[go: up one dir, main page]

KR20240147949A - Recombinant corynebacterium glutamicum producing 1,5-pentanediol and uses thereof - Google Patents

Recombinant corynebacterium glutamicum producing 1,5-pentanediol and uses thereof Download PDF

Info

Publication number
KR20240147949A
KR20240147949A KR1020240042381A KR20240042381A KR20240147949A KR 20240147949 A KR20240147949 A KR 20240147949A KR 1020240042381 A KR1020240042381 A KR 1020240042381A KR 20240042381 A KR20240042381 A KR 20240042381A KR 20240147949 A KR20240147949 A KR 20240147949A
Authority
KR
South Korea
Prior art keywords
pentanediol
gene
producing
corynebacterium glutamicum
converts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
KR1020240042381A
Other languages
Korean (ko)
Inventor
박시재
손유정
정선아
주정찬
Original Assignee
이화여자대학교 산학협력단
가톨릭대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이화여자대학교 산학협력단, 가톨릭대학교 산학협력단 filed Critical 이화여자대학교 산학협력단
Publication of KR20240147949A publication Critical patent/KR20240147949A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01002Alcohol dehydrogenase (NADP+) (1.1.1.2), i.e. aldehyde reductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y102/00Oxidoreductases acting on the aldehyde or oxo group of donors (1.2)
    • C12Y102/01Oxidoreductases acting on the aldehyde or oxo group of donors (1.2) with NAD+ or NADP+ as acceptor (1.2.1)
    • C12Y102/0103Aryl-aldehyde dehydrogenase (NADP+) (1.2.1.30)

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 글루코스에서 1,5-펜탄디올을 생산하는 재조합 코리네박테리움 글루타미쿰(Corynebacterium glutamicum) 균주 및 이의 용도에 관한 것이다. 구체적으로, 본 발명에 따른 재조합 균주는 1,5-펜탄디올의 생산 효율과 생산 능력 뿐만 아니라 1,5-펜탄디올 생산의 핵심 전구체인 5-히드록시발레레이트의 생산 능력도 우수하다는 이점이 있다. 또한, 생산 과정에서 부산물 발생이 없으므로, 부반응 생성물로 인한 수율 저하의 문제를 해결할 수 있다.The present invention relates to a recombinant Corynebacterium glutamicum strain producing 1,5-pentanediol from glucose and to a use thereof. Specifically, the recombinant strain according to the present invention has the advantage of not only excellent production efficiency and production capacity of 1,5-pentanediol, but also excellent production capacity of 5-hydroxyvalerate, which is a key precursor for 1,5-pentanediol production. In addition, since no by-products are generated during the production process, the problem of reduced yield due to side reaction products can be solved.

Description

1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주 및 이의 용도 {RECOMBINANT CORYNEBACTERIUM GLUTAMICUM PRODUCING 1,5-PENTANEDIOL AND USES THEREOF}RECOMBINANT CORYNEBACTERIUM GLUTAMICUM PRODUCING 1,5-PENTANEDIOL AND USES THEREOF

본 출원은 2023년 3월 31일자로 한국 특허청에 출원되었으며, 여기에 인용하는 것에 의해 그 내용이 전체적으로 본 출원에 포함되는 한국 특허 출원 제10-2023-0043218호에 기초하여, 그 우선권을 주장한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2023-0043218, filed on March 31, 2023 with the Korean Intellectual Property Office, the contents of which are incorporated herein by reference in their entirety.

본 발명은 1,5-펜탄디올을 생산하는 재조합 코리네박테리움 글루타미쿰 균주 및 이의 용도에 관한 것이다.The present invention relates to a recombinant Corynebacterium glutamicum strain producing 1,5-pentanediol and its use.

1,5-펜탄디올(1,5-pentanediol)은 화장품과 같은 일반 상품의 첨가제로 사용되거나, 정밀 화학 분야의 각종 화학 물질을 생산하기 위한 중간체나 단량체로도 활용될 수 있기 때문에 전세계적으로 수요가 높다.1,5-Pentanediol is in high demand worldwide because it can be used as an additive in general products such as cosmetics, or as an intermediate or monomer for producing various chemical substances in the fine chemical field.

