, 본 발명의 바람직한 실시예에 따른 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 제조방법을 각 단계별로 구체적으로 설명하면 아래의 내용과 같다.Hereinafter, Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) according to a preferred embodiment of the present invention The manufacturing method of ceramics is explained in detail step by step as follows.
상기 원료 혼합 단계(S1)는 원료인 La2O3, SrCO3, MgO, Mn2O3은 La0.7Sr0.3-xMgxMnO3의 조성식에 따라 화학양론적으로 칭량하여 혼합하는 단계이며, 상기 La0.7Sr0.3-xMgxMnO3에서 x는 0.05 ≤ x ≤ 0.2인 것이 바람직하다. The above raw material mixing step (S1) is a step in which the raw materials La 2 O 3 , SrCO 3 , MgO, and Mn 2 O 3 are stoichiometrically weighed and mixed according to the composition formula of La 0.7 Sr 0.3-x Mg x MnO 3 . In the above La 0.7 Sr 0.3-x Mg x MnO 3 , x is preferably 0.05 ≤ x ≤ 0.2.
상기 La0.7Sr0.3-xMgxMnO3에서 x가 0.2를 초과할 경우에는 Mg2+ 첨가량이 증가함에 따라 단위격자의 왜곡과 산소공격자 농도 그리고 격자결함 등이 시편의 전기적 특성에 상호 영향을 미치므로 실온 부근에서 온도 변화에 대한 전기저항의 형성 특성이 저하할 우려가 있다.In the above La 0.7 Sr 0.3-x Mg x MnO 3 , when x exceeds 0.2, as the amount of Mg 2+ added increases, the distortion of the unit cell, the concentration of oxygen attackers, and lattice defects mutually affect the electrical properties of the specimen, so there is a concern that the formation characteristics of the electrical resistance for temperature changes near room temperature may deteriorate.
상기 혼합물 분쇄 단계(S2)는 상기 혼합물 100 중량부에 대하여 분산매 30 내지 50 중량부를 혼합한 다음 지르코니아 볼밀을 이용하여 22시간 내지 26시간 동안 혼합 분쇄하는 것이 바람직하나, 혼합물 100 중량부에 대하여 분산매 30 내지 50 중량부를 혼합한 다음 지르코니아 볼밀을 이용하여 24시간 동안 분쇄하는 것이 더욱 바람직하다.In the above mixture grinding step (S2), it is preferable to mix 30 to 50 parts by weight of a dispersion medium with respect to 100 parts by weight of the mixture and then grind the mixture using a zirconia ball mill for 22 to 26 hours, but it is more preferable to mix 30 to 50 parts by weight of a dispersion medium with respect to 100 parts by weight of the mixture and then grind the mixture using a zirconia ball mill for 24 hours.
또한 상기 혼합물 분쇄 단계(S2)의 분산매는 메탄올, 에탄올, 아이소프로필알콜, 아세톤 및 증류수 중에서 선택된 1종 또는 그 이상의 혼합 용매인 것이 바람직하나, 에탄올을 분산매로 선택하는 것이 더욱 바람직하다.In addition, it is preferable that the dispersion medium of the mixture grinding step (S2) is one or more mixed solvents selected from methanol, ethanol, isopropyl alcohol, acetone, and distilled water, but it is more preferable to select ethanol as the dispersion medium.
상기에서 분산매의 혼합량은 상기 한정한 범위 미만이 될 경우에는 혼합물 분말의 양에 비해 상대적으로 분산매의 양이 적어 혼합물 분말이 충분하게 분쇄되지 않을 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 필요 이상의 분산매가 과량 혼합됨에 따라 분쇄 효율이 저하할 우려가 있다.If the amount of the dispersion medium mixed is less than the above-mentioned limited range, there is a concern that the mixture powder may not be sufficiently pulverized because the amount of the dispersion medium is relatively small compared to the amount of the mixture powder, and if it exceeds the above-mentioned limited range, there is a concern that the pulverization efficiency may be reduced because an excessive amount of dispersion medium is mixed in more than necessary.
상기 하소 단계(S3)는 상기 분쇄한 혼합물을 고상반응시키기 위한 단계로서, 840℃ 내지 860℃에서 110분 내지 130분 동안 하소하는 것이 바람직하나, 상기 하소 단계(S3)는 850℃에서 120분 동안 하소하는 것이 더욱 바람직하다.The above calcination step (S3) is a step for causing a solid-state reaction of the above-mentioned pulverized mixture, and it is preferable to calcinate at 840°C to 860°C for 110 to 130 minutes, but it is more preferable to calcinate at 850°C for 120 minutes.
