KR20240167569A - OsBGAL9 gene and use thereof for promoting rice growth and increasing stress tolerance - Google Patents
OsBGAL9 gene and use thereof for promoting rice growth and increasing stress tolerance Download PDFInfo
- Publication number
- KR20240167569A KR20240167569A KR1020230106051A KR20230106051A KR20240167569A KR 20240167569 A KR20240167569 A KR 20240167569A KR 1020230106051 A KR1020230106051 A KR 1020230106051A KR 20230106051 A KR20230106051 A KR 20230106051A KR 20240167569 A KR20240167569 A KR 20240167569A
- Authority
- KR
- South Korea
- Prior art keywords
- osbgal9
- plant
- plants
- stress tolerance
- rice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 57
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 47
- 235000009566 rice Nutrition 0.000 title claims abstract description 41
- 230000012010 growth Effects 0.000 title claims abstract description 25
- 230000001737 promoting effect Effects 0.000 title claims abstract description 18
- 240000007594 Oryza sativa Species 0.000 title claims description 61
- 241000196324 Embryophyta Species 0.000 claims abstract description 147
- 230000009261 transgenic effect Effects 0.000 claims abstract description 18
- 201000010099 disease Diseases 0.000 claims abstract description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 12
- 230000008635 plant growth Effects 0.000 claims abstract description 7
- 101710195308 Beta-galactosidase 9 Proteins 0.000 claims description 44
- 230000035882 stress Effects 0.000 claims description 43
- 239000013598 vector Substances 0.000 claims description 22
- 230000036579 abiotic stress Effects 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 208000015181 infectious disease Diseases 0.000 claims description 6
- 230000001131 transforming effect Effects 0.000 claims description 4
- 240000008042 Zea mays Species 0.000 claims description 3
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 3
- 244000291564 Allium cepa Species 0.000 claims description 2
- 235000002732 Allium cepa var. cepa Nutrition 0.000 claims description 2
- 235000007319 Avena orientalis Nutrition 0.000 claims description 2
- 244000075850 Avena orientalis Species 0.000 claims description 2
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 2
- 240000005979 Hordeum vulgare Species 0.000 claims description 2
- 235000007201 Saccharum officinarum Nutrition 0.000 claims description 2
- 240000000111 Saccharum officinarum Species 0.000 claims description 2
- 241000209056 Secale Species 0.000 claims description 2
- 235000007238 Secale cereale Nutrition 0.000 claims description 2
- 235000021307 Triticum Nutrition 0.000 claims description 2
- 244000098338 Triticum aestivum Species 0.000 claims description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 2
- 235000013339 cereals Nutrition 0.000 claims description 2
- 235000005822 corn Nutrition 0.000 claims description 2
- 241000894007 species Species 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 60
- 238000011161 development Methods 0.000 abstract description 5
- 230000005082 stem growth Effects 0.000 abstract description 5
- 241000209094 Oryza Species 0.000 abstract 2
- 230000014509 gene expression Effects 0.000 description 36
- 238000004458 analytical method Methods 0.000 description 30
- 238000010586 diagram Methods 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 24
- 230000002018 overexpression Effects 0.000 description 22
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 20
- 102000053187 Glucuronidase Human genes 0.000 description 20
- 108010060309 Glucuronidase Proteins 0.000 description 20
- 241001330975 Magnaporthe oryzae Species 0.000 description 20
- 210000002421 cell wall Anatomy 0.000 description 20
- 210000004027 cell Anatomy 0.000 description 18
- 210000001519 tissue Anatomy 0.000 description 15
- 238000003556 assay Methods 0.000 description 14
- 229920002000 Xyloglucan Polymers 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 239000000499 gel Substances 0.000 description 12
- 238000010186 staining Methods 0.000 description 12
- 108091033409 CRISPR Proteins 0.000 description 11
- 239000005090 green fluorescent protein Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 10
- 230000003902 lesion Effects 0.000 description 10
- 235000000346 sugar Nutrition 0.000 description 9
- 101100218662 Felis catus GLB1 gene Proteins 0.000 description 8
- 230000027455 binding Effects 0.000 description 8
- 238000011081 inoculation Methods 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 230000004790 biotic stress Effects 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000011541 reaction mixture Substances 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000010354 CRISPR gene editing Methods 0.000 description 6
- 108091026890 Coding region Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000012790 confirmation Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 239000012064 sodium phosphate buffer Substances 0.000 description 6
- 230000004083 survival effect Effects 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 230000004988 N-glycosylation Effects 0.000 description 5
- 125000000188 beta-D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 5
- 238000002337 electrophoretic mobility shift assay Methods 0.000 description 5
- 230000003301 hydrolyzing effect Effects 0.000 description 5
- 230000004960 subcellular localization Effects 0.000 description 5
- 150000008163 sugars Chemical class 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 4
- 108060001084 Luciferase Proteins 0.000 description 4
- 239000005089 Luciferase Substances 0.000 description 4
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 108091023040 Transcription factor Proteins 0.000 description 4
- 102000040945 Transcription factor Human genes 0.000 description 4
- 241000907138 Xanthomonas oryzae pv. oryzae Species 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229920001277 pectin Polymers 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 239000007974 sodium acetate buffer Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- GSCHIGXDTVYEEM-UHFFFAOYSA-N 2-[2-[[3-[6-[[4,5-dihydroxy-3-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyoxan-2-yl]oxymethyl]-3,4-dihydroxy-5-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-4,5-dihydroxy-6-[4,5,6-trihydroxy-2-(hydroxymethyl)oxan Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(OCC2C(C(O)C(O)C(OC3C(OC(O)C(O)C3O)CO)O2)OC2C(C(O)C(OC3C(C(O)C(O)C(COC4C(C(O)C(O)CO4)O)O3)O)C(COC3C(C(O)C(O)CO3)OC3C(C(O)C(O)C(CO)O3)O)O2)O)OCC(O)C1O GSCHIGXDTVYEEM-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- 102000007469 Actins Human genes 0.000 description 3
- 108010085238 Actins Proteins 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- KLSJWNVTNUYHDU-UHFFFAOYSA-N Amitrole Chemical compound NC1=NC=NN1 KLSJWNVTNUYHDU-UHFFFAOYSA-N 0.000 description 3
- 241000219195 Arabidopsis thaliana Species 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 244000017020 Ipomoea batatas Species 0.000 description 3
- 235000002678 Ipomoea batatas Nutrition 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 238000012300 Sequence Analysis Methods 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- -1 XLXG/XXLG Chemical compound 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 125000001488 beta-D-galactosyl group Chemical group C1([C@H](O)[C@@H](O)[C@@H](O)[C@H](O1)CO)* 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- NKLPQNGYXWVELD-UHFFFAOYSA-M coomassie brilliant blue Chemical compound [Na+].C1=CC(OCC)=CC=C1NC1=CC=C(C(=C2C=CC(C=C2)=[N+](CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=2C=CC(=CC=2)N(CC)CC=2C=C(C=CC=2)S([O-])(=O)=O)C=C1 NKLPQNGYXWVELD-UHFFFAOYSA-M 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 238000012809 post-inoculation Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 210000001938 protoplast Anatomy 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 2
- 241000589158 Agrobacterium Species 0.000 description 2
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 2
- 241000219194 Arabidopsis Species 0.000 description 2
- 101100411536 Arabidopsis thaliana RPS27AC gene Proteins 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 208000035240 Disease Resistance Diseases 0.000 description 2
- 101710111935 Endo-beta-1,4-glucanase Proteins 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 101100532088 Oryza sativa subsp. japonica RUB2 gene Proteins 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 244000088415 Raphanus sativus Species 0.000 description 2
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 2
- 108700008625 Reporter Genes Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 206010071578 autoimmune retinopathy Diseases 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000030570 cellular localization Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008645 cold stress Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 210000002615 epidermis Anatomy 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 238000001030 gas--liquid chromatography Methods 0.000 description 2
- 238000010362 genome editing Methods 0.000 description 2
- 230000001744 histochemical effect Effects 0.000 description 2
- 230000004807 localization Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 238000001890 transfection Methods 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- SATHPVQTSSUFFW-UHFFFAOYSA-N 4-[6-[(3,5-dihydroxy-4-methoxyoxan-2-yl)oxymethyl]-3,5-dihydroxy-4-methoxyoxan-2-yl]oxy-2-(hydroxymethyl)-6-methyloxane-3,5-diol Chemical compound OC1C(OC)C(O)COC1OCC1C(O)C(OC)C(O)C(OC2C(C(CO)OC(C)C2O)O)O1 SATHPVQTSSUFFW-UHFFFAOYSA-N 0.000 description 1
- YBJHBAHKTGYVGT-ZXFLCMHBSA-N 5-[(3ar,4r,6as)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid Chemical compound N1C(=O)N[C@H]2[C@@H](CCCCC(=O)O)SC[C@H]21 YBJHBAHKTGYVGT-ZXFLCMHBSA-N 0.000 description 1
- PZUPAGRIHCRVKN-UHFFFAOYSA-N 5-[5-[3,4-dihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]-5-[3,4,5-trihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxyoxan-2-yl]oxy-3,4-dihydroxy-6-[(3,4,5-trihydroxyoxan-2-yl)oxymethyl]oxan-2-yl]oxy-6-(hydroxymethyl)oxane-2,3,4-triol Chemical compound OCC1OC(O)C(O)C(O)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(COC4C(C(O)C(O)CO4)O)O3)O)C(COC3C(C(O)C(O)CO3)O)O2)O)C(COC2C(C(O)C(O)CO2)O)O1 PZUPAGRIHCRVKN-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- 229920000189 Arabinogalactan Polymers 0.000 description 1
- 239000001904 Arabinogalactan Substances 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 238000009010 Bradford assay Methods 0.000 description 1
- 241000219198 Brassica Species 0.000 description 1
- 235000005637 Brassica campestris Nutrition 0.000 description 1
- 235000003351 Brassica cretica Nutrition 0.000 description 1
- 241001301148 Brassica rapa subsp. oleifera Species 0.000 description 1
- 235000003343 Brassica rupestris Nutrition 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 102000052510 DNA-Binding Proteins Human genes 0.000 description 1
- 230000004568 DNA-binding Effects 0.000 description 1
- 101710096438 DNA-binding protein Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000672609 Escherichia coli BL21 Species 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 108090000331 Firefly luciferases Proteins 0.000 description 1
- 108091092584 GDNA Proteins 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108010043121 Green Fluorescent Proteins Proteins 0.000 description 1
- 102000004144 Green Fluorescent Proteins Human genes 0.000 description 1
- 108020005004 Guide RNA Proteins 0.000 description 1
- 101150009006 HIS3 gene Proteins 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- 229930195714 L-glutamate Natural products 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000008467 Oryza sativa Japonica Group Species 0.000 description 1
- 101100161926 Oryza sativa subsp. japonica ACT3 gene Proteins 0.000 description 1
- 101100411533 Oryza sativa subsp. japonica RPS27AA gene Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 238000011530 RNeasy Mini Kit Methods 0.000 description 1
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 235000019312 arabinogalactan Nutrition 0.000 description 1
- 108010054251 arabinogalactan proteins Proteins 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- QKSKPIVNLNLAAV-UHFFFAOYSA-N bis(2-chloroethyl) sulfide Chemical compound ClCCSCCCl QKSKPIVNLNLAAV-UHFFFAOYSA-N 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000011712 cell development Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229930002875 chlorophyll Natural products 0.000 description 1
- 235000019804 chlorophyll Nutrition 0.000 description 1
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 1
- 238000002269 clear native polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 238000002856 computational phylogenetic analysis Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000012272 crop production Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000001339 epidermal cell Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 239000000834 fixative Substances 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 235000021393 food security Nutrition 0.000 description 1
- 239000012520 frozen sample Substances 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- 238000001254 matrix assisted laser desorption--ionisation time-of-flight mass spectrum Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000010460 mustard Nutrition 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000001426 native polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 235000001968 nicotinic acid Nutrition 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000009437 off-target effect Effects 0.000 description 1
- 238000010397 one-hybrid screening Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000006916 protein interaction Effects 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000024428 response to biotic stimulus Effects 0.000 description 1
- 230000003938 response to stress Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000009754 rhamnogalacturonan I Substances 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 238000007480 sanger sequencing Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 229950003937 tolonium Drugs 0.000 description 1
- HNONEKILPDHFOL-UHFFFAOYSA-M tolonium chloride Chemical compound [Cl-].C1=C(C)C(N)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 HNONEKILPDHFOL-UHFFFAOYSA-M 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8282—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H5/00—Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
- A01H5/10—Seeds
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/46—Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
- A01H6/4636—Oryza sp. [rice]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8216—Methods for controlling, regulating or enhancing expression of transgenes in plant cells
- C12N15/8222—Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
- C12N15/8223—Vegetative tissue-specific promoters
- C12N15/8226—Stem-specific, e.g. including tubers, beets
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8273—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
- C12N15/8271—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
- C12N15/8279—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
- C12N15/8281—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2468—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1) acting on beta-galactose-glycoside bonds, e.g. carrageenases (3.2.1.83; 3.2.1.157); beta-agarase (3.2.1.81)
- C12N9/2471—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01023—Beta-galactosidase (3.2.1.23), i.e. exo-(1-->4)-beta-D-galactanase
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Environmental Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Physiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Medicinal Chemistry (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
본 발명은 벼 생장 촉진 및 스트레스 내성 증가를 위한 OsBGAL9 유전자 및 이의 용도에 관한 것으로, 본 발명의 벼 유래 OsBGAL9 유전자를 과발현시킨 형질전환 식물체는 고온 및 저온 스트레스에 대해 강한 내성을 가지며, 도열병 및 흰잎마름병에 대해 저항성을 가지는 효과가 있다. 또한, 식물체 줄기 생장이 촉진되는 효과를 가진다. 따라서, 스트레스 내성 증가 및 식물체 생장이 촉진된 형질전환 식물체의 개발을 위해 OsBGAL9 유전자는 매우 유용할 것으로 기대되며, 이를 이용하여 스트레스 내성이 강하며 식물체 줄기 생장이 촉진된 식물체를 얻을 수 있으므로, 경제 작물 등의 수확량 증대 등에 크게 기여할 수 있을 것으로 기대된다.The present invention relates to the OsBGAL9 gene for promoting rice growth and increasing stress tolerance, and to uses thereof. Transgenic plants overexpressing the OsBGAL9 gene derived from rice of the present invention have strong tolerance to high temperature and low temperature stress, and have the effect of resisting blast disease and white leaf blight. In addition, it has the effect of promoting plant stem growth. Therefore, the OsBGAL9 gene is expected to be very useful for the development of transgenic plants with increased stress tolerance and promoted plant growth, and since plants with strong stress tolerance and promoted plant stem growth can be obtained by using the gene, it is expected to greatly contribute to increasing the yield of economic crops, etc.
Description
본 발명은 벼 생장 촉진 및 스트레스 내성 증가를 위한 OsBGAL9 유전자 및 이의 용도에 관한 것이다.The present invention relates to the OsBGAL9 gene and its use for promoting rice growth and increasing stress tolerance.
벼(Oryza sativa)는 종자 생산이 목적인 세계적으로 가장 중요한 작물 중의 하나이나, 벼에는 60 여종 이상의 각종 병해가 발생하고 있고, 해에 따라서 그 피해가 극심할 경우 50~90%의 생산량 감수를 가져 오기도 한다. 또한, 산업화로 인한 온실 가스 증가와 산림 파괴로 인해 지구의 평균 기온이 상승하면서, 이상 기후 현상이 점차 심화되고 있다. 이로 인해 작물들의 생산량이 감소하고 있고, 이는 곧 식량문제로 이어질 가능성이 큰 상황에 놓여있다. 이와 같은 피해는 인류의 안정적 식량 확보의 가장 큰 장애로 대두되어 왔고, 일례로 국내 경우에도 1978년에 통일계 품종에 벼이삭 도열병이 발생하여 식량안보 차원에서 심각한 문제를 일으키고 그 결과로 대량의 쌀을 외국에서 도입하게 되는 등 한동안 사회문제가 된 바 있다.Rice ( Oryza sativa ) is one of the most important crops in the world for the purpose of seed production, but more than 60 types of diseases occur in rice, and depending on the year, when the damage is severe, it can reduce production by 50-90%. In addition, abnormal climate phenomena are gradually becoming more severe as the average temperature of the earth rises due to the increase in greenhouse gases caused by industrialization and deforestation. As a result, crop production is decreasing, and this is likely to lead to a food problem. Such damage has emerged as the biggest obstacle to securing a stable food supply for mankind, and in Korea, for example, in 1978, rice head blast disease occurred in the Tongil variety, causing a serious problem in terms of food security, and as a result, a large amount of rice was imported from abroad, which became a social problem for a while.
이러한 문제를 해결하기 위하여, 스트레스 내성 유전자 기능이 증가한 식물체를 제조하였으나, 스트레스 내성은 증가한 반면, 식물 생장이 억제되는 문제가 발생하였다. 이와 유사하게 식물 생장을 촉진하면 스트레스 내성이 약화되는 문제가 발생하였다.To solve these problems, plants with increased stress tolerance gene function were produced, but the problem occurred that stress tolerance was increased but plant growth was inhibited. Similarly, the problem occurred that stress tolerance was weakened when plant growth was promoted.
이에, 본 발명자는 스트레스 내성 증가 및 식물체 생장이 촉진된 형질전환 식물체의 개발을 위하여 OsBGAL9를 발굴해냈으며, 벼의 생장을 촉진함과 동시에 환경 및 병원균에 대한 복합 저항성을 조절하는 유전자로서 농업적인 활용가치가 매우 높다고 판단되어 본 발명을 완성하였다.Accordingly, the inventors of the present invention discovered OsBGAL9 for the development of transgenic plants with increased stress tolerance and promoted plant growth, and determined that it has high agricultural utility as a gene that promotes rice growth while simultaneously regulating complex resistance to the environment and pathogens, and thus completed the present invention.