1.5-펜탄디올 (1,5-PDO)은 석유 제품으로부터 공업적으로 제조될 수 있으나, C5 석유계 공급원료 수급 제한의 문제가 있으며, 화학반응으로 생산할 경우 부반응 생성물로 인한 수율 저하, 높은 에너지 소비와 고온, 고압 조건 등의 문제가 있다. 이에 따라, 생명공학적 1,5-펜탄디올의 제조가 화학 합성에 대한 유망한 저비용의 지속가능한 대안으로 등장하였다. 1,5-Pentanediol (1,5-PDO) can be industrially produced from petroleum products, but there is a problem of limited supply of C5 petroleum-based feedstock, and when produced by chemical reaction, there are problems such as low yield due to side products, high energy consumption, and high temperature and high pressure conditions. Accordingly, biotechnological production of 1,5-pentanediol has emerged as a promising low-cost and sustainable alternative to chemical synthesis.

최근 대장균을 이용하여 5-aminovalerate (5-AVA)를 경유한 1,5-PDO 생산이 보고된 바 있다 (Wang et al., 2020; Cen et al., 2021). 여기서 보고된 1,5-PDO 생합성 대사경로는 총 2가지이며, 이는 라이신(lysine)으로부터 핵심 전구체인 5-hydroxyvaleric acid (이하 5HV)를 거치는 CoA-dependent 대사경로와 CoA-independent 대사경로이다. 그러나 상기 대사경로를 이용한 생산은 그 생산량이 1 g/L를 넘지 못하는 수준에 머물러 있으며, 라이신. 5-AVA, 글루타르산과 같은 부산물이 과량으로 축적되는 문제가 있었다. 더불어, 1,5-PDO 생산의 핵심 전구체인 5HV 또한 그 생산량이 1.04 g/L (Cen et al., 2021)로 그 수준이 낮다고 평가되고 있다.Recently, the production of 1,5-PDO via 5-aminovalerate (5-AVA) using Escherichia coli has been reported (Wang et al., 2020; Cen et al., 2021). There are two 1,5-PDO biosynthetic metabolic pathways reported here, a CoA-dependent metabolic pathway and a CoA-independent metabolic pathway from lysine to the key precursor 5-hydroxyvaleric acid (hereinafter referred to as 5HV). However, the production using the above metabolic pathway remains at a level of less than 1 g/L, and there is a problem of excessive accumulation of by-products such as lysine, 5-AVA, and glutaric acid. In addition, the production of 5HV, a key precursor for 1,5-PDO production, is also evaluated to be low at 1.04 g/L (Cen et al., 2021).

Wang et al., PNAS, 2020, 117, 32, 19159-19167 Wang et al., PNAS, 2020, 117, 32, 19159-19167 Cen et al., ACS Synth. Biol. 2021, 10, 1, 192-203 Cen et al., ACS Synth. Biol. 2021, 10, 1, 192-203 Sohn et al., ACS Sustainable Chem. Eng. 2021, 9, 6, 2523-2533 Sohn et al., ACS Sustainable Chem. Eng. 2021, 9, 6, 2523-2533

본 발명의 목적은, 1,5-펜탄디올 생산 능력과 효율이 우수하면서도 부산물 발생이 적은, 1,5-펜탄디올 생산용 재조합 균주를 제공하는 것이다.The purpose of the present invention is to provide a recombinant strain for producing 1,5-pentanediol, which has excellent 1,5-pentanediol production ability and efficiency while producing less by-products.

본 발명의 다른 일 목적은 상기 재조합 균주를 이용하여 글루코스에서 1,5-펜탄디올을 생산하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing 1,5-pentanediol from glucose using the recombinant strain.