상기 하소 조건이 상기 한정한 범위 미만이 될 경우에는 혼합 원료들이 충분하게 반응하지 아니하여 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 생성 효율이 저하할 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 필요 이상으로 열을 가함에 따라 비효율적인 공정이 수행될 우려가 있다.If the above calcination conditions are below the above-mentioned limited range, the mixed raw materials do not react sufficiently, resulting in La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2). There is a concern that the production efficiency of ceramics may decrease, and if the above-mentioned limited range is exceeded, there is a concern that an inefficient process may be performed due to excessive heat being applied.
상기 소결 단계(S4)에서 상기 하소한 혼합물 분말 100 중량부에 대하여 바인더 3 내지 5 중량부를 첨가하여 혼합한 혼합물을 1,200℃ 내지 1400℃에서 150분 내지 210분 동안 소결하는 것이 바람직하나, 상기 하소한 혼합물 분말 100 중량부에 대하여 바인더 3 중량부를 첨가하여 혼합한 혼합물을 1300℃에서 3시간 동안 소결하는 것이 더욱 바람직하다.In the above sintering step (S4), it is preferable to sinter the mixture by adding 3 to 5 parts by weight of binder to 100 parts by weight of the calcined mixture powder at 1,200°C to 1,400°C for 150 to 210 minutes, but it is more preferable to sinter the mixture by adding 3 parts by weight of binder to 100 parts by weight of the calcined mixture powder at 1,300°C for 3 hours.
상기 바인더의 혼합량이 상기 한정한 범위 미만이 될 경우에는 보형력이 약해져서 바인더로서의 효과가 제대로 구현되지 아니할 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 소결 시의 유기물 탄화에 의해 소결체에 균열이 발생하여 밀도가 저하하여 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스의 특성이 저하할 우려가 있다.If the mixing amount of the above binder is less than the above-mentioned limited range, there is a concern that the shape-retaining power may be weakened and the effect as a binder may not be properly implemented, and if it exceeds the above-mentioned limited range, cracks may occur in the sintered body due to carbonization of organic substances during sintering, resulting in a decrease in density. La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) There is concern that the properties of ceramics may deteriorate.
또한 소결 조건이 상기에서 한정한 범위 미만이 될 경우에는 하소시킨 혼합물들이 충분하게 소결되지 않을 우려가 있고, 상기에서 한정한 범위를 초과할 경우에는 필요 이상으로 열을 가함에 따라 비효율적인 공정이 수행될 우려가 있다.In addition, if the sintering conditions fall below the above-mentioned limited range, there is a concern that the calcined mixtures may not be sufficiently sintered, and if they exceed the above-mentioned limited range, there is a concern that an inefficient process may be performed due to excessive heat being applied.
상기 바인더는 PVA(polyvinylalcohol), PEG(polyethylene glycol), 메틸셀룰로스(methyl cellulose) 또는 에틸셀룰로스(ethyl cellulose) 중에서 선택된 1종 또는 그 이상의 혼합물인 것이 바람직하나, PVA(polyvinylalcohol)를 선택하는 것이 더욱 바람직하다.The above binder It is preferable that it be a mixture of one or more selected from PVA (polyvinylalcohol), PEG (polyethylene glycol), methyl cellulose, or ethyl cellulose, but it is more preferable to select PVA (polyvinylalcohol).
상기 냉각 단계(S5)는 상기 소결한 혼합물을 공기 중에서 실온으로 냉각하여 La0.7Sr0.3-xMgxMnO3를 제조하는 단계로서, 상기에서 x는 0.05 ≤ x ≤ 0.2 인 것이 바람직하다.The above cooling step (S5) is a step of cooling the sintered mixture to room temperature in the air to manufacture La 0.7 Sr 0.3-x Mg x MnO 3 , wherein x is preferably 0.05 ≤ x ≤ 0.2.
본 발명의 상기 제조방법으로 제조된 La0.7Sr0.3-xMgxMnO3 (0.05 ≤ x ≤ 0.2)는 상온 비저항이 35 Ω-cm 내지 50 Ω-cm인 것을 특징으로 한다.La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured by the manufacturing method of the present invention is characterized by having a room temperature resistivity of 35 Ω-cm to 50 Ω-cm.
또한 상기 제조방법으로 제조된 La0.7Sr0.3-xMgxMnO3 (0.05 ≤ x ≤ 0.2)는 B25/65정수가 380K 내지 400K 인 것을 특징으로 하며, 하기의 수학식1로 계산하였다.In addition, La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured by the above manufacturing method is characterized by a B 25/65 integer of 380 K to 400 K, which was calculated by the following mathematical formula 1.
(수학식 1)(Mathematical formula 1)
B25/65=(lnR1-lnR2)/(1/T1-1/T2)B 25/65 =(lnR 1 -lnR 2 )/(1/T 1 -1/T 2 )
상기에서, B는 서미스터 정수, R1과 R2는 각각 T1 (25℃)와 T2(65℃)에서의 저항 값이다. In the above, B is the thermistor constant, R 1 and R 2 are the resistance values at T 1 (25°C) and T 2 (65°C), respectively.