본 발명의 목적은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 포함하는 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터를 제공하는 데 있다.The purpose of the present invention is to provide a recombinant vector for increasing stress tolerance or promoting growth of a plant, which comprises a gene encoding BGAL9 (beta-galactosidase 9).
또한, 본 발명의 다른 목적은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자가 도입 또는 과발현된 형질전환 식물체를 제공하는 데 있다.In addition, another object of the present invention is to provide a transgenic plant into which a gene encoding BGAL9 (beta-galactosidase 9) is introduced or overexpressed.
또한, 본 발명의 다른 목적은 형질전환 식물체의 종자를 제공하는 데 있다.In addition, another object of the present invention is to provide seeds of transgenic plants.
또한, 본 발명의 다른 목적은 식물에서 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 도입 또는 과발현시키는 단계를 포함하는 식물의 스트레스 내성 증가 또는 생장 촉진 방법을 제공하는 데 있다.In addition, another object of the present invention is to provide a method for increasing stress tolerance or promoting growth of a plant, which comprises a step of introducing or overexpressing a gene encoding BGAL9 (beta-galactosidase 9) in the plant.
또한, 본 발명의 다른 목적은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 포함하는 재조합 벡터를 식물체에 도입하여 형질전환하는 단계를 포함하는 스트레스 내성 증가 또는 생장이 촉진된 형질전환 식물체의 제조방법을 제공하는 데 있다.In addition, another object of the present invention is to provide a method for producing a transgenic plant with increased stress tolerance or accelerated growth, which comprises a step of introducing a recombinant vector containing a gene encoding BGAL9 (beta-galactosidase 9) into a plant and transforming the plant.
상기와 같은 목적을 달성하기 위해, 본 발명은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 포함하는 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터를 제공한다.To achieve the above purpose, the present invention provides a recombinant vector for increasing stress tolerance or promoting growth of a plant, which comprises a gene encoding BGAL9 (beta-galactosidase 9).
이어서, 본 발명은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자가 도입 또는 과발현된 형질전환 식물체를 제공한다.Next, the present invention provides a transgenic plant into which a gene encoding BGAL9 (beta-galactosidase 9) is introduced or overexpressed.
나아가, 본 발명은 형질전환 식물체의 종자를 제공한다.Furthermore, the present invention provides seeds of transgenic plants.
더불어, 본 발명은 식물에서 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 도입 또는 과발현시키는 단계를 포함하는 식물의 스트레스 내성 증가 또는 생장 촉진 방법을 제공한다.In addition, the present invention provides a method for increasing stress tolerance or promoting growth of a plant, comprising a step of introducing or overexpressing a gene encoding BGAL9 (beta-galactosidase 9) in the plant.
마지막으로, 본 발명은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 포함하는 재조합 벡터를 식물체에 도입하여 형질전환하는 단계를 포함하는 스트레스 내성 증가 또는 생장이 촉진된 형질전환 식물체의 제조방법을 제공한다.Finally, the present invention provides a method for producing a transgenic plant with increased stress tolerance or accelerated growth, comprising the step of introducing a recombinant vector containing a gene encoding BGAL9 (beta-galactosidase 9) into the plant and transforming the plant.
본 발명의 벼 유래 OsBGAL9 유전자를 과발현시킨 형질전환 식물체는 고온 및 저온 스트레스에 대해 강한 내성을 가지며, 도열병 및 흰잎마름병에 대해 저항성을 가지는 효과가 있다. 또한, 식물체 줄기 생장이 촉진되는 효과를 가진다. 따라서, 스트레스 내성 증가 및 식물체 생장이 촉진된 형질전환 식물체의 개발을 위해 OsBGAL9 유전자는 매우 유용할 것으로 기대되며, 이를 이용하여 스트레스 내성이 강하며 식물체 줄기 생장이 촉진된 식물체를 얻을 수 있으므로, 경제 작물 등의 수확량 증대 등에 크게 기여할 수 있을 것으로 기대된다.The transgenic plant overexpressing the rice-derived OsBGAL9 gene of the present invention has strong tolerance to high temperature and low temperature stress, and has the effect of resisting blast disease and white leaf blight. In addition, it has the effect of promoting plant stem growth. Therefore, the OsBGAL9 gene is expected to be very useful for the development of transgenic plants with increased stress tolerance and promoted plant growth, and since plants with strong stress tolerance and promoted plant stem growth can be obtained by using this, it is expected to greatly contribute to increasing the yield of economic crops, etc.
도 1은 본 발명의 일 실시예에 있어서, WT(Wild Type), OsSPL7-OX 및 Osspl7 식물에서 OsSPL7 및 OsBGAL9의 발현을 나타낸 도이다. A 및 B는 벼 ACTIN을 내부 대조군으로 사용하였다. C 및 D는 벼 UBQ5를 내부 대조군으로 사용하였다.
(A), (C) OsSPL7의 상대적 발현 수준.
(B), (D) OsBGAL9의 상대적 발현 수준.
도 2는 본 발명의 일 실시예에 있어서, OsBGAL9의 계통수 및 서열 분석을 나타낸 도이다.
(A) OsBGAL9 유전자의 다이어그램(검정 박스: 엑손, 선: 인트론, 빨간 삼각형: HSE 결합 사이트).
(B) OsBGAL9와 다른 패밀리 GH35 단백질의 계통발생학적 관계.
(C) OsBGAL9의 단백질 서열.
도 3은 본 발명의 일 실시예에 있어서, OsBGAL9 프로모터에서 OsSPL7 결합 부위의 식별을 나타낸 도이다.
(A) OsBGAL9 프로모터에 있는 두 개의 HSE 결합 부위의 다이어그램.
(B) 벼 원형질체에서 전사 활성 분석에 사용되는 구조물의 개략도.
(C)는 형질전환된 원형질체에서 상대적 LUC/GUS 활성.
(D)는 OsSPL7이 OsBGAL9 프로모터에 결합함을 보여주는 Y1H 분석.
(E)는 OsBGAL9 프로모터에서 P형 HSE에 결합하는 OsSPL7을 검출하기 위한 EMSA 분석.
도 4는 본 발명의 일 실시예에 있어서, OsBGAL9 기능 상실 및 과발현 라인의 생산을 나타낸 도이다.
(A) OsBGAL9에서 CRISPR/Cas9 표적 및 T-DNA 삽입 부위의 다이어그램.
(B) OsBGAL9 과발현 구조의 다이어그램.
(C) CRISPR/Cas9에 의해 생성된 Osbgal9 돌연변이에서 표적 부위의 서열 분석.
(D) HY(Wild Type) 및 T-DNA 삽입 기능 상실 식물 Osbgal9-t에서의 상대 OsBGAL9 발현 수준.
(E)는 RT-qPCR에 의해 결정된 과발현 및 CRISPR/Cas9 기능 상실 식물에서의 상대적인 OsBGAL9 발현 수준.
도 5는 본 발명의 일 실시예에 있어서, OsBGAL9 과발현 및 Osbgal9 기능 상실 식물의 표현형을 나타낸 도이다.
(A) 성숙한 단계에서 논 재배 OsBGAL9-OX 및 Osbgal9 식물의 성장 표현형.
(B) 성숙한 단계에서 DJ(Wild Type), OsBGAL9-OX 및 Osbgal9의 식물 높이.
(C) DJ(Wild Type), OsBGAL9-OX 및 Osbgal9의 마디 간 형태.
(D) 각 마디 간의 길이 및 총 줄기 길이에 대한 각 마디 간의 상대적 기여도.
(E) 두 번째 마디의 대표적인 종단면.
(F) 종단면에서 관찰된 두 번째 마디의 셀 길이.
도 6은 본 발명의 일 실시예에 있어서, 야생형 대조군 HY와 비교한 Osbgal9-t T-DNA 돌연변이 식물의 표현형을 나타낸 도이다.
(A) 성숙한 단계에서 논에서 자란 Osbgal9-t 및 HY 식물의 성장 표현형.
(B) Osbgal9-t 및 HY 식물의 식물 높이.
(C) HY(Wild Type) 및 Osbgal9-t의 마디 간 형태.
(D) HY(Wild Type) 및 Osbgal9-t 식물의 총 줄기 길이에 대한 각 마디 간의 상대적 기여도.
(E) 두 번째 마디의 대표적인 종단면.
(F) 종단면에서 관찰된 두 번째 마디의 셀 길이.
도 7은 본 발명의 일 실시예에 있어서, OsBGAL9pro:GUS 식물의 조직화학적 GUS 염색을 나타낸 도이다.
(A) 모종 단계에서 염색된 조직.
(B) 개화 단계에서 염색된 조직.
(C) 서로 다른 조직에서 상대 GUS 및 OsBGAL9 전사체 수준.
(D) 24시간 동안 저온(4 ℃) 또는 고온(42 ℃)에 노출된 후 염색된 조직.
(E) 저온 및 고온에 노출된 식물에서 GUS, OsBGAL9 및 OsSPL7의 상대적 전사 수준.
(F) Magnaporthe oryzae 감염 후 48시간 후에 염색된 조직.
(G) M. oryzae 감염 후 GUS, OsBGAL9 및 OsSPL7의 상대적 전사 수준.
도 8은 본 발명의 일 실시예에 있어서, 스트레스 조건 하에서 OsSPL7 과발현 및 기능 상실 식물에서 OsBGAL9의 발현을 나타낸 도이다.
(A) 스트레스 조건 하에서 표시된 유전자형의 식물에서 OsBGAL9의 상대적 발현 수준.
(B) 스트레스 조건 하에서 DJ(Wild Type) 식물에서 OsBGAL9, OsBGAL2 및 OsBGAL4의 상대적인 발현 수준.
도 9는 본 발명의 일 실시예에 있어서, OsBGAL9-OX 및 Osbgal9 식물의 질병 저항성을 나타낸 도이다. 빨간색 별표는 물에 젖은 병변의 기저부 끝을 나타낸다.
(A) M. oryzae PO6-6 접종 후 OsBGAL9-OX 및 Osbgal9 잎의 대표적인 질병 표현형.
(B) M. oryzae PO6-6 접종 후 OsBGAL9-OX 및 Osbgal9 잎의 병변 길이.
(C) Xanthomonas oryzae pv. oryzae(Xoo) PXO99 접종 후 OsBGAL9-OX 및 Osbgal9 잎의 대표적인 질병 표현형.
(D) Xoo PXO99 접종 후 OsBGAL9-OX 및 Osbgal9 잎의 병변 길이.
도 10은 본 발명의 일 실시예에 있어서, Osbgal9-t 식물의 질병 저항성을 나타낸 도이다. 빨간색 별표는 물에 젖은 병변의 기저부 끝을 나타낸다.
(A) M. oryzae PO6-6 접종 후 Osbgal9-t 잎의 대표적인 질병 표현형.
(B) M. oryzae PO6-6 접종 후 Osbgal9-t 잎의 병변 길이.
(C) Xoo PXO99 접종 후 Osbgal9-t 잎의 대표적인 질병 표현형.
(D) Xoo PXO99 접종 후 Osbgal9-t 잎의 병변 길이.
도 11은 본 발명의 일 실시예에 있어서, OsBGAL9-OX 및 Osbgal9 식물의 내한성 및 내열성을 나타낸 도이다.
(A) 저온 노출 후 DJ(Wild Type), OsBGAL9-OX 및 Osbgal9 식물체의 표현형.
(B) 고온 노출 후 DJ(Wild Type), OsBGAL9-OX 및 Osbgal9 식물체의 표현형.
(C) 저온 노출 후 DJ(Wild Type), OsBGAL9-OX 및 Osbgal9 식물체의 생존율.
(D) 고온 노출 후 DJ(Wild Type), OsBGAL9-OX 및 Osbgal9 식물체의 생존율.
도 12는 본 발명의 일 실시예에 있어서, Osbgal9-t 및 HY(Wild Type)의 내열성 및 내한성을 나타낸 도이다.
(A) 4 ℃에서 72시간 동안 저온 스트레스 처리로부터 1주일 회복 후 HY(Wild Type) 및 Osbgal9-t 모종의 표현형.
(B) 42 ℃에서 24시간 동안 고온 스트레스 처리로부터 1주일의 회복 후 HY(Wild Type) 및 Osbgal9-t 모종의 표현형.
(C) 저온 스트레스에 따른 회복 후 Osbgal9-t 묘목의 생존율.
(D) 고온 스트레스에 따른 회복 후 Osbgal9-t 묘목의 생존율.
도 13은 본 발명의 일 실시예에 있어서, OsBGAL9의 세포내 지역화를 나타낸 도이다. 파란색 화살표는 원형질분해를 거친 세포를 나타내며, 흰색 화살표는 세포벽의 GFP 신호를 나타낸다.
도 14는 본 발명의 일 실시예에 있어서, 재조합 OsBGAL9 및 OsBGAL9-OX 및 Osbgal9 식물에서의 Bgal 활성을 나타낸 도이다.
(A) HEK293 세포에서 생산된 정제된 재조합 OsBGAL9의 SDS-PAGE 및 Coomassie Brilliant Blue 염색.
(B) X-Gal 또는 ONPG를 기질로 사용한 재조합 OsBGAL9의 Bgal 활성 검정.
(C) 재조합 OsBGAL9의 In-gel 활성 분석.
(D) OsBGAL9-OX 및 OsBGAL9 기능 상실 식물에서 ONPG에 대한 Bgal 활성 분석.
도 15는 본 발명의 일 실시예에 있어서, Osbgal9-t 돌연변이 및 HY(Wild Type)에서 ONPG에 대한 Bgal 활성을 나타낸 도이다.
(A) 두 번째 마디에서 ONPG에 대한 Bgal 활성 분석.
(B) 잎에서 ONPG에 대한 Bgal 활성 분석.
도 16은 본 발명의 일 실시예에 있어서, OsBGAL9 과발현 및 Osbgal9 기능 상실 식물의 잎에서 BGAL의 상대적 발현 수준을 나타낸 도이다.
도 17은 본 발명의 일 실시예에 있어서, 열 변성 재조합 OsBGAL9(대조군; 상단 패널) 및 활성 OsBGAL9(하단 패널)와 함께 인큐베이션한 후 자일로글루칸 올리고머의 MALDI-TOF 질량 스펙트럼을 나타낸 도이다.
도 18은 본 발명의 일 실시예에 있어서, DJ(Wild Type), OsBGAL9-OX 및 Osbgal9 두 번째 마디의 단면에서 세포벽 구성 요소의 면역 탐지를 나타낸 도이다.
도 19는 본 발명의 일 실시예에 있어서, HY(Wild Type) 및 Osbgal9-t 두 번째 마디 간 단면에서 세포벽 성분의 면역 탐지을 나타낸 도이다.
도 20은 본 발명의 일 실시예에 있어서, DJ(Wild Type), OsBGAL9-OX 및 Osbgal9 돌연변이 식물의 두 번째 마디 간에서 AGP의 Yariv 염색을 나타낸 도이다.
(A) β-D-glucosyl Yariv 시약(β-GlcY)으로 염색.
(B) β-D-galactosyl Yariv 시약(β-GalY)으로 염색.
도 21은 본 발명의 일 실시예에 있어서, HY(Wild Type) 및 Osbgal9-t 돌연변이 식물의 두 번째 마디에서 AGP의 Yariv 염색을 나타낸 도이다.
(A) β-D-glucosyl Yariv 시약(β-GlcY)으로 염색.
(B) β-D-galactosyl Yariv 시약(β-GalY)으로 염색.
도 22는 본 발명의 일 실시예에 있어서, DJ(Wild Type), OsBGAL9-OX 및 Osbgal9 돌연변이 식물의 두 번째 마디 간 세포벽 구성 비교를 나타낸 도이다.Figure 1 is a diagram showing the expression of OsSPL7 and OsBGAL9 in WT (Wild Type), OsSPL7-OX, and Osspl7 plants according to one embodiment of the present invention. A and B used rice ACTIN as an internal control. C and D used rice UBQ5 as an internal control.
(A), (C) Relative expression levels of OsSPL7.
(B), (D) Relative expression levels of OsBGAL9.
FIG. 2 is a diagram showing a phylogenetic tree and sequence analysis of OsBGAL9 according to one embodiment of the present invention.
(A) Diagram of the OsBGAL9 gene (black boxes: exons, lines: introns, red triangles: HSE binding sites).
(B) Phylogenetic relationship of OsBGAL9 and other family GH35 proteins.
(C) Protein sequence of OsBGAL9.
FIG. 3 is a diagram showing the identification of the OsSPL7 binding site in the OsBGAL9 promoter according to one embodiment of the present invention.
(A) Diagram of the two HSE binding sites in the OsBGAL9 promoter.
(B) Schematic diagram of the constructs used for transcriptional activity analysis in rice protoplasts.
(C) Relative LUC/GUS activity in transformed protoplasts.
(D) Y1H assay showing that OsSPL7 binds to the OsBGAL9 promoter.
(E) EMSA analysis to detect OsSPL7 binding to P-type HSE in the OsBGAL9 promoter.
FIG. 4 is a diagram showing the production of OsBGAL9 loss-of-function and overexpression lines in one embodiment of the present invention.
(A) Diagram of the CRISPR/Cas9 target and T-DNA insertion sites in OsBGAL9.
(B) Diagram of the OsBGAL9 overexpression construct.
(C) Sequence analysis of the target site in Osbgal9 mutants generated by CRISPR/Cas9.
(D) Relative OsBGAL9 expression levels in HY (Wild Type) and T-DNA insertion loss-of-function plants Osbgal9-t.
(E) Relative OsBGAL9 expression levels in overexpression and CRISPR/Cas9 loss-of-function plants determined by RT-qPCR.
FIG. 5 is a diagram showing the phenotypes of OsBGAL9 overexpressing and Osbgal9 loss-of-function plants according to one embodiment of the present invention.
(A) Growth phenotypes of paddy-grown OsBGAL9-OX and Osbgal9 plants at mature stage.
(B) Plant heights of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 at the mature stage.