본 발명의 일 양태에 따르면 라이신(lysine)을 5-아미노발레레이트(5-aminovalerate)로 전환하는 유전자, 및 5-아미노발레레이트를 5-히드록시발레레이트(5-hydroxyvalerate)로 전환하는 유전자가 도입되고, 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자 및/또는 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자를 포함하는 벡터로 형질 전환된, 1,5-펜탄디올 생산용 재조합 균주가 제공된다. According to one aspect of the present invention, a recombinant strain for producing 1,5-pentanediol is provided, which is transformed with a vector comprising a gene for converting lysine into 5-aminovalerate and a gene for converting 5-aminovalerate into 5-hydroxyvalerate, and a gene encoding an enzyme for converting 5-hydroxyvalerate into 5-hydroxyvalerate and/or a gene encoding an enzyme for converting 5-hydroxyvalerate into 1,5-pentanediol.

본 발명의 일 구현예에 따르면, 본 발명의 재조합 균주는 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum)일 수 있으며, 예를 들어 재조합 코리네박테리움 글루타미쿰 균주 PKC 일 수 있다. 구체적으로, 본 발명의 재조합 균주는 수탁번호 KCTC 19163P로 기탁된 코리네박테리움 글루타미쿰 균주 (이하, “5HV-PKC” 또는 “PKC-5HV”라 지칭함) 일 수 있다.According to one embodiment of the present invention, the recombinant strain of the present invention may be Corynebacterium glutamicum , for example, may be a recombinant Corynebacterium glutamicum strain PKC. Specifically, the recombinant strain of the present invention may be a Corynebacterium glutamicum strain deposited under the accession number KCTC 19163P (hereinafter referred to as “5HV-PKC” or “PKC-5HV”).

본 발명에 따른 재조합 균주는 라이신을 이용한 대사 경로 (도 1 참조)에 따라 1,5-펜탄디올을 생산하도록 설계되었다. 다만 종래 기술에 따르면 미생물을 이용한 1,5-펜탄디올의 생산에서 라이신이 부산물로 다량 관찰되는 문제가 있었다. 본 발명에서는 생성된 라이신의 유출을 막고 5AVA(5-아미노발레레이트)로의 효율적인 전환을 위하여 균주 내에 라이신(lysine)을 5-아미노발레레이트(5-aminovalerate)로 전환하는 유전자를 삽입한 것이다. 바람직하게는 균주 내의 lysE 유전자를 삭제하고, 해당 사이트에 라이신(lysine)을 5AVA로 전환하는 유전자를 삽입한 것일 수 있다. The recombinant strain according to the present invention is designed to produce 1,5-pentanediol according to a metabolic pathway using lysine (see FIG. 1). However, according to the conventional technology, there was a problem in that a large amount of lysine was observed as a byproduct in the production of 1,5-pentanediol using microorganisms. In the present invention, in order to prevent the leakage of the produced lysine and to efficiently convert it into 5AVA (5-aminovalerate), a gene for converting lysine into 5-aminovalerate was inserted into the strain. Preferably, the lysE gene in the strain may be deleted, and a gene for converting lysine into 5AVA may be inserted into the corresponding site.

이에, 본 발명의 일 구현예에 따르면, 상기 재조합 균주는 gabD 유전자 및 lysE 유전자가 결손된 것일 수 있다. 일 구현예에 따르면, 상기 gabD 유전자는 서열번호 1 의 서열을 포함하는 것일 수 있다. 유전자 코드의 디제너러시를 고려하여 상기 유전자는 상기 서열번호 1에 기재된 염기 서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%, 98%, 또는 99%의 상동성을 가지는 유전자일 수도 있다. 일 구현예에 따르면, 상기 lysE 유전자는 서열번호 2의 서열을 포함하는 것일 수 있다. 유전자 코드의 디제너러시를 고려하여 상기 유전자는 상기 서열번호 2에 기재된 염기 서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%, 98%, 또는 99%의 상동성을 가지는 유전자일 수도 있다.Accordingly, according to one embodiment of the present invention, the recombinant strain may be one in which the gabD gene and the lysE gene are deleted. According to one embodiment, the gabD gene may comprise the sequence of SEQ ID NO: 1. Considering the degeneracy of the genetic code, the gene may be a gene having 80% homology, preferably 85% homology, more preferably 90% homology, and most preferably 95%, 98%, or 99% homology with the base sequence described in SEQ ID NO: 1. According to one embodiment, the lysE gene may comprise the sequence of SEQ ID NO: 2. Considering the degeneracy of the genetic code, the gene may be a gene having 80% homology, preferably 85% homology, more preferably 90% homology, and most preferably 95%, 98%, or 99% homology with the base sequence described in SEQ ID NO: 2.