따라서 상기 방법에 의해 제조한 La0.7Sr0.3-xMgxMnO3 (0.05 ≤ x ≤ 0.2)은 우수한 구조적, 전기적 특성을 갖는 La0.7Sr0.3MnO3화합물에 MgO를 첨가함으로써, 다결정의 벌크 시편이 갖는 미세구조적 특성에 기인하여 VRH(variable range hopping) 전도기구를 나타내며, 특히 실온 부근에서 온도 변화에 대한 전기저항의 양호한 선형성은 온도센서용 서미스터 재료로의 응용이 가능할 것으로 기대된다.Therefore, La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured by the above method exhibits a VRH (variable range hopping) conduction mechanism due to the microstructural characteristics of the polycrystalline bulk specimen by adding MgO to the La 0.7 Sr 0.3 MnO 3 compound having excellent structural and electrical properties, and in particular, The excellent linearity of the electrical resistance with respect to temperature change near room temperature is expected to enable its application as a thermistor material for temperature sensors.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, in order to help understand the present invention, examples will be given and described in detail. However, the following examples are only intended to illustrate the content of the present invention, and the scope of the present invention is not limited to the following examples. The examples of the present invention are provided to more completely explain the present invention to a person having average knowledge in the art.
<실시예> La0.7Sr0.3-xMgxMnO3 세라믹스의 제조 <Example> Manufacture of La 0.7 Sr 0.3-x Mg x MnO 3 ceramics
도 1에 나타낸 바와 같이, La2O3, SrCO3, MgO, Mn2O3 의 원료를 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2)의 조성식에 따라 칭량하여 혼합한 혼합물 100 중량부에 대하여 분산매인 에틸알콜 30 내지 50 중량부를 첨가한 다음 지르코니아 볼밀을 이용하여 24시간 동안 혼합 분쇄하였다. 분쇄한 혼합물 분말을 850℃에서 2시간 동안 하소한 다음 혼합물 분말 100 중량부에 대하여 PVA(polyvinylalcohol) 바인더를 3 중량부를 첨가하여 혼합한 혼합물을 1,300℃에서 3시간 동안 소결한 다음 실온으로 냉각시켜 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 시편을 고상반응법으로 제조하였다. As shown in Fig. 1, raw materials of La 2 O 3 , SrCO 3 , MgO, and Mn 2 O 3 were weighed and mixed according to the composition formula of La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2), and 30 to 50 parts by weight of ethyl alcohol as a dispersion medium was added to 100 parts by weight of the mixture, and then mixed and ground using a zirconia ball mill for 24 hours. The pulverized mixture powder was calcined at 850°C for 2 hours, and 3 parts by weight of PVA (polyvinylalcohol) binder was added to 100 parts by weight of the mixture powder, mixed, and the mixture was sintered at 1,300°C for 3 hours and then cooled to room temperature to produce a La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) specimen by the solid-state reaction method.
<실험예> La0.7Sr0.3-xMgxMnO3 세라믹스의 평가 <Experimental Example> Evaluation of La 0.7 Sr 0.3-x Mg x MnO 3 Ceramics
La0.7Sr0.3-xMgxMnO3 세라믹스 시편의 결정학적 특성과 미세구조를 X-선 회절 분석(XRD, D8, Bruker)과 전계 방출형 주사 전자현미경(FE-SEM, XL30S, Philips)을 이용하여 분석하였다. The crystallographic properties and microstructure of La 0.7 Sr 0.3-x Mg x MnO 3 ceramic specimens were analyzed using X-ray diffraction (XRD, D8, Bruker) and field emission scanning electron microscopy (FE-SEM, XL30S, Philips).
또한, La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스 시편을 0.5 mm 두께로 연마한 후, 양면에 스크린 프린팅법으로 Ag 전극을 도포한 후 650℃에서 30분 동안 열처리하여 LCR meter (PM-6036, Fluke)와 Electrometer (Keithley 6517A)를 이용하여 조성과 온도 변화에 따른 전기적 특성을 분석하였다.also, La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) ceramic specimens were polished to a thickness of 0.5 mm, and Ag electrodes were applied to both sides by screen printing. Then, they were heat-treated at 650℃ for 30 minutes. The electrical characteristics according to the composition and temperature change were analyzed using an LCR meter (PM-6036, Fluke) and an electrometer (Keithley 6517A).