(C) Internode morphology of DJ (Wild Type), OsBGAL9-OX, and Osbgal9.
(D) The length between each node and the relative contribution of each node to the total stem length.
(E) Representative cross-section of the second segment.
(F) Cell length of the second segment observed in cross-section.
FIG. 6 is a diagram showing the phenotype of an Osbgal9-t T-DNA mutant plant compared to a wild-type control HY in one embodiment of the present invention.
(A) Growth phenotypes of Osbgal9-t and HY plants grown in paddy fields at the mature stage.
(B) Plant height of Osbgal9-t and HY plants.
(C) Internode morphology of HY (Wild Type) and Osbgal9-t.
(D) Relative contribution of each node to the total stem length of HY (Wild Type) and Osbgal9-t plants.
(E) Representative cross-section of the second segment.
(F) Cell length of the second segment observed in cross-section.
FIG. 7 is a diagram showing histochemical GUS staining of an OsBGAL9pro:GUS plant according to one embodiment of the present invention.
(A) Tissue stained at some stage.
(B) Tissue stained at the flowering stage.
(C) Relative GUS and OsBGAL9 transcript levels in different tissues.
(D) Stained tissue after exposure to low temperature (4 °C) or high temperature (42 °C) for 24 hours.
(E) Relative transcript levels of GUS, OsBGAL9, and OsSPL7 in plants exposed to low and high temperatures.
(F) Tissue stained 48 hours after infection with Magnaporthe oryzae .
(G) Relative transcript levels of GUS, OsBGAL9, and OsSPL7 after M. oryzae infection.
FIG. 8 is a diagram showing the expression of OsBGAL9 in OsSPL7 overexpressing and loss-of-function plants under stress conditions in one embodiment of the present invention.
(A) Relative expression levels of OsBGAL9 in plants of the indicated genotypes under stress conditions.
(B) Relative expression levels of OsBGAL9, OsBGAL2, and OsBGAL4 in DJ (Wild Type) plants under stress conditions.
Figure 9 is a diagram showing the disease resistance of OsBGAL9-OX and Osbgal9 plants according to one embodiment of the present invention. The red asterisk indicates the basal tip of a water-soaked lesion.
(A) Representative disease phenotypes of OsBGAL9-OX and Osbgal9 leaves after inoculation with M. oryzae PO6-6 .
(B) Lesion lengths on OsBGAL9-OX and Osbgal9 leaves after inoculation with M. oryzae PO6-6 .
(C) Representative disease phenotypes of OsBGAL9-OX and Osbgal9 leaves after inoculation with Xanthomonas oryzae pv. oryzae ( Xoo ) PXO99 .
(D) Lesion lengths on OsBGAL9-OX and Osbgal9 leaves after inoculation with Xoo PXO99 .
Figure 10 is a diagram showing the disease resistance of Osbgal9-t plants in one embodiment of the present invention. The red asterisk indicates the basal tip of a water-soaked lesion.
(A) Representative disease phenotypes of Osbgal9-t leaves after inoculation with M. oryzae PO6-6 .
(B) Lesion length on Osbgal9-t leaves after inoculation with M. oryzae PO6-6 .
(C) Representative disease phenotypes of Osbgal9-t leaves after inoculation with Xoo PXO99 .
(D) Lesion length on Osbgal9-t leaves after inoculation with Xoo PXO99 .
FIG. 11 is a diagram showing the cold resistance and heat resistance of OsBGAL9-OX and Osbgal9 plants in one embodiment of the present invention.
(A) Phenotypes of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 plants after cold exposure.
(B) Phenotypes of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 plants after high temperature exposure.
(C) Survival rates of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 plants after low temperature exposure.
(D) Survival rates of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 plants after exposure to high temperature.
FIG. 12 is a diagram showing the heat resistance and cold resistance of Osbgal9-t and HY (Wild Type) in one embodiment of the present invention.
(A) Phenotypes of HY (Wild Type) and Osbgal9-t seedlings after 1 week of recovery from cold stress treatment for 72 h at 4 ℃.
(B) Phenotypes of HY (Wild Type) and Osbgal9-t seedlings after 1 week of recovery from high temperature stress treatment at 42°C for 24 h.
(C) Survival rate of Osbgal9-t seedlings after recovery from cold stress.
(D) Survival rate of Osbgal9-t seedlings after recovery from high temperature stress.
Figure 13 is a diagram showing the intracellular localization of OsBGAL9 according to one embodiment of the present invention. Blue arrows indicate cells that have undergone plasmolysis, and white arrows indicate GFP signals in the cell wall.
FIG. 14 is a diagram showing Bgal activity in recombinant OsBGAL9 and OsBGAL9-OX and Osbgal9 plants according to one embodiment of the present invention.
(A) SDS-PAGE and Coomassie Brilliant Blue staining of purified recombinant OsBGAL9 produced in HEK293 cells.
(B) Bgal activity assay of recombinant OsBGAL9 using X-Gal or ONPG as substrate.
(C) In-gel activity analysis of recombinant OsBGAL9.
(D) Analysis of Bgal activity toward ONPG in OsBGAL9-OX and OsBGAL9 loss-of-function plants.
FIG. 15 is a diagram showing Bgal activity for ONPG in Osbgal9-t mutant and HY (Wild Type) according to one embodiment of the present invention.
(A) Bgal activity assay for ONPG in the second node.
(B) Bgal activity assay for ONPG in leaves.
FIG. 16 is a diagram showing the relative expression levels of BGAL in leaves of OsBGAL9 overexpressing and Osbgal9 loss-of-function plants in one embodiment of the present invention.
FIG. 17 is a diagram showing MALDI-TOF mass spectra of xyloglucan oligomers after incubation with heat-denatured recombinant OsBGAL9 (control; upper panel) and activated OsBGAL9 (lower panel) in one embodiment of the present invention.
FIG. 18 is a diagram showing immunodetection of cell wall components in the cross-section of the second segment of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 in one embodiment of the present invention.
FIG. 19 is a diagram showing the immunodetection of cell wall components in the second internode cross-section of HY (Wild Type) and Osbgal9-t in one embodiment of the present invention.
FIG. 20 is a diagram showing Yariv staining of AGP in the second internode of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 mutant plants in one embodiment of the present invention.
(A) Staining with β-D-glucosyl Yariv reagent (β-GlcY).
(B) Staining with β-D-galactosyl Yariv reagent (β-GalY).
FIG. 21 is a diagram showing Yariv staining of AGP in the second node of HY (Wild Type) and Osbgal9-t mutant plants in one embodiment of the present invention.
(A) Staining with β-D-glucosyl Yariv reagent (β-GlcY).
(B) Staining with β-D-galactosyl Yariv reagent (β-GalY).
FIG. 22 is a diagram showing a comparison of the cell wall composition between the second nodes of DJ (Wild Type), OsBGAL9-OX, and Osbgal9 mutant plants in one embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 구현 예로 본 발명을 상세히 설명하기로 한다. 다만, 하기 구현 예는 본 발명에 대한 예시로 제시되는 것으로, 당업자에게 주지 저명한 기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 수 있고, 이에 의해 본 발명이 제한되지는 않는다. 본 발명은 후술하는 특허 청구범위의 기재 및 그로부터 해석되는 균등 범주 내에서 다양한 변형 및 응용이 가능하다.Hereinafter, the present invention will be described in detail with reference to the attached drawings as implementation examples of the present invention. However, the following implementation examples are presented as examples of the present invention, and if it is judged that a detailed description of a technology or configuration well known to those skilled in the art may unnecessarily obscure the gist of the present invention, the detailed description may be omitted, and the present invention is not limited thereby. The present invention is capable of various modifications and applications within the scope of the following claims and equivalents interpreted therefrom.
또한, 본 명세서에서 사용되는 용어(terminology)들은 본 발명의 바람직한 실시 예를 적절히 표현하기 위해 사용된 용어들로서, 이는 사용자, 운용자의 의도 또는 본 발명이 속하는 분야의 관례 등에 따라 달라질 수 있다. 따라서 본 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.In addition, the terminology used in this specification is a term used to appropriately express preferred embodiments of the present invention, and this may vary depending on the intention of the user or operator, or the customs of the field to which the present invention belongs. Therefore, the definition of these terms should be determined based on the contents throughout this specification. Throughout the specification, when a part is said to “include” a certain component, this does not mean that other components are excluded, but rather that other components can be included, unless specifically stated otherwise.
본 명세서 전체에 걸쳐, 특정 물질의 농도를 나타내기 위하여 사용되는 '%'는 별도의 언급이 없는 경우, 고체/고체는(w/w) %, 고체/액체는(w/v) %, 그리고 액체/액체는(v/v) %이다.Throughout this specification, '%' used to indicate the concentration of a particular substance, unless otherwise stated, is solid/solid (w/w) %, solid/liquid (w/v) %, and liquid/liquid (v/v) %.
일 측면에서, 본 발명은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 포함하는 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터을 제공한다.In one aspect, the present invention provides a recombinant vector for increasing stress tolerance or promoting growth of a plant, comprising a gene encoding BGAL9 (beta-galactosidase 9).
본 발명에서 사용되는 용어 “BGAL9(beta-galactosidase 9)”는 락토오스(lactose)를 갈락토오스(galactose)로 당분 분해를 촉진하는 효소를 나타내며, 당분을 분해하여 글루코스(glucose)와 갈락토오스로 변환시킨다.The term “BGAL9 (beta-galactosidase 9)” used in the present invention refers to an enzyme that promotes the breakdown of lactose into galactose, and breaks down the sugar into glucose and galactose.
본 발명에서 사용되는 용어 “OsBGAL9(Oryza sativa beta-galactosidase 9)”는 벼의 생장과 발달, 그리고 특정 생물학적 상황에서 중요한 역할을 한다. 이 유전자의 활성은 특정 스트레스 조건에 의해 조절되며, 이로 인해 벼가 외부 환경 변화에 적응하고 생존할 수 있게 도와준다.The term “OsBGAL9 (Oryza sativa beta-galactosidase 9)” used in the present invention plays an important role in the growth and development of rice and in certain biological situations. The activity of this gene is regulated by certain stress conditions, thereby helping rice adapt to and survive changes in the external environment.
본 발명의 일 실시예에 있어서, 상기 OsBGAL9는 세포벽에 국한된 단백질인 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the OsBGAL9 may be, but is not limited to, a protein localized to the cell wall.
본 발명의 일 실시예에 있어서, 상기 BGAL9(beta-galactosidase 9)는 벼(Oryza sativa) 유래인 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the BGAL9 (beta-galactosidase 9) may be derived from rice ( Oryza sativa ), but is not limited thereto.
본 발명에서 용어 “벼”는 학명이 Oryza sativa L.이며, 일년생 초본식물이고, 본 발명에서의 벼에는 자포니카(Japonica)형, 인디카(Indica)형 및 자바니카(Javanica)형으로 이루어지는 군으로부터 선택되는 어느 하나일 수 있다.In the present invention, the term “rice” has the scientific name Oryza sativa L. and is an annual herbaceous plant. The rice in the present invention may be any one selected from the group consisting of the Japonica type, the Indica type, and the Javanica type.
본 발명의 일 실시예에 있어서, 상기 BGAL9(beta-galactosidase 9)은 서열번호 1의 염기서열로 표시되는 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the BGAL9 (beta-galactosidase 9) may be represented by the base sequence of sequence number 1, but is not limited thereto.
본 발명의 일 실시예에 있어서, 상기 스트레스는 생물학적 및 비생물학적 스트레스인 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the stress may be, but is not limited to, biological and abiotic stress.
본 발명의 일 실시예에 있어서, 상기 생물학적 스트레스는 도열병, 흰잎마름병, 키다리병, 벼알마름병, 깨씨무늬병 또는 잎집무늬마름병으로 이루어진 군에서 선택되는 1종 이상의 질병, 더 바람직하게는 도열병 또는 흰잎마름병에 감염되는 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the biological stress may be at least one disease selected from the group consisting of blast, white leaf blight, leg blight, grain blight, seed spot or sheath blight, more preferably, infection with blast or white leaf blight, but is not limited thereto.
본 발명의 일 실시예에 있어서, 상기 비생물학적 스트레스는 고온 또는 저온 스트레스인 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the abiotic stress may be, but is not limited to, high temperature or low temperature stress.
본 발명의 일 실시예에 있어서, 상기 고온 스트레스는 온도가 30 ℃ 이상, 바람직하게는 35 ℃ 이상, 더 바람직하게는 42 ℃ 이상인 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the high temperature stress may be, but is not limited to, a temperature of 30° C. or higher, preferably 35° C. or higher, more preferably 42° C. or higher.
본 발명의 일 실시예에 있어서, 상기 저온 스트레스는 온도가 15 ℃ 이하, 바람직하게는 10 ℃ 이하, 더 바람직하게는 4 ℃ 이하인 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the low temperature stress may be, but is not limited to, a temperature of 15° C. or lower, preferably 10° C. or lower, more preferably 4° C. or lower.
일 측면에서, 본 발명은 BGAL9(beta-galactosidase 9)를 코딩하는 유전자가 도입 또는 과발현된 형질전환 식물체를 제공한다.In one aspect, the present invention provides a transgenic plant into which a gene encoding BGAL9 (beta-galactosidase 9) is introduced or overexpressed.
본 발명의 일 실시예에 있어서, 상기 식물체는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리 및 양파로 이루어진 군에서 선택된 1종 이상, 더 바람직하게는 벼인 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the plant may be at least one selected from the group consisting of rice, barley, wheat, rye, corn, sugarcane, oats, and onions, more preferably rice, but is not limited thereto.
일 측면에서, 본 발명은 형질전환 식물체의 종자를 제공한다.In one aspect, the present invention provides seeds of transgenic plants.
일 측면에서, 본 발명은 식물에서 BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 도입 또는 과발현시키는 단계를 포함하는, 식물의 스트레스 내성 증가 또는 생장 촉진 방법을 제공한다.In one aspect, the present invention provides a method for increasing stress tolerance or promoting growth of a plant, comprising the step of introducing or overexpressing a gene encoding BGAL9 (beta-galactosidase 9) in the plant.
일 측면에서, BGAL9(beta-galactosidase 9)를 코딩하는 유전자를 포함하는 재조합 벡터를 식물체에 도입하여 형질전환하는 단계를 포함하는, 스트레스 내성 증가 또는 생장이 촉진된 형질전환 식물체의 제조방법을 제공한다.In one aspect, the present invention provides a method for producing a transgenic plant with increased stress tolerance or accelerated growth, comprising the step of introducing a recombinant vector containing a gene encoding BGAL9 (beta-galactosidase 9) into the plant and transforming the plant.
본 발명의 일 실시예에 있어서, 상기 재조합 OsBGAL9 및 OsBGAL9-OX 및 Osbgal9 식물은 Bgal 활성이 있는 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the recombinant OsBGAL9 and OsBGAL9-OX and Osbgal9 plants may have Bgal activity, but are not limited thereto.
본 발명의 일 실시예에 있어서, 상기 OsBGAL9가 AGPs의 갈락토오스 잔기를 가수분해하는 것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the OsBGAL9 may hydrolyze galactose residues of AGPs, but is not limited thereto.
본 발명의 일 실시예에 있어서, 상기 AGPs의 변형은 식물체를 생장시키는것일 수 있으며, 이에 제한되는 것은 아니다.In one embodiment of the present invention, the modification of the AGPs may be, but is not limited to, to grow a plant.
이상에서 살펴본 바와 같이, 본 발명의 구체적인 실시예를 상세하게 설명되었으나, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 구성요소를 추가, 변경, 삭제 등을 통하여, 퇴보적인 다른 발명이나 본 발명 사상의 범위 내에 포함되는 다른 실시예를 용이하게 제안할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상술한 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, specific embodiments of the present invention have been described in detail; however, those skilled in the art who understand the spirit of the present invention will be able to easily suggest other backward inventions or other embodiments included within the scope of the spirit of the present invention by adding, changing, deleting, etc. other components within the scope of the same spirit. Therefore, it should be understood that the embodiments described above are exemplary and not restrictive in all respects. The scope of the present invention is indicated by the scope of the claims described below rather than the detailed description described above, and all changes or modifications derived from the meaning and scope of the claims and the equivalent concept should be interpreted as being included in the scope of the present invention.
<실시예 1> OsBGAL9 돌연변이 제작<Example 1> Production of OsBGAL9 mutant
서열번호 1의 염기서열로 표시되는 OsBGAL9의 T-DNA 삽입 기능 상실 돌연변이인 Osbgal9-t(PFG_1C-06424.L)는 자포니카(japonica) 벼 종자 유형인 Hwayoung(HY, 야생형)을 사용하였으며, T-DNA와 유전자 특이 프라이머(서열번호 2 및 3)(표 1 참조)를 이용한 게놈 PCR에 의해 호모 접합주를 분리하여 검증하였다. Osbgal9-t (PFG_1C-06424.L), a T-DNA insertion loss-of-function mutant of OsBGAL9 represented by the nucleotide sequence of SEQ ID NO: 1, was verified by isolating a homozygous strain using Hwayoung (HY, wild type), a japonica rice seed type, by genomic PCR using T-DNA and gene-specific primers (SEQ ID NOs: 2 and 3) (see Table 1).