상기 상동성은 두 개의 주어진 아미노산 서열 또는 염기서열과 관련된 정도를 의미하며, 공지의 컴퓨터 알고리즘을 이용하는 방법, 써던 혼성화화 실험에 의해 서열을 비교하는 방법 등의 공지의 방법으로 결정할 수 있다.The above homology refers to the degree of relationship between two given amino acid sequences or base sequences, and can be determined by a known method, such as a method using a known computer algorithm or a method of comparing sequences by a Southern hybridization experiment.

본 발명의 일 구현예에 따르면, 상기 라이신을 5-아미노발레레이트로 전환하는 유전자는 Pseudomonas putida 유래의 유전자일 수 있다. 본 발명의 일 구현예에 따르면, 상기 라이신을 5-아미노발레레이트로 전환하는 유전자는 서열번호 3의 서열을 포함하는 것일 수 있다. 유전자 코드의 디제너러시를 고려하여 상기 유전자는 상기 서열번호 3에 기재된 염기 서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%, 98%, 또는 99%의 상동성을 가지는 유전자일 수도 있다. According to one embodiment of the present invention, the gene that converts the lysine into 5-aminovalerate may be a gene derived from Pseudomonas putida . According to one embodiment of the present invention, the gene that converts the lysine into 5-aminovalerate may comprise the sequence of SEQ ID NO: 3. Considering the degeneracy of the genetic code, the gene may be a gene having 80% homology, preferably 85% homology, more preferably 90% homology, and most preferably 95%, 98%, or 99% homology with the base sequence described in SEQ ID NO: 3.

또한, 본 발명에 따르면 부산물로서 생성되는 글루타르산의 생성을 막고 5AVA의 5HV (5-히드록시발레레이트)로의 효율적인 전환을 위해 5-아미노발레레이트를 5-히드록시발레레이트(5-hydroxyvalerate, 5HV)로 전환하는 유전자를 균주 내에 삽입한 것이다. 본 발명의 일 구현예에 따르면, 본 발명의 재조합 균주는 바람직하게는 균주 내의 gabD3 유전자를 삭제하고 5AVA를 5HV로 전환하는 유전자를 삽입한 것일 수 있다. 이에, 본 발명의 일 구현예에 따르면, 상기 재조합 균주는 gabD3 유전자가 결손된 것일 수 있다.In addition, according to the present invention, in order to prevent the production of glutaric acid produced as a by-product and to efficiently convert 5AVA into 5HV (5-hydroxyvalerate), a gene for converting 5-aminovalerate into 5-hydroxyvalerate (5HV) is inserted into the strain. According to one embodiment of the present invention, the recombinant strain of the present invention may preferably be one in which the gabD3 gene in the strain is deleted and a gene for converting 5AVA into 5HV is inserted. Accordingly, according to one embodiment of the present invention, the recombinant strain may be one in which the gabD3 gene is deleted.

일 구현예에 따르면, 5AVA를 5HV로 전환하는 상기 유전자는 Pseudomonas putida 유래의 유전자 및 대장균 YahK 유래의 유전자를 포함하는 것일 수 있다. 다른 일 구현예에 따르면, 5AVA를 5HV로 전환하는 상기 유전자는 서열번호 5의 서열을 포함하는 것일 수 있다. 유전자 코드의 디제너러시를 고려하여 상기 유전자는 상기 서열번호 5에 기재된 염기 서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%, 98%, 또는 99%의 상동성을 가지는 유전자일 수도 있다. In one embodiment, the gene converting 5AVA into 5HV may include a gene derived from Pseudomonas putida and a gene derived from E. coli YahK. In another embodiment, the gene converting 5AVA into 5HV may include a sequence of SEQ ID NO: 5. Considering the degeneracy of the genetic code, the gene may be a gene having 80% homology, preferably 85% homology, more preferably 90% homology, and most preferably 95%, 98%, or 99% homology with the base sequence set forth in SEQ ID NO: 5.