도 2에서는 실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스 시편의 Mg2+ 첨가량에 따른 X-선 회절 모양을 나타낸 것이며, 모든 시편에서 우선 배향성이 없는 다결정성 rhombohedral 결정구조를 나타내었다. Mg2+ 첨가량에 따른 페로브스카이트 결정구조의 변형 또는 미반응 물질 등이 관찰되지 않은 것으로 보아 균일한 고용체를 형성하였다. 특히 Mg=0.2 mol 첨가된 시편의 경우 2θ=32° 부근의 (110) 피크 분리가 발생하였으며, 이는 (La,Sr)MnO3-type과 (La,Mg)MnO3-type의 페로브스카이트 구조가 공존하기 때문으로 추정되며 X-선 회절각 32~33° 부근을 확대한 도 1(b)의 경우, Mg2+첨가량이 증가함에 따라 회절 피크는 고각도로 이동하는 경향을 나타내었으며, 이는 이온 반경이 작은 Mg2+ (0.089nm)가 Sr2+ (0.144 nm) 자리에 치환됨에 따라 단위 격자의 왜곡에 의한 면간격이 감소하였기 때문으로 추정된다.In Fig. 2, La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured according to an embodiment This figure shows the X-ray diffraction patterns of ceramic specimens according to the amount of Mg 2+ added. All specimens showed a polycrystalline rhombohedral crystal structure without preferential orientation. It appears that no deformation of the perovskite crystal structure or unreacted substances were observed according to the amount of Mg 2+ added, indicating that a uniform solid solution was formed. In particular, for the sample with Mg = 0.2 mol added, the (110) peak splitting occurred around 2θ = 32°. This is presumed to be due to the coexistence of perovskite structures of (La,Sr)MnO 3 -type and (La,Mg)MnO 3 -type. In the case of Fig. 1(b), which is an enlarged image of the X-ray diffraction angle around 32–33°, the diffraction peak tended to shift to a higher angle as the amount of Mg 2+ added increased. This is presumed to be due to a decrease in the interplanar spacing due to the distortion of the unit cell as Mg 2+ (0.089 nm), which has a small ionic radius, is substituted for Sr 2+ (0.144 nm).
도 3는 실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(0.05 ≤ x ≤ 0.2) 세라믹스 시편의 Mg2+ 첨가량에 따른 표면 미세구조를 SEM 사진(배율 x 20,000)으로 나타낸 것이다. 모든 시편에서 기공이 관찰되었으며, 1 ㎛ 이하의 평균 결정립의 크기를 갖는 granule형태의 미세구조를 나타내었다. Mg2+ 첨가량이 증가함에 따라 평균 결정립의 크기는 약간 증가하였으며, 기공은 감소하는 특성을 나타내었으며, 이는 낮은 융점을 갖는 MgO (m.p.=922 K)를 첨가함에 따라 시편 소결 시 입자의 접촉면적의 증가에 기인한 것으로 추정된다.Figure 3 is a La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) manufactured according to an embodiment. The surface microstructure of ceramic specimens according to the amount of Mg 2+ added is shown in the SEM photograph (magnification x 20,000). Pores were observed in all specimens, and a granule-shaped microstructure with an average grain size of less than 1 ㎛ was shown. As the amount of Mg 2+ added increased, the average grain size slightly increased, and the pores showed a characteristic of decreasing. This is presumed to be due to the increase in the contact area of the particles during sintering of the specimen due to the addition of MgO (mp = 922 K), which has a low melting point.
실시예에 따라 제조된 La0.7Sr0.3-xMgxMnO3(LSMMO)(0.05 ≤ x ≤ 0.2) 세라믹스 시편의 Mg2+ 첨가량에 따른 상온 비저항을 도 4에서 나타낸 바와 같이, Mg 첨가량이 증가함에 따라 비저항이 완만하게 감소하는 경향을 나타내었다. (La,Sr)MnO3(LSMO)의 자기적, 전기적 특성은 La3+ 자리에 Sr2+가 치환됨에 따라 단위 격자 내 전하의 불균일성을 보상하기 위해 일부 Mn3+ 이온이 Mn4+ 이온으로 변화됨에 따른 최외각 전자들의 이중 교환 상호작용에 영향을 받는다. La 0.7 Sr 0.3-x Mg x MnO 3 (LSMMO) (0.05 ≤ x ≤ 0.2) manufactured according to the embodiment As shown in Fig. 4, the room temperature resistivity of the ceramic specimens according to the amount of Mg 2+ added showed a tendency for the resistivity to gradually decrease as the amount of Mg added increased. The magnetic and electrical properties of (La,Sr)MnO 3 (LSMO) are affected by the double exchange interaction of the outermost electrons as some of the Mn 3+ ions change to Mn 4+ ions to compensate for the non-uniformity of charges within the unit cell due to the substitution of Sr 2+ for La 3+ .