CRISPR/Cas9 유전자 편집을 통해 OsBGAL9의 기능 상실 돌연변이 라인인 Osbgal9-1 및 Osbgal9-2 를 생성하였으며, 이는 벼 재배 품종 Dongjin(DJ, 야생형)을 사용하여 생성하였다. 효과적인 PAM(Protospacer Adjacent Motif)를 찾고 오프 타겟 효과를 피하기 위하여 CRISPR 다이렉트 프로그램을 사용하여 가능한 타겟 시퀀스를 스크리닝하였다. single guide RNA(sgRNA, 서열번호 4 및 5)를 진입 벡터 pOs-sgRNA에 복제한 다음 게이트웨이 시스템을 사용하여 대상 벡터 pH-Ubi-cas9-7에 복제하였다. 생성된 구조물은 아그로박테리움 투메파시언스(Agrobacterium tumefaciens) 매개 형질전환에 의해 DJ로 형질전환되었다. 돌연변이 유전자형은 특정 프라이머(서열번호 6 및 7)로 PCR 증폭 후 표적 부위에 인접한 게놈 영역의 Sanger 시퀀싱에 의해 결정되었다.Loss-of-function mutant lines of OsBGAL9, Osbgal9-1 and Osbgal9-2, were generated by CRISPR/Cas9 gene editing, using the rice cultivar Dongjin (DJ, wild type). The CRISPR direct program was used to screen possible target sequences to find effective Protospacer Adjacent Motifs (PAMs) and avoid off-target effects. A single guide RNA (sgRNA, SEQ ID NOs: 4 and 5) was cloned into the entry vector pOs-sgRNA and then cloned into the destination vector pH-Ubi-cas9-7 using the Gateway system. The resulting constructs were transformed into DJ by Agrobacterium tumefaciens -mediated transformation. The mutant genotypes were determined by Sanger sequencing of the genomic regions flanking the target region after PCR amplification with specific primers (SEQ ID NOs: 6 and 7).
또한, OsBGAL9 과발현 라인인 OsBGAL9-OX는 pGA3438 재조합 벡터에 옥수수 Ubiquitin1(UBI) 프로모터를 사용하여 OsBGAL9 코딩 서열을 함유하여 생성하였다. OsBGA9의 cDNA를 서열번호 25의 염기서열로 표시하였다. OsBGAL9 과발현 재조합 벡터를 아그로박테리움 투메파시[언스(Agrobacterium tumefaciens) 매개 형질전환에 의해 DJ(Wild Type)로 형질전환되었다. 벼 식물체는 낮 동안 30 ℃에서 14시간, 밤 동안 20 ℃에서 10시간의 명암 주기로 온실에서 또는 여름의 자연 환경 조건에서 재배하였다. In addition, OsBGAL9-OX, an OsBGAL9 overexpression line, was generated by containing the OsBGAL9 coding sequence using the maize Ubiquitin1 (UBI) promoter in the pGA3438 recombinant vector. The cDNA of OsBGAL9 is represented by the nucleotide sequence of SEQ ID NO: 25. The OsBGAL9 overexpression recombinant vector was transformed into DJ (Wild Type) by Agrobacterium tumefaciens -mediated transformation. Rice plants were grown in a greenhouse under a light/dark cycle of 14 h at 30 °C during the day and 10 h at 20 °C during the night or under natural environmental conditions in summer.
<실험예 1> OsBGAL9 발현 및 기능 분석<Experimental Example 1> OsBGAL9 expression and function analysis
이전 연구에서 OsSPL7을 과발현하는 식물(OsSPL7-OX)에서 OsBGAL9의 발현이 증가함을 확인하였으며, 본 발명에서는 OsSPL7을 과발현하는 식물(OsSPL7-OX) 및 OsSPL7 기능 상실 식물(Osspl7)에서 OsBGAL9의 발현을 확인하였다.In a previous study, it was confirmed that the expression of OsBGAL9 was increased in plants overexpressing OsSPL7 (OsSPL7-OX), and in the present invention, the expression of OsBGAL9 was confirmed in plants overexpressing OsSPL7 (OsSPL7-OX) and plants with OsSPL7 function loss (Osspl7).
OsBGAL9 발현을 확인하기 위하여 RNA 분리 및 RT-qPCR 분석을 수행하였다. 수집한 시료로부터 총 RNA는 제조업체의 지침에 따라 Qiagen RNeasy mini kit을 사용하여 추출되었다. 총 RNA 2 ㎍을 ReverTra Ace® qPCR RT Master Mix with gDNA Remover(Toyobo, Osaka, Japan)를 사용하여 일차 cDNA로 합성하였다. qPCR은 특정 프라이머(서열번호 23 및 24)와 Prime Q-Master Mix 2X(GENTBIO)를 사용하여 Rotor-Gene 6000 실시간 증폭 시스템(Corbett Research, Sydney, Australia)에서 수행되었다. UBIQUITIN5(OsUBQ5; LOC_Os01g22490)(서열번호 8 및 9) 및 ACTIN(OsACT; LOC_Os03g61970)(서열번호 10 및 11) 유전자는 하기 표 2를 참조하여 사용되었다. OsBGAL9의 발현을 확인한 결과를 도 1에 나타내었다.To confirm the expression of OsBGAL9, RNA isolation and RT-qPCR analysis were performed. Total RNA was extracted from the collected samples using the Qiagen RNeasy mini kit according to the manufacturer's instructions. 2 μg of total RNA was synthesized into primary cDNA using ReverTra Ace ® qPCR RT Master Mix with gDNA Remover (Toyobo, Osaka, Japan). qPCR was performed on a Rotor-Gene 6000 real-time amplification system (Corbett Research, Sydney, Australia) using specific primers (SEQ ID NOs: 23 and 24) and Prime Q-Master Mix 2X (GENTBIO). UBIQUITIN5 (OsUBQ5; LOC_Os01g22490) (SEQ ID NOs: 8 and 9) and ACTIN (OsACT; LOC_Os03g61970) (SEQ ID NOs: 10 and 11) genes were used as referenced in Table 2 below. The results confirming the expression of OsBGAL9 are shown in Figure 1.
도 1에서 보듯이, OsSPL7-OX에서 OsBGAL9의 발현이 상승함을 확인하였다. 도 1A 및 B는 벼 ACTIN을 내부 대조군으로 사용하였으며, 도 1C 및 D는 벼 UBQ5을 내부 대조군으로 사용하였다.As shown in Fig. 1, it was confirmed that the expression of OsBGAL9 was increased in OsSPL7-OX. Figs. 1A and B used rice ACTIN as an internal control, and Figs. 1C and D used rice UBQ5 as an internal control.
이를 통해, 전사 인자 OsSPL7에 의해 OsBGAL9의 발현이 조절된다는 것을 확인하였다.Through this, we confirmed that the expression of OsBGAL9 is regulated by the transcription factor OsSPL7.
NCBI와 PlantPAN 3.0 온라인 데이터베이스에서 OsBGAL9 프로모터를 BLAST에 검색한 결과, ATG로부터 900bp와 701bp 상류(upstream)에 위치한 두 개의 P-type HSE 결합 부위(TTCNNGAANNTTC)가 존재한다는 것 확인하였으며, 이를 도 2A에 나타내었다.A BLAST search of the OsBGAL9 promoter in NCBI and PlantPAN 3.0 online databases revealed the presence of two P-type HSE binding sites (TTCNNGAANNTTC) located 900 bp and 701 bp upstream from the ATG, respectively, as shown in Fig. 2A.
OsBGAL9의 기능을 확인하기 위하여, 애기장대(Arabidopsis thaliana), 들겨자(Brassica campestri), 고구마(Ipomoea batatas), 벼(Oryza sativa) 및 무의 단백질 서열을 분석하고, 이를 기반으로 계통수를 재구성하였다. 이 계통수는 OsBGAL9가 애기장대의 AtBGAL17, 무의 BcBGAL17 및 고구마의 IbBGAL17과 함께 A 그룹에 속하며, 다른 BGAL은 B 그룹에 속한다는 것 보여주었으며, 이를 도 2B에 나타내었다.To confirm the function of OsBGAL9, Arabidopsis thaliana , mustard ( Brassica campestri ), sweet potato ( Ipomoea batatas ), Protein sequences of rice ( Oryza sativa ) and radish were analyzed, and a phylogenetic tree was reconstructed based on the analysis. The phylogenetic tree showed that OsBGAL9 belongs to group A together with AtBGAL17 of Arabidopsis thaliana, BcBGAL17 of radish, and IbBGAL17 of sweet potato, while other BGALs belong to group B, and this is shown in Fig. 2B.
이를 통해, OsBGAL9가 다른 식물 특이적 BGAL들과 관련이 없는 군집에 속한다는 것을 보여주며, 동물의 BGAL과 유사한 기능을 가질 수 있다는 것을 확인하였다.Through this, we showed that OsBGAL9 belongs to a cluster that is not related to other plant-specific BGALs, and confirmed that it may have a function similar to BGALs in animals.
OsBGAL9의 단백질 서열을 분석하여 N-글리코실화 부위가 존재하는지 분석하였다. 도 2C에서 보듯이, NetNGlyc-1.0을 통한 단백질 서열 분석에서는 다섯 개의 추정 N-글리코실화 부위(적색 표시)가 확인되었으며, 이는 OsBGAL9 활성에는 N-글리코실화가 필요할 수 있다는 것을 의미한다. N-글리코실화는 단백질에 당분 분자가 결합되는 과정으로, 당분 분자가 단백질 안에 삽입되어 단백질의 구조와 기능에 영향을 줄 수 있다.The protein sequence of OsBGAL9 was analyzed to determine whether N-glycosylation sites exist. As shown in Fig. 2C, five putative N-glycosylation sites (marked in red) were identified in the protein sequence analysis using NetNGlyc-1.0, suggesting that N-glycosylation may be required for OsBGAL9 activity. N-glycosylation is a process in which sugar molecules are attached to proteins, and sugar molecules can be inserted into proteins to affect the structure and function of the protein.
이를 통해, OsBGAL9의 활성에는 N-글리코실화가 필요할 수 있다는 것을 확인하였으며, 이는 단백질의 기능 조절에 중요한 역할을 할 수 있는 것을 의미한다.Through this, we confirmed that N-glycosylation may be required for the activity of OsBGAL9, which means that it may play an important role in regulating the function of the protein.
<실험예 2> OsSPL7과 OsBGAL9의 상호작용 확인<Experimental Example 2> Confirmation of interaction between OsSPL7 and OsBGAL9
2-1. 전사 인자 OsSPL7의 OsBGAL9 조절 확인2-1. Confirmation of OsBGAL9 regulation by transcription factor OsSPL7
OsBGAL9이 전사 인자 OsSPL7에 의해 직접 조절되는지 확인하기 위하여, Oc 부유세포로부터 분리한 벼 원형질체를 사용하여 전사 활성 분석을 수행하였다.To determine whether OsBGAL9 is directly regulated by the transcription factor OsSPL7, transcriptional activity analysis was performed using rice protoplasts isolated from Oc suspension cells.
반딧불이 루시페라제(LUC) 리포터(reporter) 유전자의 상류(upstream)에 OsBGAL9 프로모터(promoter)(서열번호 12 및 13)를 복제하고, 콜리플라워 모자이크 바이러스(cauliflower mosaic virus; CaMV) 35S 프로모터의 하류(downstream)에 OsSPL7 코딩 시퀀스를 이펙터 구조로 복제하였다(도 3B).The OsBGAL9 promoter (SEQ ID NOs: 12 and 13) was cloned upstream of the firefly luciferase (LUC) reporter gene, and the OsSPL7 coding sequence was cloned as an effector construct downstream of the cauliflower mosaic virus (CaMV) 35S promoter (Fig. 3B).
도 3C에서 보듯이, 35S:OsSPL7로부터의 OsSPL7의 과발현은 OsBGAL9pro:LUC 리포터 구조물에 비해 상당한 LUC 활성을 유발하였다.As shown in Figure 3C, overexpression of OsSPL7 from 35S:OsSPL7 induced significant LUC activity compared to the OsBGAL9pro:LUC reporter construct.
이를 통해, OsBGAL9이 전사 인자 OsSPL7에 의해 직접 조절된다는 것을 확인하였다.Through this, we confirmed that OsBGAL9 is directly regulated by the transcription factor OsSPL7.
2-2. OsSPL7과 OsBGAL9 프로모터의 상호작용 확인2-2. Confirmation of interaction between OsSPL7 and OsBGAL9 promoters
OsSPL7과 OsBGAL9 프로모터(서열번호 12 및 13)의 직접적인 상호작용을 확인하기 위하여, HIS 리포터 유전자를 사용하여 효모 원-하이브리드(Yeast 1 Hybrid; Y1H) 시스템을 수행하였다.To confirm the direct interaction between OsSPL7 and OsBGAL9 promoters (SEQ ID NOs: 12 and 13), a yeast one-hybrid (Y1H) system was performed using the HIS reporter gene.
Y1H 시스템은 유전자의 DNA 결합 단백질과 DNA 시퀀스 사이의 상호작용을 조사하는 실험 기법으로, 유전자의 프로모터 영역에 특정 단백질의 결합 여부를 확인하기 위해 사용된다. OsSPL7의 전체 길이 코딩 서열은 NdeI(서열번호 14) 및 BamHI(서열번호 15) 제한효소 부위(표 3)를 포함하는 PCR 프라이머를 사용하여 증폭되었으며, pGADT7(Clontech, USA)에서 효모 GAL4 활성화 도메인을 암호화하는 서열로 인프레임에서 클로닝되어 pGADT7-OsSPL7이 생성되었다. OsBGAL9의 1,079bp 프로모터 영역을 PCR 프라이머(서열번호 6 및 7)를 사용하여 증폭하고 pHIS2 리포터 벡터(Clontech, USA)에 클로닝하여 리포터 구조물 pHIS2-OsBGAL9pro:HIS3을 생성하였다. 이를 효모 균주 AH109에 도입하여 형질전환시켰으며, 형질전환체는 30 ℃에서 Trp 및 Leu(SD-Trp/-Leu)이 결여된 SD(Synthetic Defined) 배지에서 선별되었다. 양성 형질전환체의 결합 능력을 확인하기 위하여 5mM 3-AT(Amino Triazole)가 포함된 SD-Trp/-Leu/-His 배지에 스폿팅하여 결합 능력을 검사하였다. 비어 있는 pGADT7와 pHIS2-OsBGAL9pro의 조합을 포함하는 효모 세포는 음성 대조군으로 사용되었다. Y1H 실험 결과를 도 3D에 나타내었다.The Y1H system is an experimental technique to investigate the interaction between a DNA-binding protein and a DNA sequence of a gene, and is used to determine whether a specific protein binds to the promoter region of a gene. The full-length coding sequence of OsSPL7 was amplified using PCR primers containing NdeI (SEQ ID NO: 14) and BamHI (SEQ ID NO: 15) restriction enzyme sites (Table 3) and cloned in-frame with the sequence encoding the yeast GAL4 activation domain in pGADT7 (Clontech, USA), generating pGADT7-OsSPL7. The 1,079-bp promoter region of OsBGAL9 was amplified using PCR primers (SEQ ID NOs: 6 and 7) and cloned into the pHIS2 reporter vector (Clontech, USA) to generate the reporter construct pHIS2-OsBGAL9pro:HIS3. This was introduced into the yeast strain AH109 and transformed, and the transformants were selected on SD (Synthetic Defined) medium lacking Trp and Leu (SD-Trp/-Leu) at 30°C. To confirm the binding ability of positive transformants, they were spotted on SD-Trp/-Leu/-His medium containing 5 mM 3-AT (Amino Triazole) to test the binding ability. Yeast cells containing a combination of empty pGADT7 and pHIS2-OsBGAL9pro were used as a negative control. The results of the Y1H experiment are shown in Fig. 3D.
도 3D에서 보듯이, SD 배지에서 Leu, Trp 및 His가 결핍한 상황에서 3-AT(SD/-Leu/-Trp/-His/+3AT)가 존재할 때, OsSPL7이 OsBGAL9 프로모터 단편에 결합하는 것을 나타내는 형질전환체의 생장을 확인하였다.As shown in Fig. 3D, the growth of transformants showing that OsSPL7 binds to the OsBGAL9 promoter fragment was confirmed in the presence of 3-AT (SD/-Leu/-Trp/-His/+3AT) in the absence of Leu, Trp, and His in SD medium.
이를 통해, OsSPL7이 OsBGAL9 프로모터와 직접적인 상호작용을 한다는 것을 확인하였다.Through this, we confirmed that OsSPL7 directly interacts with the OsBGAL9 promoter.
2-3. OsSPL7의 OsBGAL9 프로모터 HSE 결합 확인2-3. Confirmation of OsBGAL9 promoter HSE binding of OsSPL7
재조합된 OsSPL7이 OsBGAL9 프로모터의 HSE(서열번호 17 및 18)에 결합하는지 확인하기 위하여, EMSA(Electrophoretic Mobility Shift Assay)를 수행하였다.To confirm whether recombinant OsSPL7 binds to the HSE (SEQ ID NOs: 17 and 18) of the OsBGAL9 promoter, an Electrophoretic Mobility Shift Assay (EMSA) was performed.
EMSA는 단백질과 DNA 사이의 상호작용을 조사하는 실험 기법으로, 단백질의 DNA 결합 능력을 확인하고 단백질-DNA 복합체의 형성 여부를 시각적으로 분석하기 위해 사용된다. OsSPL7의 코딩 서열은 EcoRI(서열번호 16)와 BamHI(서열번호 15) 제한효소 부위(표 3)를 포함하는 PCR 프라이머를 사용하여 증폭되었으며, pMAL-c2X 벡터 내 maltose-binding protein(MBP) 서열의 인프레임 및 하류(downstream)에 클로닝되어 E. coli 균주인 BL21로 형질전환시켰다. 재조합된 MBP-OsSPL7은 제조업체의 프로토콜(New England BioLabs, Korea)에 따라 amylose magnetic beads를 사용하여 정제되었다. HSE cis-elements의 3' 바이오틴(biotin)으로 표시된 프로브(서열번호 19)는 Bionics(Daejeon, Korea)에서 합성되었다. 제조사의 프로토콜에 따라 LightShift Chemiluminescent EMSA 키트(Thermo Fisher Scientific, USA)를 사용하여 DNA 겔 이동 분석을 수행하였다. MBP-OsSPL7에 융합된 재조합 OsSPL7의 존재 하에서 표지된 프로브에 대한 이동성을 도 3E에 나타내었다.EMSA is an experimental technique to investigate the interaction between proteins and DNA, and is used to confirm the DNA-binding ability of proteins and visually analyze the formation of protein-DNA complexes. The coding sequence of OsSPL7 was amplified using PCR primers containing EcoRI (SEQ ID NO: 16) and BamHI (SEQ ID NO: 15) restriction enzyme sites (Table 3) and cloned in-frame and downstream of the maltose-binding protein (MBP) sequence in the pMAL-c2X vector and transformed into E. coli strain BL21. The recombinant MBP-OsSPL7 was purified using amylose magnetic beads according to the manufacturer's protocol (New England BioLabs, Korea). The 3' biotin-labeled probe of HSE cis-elements (SEQ ID NO: 19) was synthesized by Bionics (Daejeon, Korea). DNA gel shift analysis was performed using the LightShift Chemiluminescent EMSA kit (Thermo Fisher Scientific, USA) according to the manufacturer's protocol. The mobility of the labeled probe in the presence of recombinant OsSPL7 fused to MBP-OsSPL7 is shown in Figure 3E.