본 발명에 따르면 1,5-펜탄디올 생산용 재조합 균주는 전술한 바와 같은 유전자들의 도입에 추가하여, 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자 및/또는 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자를 포함하는 벡터로 형질 전환된 것일 수 있다.According to the present invention, a recombinant strain for producing 1,5-pentanediol may be transformed with a vector including, in addition to the introduction of the genes described above, a gene encoding an enzyme that converts 5-hydroxyvalerate into 5-hydroxyvaleraldehyde and/or a gene encoding an enzyme that converts 5-hydroxyvaleraldehyde into 1,5-pentanediol.

본 발명에서 용어 "벡터"란 발현 벡터를 의미하며, 이는 적당한 숙주세포에서 목적 유전자가 발현할 수 있도록 프로모터 등의 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다. 상기 벡터의 예로는 상기 벡터로는 플라스미드 벡터, 코즈미드 벡터, 박테리오파지 벡터 등이 있다. 본 발명의 일 구현예에 따르면, 상기 벡터는 플라스미드 벡터일 수 있다.The term "vector" in the present invention means an expression vector, which means a genetic construct including essential regulatory elements such as a promoter so that a target gene can be expressed in a suitable host cell. Examples of the vector include a plasmid vector, a cosmid vector, a bacteriophage vector, and the like. According to one embodiment of the present invention, the vector may be a plasmid vector.

일 구현예에 따르면, 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자 및/또는 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자를 포함하는 벡터는 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자를 포함하는 제1 벡터 및 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자를 포함하는 제2 벡터로 이루어지는 것일 수 있다.In one embodiment, a vector comprising a gene encoding an enzyme that converts 5-hydroxyvalerate into 5-hydroxyvaleraldehyde and/or a gene encoding an enzyme that converts 5-hydroxyvaleraldehyde into 1,5-pentanediol may be composed of a first vector comprising a gene encoding an enzyme that converts 5-hydroxyvalerate into 5-hydroxyvaleraldehyde and a second vector comprising a gene encoding an enzyme that converts 5-hydroxyvaleraldehyde into 1,5-pentanediol.

다른 일 구현예에 따르면, 상기 재조합 균주는 전술한 형질 전환에 추가하여, 라이신을 5-아미노발레레이트로 전환하는 유전자 및/또는 5-아미노발레레이트를 5-히드록시발레레이트로 전환하는 유전자를 포함하는 제3 벡터로 더 형질 전환된 것일 수 있다.In another embodiment, the recombinant strain may be further transformed with a third vector comprising, in addition to the transformation described above, a gene for converting lysine to 5-aminovalerate and/or a gene for converting 5-aminovalerate to 5-hydroxyvalerate.

일 구현예에 따르면, 상기 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자는 카르복실산 리덕타아제(Carboxylic Acid Reductase, CAR)를 코딩하는 유전자일 수 있다. 일 구현예에 따르면 상기 CAR 를 코딩하는 유전자는 서열번호 16의 서열을 포함하는 것일 수 있다. 유전자 코드의 디제너러시를 고려하여 상기 유전자는 상기 서열번호 16 에 기재된 염기 서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%, 98%, 또는 99%의 상동성을 가지는 유전자일 수도 있다.In one embodiment, the gene encoding the enzyme that converts the 5-hydroxyvalerate into 5-hydroxyvaleraldehyde may be a gene encoding carboxylic acid reductase (CAR). In one embodiment, the gene encoding the CAR may include the sequence of SEQ ID NO: 16. Considering the degeneracy of the genetic code, the gene may be a gene having 80% homology, preferably 85% homology, more preferably 90% homology, and most preferably 95%, 98%, or 99% homology with the base sequence set forth in SEQ ID NO: 16.