특히 La3+ (0.136 nm)에 이온반경이 큰 Sr2+ (0.144 nm)를 첨가함에 따른 산소 8면체 MnO6의 Jahn-Teller 왜곡에 의해 격자변형과 산소이온을 매개로 한 Mn3+-Mn4+ 이온 간의 호핑(hopping) 전도에 의해 전기저항은 민감한 영향을 받는다. In particular, the electrical resistance is sensitively affected by the lattice deformation caused by the Jahn-Teller distortion of oxygen octahedral MnO6 due to the addition of Sr 2+ (0.144 nm), which has a large ionic radius, to La 3+ (0.136 nm) and by the hopping conduction between Mn 3+ and Mn 4+ ions mediated by oxygen ions.
본 발명에서는 LSMMO 조성의 Sr2+에 이온반경이 작은 Mg2+ (0.089 nm)를 치환함에 따른 페로브스카이트 단위격자 왜곡의 상쇄와 Mn3+-O-Mn4+ 간의 결합 각도의 증가에 의한 호핑 확률의 증가에 의해 비저항이 감소하는 특성을 나타내는 것으로 추정된다.In the present invention, it is estimated that the resistivity is reduced due to the offset of the distortion of the perovskite unit cell by substituting Mg 2+ (0.089 nm) with a small ionic radius for Sr 2+ of the LSMMO composition and the increase in the hopping probability due to the increase in the bonding angle between Mn 3+ -O-Mn 4+ .
도 5는 La0.7Sr0.3-xMgxMnO3(LSMMO)(0.05 ≤ x ≤ 0.2) 시편의 Mg2+ 첨가량과 온도에 따른 전기저항을 나타낸 것이다. 모든 시편에서 온도가 증가함에 따라 전기저항이 선형적으로 감소하는 특성을 나타내었으며, 이는 도 2의 미세구조에서 관찰한 바와 같이, 다결정성 시편 내 결정립과 결정입계, 기공 및 격자결함 등에 포획된 전하가 열적 자극에 의해 여기됨에 따라 전도도가 증가하였기 때문으로 추정된다. Figure 5 shows the electrical resistance of La 0.7 Sr 0.3-x Mg x MnO 3 (LSMMO)(0.05 ≤ x ≤ 0.2) specimens according to the amount of Mg 2+ added and the temperature. All specimens showed a characteristic of linearly decreasing electrical resistance as the temperature increased. This is presumed to be because the conductivity increased as the charges trapped in the crystal grains, grain boundaries, pores, and lattice defects in the polycrystalline specimen were excited by thermal stimulation, as observed in the microstructure of Figure 2.
저항의 온도계수 [temperature coefficient of resistance, TCR (α) =(1/RT)(dRT/dT); RT은 T(℃)에서의 저항 값]는 Mg의 첨가량에 따른 의존성은 관찰되지 않았으며, 0.37~0.38%/℃의 양호한 특성을 나타내었다.The temperature coefficient of resistance [temperature coefficient of resistance, TCR (α) = (1/RT)(dRT/dT); RT is the resistance value at T(℃)] showed no dependence on the amount of Mg added, and exhibited good characteristics of 0.37 to 0.38%/℃.
Mg2+ 첨가량에 따른 La0.7Sr0.3-xMgxMnO3(LSMMO)(0.05 ≤ x ≤ 0.2) 시편의 B25/65정수를 도 6에서 나타내었는데, B25/65정수는 온도에 따른 전기저항 변화의 민감성을 나타내는 물질의 고유 특성이며, 상기 수학식 1의 식을 이용하여 계산하였다. The B 25/65 constant of La 0.7 Sr 0.3-x Mg x MnO 3 (LSMMO)(0.05 ≤ x ≤ 0.2) specimens according to the amount of Mg 2+ added is shown in Fig. 6. The B 25/65 constant is an inherent characteristic of a material that indicates the sensitivity of the change in electrical resistance according to temperature, and was calculated using the mathematical equation 1 above.
Mg가 첨가량이 증가함에 따라 B-정수는 완만하게 증가하였으며, 이는 결정립 크기의 증가와 기공의 감소 그리고 다결정성 LSMO 시편에 Sr2+보다 이온반경이 큰 Mg2+가 첨가함에 따라 페로브스카이트 단위 격자 내 왜곡이 다소 완화됨에 따른 캐리어의 산란이 감소하였기 때문으로 판단된다. Mg2+가 0.20 mol 첨가된 시편에서 394 K의 양호한 B25/65정수 특성을 나타내었다.As the amount of Mg added increased, the B constant gradually increased. This is thought to be due to the increase in grain size, the decrease in pores, and the decrease in carrier scattering due to the somewhat alleviation of distortion within the perovskite unit cell by the addition of Mg 2+ , which has a larger ionic radius than Sr 2+ , to the polycrystalline LSMO sample. The sample with 0.20 mol of Mg 2+ added showed good B 25/65 constant characteristics at 394 K.