도 3E에서 보듯이, 이동된 밴드의 강도는 비표지된 프로브가 추가됨에 따라 감소하였다. 반면, OsSPL7은 이동된 밴드의 결여에 의해 입증되는 바와 같이 HSE 단편에서 돌연변이가 있는 프로브에 결합하지 않았다.As shown in Figure 3E, the intensity of the shifted band decreased as the unlabeled probe was added. In contrast, OsSPL7 did not bind to the probe with mutations in the HSE fragment, as evidenced by the absence of a shifted band.
이를 통해, OsSPL7이 OsBGAL9 프로모터의 P-type HSE 요소에 직접 결합하여 OsBGAL9의 전사를 활성화시키는 것을 확인하였다.Through this, we confirmed that OsSPL7 directly binds to the P-type HSE element of the OsBGAL9 promoter and activates the transcription of OsBGAL9.
<실험예 3> OsBGAL9 기능 상실 및 과발현 식물의 표현형 특성 분석<Experimental Example 3> Analysis of phenotypic characteristics of OsBGAL9 loss-of-function and overexpression plants
3-1. OsBGAL9 기능 상실 및 과발현 식물의 OsBGAL9 발현 수준 측정3-1. Measurement of OsBGAL9 expression levels in plants with loss of OsBGAL9 function and overexpression of OsBGAL9
OsBGAL9의 기능을 이해하기 위하여, OsBGAL9의 T-DNA 돌연변이인 Osbgal9-t를 얻었으며, CRISPR/Cas9 유전자 편집을 통해 두 개의 OsBGAL9 기능 상실 돌연변이 라인(Osbgal9-1, Osbgal9-2)을 얻었으며, 형질 검사를 위해 두 개의 OsBGAL9 과발현 라인(OsBGAL9-OX1, OsBGAL9-OX2)을 생산하였다(도 4A 및 B). OsBGAL9 기능 상실 돌연변이 라인(Osbgal9-1, Osbgal9-2)에서 표적 단편의 시퀀싱 결과, 각 돌연변이에서 단일 염기의 삽입이 감지되었다. Osbgal9-1은 시토신(C), Osbgal9-2은 티민(T)이 삽입되었다(도 4C). 또한, Osbgal9 돌연변이와 OsBGAL-OX 식물에서의 OsBGAL9 발현 수준은 Osbgal9 돌연변이 식물에서 감소하였으며, OsBGAL-OX 식물에서 증가하였다(도 4D 및 E).To understand the function of OsBGAL9, we obtained Osbgal9-t, a T-DNA mutant of OsBGAL9, and obtained two OsBGAL9 loss-of-function mutant lines (Osbgal9-1, Osbgal9-2) through CRISPR/Cas9 gene editing. Two OsBGAL9 overexpression lines (OsBGAL9-OX1, OsBGAL9-OX2) were produced for phenotypic testing (Fig. 4A and B). Sequencing of the target fragments in the OsBGAL9 loss-of-function mutant lines (Osbgal9-1 and Osbgal9-2) detected a single nucleotide insertion in each mutant. Osbgal9-1 had a cytosine (C) insertion, and Osbgal9-2 had a thymine (T) insertion (Fig. 4C). In addition, the expression levels of OsBGAL9 in Osbgal9 mutant and OsBGAL-OX plants were decreased in Osbgal9 mutant plants and increased in OsBGAL-OX plants (Fig. 4D and E).
3-2. OsBGAL9 기능 상실 및 과발현 식물의 OsBGAL9 표현형 특성 분석3-2. Analysis of OsBGAL9 phenotypic characteristics of OsBGAL9 loss-of-function and overexpression plants
OsBGAL9 기능 상실 및 과발현 식물의 표현형 특성을 분석하기 위하여, 조직학적 분석 및 마디 간 세포 길이를 측정하였다.To analyze the phenotypic characteristics of OsBGAL9 loss-of-function and overexpression plants, histological analysis and internode cell length were measured.
개화 단계에서 벼 밭에서 자란 벼의 두 번째 마디에서 5 mm 두께의 조직을 FAA(37% 포름알데하이드/착성아세트산/95% 에탄올/이온 교환 수지화된 물의 50:5:10:35 부피비)에 고정하였다. 하룻 밤 동안 고정된 조직은 순차적으로 농도가 달라지는 에탄올을 이용하여 탈수처리되었다. 조직을 Paraplast Plus(Sigma, St. Louis, MO, USA)에 삽입하고, 미세 절단기를 사용하여 8~10 ㎛ 두께로 절단되었다. 미세 절단 조직은 0.1%(w/v) 톨루이딘 블루(toluidine blue)로 염색되었으며, Olympus BX61 현미경(Olympus, Tokyo, Japan)을 사용하여 관찰하였다. 두 번째 마디의 종단면은 ImageJ 소프트웨어를 사용하여 세포 크기를 정량화하였다.At the flowering stage, 5-mm-thick tissues from the second nodes of rice plants grown in a rice field were fixed in FAA (50:5:10:35 by volume of 37% formaldehyde/acetic acid/95% ethanol/ion-exchange resin-treated water). The tissues fixed overnight were dehydrated with sequentially increasing concentrations of ethanol. The tissues were embedded in Paraplast Plus (Sigma, St. Louis, MO, USA) and sectioned to 8–10 µm thickness using a microtome. The microsectioned tissues were stained with 0.1% (w/v) toluidine blue and observed using an Olympus BX61 microscope (Olympus, Tokyo, Japan). Cell size was quantified in the longitudinal sections of the second nodes using ImageJ software.
벼 밭에서 10주령인 Osbgal9-1, Osbgal9-2 식물은 야생형(Wild Type) 대조군인 동진(DJ) 품종과 비교하여 왜소한 표현형을 나타내었다(도 5A 및 B). 이는 T-DNA 삽입 기능 상실 돌연변이인 Osbgal9-t 식물에서 관찰한 것과 유사한 결과를 나타내었다(도 6A 및 B). 반면, OsBGAL-OX 식물은 식물의 높이가 증가하였다(도 5A 및 B). 식물의 높이가 감소하였듯이, OsBGAL9-OX 및 DJ 식물에 비해 Osbgal9 돌연변이(Osbgal9-1, Osbgal9-2) 식물에서 마디 간 길이가 크게 감소하였다(도 5C 및 D). 이와 같이, Osbgal9-t 식물에서 야생형 대조군인 화영(HY)과 비교하여 마디 간 길이가 감소하였다(도 6C 및 D). DJ, OsBGAL9-OX 및 Osbgal9 돌연변이 식물의 두 번째 마디의 종단면을 제조하여 세포 크기를 측정하였다. OsBGAL9-OX는 두 번째 마디에서 평균 세포 길이가 9~14% 증가하였으며, Osbgal9-1 및 Osbgal9-2는 평균 세포 길이가 30~37% 감소하였다(도 5E 및 F). 이와 마찬가지로, Osbgal9-t 식물은 HY와 비교하여 두 번째 마디의 평균 세포 길이가 45.9% 감소하였다(도 6E 및 F).In a rice field, 10-week-old Osbgal9-1 and Osbgal9-2 plants exhibited a dwarf phenotype compared to the wild-type control, Dongjin (DJ) cultivar (Fig. 5A and B). This was similar to what was observed in the Osbgal9-t plants, a T-DNA insertion loss-of-function mutant (Fig. 6A and B). In contrast, OsBGAL-OX plants exhibited increased plant height (Fig. 5A and B). As the plant height decreased, the internode length was significantly reduced in the Osbgal9 mutant (Osbgal9-1, Osbgal9-2) plants compared to the OsBGAL9-OX and DJ plants (Fig. 5C and D). Likewise, the internode length was reduced in the Osbgal9-t plants compared to the wild-type control, HY (Fig. 6C and D). Cross-sections of the second nodes of DJ, OsBGAL9-OX, and Osbgal9 mutant plants were prepared to measure the cell size. OsBGAL9-OX showed a 9–14% increase in the average cell length at the second node, while Osbgal9-1 and Osbgal9-2 showed a 30–37% decrease in the average cell length at the second node (Fig. 5E and F). Similarly, Osbgal9-t plants showed a 45.9% decrease in the average cell length at the second node compared to HY (Fig. 6E and F).
이를 통해, OsBGAL9가 마디 간 조직의 세포 신장에 중요한 역할을 하며, OsBGAL9 과발현 및 기능 상실 식물에서 식물 높이를 변화하게 만든다는 점을 확인하였다.Through this, we confirmed that OsBGAL9 plays an important role in cell elongation of internode tissue and causes changes in plant height in OsBGAL9 overexpressing and loss-of-function plants.
<실험예 4> OsBGAL9 발현 패턴 분석<Experimental Example 4> Analysis of OsBGAL9 expression pattern
4-1. OsBGAL9의 시간적 및 공간적 발현 패턴 분석4-1. Analysis of temporal and spatial expression patterns of OsBGAL9
OsBGAL9의 시간적 및 공간적 발현 패턴을 조사하기 위하여, OsBGAL9 프로모터(서열번호 12 및 13)의 제어 하에 ß-GLUCURONIDASE(GUS)를 발현하는 형질전환 벼 식물의 조직화학적 염색을 수행하였다. GUS PCR 프라이머를 서열번호 21 및 22에 나타내었다.To investigate the temporal and spatial expression pattern of OsBGAL9, histochemical staining of transgenic rice plants expressing ß-GLUCURONIDASE (GUS) under the control of the OsBGAL9 promoter (SEQ ID NOs: 12 and 13) was performed. GUS PCR primers are shown in SEQ ID NOs: 21 and 22.
GUS 분석은 유전자 발현의 위치와 수준을 조사하기 위한 표지자 분석 방법 중 하나로, GUS 유전자를 원하는 유전자의 프로모터 영역과 연결하여 전사 활동을 나타내는 GUS 효소의 활성을 측정한다. OsBGAL9pro:GUS 구축물은 변형된 pCAMBIA1300-Gateway-GUSPlus 벡터에서 GUS의 상류 OsBGAL9의 시작 코돈 업스트림 1.9-kb 프로모터(서열번호 20) 영역을 클로닝하여 얻었다. 생성된 플라스미드는 아그로박터르미움(Agrobacterium) 매개 형질전환을 사용하여 벼에 도입되었다. T3 동형접합 계통은 모든 자손의 하이그로마이신(hygromycin) 내성에 기초하여 선택되었다. 8주 된 식물의 조직을 수확하고 얼음 위의 90%(v/v) 아세톤에서 30분 동안 배양하고 실온에서 10분 동안 진공 상태에 두었으며, GUS 염색 분석으로 분석하였다.GUS analysis is one of the marker analysis methods to investigate the location and level of gene expression, and measures the activity of GUS enzyme that indicates transcriptional activity by linking the GUS gene to the promoter region of the desired gene. The OsBGAL9pro:GUS construct was obtained by cloning the 1.9-kb promoter region (SEQ ID NO: 20) upstream of the start codon of OsBGAL9 upstream of GUS into the modified pCAMBIA1300-Gateway-GUSPlus vector. The resulting plasmid was introduced into rice using Agrobacterium -mediated transformation. T3 homozygous lines were selected based on the hygromycin resistance of all progeny. Tissues from 8-week-old plants were harvested, incubated in 90% (v/v) acetone on ice for 30 min, and placed under vacuum at room temperature for 10 min, and analyzed by GUS staining assay.
GUS 염색 분석 결과, 개화 단계의 벼에서 마디 간 조직에서 강한 GUS 신호를 감지하였으나, 2주된 벼에서는 감지하지 못하였다(도 7A 및 B). GUS 및 OsBGAL9의 역전사 정량적 PCR(RT-qPCR) 분석을 수행하였으며, 수행 결과 OsBGAL9는 줄기 신장 동안 우선적으로 발현되며 이는 OsBGAL9 과발현 및 기능 상실 돌연변이에서 관찰된 식물 높이의 차이를 유발한다(도 7C).GUS staining analysis results showed that strong GUS signals were detected in internode tissues in flowering-stage rice, but not in 2-week-old rice (Fig. 7A and B). Reverse transcription-quantitative PCR (RT-qPCR) analysis of GUS and OsBGAL9 was performed, and the results showed that OsBGAL9 is preferentially expressed during stem elongation, which causes the differences in plant height observed in OsBGAL9 overexpression and loss-of-function mutants (Fig. 7C).
4-2. OsBGAL9의 생물학적 및 비생물학적 스트레스 반응 분석4-2. Analysis of biological and abiotic stress responses of OsBGAL9
OsSPL7이 생물학적 및 비생물학적 스트레스 반응에서 기능을 수행하므로, OsSPL7 및 OsBGAL9의 잠재적 공동 발현을 조사하였다. OsBGAL9pro:GUS 리포터가 있는 2주 된 벼를 저온(4 ℃), 고온(42 ℃) 및 벼 도열병균(Magnaporthe oryzae) 감염과 같은 생물학적 및 비생물학적 스트레스에 노출시킨 후, OsSPL7 및 OsBGAL9의 발현을 측정하였다.Since OsSPL7 functions in biotic and abiotic stress responses, the potential co-expression of OsSPL7 and OsBGAL9 was investigated. Two-week-old rice plants harboring OsBGAL9pro:GUS reporter were exposed to biotic and abiotic stresses such as low temperature (4 °C), high temperature (42 °C), and infection with the rice blast fungus Magnaporthe oryzae , and then the expression of OsSPL7 and OsBGAL9 was measured.
벼를 비생물학적 스트레스에 노출시키기 위하여, 절반 강도의 MS(Murashige 및 Skoog) 배지에서 발아된 20개의 동형접합 OsBGAL9 과발현 및 Osbgal9 기능상실 식물을 비생물적 스트레스 처리를 위해 현장 조건으로 옮겨졌다.내열성 평가를 위하여, 3주령 벼는 상대 습도가 높은(> 90%) 생장실에서 42 ℃로 24시간 동안 노출되었으며, 1주 동안 회복을 위해 현장 조건에서 유지되었다. 내한성을 평가하기 위하여, 3주령 벼는 4 ℃에서 72시간 동안 노출되었으며, 회복을 위해 현장 조건에서 유지되었다. 생존율을 1주 후에 생존하는 식물체의 수를 기준으로 계산하였다. 유전자형당 3개의 생물학적 복제물이 사용되었다.To expose rice to abiotic stresses, 20 homozygous OsBGAL9-overexpressing and Osbgal9-loss-function plants germinated on half-strength MS (Murashige and Skoog) medium were transferred to field conditions for abiotic stress treatments. For heat tolerance evaluation, 3-week-old rice plants were exposed to 42 °C for 24 h in a growth room with high relative humidity (> 90%) and maintained under field conditions for recovery for 1 week. To evaluate cold tolerance, 3-week-old rice plants were exposed to 4 °C for 72 h and maintained under field conditions for recovery. Survival rate was calculated based on the number of surviving plants after 1 week. Three biological replicates were used per genotype.
비생물학적 스트레스에 벼를 노출시킨 결과, 비생물학적 스트레스에 노출된 벼에서 GUS 활성이 증가하였으며, 대조군 벼에서는 GUS 활성이 관찰되지 않았다(도 7D). 또한, 비생물학적 스트레스에 노출된 벼에서 OsBGAL9 및 OsSPL7의 발현이 대조군에 비해 증가하였다(도 7E).When rice plants were exposed to abiotic stress, GUS activity increased in the rice plants exposed to abiotic stress, while no GUS activity was observed in the control rice plants (Fig. 7D). In addition, the expression of OsBGAL9 and OsSPL7 increased in the rice plants exposed to abiotic stress compared to the control group (Fig. 7E).
벼를 생물학적 스트레스에 노출시키기 위하여, 벼 도열병균(Magnaporthe oryzae) PO6-6 균주는 한천배지(V8 Juice medium, 80 mL/L)(Campbell's Soup Company, Camden, NJ)에서 배양한 후, 되고 이를 사용하여 벼 도열병 접종을 수행하였다. 지속적인 형광등 아래에서 2주 동안 배양한 후, 포자들을 수집하여 포자 농도가 5 × 106 mL-1에 도달할 때 까지 물에 현탁시켰다. 5주령 상처난 벼의 잎에 포자 현탁액을 접종하여 스팟 접종하였다. 접종 10일(DPI, Days Post-Inoculation) 후, 잎 샘플을 채취하여 사진을 찍었으며, 질병 병변의 길이(갈색 영역)는 ImageJ 소프트웨어를 사용하여 측정되었다.To expose rice to biotic stress, the rice blast fungus ( Magnaporthe oryzae ) PO6-6 strain was cultured on agar medium (V8 Juice medium, 80 mL/L) (Campbell's Soup Company, Camden, NJ), and then used to inoculate rice with blast disease. After culturing for 2 weeks under continuous fluorescent light, the spores were collected and suspended in water until the spore concentration reached 5 × 10 6 mL -1 . The spore suspension was spot inoculated onto injured rice leaves at 5 weeks of age. Ten days post-inoculation (DPI), leaf samples were collected and photographed, and the length of the disease lesions (brown area) was measured using ImageJ software.