일 구현예에 따르면, 상기 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자는 YahD 유전자, 구체적으로 대장균 YahD 유전자일 수 있다. 상기 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자는 서열번호 21의 서열을 포함하는 것일 수 있다. 유전자 코드의 디제너러시를 고려하여 상기 유전자는 상기 서열번호 21 에 기재된 염기 서열과 80%의 상동성, 바람직하게는 85%의 상동성, 더욱 바람직하게는 90%의 상동성, 가장 바람직하게는 95%, 98%, 또는 99%의 상동성을 가지는 유전자일 수도 있다.In one embodiment, the gene encoding the enzyme that converts the 5-hydroxyvaleraldehyde into 1,5-pentanediol may be a YahD gene, specifically, an E. coli YahD gene. The gene encoding the enzyme that converts the 5-hydroxyvaleraldehyde into 1,5-pentanediol may comprise the sequence of SEQ ID NO: 21. Considering the degeneracy of the genetic code, the gene may be a gene having 80% homology, preferably 85% homology, more preferably 90% homology, and most preferably 95%, 98%, or 99% homology with the base sequence set forth in SEQ ID NO: 21.

본 발명의 일 구현예에 따르면, 본 발명의 재조합 균주는 수탁번호 KCTC 19163P일 수 있다.According to one embodiment of the present invention, the recombinant strain of the present invention may have the accession number KCTC 19163P.

본 발명의 다른 일 양태에 따르면, 전술한 재조합 코리네박테리움 글루타미쿰 균주를 배양하여 배양물을 수득하는 단계를 포함하는, 1,5-펜탄디올의 생산 방법이 제공된다.According to another aspect of the present invention, a method for producing 1,5-pentanediol is provided, comprising the step of culturing the aforementioned recombinant Corynebacterium glutamicum strain to obtain a culture.

본 발명의 재조합 코리네박테리움 글루타미쿰 균주를 배양하는 방법은, 숙주의 배양에 사용되는 통상의 방법을 사용하면 된다. 배양방법은, 회분(batch)식, 유동회분식, 연속배양, 리액터형식 등, 통상의 미생물의 배양에 사용하는 어떠한 방법도 사용할 수 있다. 재조합 코리네박테리움 글루타미쿰 균주를 배양하는 배지로서는, 완전배지 또는 합성배지, 예를 들면 LB배지, NB배지 등을 들 수 있다.The method for culturing the recombinant Corynebacterium glutamicum strain of the present invention may be any conventional method used for culturing a host. Any method commonly used for culturing microorganisms, such as batch, fluidized batch, continuous culture, or reactor type, may be used as the culturing method. As a medium for culturing the recombinant Corynebacterium glutamicum strain, a complete medium or a synthetic medium, such as LB medium or NB medium, may be exemplified.

탄소원은 미생물의 증식에 필요하고, 예를 들면 글루코스, 프럭토스, 슈크로스, 말토스, 갈락토스, 전분 등의 당류; 에탄올, 프로판올, 부탄올 등의 저급알콜류; 글리세롤 등의 다가알콜류; 아세트산, 시트르산, 숙신산, 타르타르산, 락트산, 글루콘산 등의 유기산; 프로피온산, 부탄산, 펜탄산, 헥산산, 헵탄산, 옥탄산, 노난산, 데칸산, 운데칸산, 도데칸산 등의 지방산 등을 이용할 수 있다. 본 발명의 일 구현예에 따르면, 본 발명의 1,5-펜탄디올의 새안 방법에서 배양은 당류, 구체적으로 글루코스를 함유하는 기질에서 수행될 수 있다.Carbon sources are necessary for the growth of microorganisms, and examples thereof include sugars such as glucose, fructose, sucrose, maltose, galactose, and starch; lower alcohols such as ethanol, propanol, and butanol; polyhydric alcohols such as glycerol; organic acids such as acetic acid, citric acid, succinic acid, tartaric acid, lactic acid, and gluconic acid; and fatty acids such as propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid. According to one embodiment of the present invention, in the new method of obtaining 1,5-pentanediol of the present invention, the cultivation can be performed on a substrate containing sugars, specifically, glucose.