페로브스카이트 LSMO의 전도현상은 Jahn-Teller 왜곡과 Mg-O 결합 거리와 Mg-O-Mg 결합 각도에 따른 호핑 전도에 영향을 받으며, 온도에 따른 전기전도도는 일반적으로 하기의 수학식 2에 의해 표현된다. The conduction phenomenon of perovskite LSMO is affected by Jahn-Teller distortion and hopping conduction depending on the Mg-O bond distance and Mg-O-Mg bond angle, and the temperature-dependent electrical conductivity is generally expressed by the following mathematical equation 2.
(수학식2)(Mathematical formula 2)
상기 수학식 2에서, R은 저항, C0는 상수, T는 온도, 그리고 T0는 특성온도이다. In the above mathematical expression 2, R is the resistance, C 0 is a constant, T is the temperature, and T 0 is the characteristic temperature.
가장 인접한 이온 간의 호핑(nearest neighbor hopping, NNH) 전도의 경우, α=ρ=1 이며, 가변 범위의 호핑(variable hopping, VRH) 전도의 경우, α=4ρ이다. For nearest neighbor hopping (NNH) conduction, α = ρ = 1, and for variable range hopping (VRH) conduction, α = 4ρ.
도 7은 Mg2+ 첨가량에 따른 La0.7Sr0.3-xMgxMnO3(LSMMO)(0.05 ≤ x ≤ 0.2) 시편의 ln (R·T-1) vs 1/T1/4 곡선을 나타낸 것이다. Mg2+가 0.05 mol 첨가된 시편의 경우 측정온도 범위에서 양호한 선형성을 나타내었으며, Mg2+ 첨가량이 증가함에 따라 고온영역에서의 기울기가 증가하였다. Figure 7 shows the ln (R T -1 ) vs 1/T 1/4 curves of La 0.7 Sr 0.3-x Mg x MnO 3 (LSMMO)(0.05 ≤ x ≤ 0.2) specimens according to the amount of Mg 2+ added. The specimen with 0.05 mol of Mg 2+ added exhibited good linearity over the measurement temperature range, and the slope in the high temperature region increased as the amount of Mg 2+ added increased.
이는 다결정성 벌크 시편이 갖는 결정립, 결정입계 그리고 기공 등에 기인한 다양한 공간 전하의 분포 및 온도가 증가함에 따른 열적 자극에 의한 캐리어의 급격한 증가에 의한 것으로 판단된다.This is believed to be due to the distribution of various space charges caused by the crystal grains, grain boundaries, and pores of the polycrystalline bulk specimen, and the rapid increase of carriers due to thermal stimulation as the temperature increases.
이와 같이 본 발명에서는 La0.7Sr0.3-xMgxMnO3(LSMMO)(0.05 ≤ x ≤ 0.2) 세라믹스에 Mg2+ 첨가된 모든 시편에서 우선 배향성이 없는 다결정성 rhombohedral 결정구조를 나타내었으며, 회절 피크는 Mg2+ 첨가량이 증가함에 따라 고각도로 이동하는 경향을 나타내는 것을 확인할 수 있었으며, 상온 비저항은 Mg2+ 첨가량이 증가함에 따라 완만하게 감소하는 경향을 나타내었는데, 이는 Sr2+에 이온반경이 작은 Mg2+를 치환함에 따른 단위 격자 왜곡의 감소에 의한 것으로 추정된다. In this way, in the present invention, La 0.7 Sr 0.3-x Mg x MnO 3 (LSMMO)(0.05 ≤ x ≤ 0.2) All specimens containing Mg 2+ added to the ceramics exhibited a polycrystalline rhombohedral crystal structure without preferential orientation, and it was confirmed that the diffraction peaks tended to shift to high angles as the amount of Mg 2+ added increased. In addition, the room temperature resistivity tended to decrease gradually as the amount of Mg 2+ added increased. This is presumed to be due to the decrease in unit cell distortion resulting from the substitution of Mg 2+ with a smaller ionic radius for Sr 2+ .
이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다. 본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.While the specific parts of the present invention have been described in detail above, it is obvious to those skilled in the art that such specific descriptions are merely preferred implementation examples and that the scope of the present invention is not limited thereto. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents. The scope of the present invention is indicated by the claims set forth below, and all changes or modifications derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present invention.
Claims (11)
상기 혼합된 원료에 분산매를 첨가하여 혼합물을 분쇄하는 단계(S2);
상기 분쇄된 혼합물의 고상반응을 위해 하소하는 단계(S3);
상기 하소한 혼합물 분말에 바인더를 혼합하여 소결하는 단계(S4); 및
상기 소결한 혼합물을 냉각하는 단계(S5);를 포함하는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
Step (S1) of mixing raw materials of La 2 O 3 , SrCO 3 , MgO, and Mn 2 O 3 ;
A step (S2) of adding a dispersant to the above mixed raw materials and pulverizing the mixture;
Step (S3) of calcining the above-mentioned pulverized mixture for solid-state reaction;
Step (S4) of mixing a binder into the above-mentioned mixture powder and sintering it; and
A method for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized by including a step (S5) of cooling the sintered mixture.