생물학적 스트레스에 벼를 노출시킨 결과, 생물학적 스트레스에 노출된 벼에서 GUS 활성이 증가(도 7F)하였으며, OsBGAL9 및 OsSPL7의 발현이 대조군에 비해 증가하였다(도 7G).When rice was exposed to biotic stress, GUS activity increased in the rice exposed to biotic stress (Fig. 7F), and the expression of OsBGAL9 and OsSPL7 increased compared to the control group (Fig. 7G).
OsSPL7이 없을 경우 생물학적 및 비생물학적 스트레스에 대한 OsBGAL9 발현의 유도가 현저히 감소하였으며, OsSPL7의 과발현은 OsBGAL9의 발현을 촉진하였다(도 8A). 반면, OsBGAL2 및 OsBGAL4와 같은 다른 BGAL은 스트레스 처리에 대한 발현에 거의 또는 전혀 변화가 없었다(도 8B).In the absence of OsSPL7, the induction of OsBGAL9 expression in response to biotic and abiotic stresses was significantly reduced, while overexpression of OsSPL7 promoted the expression of OsBGAL9 (Fig. 8A). In contrast, other BGALs, such as OsBGAL2 and OsBGAL4, showed little or no change in expression in response to stress treatment (Fig. 8B).
이러한 결과는 OsBGAL9가 정상적인 생장 조건에서는 주로 줄기 내에서 발현되고, 극한 온도와 병원체 공격 시에는 전체 식물체에서 발현되는 이중 발현 모드를 나타내는 것을 의미한다.These results suggest that OsBGAL9 exhibits a dual expression mode, being expressed primarily within the stem under normal growth conditions and throughout the whole plant under extreme temperatures and pathogen attack.
<실험예 5> OsBGAL9 기능 상실 및 과발현 식물의 생물학적 및 비생물학적 스트레스 반응 분석<Experimental Example 5> Analysis of Biological and Abiotic Stress Responses in OsBGAL9 Loss-of-Function and Over-expression Plants
OsBGAL9 기능 상실 및 과발현 식물의 생물학적 및 비생물학적 스트레스 반응을 분석하기 위하여, OsBGAL9 기능 상실 및 과발현 벼를 벼 도열병균(Magnaporthe oryzae) 또는 흰잎마름병균(Xanthomonas oryzae pv. oryzae(Xoo))에 감염시켰으며 저온(4 ℃) 또는 고온(42 ℃)에 노출시켰다.To analyze the biotic and abiotic stress responses of OsBGAL9 loss-of-function and overexpression plants, OsBGAL9 loss-of-function and overexpression rice plants were infected with the rice blast fungus Magnaporthe oryzae or the bacterial leaf blight fungus Xanthomonas oryzae pv. oryzae ( Xoo ) and exposed to low temperature (4 °C) or high temperature (42 °C).
벼를 생물학적 스트레스에 노출시키기 위하여, 벼 도열병균(Magnaporthe oryzae) 또는 흰잎마름병균(Xanthomonas oryzae pv. oryzae(Xoo))에 감염시켰으며, 벼 도열병균 감염은 상기 실험예 4-2와 동일하게 수행하였다. Xanthomonas oryzae pv. oryzae(Xoo) PXO99 균주는 펩틴 자당 한천배지(10 g/L sucrose, 10 g/L peptone, 1 g/L L-glutamate, 15 g/L agar, pH 6.8)에서 배양하고, 멸균수에 현탁하여 OD600이 0.6에 도달하게 하였다. 5주령 벼를 접종하기 위하여, 잎 자르기 방법을 사용하였으며 Xoo 감염의 성공 여부는 물에 젖은 병변의 길이를 기준으로 평가되었으며, 이는 12일(DPI) 후에 관찰되고 측정되었다.To expose rice to biological stress, it was infected with the rice blast fungus ( Magnaporthe oryzae ) or the white leaf blight fungus ( Xanthomonas oryzae pv. oryzae ( Xoo )). The rice blast fungus infection was performed in the same manner as in Experimental Example 4-2. The Xanthomonas oryzae pv. oryzae ( Xoo ) PXO99 strain was cultured on peptin sucrose agar medium (10 g/L sucrose, 10 g/L peptone, 1 g/L L-glutamate, 15 g/L agar, pH 6.8) and suspended in sterilized water until the OD 600 reached 0.6. To inoculate 5-week-old rice plants, the leaf cutting method was used and the success of Xoo infection was assessed based on the length of water-soaked lesions, which was observed and measured after 12 days (DPI).
생물학적 스트레스에 OsBGAL9 기능 상실 및 과발현 벼를 노출시킨 결과, 벼 도열병균(M. oryzae) 접종 후 10일(DPI)에서 OsBGAL9-OX 식물은 향상된 저항성을 보인 반면, Osbgal 식물은 대조군인 DJ에 비해 벼 도열병균에 더 취약하였다(도 9A 및 B). 이와 유사하게, 흰잎마름병균(Xoo) 접종 후 10일(DPI)에서 OsBGAL9-OX 식물은 물에 젖은 병변의 길이가 더 짧았고, Osbgal9 식물에서는 더 길었다(도 9C 및 D). 또한, Osbgal9-t 식물을 벼 도열병균(M. oryzae) 또는 흰잎마름병균(Xoo)에 감염시킨 결과, 대조군인 HY에 비하여 벼 도열병균에 취약하였으며, 흰잎마름병균 감염에 의한 물에 젖은 병변의 길이가 더 길었다(도 10A 내지 D).When OsBGAL9 loss-of-function and overexpression-of-function rice plants were exposed to biotic stress, OsBGAL9-OX plants exhibited enhanced resistance to rice blast fungus ( M. oryzae ) at 10 days post-inoculation (DPI), whereas Osbgal plants were more susceptible to rice blast fungus than DJ, the control (Fig. 9A and B). Similarly, OsBGAL9-OX plants exhibited shorter water-soaked lesions at 10 days post-inoculation (DPI) with the bacterium Xoo, whereas Osbgal9 plants exhibited longer lesions (Fig. 9C and D). In addition, when Osbgal9-t plants were infected with M. oryzae or Xoo , they were more susceptible to rice blast fungus than HY, the control (Fig. 10A to D).
이를 통해, OsBGAL9가 벼 도열병균(M. oryzae) 및 흰잎마름병균(Xoo)에 대한 저항성을 향상시키는데 중요한 역할을 한다는 것을 확인하였다.Through this, we confirmed that OsBGAL9 plays an important role in improving resistance to rice blast fungus ( M. oryzae ) and white leaf blight fungus ( Xoo ).
비생물학적 스트레스인 저온(4 ℃) 또는 고온(42 ℃)에 노출은 상기 실험예 4-2와 동일하게 수행하였으며, 비생물학적 스트레스에 OsBGAL9 기능 상실 및 과발현 벼를 노출시킨 결과, 저온 노출 후 1주일 동안 OsBGAL9-OX 식물은 DJ에 비해 생존율이 현저히 높았다. 반면, Osbgal9 식물은 소수의 벼만 생존하였다(도 11 A 및 C). 고온 노출 후 1주일 동안 Osbgal9-1 및 Osbgal9-2 식물은 심한 시들림과 엽록소 결핍이 나타났다(도 11B 및 D). 이와 마찬가지로, Osbgal9-t 식물을 저온(도 12A 및 C) 또는 고온(도 12B 및 D)에 노출시켰을 경우 HY보다 저온 및 고온 스트레스에 더 큰 민감도를 보였다.Exposure to abiotic stresses, low temperature (4 ℃) or high temperature (42 ℃), was performed in the same manner as in Experimental Example 4-2, and when OsBGAL9 function-loss and overexpression rice plants were exposed to abiotic stresses, the survival rate of OsBGAL9-OX plants was significantly higher than that of DJ for one week after low temperature exposure. In contrast, only a small number of rice plants survived in Osbgal9 plants (Fig. 11 A and C). After high temperature exposure for one week, Osbgal9-1 and Osbgal9-2 plants showed severe wilting and chlorophyll deficiency (Fig. 11 B and D). Similarly, Osbgal9-t plants showed greater sensitivity to low and high temperature stress than HY when exposed to low (Fig. 12 A and C) or high temperature (Fig. 12 B and D).
이를 통해, 증가된 OsBGAL9 발현이 저온 및 고온 스트레스에 대한 내성을 향상시킨다는 것을 확인하였다.Through this, we confirmed that increased OsBGAL9 expression enhanced resistance to low and high temperature stress.
<실험예 6> OsBGAL9의 세포내 지역화 분석<Experimental Example 6> Analysis of the intracellular localization of OsBGAL9
OsBGAL9의 세포내 지역화를 분석하기 위하여, 35S:OsBGAL9-GFP 도입유전자를 품고 있는 형질전환 식물에서 OsBGAL9-GFP(Green Fluorescent Protein, 녹색 형광 단백질) 융합과 관련된 GFP 신호를 추적하여 OsBGAL9의 세포내 지역화를 조사하였다.To analyze the subcellular localization of OsBGAL9, the GFP signal associated with the OsBGAL9-GFP (Green Fluorescent Protein) fusion was traced in transgenic plants harboring the 35S:OsBGAL9-GFP transgene to investigate the subcellular localization of OsBGAL9.
OsBGAL9의 세포내 지역화를 분석하기 위하여, 종결 코돈이 결여된 OsBGAL9의 전체 길이 코딩 서열을 PCR 프라이머(서열번호 6 및 7)를 사용하여 증폭하고 pENTR™/D-TOPO™ 벡터(Invitrogen, Gaithersburg, MD, USA)에 클로닝하였다. OsBGAL9 cDNA는 시퀀싱에 의해 확인되었고 Gateway LR Clonase(Invitrogen, Gaithersburg, MD, USA)를 사용하여 C 말단에 위치한 GFP 태그와 함께 바이너리 대상 벡터 pH7FWG2로 재조합되었다. OsBGAL9-GFP 구조체는 아그로박테리움-매개 형질전환에 의해 벼 캘러스(callus)로 형질전환되었다. 공초점 현미경(LSM510 META, Carl Zeiss, Jena, Germany)을 사용하여 OsBGAL9의 세포내 지역화를 관찰하였으며, GFP 형광은 488 nm에서 들뜨고 490-540nm(GFP 패널)에서 대역 통과 필터로 검출되었다. To analyze the subcellular localization of OsBGAL9, the full-length coding sequence of OsBGAL9 lacking the stop codon was amplified using PCR primers (SEQ ID NOs: 6 and 7) and cloned into the pENTR™/D-TOPO™ vector (Invitrogen, Gaithersburg, MD, USA). The OsBGAL9 cDNA was confirmed by sequencing and recombined into the binary destination vector pH7FWG2 with a GFP tag located at the C terminus using Gateway LR Clonase (Invitrogen, Gaithersburg, MD, USA). The OsBGAL9-GFP construct was transformed into rice callus by Agrobacterium-mediated transformation. The subcellular localization of OsBGAL9 was observed using a confocal microscope (LSM510 META, Carl Zeiss, Jena, Germany). GFP fluorescence was excited at 488 nm and detected with a band-pass filter at 490–540 nm (GFP panel).
OsBGAL9의 세포내 지역화 분석을 한 결과, 뿌리 표피 세포의 경계에서 GFP 형광을 감지하여 원형질막 또는 세포벽 지역화를 측정하였다. OsBGAL9의 지역화를 명확히 하기 위하여, 공초점 스캐닝 전에 15분 동안 30%(w/v) 자당 용액에서 벼를 배양하여 원형질 분해를 유도하였다. GFP 신호는 세포벽에 남아있는 반면, 원형질막은 수축되어 세포벽에서 떨어져나갔다(도 13). 이는 OsBGAL9가 세포벽에 국한된 단백질임을 의미한다.Subcellular localization analysis of OsBGAL9 detected GFP fluorescence at the border of root epidermal cells to determine plasma membrane or cell wall localization. To clarify the localization of OsBGAL9, rice plants were cultured in 30% (w/v) sucrose solution for 15 min to induce plasma lysis before confocal scanning. GFP signal remained in the cell wall, whereas the plasma membrane shrank and detached from the cell wall (Fig. 13). This suggests that OsBGAL9 is a cell wall-localized protein.
<실험예 7> 재조합 OsBGAL9, OsBGAL9 기능 상실 및 과발현 식물의 Bgal 활성 확인<Experimental Example 7> Confirmation of Bgal activity in recombinant OsBGAL9, OsBGAL9 loss-of-function and overexpression plants
7-1. 재조합 OsBGAL9 생성7-1. Generation of recombinant OsBGAL9
OsBGAL9이 BGAL임을 확인하기 위하여, 재조합 OsBGAL9를 생산하여 in vitro 활동 분석을 수행하였다. To confirm that OsBGAL9 is BGAL, recombinant OsBGAL9 was produced and in vitro activity assays were performed.
대장균(Escherichia coli)과 피치아 파스토리스(Pichia pastoris)에서 재조합된 OsBGAL9를 생산하는 것은 실패하였으나, HEK293 세포에서 분비형으로 신호 펩타이드가 없는 재조합된 OsBGAL9(아미노산 27-673)를 성공적으로 생산하였다. OsBGAL9 코딩 서열은 단백질 분비를 위한 쥐 Igκ 체인 리더 서열과 C-말단 myc 에피토프(epitope)/6 탠덤(tandem) 히스티딘 태그 사이에 인프레임으로 클로닝되었다. 이는 pSecTag2 포유 동물 발현 벡터(Invitrogen, MA, USA)에 삽입되었다. OsBGAL9 발현 구조물은 제조업체의 규정에 따라 FreeStyle 293 발현 시스템(Invitrogen)을 사용하여 HEK293 세포에 전사되었다. 5일 동안 배양한 후, 배양액을 니켈 수지 칼럼에 통과시켜 분비된 재조합 OsBGAL9를 정제하였다. 정제된 단백질은 SDS-PAGE와 Coomassie Brilliant Blue 염색을 통해 확인되었다(도 14A).Although production of recombinant OsBGAL9 in Escherichia coli and Pichia pastoris failed, recombinant OsBGAL9 (amino acids 27-673) without a signal peptide was successfully produced in a secreted form in HEK293 cells. The OsBGAL9 coding sequence was cloned in-frame between the murine Igκ chain leader sequence and the C-terminal myc epitope/6 tandem histidine tags for protein secretion. It was inserted into the pSecTag2 mammalian expression vector (Invitrogen, MA, USA). The OsBGAL9 expression construct was transcribed into HEK293 cells using the FreeStyle 293 expression system (Invitrogen) according to the manufacturer's instructions. After culturing for 5 days, the secreted recombinant OsBGAL9 was purified by passing the culture medium through a nickel resin column. The purified protein was confirmed by SDS-PAGE and Coomassie Brilliant Blue staining (Fig. 14A).
7-2. 재조합 OsBGAL9의 Bgal 활성 분석7-2. Analysis of Bgal activity of recombinant OsBGAL9
생성한 재조합 OsBGAL9의 Bgal 활성을 분석하기 위하여, 두 가지 전형적인 합성 Bgal 기질인 X-Gal(5-bromo-4-chloro-3-indolyl β-D-galactoside)과 ONPG(ortho-Nitrophenyl-ß-galactoside)로 활성 분석을 수행하였다. X-Gal은 Bgal 효소가 이를 분해할 때 파란색 생성물을 형성하며, ONPG은 Bgal 효소가 이를 분해할 때 노란색 생성물을 형성한다. 따라서, X-Gal과 ONPG을 Bgal의 기질로 사용하면 Bgal의 활성을 시각적으로 확인할 수 있다.To analyze the Bgal activity of the generated recombinant OsBGAL9, the activity assay was performed with two typical synthetic Bgal substrates, X-Gal (5-bromo-4-chloro-3-indolyl β-D-galactoside) and ONPG (ortho-Nitrophenyl-ß-galactoside). X-Gal forms a blue product when Bgal enzyme decomposes it, and ONPG forms a yellow product when Bgal enzyme decomposes it. Therefore, when X-Gal and ONPG are used as Bgal substrates, the activity of Bgal can be visually confirmed.
용액 내 활성 분석을 위해 반응 혼합물(100 ㎕)은 10 ㎍ 재조합 OsBGAL9, 100 mM 인산나트륨 완충액(pH 7.0) 및 0.5 mM X-Gal 또는 1 mM ONPG를 기질로 포함하였다. 대조군 반응은 OsBGAL9 대신에 HEK293 세포에서 생성된 정제된 재조합 OsXOAT12를 사용하였다. 37 ℃서 20분 동안 반응 혼합물을 배양한 후, 반응 혼합물의 색상 변화를 평가하였다.For the activity assay in solution, the reaction mixture (100 μl) contained 10 μg recombinant OsBGAL9, 100 mM sodium phosphate buffer (pH 7.0), and 0.5 mM X-Gal or 1 mM ONPG as substrate. Control reactions used purified recombinant OsXOAT12 produced in HEK293 cells instead of OsBGAL9. After incubating the reaction mixture for 20 min at 37 °C, the color change of the reaction mixture was evaluated.
합성 Bgal 기질인 X-Gal과 ONPG을 사용하여 OsBGAL9의 Bgal 활성을 분석한 결과, 재조합 OsBGAL9가 각각 특징적인 파란색과 노란색 생성물 형성하였으므로 같이 두 기질을 분해할 수 있음을 확인하였다. 반면, 대조군인 재조합 OsXOAT12은 어떠한 색상변화도 관찰되지 않았으므로, 두 기질을 분해하지 않았음을 확인하였다(도 14B).The Bgal activity of OsBGAL9 was analyzed using synthetic Bgal substrates, X-Gal and ONPG. Recombinant OsBGAL9 formed characteristic blue and yellow products, respectively, confirming that it could degrade both substrates. In contrast, the control, recombinant OsXOAT12, did not degrade either substrate, confirming that it did not show any color change (Fig. 14B).