본 발명의 일 양태에 따르면, 본 발명의 재조합 균주를 포함하는 1,5-부탄디올 생성용 조성물이 제공된다. 본 발명의 상기 조성물은 예를 들어 상기 균주를 배양하여 1,5-펜탄디올을 생성하는데 적합한 폴리펩타이드, 브로쓰, 세포 용해물 등을 포함할 수 있다.According to one aspect of the present invention, a composition for producing 1,5-butanediol comprising the recombinant strain of the present invention is provided. The composition of the present invention may include, for example, a polypeptide, broth, cell lysate, or the like suitable for producing 1,5-pentanediol by culturing the strain.

본 발명에 따른 1,5-펜탄디올 생산용 재조합 균주는 1,5-펜탄디올 생산의 핵심 전구체인 5-히드록시발레레이트의 생산능이 우수하다는 이점이 있다. 또한, 본 발명의 재조합 균주는 전구체 뿐만 아니라 1,5-펜탄디올의 생산 효율과 생산 능력도 우수하며, 생산 과정에서 부산물 발생이 적으므로, 부반응 생성물로 인한 수율 저하의 문제를 해결할 수 있다.The recombinant strain for producing 1,5-pentanediol according to the present invention has the advantage of excellent production ability of 5-hydroxyvalerate, which is a key precursor for 1,5-pentanediol production. In addition, the recombinant strain of the present invention is excellent in production efficiency and production ability of not only the precursor but also 1,5-pentanediol, and since it generates little by-products during the production process, it can solve the problem of reduced yield due to side reaction products.

도 1 은 본 발명에 따른 1,5-펜탄디올 생산 대사경로이다.
도 2 는 본 발명의 실험예 1 에 따라 전구체 5HV의 생산능을 측정한 결과를 보여주는 그래프이다.
도 3 (a)는 5HVx1 균주의 5HV 및 15PDO 생산을 위한 CAR 스크리닝 결과를 보여주는 그래프이다.
도 3 (b)는 5HVx2 균주의 5HV 및 15PDO 생산을 위한 CAR 스크리닝 결과를 보여주는 그래프이다.
도 4 는 5HVx1-CAR11의 회분식 발효에 의한 시간에 따른 1,5-PDO 생산력을 보여주는 그래프이다.
도 5 는 5HVx2-CAR11의 회분식 발효에 의한 시간에 따른 1,5-PDO 생산력을 보여주는 그래프이다.
도 6 은 5HVx1-CAR11의 유가식 배양에 의한 시간에 따른 1,5-PDO 생산력을 보여주는 그래프이다.
도 7 은 5HVx2-CAR11의 유가식 배양에 의한 시간에 따른 1,5-PDO 생산력을 보여주는 그래프이다.
Figure 1 is a metabolic pathway for producing 1,5-pentanediol according to the present invention.
Figure 2 is a graph showing the results of measuring the productivity of precursor 5HV according to Experimental Example 1 of the present invention.
Figure 3 (a) is a graph showing the results of CAR screening for 5HV and 15PDO production of the 5HVx1 strain.
Figure 3 (b) is a graph showing the CAR screening results for 5HV and 15PDO production of the 5HVx2 strain.
Figure 4 is a graph showing the 1,5-PDO productivity over time by batch fermentation of 5HVx1-CAR11.
Figure 5 is a graph showing the 1,5-PDO productivity over time by batch fermentation of 5HVx2-CAR11.
Figure 6 is a graph showing the 1,5-PDO productivity over time by fed-batch culture of 5HVx1-CAR11.
Figure 7 is a graph showing the 1,5-PDO productivity over time by fed-batch culture of 5HVx2-CAR11.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예를 통 하여 쉽게 이해될 것이다. 본 발명은 여기서 설명하는 실시예에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서 이하의 실시예에 의해 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in more detail through examples. The purpose, features, and advantages of the present invention will be easily understood through the following examples. The present invention is not limited to the examples described herein, and may be embodied in other forms. The examples introduced herein are provided so that the idea of the present invention can be sufficiently conveyed to those skilled in the art to which the present invention pertains. Therefore, the present invention should not be limited by the following examples.