상기 원료 혼합 단계(S1)에서, 원료인 La2O3, SrCO3, MgO, Mn2O3는 La0.7Sr0.3-xMgxMnO3의 조성식에 따라 화학양론적으로 칭량하여 혼합하는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법
In the first paragraph,
A method for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that in the above raw material mixing step (S1), raw materials La 2 O 3 , SrCO 3 , MgO, and Mn 2 O 3 are mixed by stoichiometrically weighing them according to the composition formula of La 0.7 Sr 0.3- x Mg x MnO 3
상기 La0.7Sr0.3-xMgxMnO3에서 x는 0.05 ≤ x ≤ 0.2인 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
In the second paragraph,
A method for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that in the above La 0.7 Sr 0.3-x Mg x MnO 3 , x is 0.05 ≤ x ≤ 0.2.
상기 혼합물 분쇄 단계(S2)에서, 혼합물 100 중량부에 대하여 분산매 30 내지 50 중량부를 혼합한 다음 지르코니아 볼밀을 이용하여 22시간 내지 26시간 동안 혼합 분쇄하는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
In the first paragraph,
A method for manufacturing Mg-doped La 0.7 Sr 0.3 -x Mg x MnO 3 ceramics, characterized in that in the mixture grinding step ( S2 ), 30 to 50 parts by weight of a dispersion medium is mixed with 100 parts by weight of the mixture, and then mixing and grinding is performed for 22 to 26 hours using a zirconia ball mill.
상기 분산매는 메탄올, 에탄올, 아이소프로필알콜, 아세톤 및 증류수 중에서 선택된 1종 또는 그 이상의 혼합 용매인 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
In paragraph 4,
A method for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that the dispersion medium is one or more mixed solvents selected from methanol, ethanol, isopropyl alcohol, acetone, and distilled water.
상기 하소 단계(S3)에서, 분쇄한 혼합물은 840℃ 내지 860℃에서 110분 내지 130분 동안 하소하는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
In the first paragraph,
A method for producing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that in the above calcination step (S3), the pulverized mixture is calcined at 840°C to 860°C for 110 to 130 minutes.
상기 소결 단계(S4)에서, 하소한 혼합물 분말 100 중량부에 대하여 바인더 3 내지 5 중량부를 첨가하여 혼합한 혼합물을 1,200℃ 내지 1400℃에서 150분 내지 210분 동안 소결하는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
In the first paragraph,
A method for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that in the sintering step (S4), 3 to 5 parts by weight of a binder is added to 100 parts by weight of a calcined mixture powder, and the resulting mixture is sintered at 1,200 °C to 1,400 °C for 150 to 210 minutes.
상기 바인더는 PVA(polyvinylalcohol), PEG(polyethylene glycol), 메틸셀룰로스(methyl cellulose) 에틸셀룰로스(ethyl cellulose) 중에서 선택된 1종 또는 그 이상의 혼합물인 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
In Article 7,
A method for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that the binder is a mixture of one or more selected from PVA (polyvinylalcohol), PEG (polyethylene glycol), methyl cellulose, and ethyl cellulose.
상기 냉각 단계(S5)에서, 소결한 혼합물을 실온으로 냉각하는 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스의 제조방법.
In the first paragraph,
A method for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that in the above cooling step (S5), the sintered mixture is cooled to room temperature.
Among the methods for manufacturing Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics according to claims 1 to 9, Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics characterized in that La 0.7 Sr 0.3-x Mg x MnO 3 (0.05 ≤ x ≤ 0.2) is manufactured by any one of the methods.
상기 세라믹스는 상온 비저항이 35 Ω-cm 내지 50 Ω-cm이고, B25/65정수가 380K 내지 400K 인 것을 특징으로 하는 Mg가 도핑된 La0.7Sr0.3-xMgxMnO3 세라믹스.