생성한 재조합 OsBGAL9의 Bgal 활성을 분석하기 위하여, in-gel 활성 분석을 수행하였다. in-gel 활성 분석은 단백질의 효소 활성을 측정하는 기술 중 하나이며, 전기영동을 통해 단백질을 분리한 후, 겔 내에서 특정 기질 또는 효소 활성을 확인하는 것을 의미한다.To analyze the Bgal activity of the generated recombinant OsBGAL9, an in-gel activity assay was performed. The in-gel activity assay is one of the techniques for measuring the enzyme activity of a protein, and means confirming a specific substrate or enzyme activity within a gel after separating the protein through electrophoresis.
in-gel 활성 분석은 clear-native PAGE를 사용하여 수행한 다음 X-Gal 기질과 함께 배양하였다. 정제된 재조합 OsBGAL9(15 ㎍)를 대조군인 재조합 OsXOAT12와 함께 4 ℃에서 겔 러닝 버퍼(50 mM Bis-Tris, 50 mM tricine, pH 7.0)를 사용하여 native PAGE 4~16% Bis-Tris 겔(Invitrogen)에서 실행되었다. 겔을 100 mM 인산나트륨 완충액(pH 7.0)에서 간단히 헹구고 Bgal 활성을 검출하기 위해 0.5 mM X-Gal을 함유하는 동일한 완충액에서 1시간 동안 배양하였다. In-gel 활성 이미지를 기록한 후, 동일한 완충에 동일한 젤을 Coomassie Brilliant Blue로 단백질에 대해 염색하였다. 3개의 개별 형질감염을 수행하였으며, 이러한 형질감염으로부터 정제된 재조합 OsBGAL9는 활성 분석을 위한 생물학적 복제물로 사용되었으며 대표적인 이미지가 제시되었다.In-gel activity assay was performed using clear-native PAGE followed by incubation with X-Gal substrate. Purified recombinant OsBGAL9 (15 μg) was run on a native PAGE 4–16% Bis-Tris gel (Invitrogen) using gel running buffer (50 mM Bis-Tris, 50 mM tricine, pH 7.0) at 4 °C together with recombinant OsXOAT12 as a control. The gel was briefly rinsed in 100 mM sodium phosphate buffer (pH 7.0) and incubated for 1 h in the same buffer containing 0.5 mM X-Gal to detect Bgal activity. After recording the in-gel activity image, the same gel in the same buffer was stained for protein with Coomassie Brilliant Blue. Three individual transfections were performed, and the purified recombinant OsBGAL9 from these transfections were used as biological replicates for the activity assay, and representative images are shown.
in-gel 활성 분석을 수행하여 OsBGAL9의 Bgal 활성을 분석한 결과, OsBGAL9 단백질 밴드가 X-Gal 기질에 대해 Bgal 활성을 나타내는 것을 확인하였다(도 14C).The Bgal activity of OsBGAL9 was analyzed by performing an in-gel activity assay, and it was confirmed that the OsBGAL9 protein band exhibited Bgal activity toward the X-Gal substrate (Fig. 14C).
7-3. OsBGAL9 기능 상실 및 과발현 식물의 Bgal 활성 분석7-3. Analysis of Bgal activity in OsBGAL9 loss-of-function and overexpression plants
OsBGAL9 기능 상실 및 과발현 식물의 Bgal 활성을 분석하기 위하여, 벼에서 단백질을 추출하여 Bgal 활성을 분석하였다.To analyze Bgal activity in OsBGAL9 loss-of-function and overexpression plants, proteins were extracted from rice and analyzed for Bgal activity.
두 번째 마디 또는 잎에서 수집한 약 2 g의 조직을 액체 질소로 분쇄하였다. 분쇄한 분말을 50 mM 아세트산나트륨 완충액(pH 4.5), 1M 염화나트륨 및 1X 프로테아제 억제제(Sigma, Mannheim, Germany) 용액에 첨가되고 얼음 위에서 1시간 동안 두었다. 그 후, 20분 동안 4 ℃, 3,220 RCF에서 원심분리한 후, 상층액을 Amicon Ultra 원심 여과 장치(Millipore)로 옮겨서 4 ℃, 3,220 RCF에서 10분 동안 원심분리하여 흐름을 제거하였다. 제거 후, 10 mL 20 mM 아세트산나트륨 완충액(pH 5.0)을 첨가하여 컬럼을 세척하고 20분 동안 4 ℃, 3,220 RCF에서 원심분리하였다. 마지막으로 프로테아제 억제제 용액이 포함된 10 mL 20 mM 아세트산나트륨 완충액(pH 5.0)과 Amicon Ultra 필터 장치에 남아 있는 액체 2mL를 4 ℃, 3,220 RCF에서 5분 동안 원심분리한 후 수집하였다. 단백질의 총량은 Bradford(1976)에 따라 Bradford assay(Thermo fisher Scientific, Korea)로 정량하였다. Bgal 활성은 ONPG를 기질로 사용하여 측정하였다. 반응 혼합물은 400 ㎕의 20 mM 소듐 아세테이트 완충액(pH 5.0), 500 ㎕의 2 mM 기질 및 100 ㎕의 단백질 추출물(100 ㎍/mL)을 포함하였다. 이러한 반응 혼합물은 37 ℃에서 60분 동안 배양되었다. 0.5 M 탄산나트륨 500 ㎕를 첨가하여 반응을 정지시켰으며, 흡광도는 420 nm에서 측정되었다.Approximately 2 g of tissue collected from the second node or leaf was ground in liquid nitrogen. The ground powder was added to a solution of 50 mM sodium acetate buffer (pH 4.5), 1 M sodium chloride, and 1X protease inhibitor (Sigma, Mannheim, Germany) and kept on ice for 1 h. After centrifugation at 4 °C, 3,220 RCF for 20 min, the supernatant was transferred to an Amicon Ultra centrifugal filter device (Millipore) and centrifuged at 4 °C, 3,220 RCF for 10 min to remove the flow-through. After removal, the column was washed by adding 10 mL of 20 mM sodium acetate buffer (pH 5.0) and centrifuged at 4 °C, 3,220 RCF for 20 min. Finally, 10 mL of 20 mM sodium acetate buffer (pH 5.0) containing protease inhibitor solution and 2 mL of the liquid remaining in the Amicon Ultra filter device were collected by centrifugation at 4 °C, 3,220 RCF for 5 min. The total protein amount was quantified by the Bradford assay (Thermo fisher Scientific, Korea) according to Bradford (1976). Bgal activity was measured using ONPG as a substrate. The reaction mixture contained 400 ㎕ of 20 mM sodium acetate buffer (pH 5.0), 500 ㎕ of 2 mM substrate, and 100 ㎕ of protein extract (100 ㎍/mL). The reaction mixture was incubated at 37 °C for 60 min. The reaction was stopped by adding 500 ㎕ of 0.5 M sodium carbonate, and the absorbance was measured at 420 nm.
합성 Bgal 기질인 ONPG을 사용하여 OsBGAL9 기능 상실 및 과발현 식물의 Bgal 활성을 분석한 결과, OsBGAL9-OX 식물은 DJ 식물과 비교하여 마디 간에서 ONPG에 대해 50% 더 높은 Bgal 활성을 보인 반면, Osbgal9 식물은 DJ와 비교하여 약 70% 감소를 보였다(도 14D). 그러나 잎에서 Bgal 활성은 OsBGAL9-OX 및 Osbgal9 식물 모두 DJ 보다 더 높은 활성을 나타냈으므로 OsBGAL9 발현과 상관관계가 없었다(도 14D). 이와 유사하게, Osbgal9-t 식물은 대조군인 HY와 비교하여 식물의 마디 간에서 Bgal 활성이 감소(도 15A)하였으며, 잎에서 Bgal 활성이 증가(도 15B)하였다.Analysis of Bgal activity in OsBGAL9 loss-of-function and overexpression plants using a synthetic Bgal substrate, ONPG, revealed that OsBGAL9-OX plants showed 50% higher Bgal activity toward ONPG in the internodes compared with DJ plants, whereas Osbgal9 plants showed about 70% reduction compared with DJ (Fig. 14D). However, Bgal activity in leaves was not correlated with OsBGAL9 expression, as both OsBGAL9-OX and Osbgal9 plants showed higher activity than DJ (Fig. 14D). Similarly, Osbgal9-t plants showed reduced Bgal activity in the internodes (Fig. 15A) and increased Bgal activity in the leaves (Fig. 15B) compared with the control, HY.
OsBGAL9-OX 및 Osbgal9 식물의 잎에서 모든 Bgal의 발현 수준을 측정하였으며, 그 결과 DJ에 비해 OsBGAL9-OX 및 Osbgal9 식물의 잎에서 OsBGAL1, OsBGAL3, OsBGAL6 및 OsBGAL7의 발현이 증가하였으며 OsBGAL9-OX 및 Osbgal9 식물의 잎에서 ONPG에 대한 더 높은 활성이 나타났다(도 16). 이를 통해, 잎에서 Bgal의 활성이 DJ보다 높게 나타난 이유가 다른 BGAL 유전자의 발현 때문인 것을 확인하였다.The expression levels of all Bgals were measured in the leaves of OsBGAL9-OX and Osbgal9 plants, and the results showed that the expression of OsBGAL1, OsBGAL3, OsBGAL6, and OsBGAL7 was increased in the leaves of OsBGAL9-OX and Osbgal9 plants compared to DJ, and higher activities toward ONPG were observed in the leaves of OsBGAL9-OX and Osbgal9 plants (Fig. 16). This confirmed that the reason why the activity of Bgal in the leaves was higher than that of DJ was due to the expression of other BGAL genes.
<실험예 8> OsBGAL9 기능 상실 및 과발현 식물의 세포벽 구성에 따른 BGAL9 활성 확인<Experimental Example 8> Confirmation of BGAL9 activity according to cell wall composition of OsBGAL9 loss-of-function and overexpression plants
8-1. 자일로글루칸 올리고머에 대한 OsBGAL9 활성 분석8-1. OsBGAL9 activity assay on xyloglucan oligomers
자일로글칸 올리고머(xyloglucan oligomer)는 세포벽에서 발견되는 다당체 성분이며, “X”는 자일로스-치환된 G를 나타내며, L은 갈락토스-자일로스-치환된 G를 나타낸다.Xyloglucan oligomers are polysaccharide components found in cell walls, where “X” represents a xylose-substituted G and L represents a galactose-xylose-substituted G.
애기장대(Arabidopsis thaliana)의 BGAL 중 하나인 AtBGAL10이 자일로글칸 올리고머 XLLG의 비환원 말단에서 두 번째 치환된 글루코스(G)에 위치한 갈락토스 잔기를 가수분해 할 수 있으므로, 이와 유사한 OsBGAL9가 가수분해 활성을 가지는지 확인하기 위하여 Arabidopsis mur2(murus 2) 돌연변이에서 추출한 자일로클루칸을 endo-β-1,4-glucanase(E-CELTR, Megazyme, Wicklow, Ireland)로 분해하여 제조한 XXXG, XLXG/XXLG 및 XLLG를 포함하는 자일로글루칸 올리고머 혼합물과 재조합 OsBGAL9를 배양하였다. Since AtBGAL10, one of the BGALs from Arabidopsis thaliana , can hydrolyze the galactose residue located at the second substituted glucose (G) at the non-reducing end of the xyloglucan oligomer XLLG, to determine whether OsBGAL9, which has a similar hydrolytic activity, was cultured with a mixture of xyloglucan oligomers containing XXXG, XLXG/XXLG, and XLLG, which were produced by hydrolyzing xyloglucan extracted from the Arabidopsis mur2 ( murus 2 ) mutant with endo-β-1,4-glucanase (E-CELTR, Megazyme, Wicklow, Ireland).
자일로글루칸 올리고머에 대한 OsBGAL9 활성을 분석하기 위해 반응 혼합물(40μL)에는 100 mM 인산나트륨 완충액(pH 7.0), 재조합 OsBGAL9 10 ㎍ 및 자일로글루칸 올리고머 10 ㎍이 포함되어 있다. 37 ℃에서 24시간 동안 배양한 후, 반사 모드에서 Bruker Autoflex ToF 질량 분석기(Billerica, MA , 미국)를 사용하여 MALDI-TOF(Matrix-Assisted Laser Desorption/Ionization-Time Of Flight) 질량 분석법으로 반응 혼합물 내 자일로글루칸 올리고머의 질량을 분석하였다. 스펙트럼은 적어도 500회 레이저 샷의 평균이었다. 자일로글루칸 올리고머는 Arabidopsis mur2(murus 2) 돌연변이에서 추출한 xyloglucan을 endo-β-1,4-glucanase로 분해하여 준비하였다.To analyze OsBGAL9 activity toward xyloglucan oligomers, the reaction mixture (40 μL) contained 100 mM sodium phosphate buffer (pH 7.0), 10 μg of recombinant OsBGAL9, and 10 μg of xyloglucan oligomers. After incubation at 37 °C for 24 h, the mass of xyloglucan oligomers in the reaction mixture was analyzed by Matrix-Assisted Laser Desorption/Ionization-Time Of Flight (MALDI-TOF) mass spectrometry using a Bruker Autoflex ToF mass spectrometer (Billerica, MA, USA) in reflectance mode. The spectra were averaged from at least 500 laser shots. Xyloglucan oligomers were prepared by hydrolyzing xyloglucan extracted from the Arabidopsis mur2 ( murus 2 ) mutant with endo-β-1,4-glucanase.
질량 분석기를 사용하여 질량 스펙트럼을 조사한 결과, 열 변성 재조합 OsBGAL9(대조군)와 재조합 OsBGAL9와 함께 배양된 샘플을 비교하였을 때, XXLG(m/z 1247) 및 XLLG (m/z 1409)에 해당하는 질량의 상대 신호 강도에 유의한 차이가 없음을 확인하였다(도 17).Examination of the mass spectrum using a mass spectrometer confirmed that there was no significant difference in the relative signal intensities corresponding to the masses XXLG (m/z 1247) and XLLG (m/z 1409) when comparing the samples cultured with heat-denatured recombinant OsBGAL9 (control) and recombinant OsBGAL9 (Fig. 17).
이를 통해, 자일로글루칸의 갈락토스 잔기가 OsBGAL9의 표적이 될 가능성이 없음을 확인하였다.Through this, we confirmed that the galactose residue of xyloglucan is unlikely to be a target of OsBGAL9.
8-2. 갈락토스 잔기에 대한 OsBGAL9의 활성 분석8-2. Activity analysis of OsBGAL9 on galactose residues
갈락토스(galactose) 잔기는 다른 세포벽(세포벽 중 pectic galactan으로 구성된 rhamnogalacturonan I(RG-I) 및 AGP)에도 존재한다. 따라서, OsBGAL9의 갈락토스 잔기에 대한 가수분해 활성 대상을 더 자세히 조사하기 위하여, OsBGAL9-OX 및 Osbgal9 식물의 두 번째 마디를 사용하여 LM5, LM26(for β-(1 → 4)-linked in pectic RG-I side chain) 및 JIM16(for β-(1 → 4)-linked in pectic RG-I side chain)과 같은 여러 단일 클론 항체로 면역 표지 분석을 수행하였다.Galactose residues are also present in other cell walls (rhamnogalacturonan I (RG-I) and AGP, which are pectic galactans in the cell wall). Therefore, to further investigate the target of the hydrolytic activity of OsBGAL9 on galactose residues, immunoblot analysis was performed using the second node of OsBGAL9-OX and Osbgal9 plants with several monoclonal antibodies, such as LM5, LM26 (for β-(1 → 4)-linked in pectic RG-I side chain), and JIM16 (for β-(1 → 4)-linked in pectic RG-I side chain).
7주령 DJ, OsBGAL9-OX 및 Osbgal9 식물의 두 번째 마디를 수집하여, 1~3 mm의 작은 조각을 자르고 60분 동안 진공 침투 후, 고정 용액(1.6%(w/v) 파라포름알데히드(paraformaldehyde), 0.2%(w/v) 글루타르알데히드(glutaraldehyde), 1%(v/v) 트립톤(Triton X-100) in 25 mM 인산 완충액(sodium phosphate buffer))에 4 ℃, 24시간 동안 두었다. 샘플을 25 mM 인산 완충액(pH 7.1)으로 3회 세척한 후, 물로 세척하였다. 샘플을 순차적으로 농도가 달라지는 에탄올을 이용하여 탈수하고, 자일렌(xylene)으로 제거하고, 파라핀(paraffin)에 포매하였다. 조직 단면(20 ㎛)을 파라핀 슬라이서(RM2265, Leica)로 절단하였다. 마지막으로, 마지막으로 100% 자일렌, 자일렌:에탄올(1:1, v/v), 에탄올(100, 95, 85, 70, 50, 30%(v/v)) 순으로 탈왁스를 5~10분 동안 수행하였다.The second nodes of 7-week-old DJ, OsBGAL9-OX, and Osbgal9 plants were collected, cut into small pieces of 1–3 mm, vacuum infiltrated for 60 min, and then placed in a fixative solution (1.6% (w/v) paraformaldehyde, 0.2% (w/v) glutaraldehyde, and 1% (v/v) tryptone (Triton X-100) in 25 mM sodium phosphate buffer) at 4 °C for 24 h. The samples were washed three times with 25 mM sodium phosphate buffer (pH 7.1) and then washed with water. The samples were dehydrated with sequential concentrations of ethanol, cleared with xylene, and embedded in paraffin. Tissue sections (20 μm) were cut with a paraffin slicer (RM2265, Leica). Finally, dewaxing was performed in the following order: 100% xylene, xylene:ethanol (1:1, v/v), ethanol (100, 95, 85, 70, 50, 30% (v/v)) for 5 to 10 minutes.