In Article 10,
The above ceramics are Mg-doped La 0.7 Sr 0.3-x Mg x MnO 3 ceramics, characterized in that the room temperature resistivity is 35 Ω-cm to 50 Ω-cm and the B 25/65 integer is 380 K to 400 K.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230091082A KR20250010892A (en) | 2023-07-13 | 2023-07-13 | Mg-doped La0.7Sr0.3-xMgxMnO3 ceramics and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230091082A KR20250010892A (en) | 2023-07-13 | 2023-07-13 | Mg-doped La0.7Sr0.3-xMgxMnO3 ceramics and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20250010892A true KR20250010892A (en) | 2025-01-21 |
Family
ID=94390147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230091082A Pending KR20250010892A (en) | 2023-07-13 | 2023-07-13 | Mg-doped La0.7Sr0.3-xMgxMnO3 ceramics and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20250010892A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101381643B1 (en) | 2012-04-25 | 2014-04-15 | 주식회사케이세라셀 | Electrolyte materials for solid oxide fuel cell and preparing method of electrolyte for solid oxide fuel cell using the same |
KR101647354B1 (en) | 2014-11-21 | 2016-08-11 | (주) 래트론 | Ceramic composition of thermistor for temperature sensor |
-
2023
- 2023-07-13 KR KR1020230091082A patent/KR20250010892A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101381643B1 (en) | 2012-04-25 | 2014-04-15 | 주식회사케이세라셀 | Electrolyte materials for solid oxide fuel cell and preparing method of electrolyte for solid oxide fuel cell using the same |
KR101647354B1 (en) | 2014-11-21 | 2016-08-11 | (주) 래트론 | Ceramic composition of thermistor for temperature sensor |
Non-Patent Citations (2)
Title |
---|
J. Heremans, J. Phys. D: Appl. Phys., 26, 1149 (1993). [DOI: https://doi.org/10.1088/0022-3727/26/8/001] |
K. Das, P. Dasgupta, A. Poddar, and I. Das, Sci. Rep., 6, 20351 (2016). [DOI: https://doi.org/10.1038/srep20351] |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zuo et al. | Na0. 5K0. 5NbO3–BiFeO3 lead-free piezoelectric ceramics | |
Xu et al. | Large piezoelectric properties induced by doping ionic pairs in BaTiO3 ceramics | |
JP5445640B2 (en) | Method for producing semiconductor porcelain composition | |
Pal et al. | Effect of neodymium substitution on structural and ferroelectric properties of BNT ceramics | |
Janbua et al. | High piezoelectric response and polymorphic phase region in the lead-free piezoelectric BaTiO 3–CaTiO 3–BaSnO 3 ternary system | |
KR101289808B1 (en) | Semiconductor ceramic and positive temperature coefficient thermistor | |
Zhang et al. | High remanent polarization and temperature-insensitive ferroelectric remanent polarization in BiFeO 3-based lead-free perovskite | |
Bai et al. | Influence of Al doping on structural, dielectric, and ferroelectric properties of multiferroic BiFeO3 ceramics | |
Han et al. | Superior energy storage properties of (1-x) Ba0. 85Ca0. 15Zr0. 1Ti0. 9O3-xBi (Mg2/3Ta1/3) O3 lead-free ceramics | |
Hussain et al. | Electromechanical properties of lead‐free Nb‐doped 0.95 Bi0. 5Na0. 5TiO3‐0.05 BaZrO3 piezoelectric ceramics | |
Pradhan et al. | Microstructure-dependent electrical properties of Bi0. 5Na0. 5TiO3–BaTiO3–SrTiO3 ternary solid solution | |
Yu et al. | Study on positive temperature coefficient of resistivity of co-doped BaTiO3 with Curie temperature in room temperature region | |
Zhang et al. | Enhanced dielectric, ferroelectric, and ferromagnetic properties of 0.7 Bi1− xTmxFeO3–0.3 BaTiO3 ceramics by Tm-induced structural modification | |
KR20250009167A (en) | Cesium-doped lanthanum strontium manganese oxide ceramics and manufacturing method thereof | |
Iyasara et al. | La and Sm co-doped SrTiO3-δ thermoelectric ceramics | |
WO2009119335A1 (en) | Process for producing semiconductor porcelain composition/electrode assembly | |
Sun et al. | Solid-state-growth of lead-free piezoelectric (Na1/2Bi1/2) TiO3-CaTiO3 single crystals and their characterization | |
Varghese et al. | Ni–Mn–Fe–Cr–O negative temperature coefficient thermistor compositions: correlation between processing conditions and electrical characteristics | |
JP4351213B2 (en) | Sputtering target and manufacturing method thereof | |
KR20250010892A (en) | Mg-doped La0.7Sr0.3-xMgxMnO3 ceramics and its manufacturing method | |
KR20170094086A (en) | Semiconductor ceramic composition and ptc thermistor | |
Fang et al. | Preparation and electrical properties of (1− x) Sr (Fe1/2Nb1/2) O3–xPbTiO3 ferroelectric ceramics | |
Kocoń et al. | Synthesis and dielectric properties of Nd doped Bi5Ti3FeO15 ceramics | |
Huang et al. | Relationship between the evolutions of the microstructure and semiconductor properties of yttrium-doped barium titanate ceramics | |
Yang et al. | Microstructural and electrical properties of Na1/2Bi1/2TiO3–(Na1/4Bi3/4)(Mg1/4Ti3/4) O3 piezoelectric ceramics |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230713 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20230713 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20250620 Patent event code: PE09021S01D |