단면을 3%(w/v) 무지방 분유를 함유하는 1X 인산나트륨 완충액(PBS, pH 7.1)에서 30분 동안 차단하고, 실온에서 60분 동안 LM5, LM26 또는 JIM16(Agrisera, Sweden)과 함께 배양하였다. 단면을 PBS(pH 7.1)로 최소 3회 세척하고 이차 Fluor 488 항-쥐 항체(Thermo Fisher Scientific)와 함께 배양하였다. 단면을 PBS로 여러 번 세척한 후, 증류수로 추가로 세척하고 건조 후 봉입제(CitiFluor™ AF1, Germany)를 이용하여 대비염색되었다. 488nm로 자극되는 공초점 레이저 스캐닝 현미경(Olympus FV3000, Tokyo, Japan)을 사용하여 형광 이미지를 얻었다.Sections were blocked in 1X sodium phosphate buffer (PBS, pH 7.1) containing 3% (w/v) nonfat dry milk for 30 min and incubated with LM5, LM26, or JIM16 (Agrisera, Sweden) for 60 min at room temperature. Sections were washed at least three times with PBS, pH 7.1, and incubated with secondary Fluor 488 anti-mouse antibody (Thermo Fisher Scientific). Sections were washed several times with PBS, then further washed with distilled water, dried, and counterstained using mounting agent (CitiFluor™ AF1, Germany). Fluorescence images were obtained using a confocal laser scanning microscope (Olympus FV3000, Tokyo, Japan) excited at 488 nm.
도 18에서 VB(Vascular Bundle)는 혈관 다발을 의미하고, Epi는 표피를 의미한다. DJ, OsBGAL9-OX 및 Osbgal9 식물의 혈관 다발 및 표피에서 LM5 및 LM26의 수준은 유사하게 나타났다. 그러나 JM16에 대한 표지는 Osbgal9에서 증가하고 OsBGAL9-OX에서는 DJ에 비해 감소하였다(도 18). 또한, Osbgal9-t 식물에서도 LM5 및 LM26의 수준은 유사하였으나, JM16에 대한 표지는 대조군인 HY에 비해 증가하였다(도 19). In Fig. 18, VB (Vascular Bundle) means vascular bundle, and Epi means epidermis. The levels of LM5 and LM26 in the vascular bundle and epidermis of DJ, OsBGAL9-OX, and Osbgal9 plants were similar. However, the marker for JM16 increased in Osbgal9 and decreased in OsBGAL9-OX compared to DJ (Fig. 18). In addition, the levels of LM5 and LM26 were similar in Osbgal9-t plants, but the marker for JM16 increased compared to the control, HY (Fig. 19).
8-3. 아라비노갈락톤 단백질(AGPs)에 대한 OsBGAL9 활성 분석8-3. OsBGAL9 activity analysis on arabinogalactone proteins (AGPs)
AGPs(Arabinogalactan Proteins)는 식물 세포외 매트릭스에서 원형질막 고정 또는 세포외 분비 단백질로 발견되는 하이드록시프롤린(Hyp)이 풍부한 당단백질 계열으로, 탄수화물 사슬과 연결되어 있다. AGPs는 세포 성장 및 발달에 중요한 역할을 한다.Arabinogalactan proteins (AGPs) are a family of hydroxyproline (Hyp)-rich glycoproteins found in the plant extracellular matrix as plasma membrane-anchored or extracellularly secreted proteins, linked to carbohydrate chains. AGPs play an important role in cell growth and development.
OsBGAL9의 세포벽에 존재하는 AGPs에 대한 활성을 조사하기 위하여, AGPs를 분포 및 정량화하는 데 널리 사용되는 화학 물질인 β-D-glucosyl Yariv 시약(β-GlcY) 및 β-D-glucosyl Yariv 시약(β-GalY)로 염색하여 분석하였다.To investigate the activity against AGPs present in the cell wall of OsBGAL9, the cells were stained and analyzed with β-D-glucosyl Yariv reagent (β-GlcY) and β-D-glucosyl Yariv reagent (β-GalY), chemicals widely used to distribute and quantify AGPs.
개화 단계에 있는 DJ, OsBGAL9-OX 및 Osbgal9 식물의 두 번째 마디의 횡단면을 사용하였다. 손으로 자른 절편을 βGlcY(2 mg/mL β-D-glucosyl in 0.15 M NaCl)(Biosupplies Australia, Cat#100-2) 및 시약 βGalY(2 mg/mL β-D-galactosyl in 0.15 M NaCl)(Biosupplies Australia, Cat#100-8a)에서 60분 동안 실온 배양하고, 증류수로 3회 세척하였다. 그 후, Olympus BX61 현미경(Olympus, Tokyo, Japan)을 사용하여 사진 촬영을 하였다.Transverse sections of the second node of DJ, OsBGAL9-OX and Osbgal9 plants at the flowering stage were used. Hand-cut sections were incubated in βGlcY (2 mg/mL β-D-glucosyl in 0.15 M NaCl) (Biosupplies Australia, Cat#100-2) and βGalY (2 mg/mL β-D-galactosyl in 0.15 M NaCl) (Biosupplies Australia, Cat#100-8a) reagents for 60 min at room temperature and washed three times with distilled water. Afterwards, photographs were taken using an Olympus BX61 microscope (Olympus, Tokyo, Japan).
AGPs에 대한 OsBGAL9의 활성을 분석한 결과, Osbgal9 식물의 줄기 부분에서 AGPs가 상당히 증가하고 OsBGAL9-OX 식물에서는 감소한 것을 확인하였다(도 20). 이와 유사하게, Osbgal9-t 식물에서 대조군인 HY에 비하여 AGPs가 증가한 것을 확인하였다(도 21).Analysis of the activity of OsBGAL9 on AGPs revealed that AGPs were significantly increased in the stems of Osbgal9 plants and decreased in OsBGAL9-OX plants (Fig. 20). Similarly, AGPs were found to be increased in Osbgal9-t plants compared to the control group, HY (Fig. 21).
DJ, OsBGAL9-OX 및 Osbgal9 식물의 세포벽 알코올 불용성 잔류물(Alcohol Insoluble Residue, AIR) 분획을 기체-액체 크로마토그래피로 분석하였다.The alcohol insoluble residue (AIR) fractions of cell walls from DJ, OsBGAL9-OX, and Osbgal9 plants were analyzed by gas-liquid chromatography.
DJ, OsBGAL9-OX 및 Osbgal9 식물의 두 번째 마디 조직으로부터 얻은 냉동 시료를 액체 질소 아래애서 분쇄하고, 균질화기(Polytron homogenizer);를 사용하여 70%(v/v) 에탄올에 3회 현탁시켰다. AIR은 10,000 g에서 5분 동안 원심분리하여 수집하고, 무수 에탄올과 100% 아세톤을 사용하여 순차적으로 세척하였다. 최종 잔류물을 진공 오븐에서 60 ℃로 건조시켰다. 세포벽 중성 당(알디톨 아세테이트)을 정량하기 위하여, AIRs 5 mg를 70% 황산 용액과 30분 동안 실온에서 반응시킨 후, 내부 표준으로 이노시톨(inositol)을 첨가하고 최종 농도 6%(v/v) 황산이 되도록 물로 희석하였다. 105 ℃에서 120분 동안 가열한 후, 25%(w/v) 암모늄 용액으로 처리하였다. DMSO에서 수소화붕소나트륨(sodium borohydride)으로 환원시킨 후, 용액을 40 ℃에서 90분 동안 가열하고 빙초산, 무수초산, 1-메틸이미다졸, 디클로로메탄 및 물로 순차적으로 처리하였다. 가수분해된 세포벽 당의 알디톨 아세테이트를 포함하는 유기층을 물로 3회 세척한 후, 당을 30 m × 0.25 mm (i.d.) 실리카 모세관 칼럼 DB 225(Alltech Assoc., Deerfield, IL, USA)가 장착된 기체-액체 크로마토그래피(model 6890; Hewlett-Packard)를 사용하여 분석하였다. Frozen samples obtained from the second node tissues of DJ, OsBGAL9-OX and Osbgal9 plants were ground under liquid nitrogen and suspended three times in 70% (v/v) ethanol using a homogenizer (Polytron homogenizer). AIRs were collected by centrifugation at 10,000 g for 5 min and washed sequentially with absolute ethanol and 100% acetone. The final residue was dried in a vacuum oven at 60 °C. To quantify cell wall neutral sugars (alditol acetates), 5 mg of AIRs were reacted with 70% sulfuric acid solution for 30 min at room temperature, then inositol was added as an internal standard and diluted with water to a final concentration of 6% (v/v) sulfuric acid. After heating at 105 °C for 120 min, they were treated with 25% (w/v) ammonium solution. After reduction with sodium borohydride in DMSO, the solution was heated at 40 °C for 90 min and treated sequentially with glacial acetic acid, acetic anhydride, 1-methylimidazole, dichloromethane, and water. The organic layer containing alditol acetates of hydrolyzed cell wall sugars was washed three times with water, and the sugars were analyzed using a gas-liquid chromatograph (model 6890; Hewlett-Packard) equipped with a 30 m × 0.25 mm (i.d.) silica capillary column DB 225 (Alltech Assoc., Deerfield, IL, USA).
기체-액체 크로마토그래피를 사용하여 당을 분석한 결과, DJ, OsBGAL9-OX 및 Osbgal9 식물의 세포벽 알코올 불용물 잔류물(AIR) 분획물에서 당 함량(glucose, galactose, arabinose 및 xylose)에는 유의한 차이가 발견되지 않았다(도 22). Analysis of sugars using gas-liquid chromatography revealed no significant differences in sugar contents (glucose, galactose, arabinose, and xylose) in the cell wall alcohol-insoluble residue (AIR) fractions of DJ, OsBGAL9-OX, and Osbgal9 plants (Fig. 22).
이를 통해, OsBGAL9가 AGPs의 galactose 잔기를 가수분해하는데 기능하고 있음을 확인하였다.Through this, we confirmed that OsBGAL9 functions in hydrolyzing galactose residues of AGPs.
상기와 같은 결과를 통해, OsBGAL9가 AGPs의 구성을 변형시키지만 펙틴이나 자일로글루칸에는 영향을 미치지 않는다는 것을 확인하였다. OsBGAL9 기능의 손실은 AGP 글리칸의 축적과 관련된 감소된 줄기 성장 표현형으로 이어졌으며, 두 번째 마디 간 세포벽 당 구성 요소에서 Osbgal9 돌연변이는 유의미한 변화를 나타내지 않았다. 이는 OsBGAL9가 세포벽 생합성에서 중요한 역할을 하지 않는 반면, AGP의 변형이 세포 신장에 중요하다는 것을 의미한다. 이를 통해, 아라비노갈락탄(arabinogalactan)이 산화적 가교결합에 의한 세포벽의 경직화에 관여할 수 있다는 점에서 온도 스트레스에 대한 OsBGAL9-OX 및 Osbgal9의 변경된 내성에 영향을 미쳤다는 것을 의미한다.These results confirm that OsBGAL9 alters the composition of AGPs but does not affect pectin or xyloglucan. Loss of OsBGAL9 function led to a reduced stem growth phenotype associated with the accumulation of AGP glycans, whereas Osbgal9 mutants did not show significant changes in the composition of the second internode cell wall sugars. This suggests that OsBGAL9 does not play an important role in cell wall biosynthesis, whereas the modification of AGPs is important for cell elongation. These results imply that arabinogalactan may be involved in the rigidification of the cell wall by oxidative cross-linking, which influenced the altered tolerance of OsBGAL9-OX and Osbgal9 to temperature stress.
이제까지 본 발명에 대하여 그 바람직한 실시예, 실험예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시 예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구 범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.The present invention has been described so far with reference to preferred embodiments and experimental examples. Those skilled in the art will understand that the present invention can be implemented in modified forms without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated by the claims, not the above description, and all differences within the scope equivalent thereto should be interpreted as being included in the present invention.
서열목록 전자파일 첨부Attach electronic file of sequence list
Claims (11)
A recombinant vector for increasing stress tolerance or promoting growth of a plant, comprising a gene encoding BGAL9 (beta-galactosidase 9).
상기 BGAL9(beta-galactosidase 9)는 벼(Oryza sativa) 유래인 것을 특징으로 하는, 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터.
In the first paragraph,
The above BGAL9 (beta-galactosidase 9) is a recombinant vector for increasing stress tolerance or promoting growth of plants, characterized in that it is derived from rice ( Oryza sativa ).
상기 BGAL9(beta-galactosidase 9)은 서열번호 1의 염기서열로 표시되는 것인, 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터.
In the second paragraph,
The above BGAL9 (beta-galactosidase 9) is a recombinant vector for increasing stress tolerance or promoting growth of plants, represented by the base sequence of sequence number 1.
상기 스트레스는 생물학적 및 비생물학적 스트레스인 것을 특징으로 하는, 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터.
In the first paragraph,
A recombinant vector for increasing stress tolerance or promoting growth of a plant, characterized in that the above stresses are biological and abiotic stresses.
상기 생물학적 스트레스는 도열병, 흰잎마름병, 키다리병, 벼알마름병, 깨씨무늬병 및 잎집무늬마름병으로 이루어진 군에서 선택되는 1종 이상의 질병에 감염되는 것을 특징으로 하는, 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터.
In paragraph 4,
A recombinant vector for increasing stress tolerance or promoting growth of a plant, characterized in that the above biological stress is infection by at least one disease selected from the group consisting of blast, white leaf blight, leg blight, grain blight, seed spot and sheath blight.
상기 비생물학적 스트레스는 고온 또는 저온 스트레스인 것을 특징으로 하는, 식물의 스트레스 내성 증가 또는 생장 촉진용 재조합 벡터.
In paragraph 4,
A recombinant vector for increasing stress tolerance or promoting growth of a plant, characterized in that the abiotic stress is high temperature or low temperature stress.
A transgenic plant in which a gene encoding BGAL9 (beta-galactosidase 9) is introduced or overexpressed.
상기 식물체는 벼, 보리, 밀, 호밀, 옥수수, 사탕수수, 귀리 및 양파로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는, 형질전환 식물체.
In Article 7,
A transgenic plant, characterized in that the plant is at least one species selected from the group consisting of rice, barley, wheat, rye, corn, sugarcane, oats, and onions.
Seeds of the transformed plant of Article 7.
A method for increasing stress tolerance or promoting growth of a plant, comprising the step of introducing or overexpressing a gene encoding BGAL9 (beta-galactosidase 9) in a plant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230064197 | 2023-05-18 | ||
KR20230064197 | 2023-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240167569A true KR20240167569A (en) | 2024-11-27 |
Family
ID=93702614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230106051A Pending KR20240167569A (en) | 2023-05-18 | 2023-08-14 | OsBGAL9 gene and use thereof for promoting rice growth and increasing stress tolerance |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240167569A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101985668B1 (en) | 2017-10-30 | 2019-06-04 | 명지대학교산학협력단 | Method for producing transgenic plant with controlled blast disease resistance using OsSUS4 gene from Oryza sativa and plant thereof |
-
2023
- 2023-08-14 KR KR1020230106051A patent/KR20240167569A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101985668B1 (en) | 2017-10-30 | 2019-06-04 | 명지대학교산학협력단 | Method for producing transgenic plant with controlled blast disease resistance using OsSUS4 gene from Oryza sativa and plant thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lopez-Hernandez et al. | Calcium binding by arabinogalactan polysaccharides is important for normal plant development | |
Xu et al. | A cascade of arabinosyltransferases controls shoot meristem size in tomato | |
Qin et al. | The cotton β‐galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development | |
US20190330649A1 (en) | Plant Grain Trait-Related Protein, Gene, Promoter and SNPS and Haplotypes | |
Idnurm et al. | Spontaneous and CRISPR/Cas9-induced mutation of the osmosensor histidine kinase of the canola pathogen Leptosphaeria maculans | |
Wang et al. | VqWRKY56 interacts with VqbZIPC22 in grapevine to promote proanthocyanidin biosynthesis and increase resistance to powdery mildew | |
Lee et al. | Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation | |
CN109402141B (en) | Application of wheat male sterility gene WMS and its anther-specific promoter | |
Ojola et al. | Overexpression of rice thaumatin-like protein (Ostlp) gene in transgenic cassava results in enhanced tolerance to Colletotrichum gloeosporioides f. sp. manihotis | |
Hou et al. | Identification of a wheat polygalacturonase-inhibiting protein involved in Fusarium head blight resistance | |
CN107523574A (en) | Regulating cell programmed cell death and the rice uneven class sizes gene SPL35 of disease resistance and its application | |
CN113677696A (en) | Method for cultivating plant resisting gray leaf spot | |
Clarke et al. | Wound-induced and developmental activation of a poplar tree chitinase gene promoter in transgenic tobacco | |
Harting et al. | The Vta1 transcriptional regulator is required for microsclerotia melanization in Verticillium dahliae | |
Hoang et al. | SPOTTED-LEAF7 targets the gene encoding β-galactosidase9, which functions in rice growth and stress responses | |
JP3538428B2 (en) | Plant promoter and gene expression method using the promoter | |
WO2009143155A2 (en) | Delayed fruit deterioration allele in plants and methods of detection | |
CN111454967B (en) | Rape BnMAN7 gene and application thereof | |
JP2016507240A (en) | Manipulating self-incompatibility in plants | |
KR20240167569A (en) | OsBGAL9 gene and use thereof for promoting rice growth and increasing stress tolerance | |
KR100745832B1 (en) | JPLP1 Gene and Its Proteins Have Fungal Resistance in Plants | |
US7244875B2 (en) | Expression vectors comprising nucleic acids encoding SEBF proteins and uses thereof | |
CN106636183B (en) | Application of TBL1 protein in regulating plant acetylation level and controlling rice bacterial blight | |
JP4524391B2 (en) | Genes involved in plant cell wall synthesis and their utilization | |
NL2031841B1 (en) | Application of Pectin Methylesterase Inhibitor Gene GhPMEI39 and its Encoded Protein in Plant Inflorescence Regulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20230814 |
|
PA0201 | Request for examination |
Patent event code: PA02011R01I Patent event date: 20230814 Comment text: Patent Application |
|
PG1501 | Laying open of application |