[제조예] 1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주의 제조[Manufacturing Example] Production of a recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol

(1) (1) Corynebacterium glutamicumCorynebacterium glutamicum PKC △PKC △ gabgab D 의 제조Manufacturing of D

균주로서 코리네박테리움 글루타미쿰 PKC (Corynebacterium glutamicum PKC)을 준비하였다. 상기 (비특허문헌 3: Sohn et al., 2021)에 기재된 바에 따라 상기 균주로부터 gabD 유전자 (서열번호 1)를 삭제하였다 (Corynebacterium glutamicum PKC △gabD 의 제조). Corynebacterium glutamicum PKC was prepared as a strain. The gabD gene (SEQ ID NO: 1) was deleted from the strain (Production of Corynebacterium glutamicum PKC △ gab D) according to the method described in the above (Non-patent Document 3: Sohn et al., 2021).

(2) (2) PKC-5AVA 균주의 제조Production of PKC-5AVA strain

상기 Corynebacterium glutamicum PKC △gabD 내에서 라이신 유출을 담당하는 코리네박테리움 내의 lysE 유전자를 삭제하면서 해당 사이트에 H30DavBHisA (라이신 5-AVA 전환 모듈; H30프로모터-Pseudomonas putida davB his A 유전자-터미네이터)를 삽입하여 Corynebacterium glutamicum PKC △gabD △lysE::H30DavB His A 균주 (PKC-5AVA 균주)를 제작하였다. The lysE gene in Corynebacterium, which is responsible for lysine export, was deleted in the above Corynebacterium glutamicum PKC △ gab D, and H30DavBHisA (lysine 5-AVA conversion module; H30 promoter- Pseudomonas putida davB his A gene-terminator) was inserted into the corresponding site, thereby creating Corynebacterium glutamicum PKC △ gab D △ lysE :: H30 DavB His A strain (PKC-5AVA strain).

구체적으로, C. glutamicum 의 유전자 조작은 염색체 삽입용 벡터 pK19mobsacB (제조사 NEB)를 이용하여 수행되었으며, LysE 유전자 삭제 및 H30DavBHisA 삽입용 pK19mobsacB 기반 벡터를 제작하기 위하여 먼저 lysE 유전자 upstream 및 downstream의 homologous region 500bp를 각각 HindIII/PstI과 BamHI/EcoRI 사이트에 클로닝 하였다: pK19mobsacBLysE. 이 때 사용한 프라이머 서열은 하기 표 1에 기재한다.Specifically, genetic manipulation of C. glutamicum was performed using the vector pK19mobsacB for chromosomal integration (NEB). To construct a pK19mobsacB-based vector for LysE gene deletion and H30DavBHisA insertion, 500 bp of the homologous region upstream and downstream of the lysE gene were first cloned into HindIII/PstI and BamHI/EcoRI sites, respectively: pK19mobsacBLysE. The primer sequences used here are shown in Table 1 below.

Sequence (5'-3')Sequence (5'-3') pK19mobsacBLysEf-F (서열번호 22)pK19mobsacBLysEf-F (SEQ ID NO: 22) aagcttagagggttcccgcgccaagcttagagggttcccgcgcc pK19mobsacBLysEf-R (서열번호 23)pK19mobsacBLysEf-R (SEQ ID NO: 23) ctgcaggtggattttcgccgctgctgcaggtggattttcgccgctg pK19mobsacBLysEb-F (서열번호 24)pK19mobsacBLysEb-F (SEQ ID NO: 24) ggatccgacctgtaatgaagatttccatggatccgacctgtaatgaagatttccat pK19mobsacBLysEb-R (서열번호 25)pK19mobsacBLysEb-R (SEQ ID NO: 25) gaattctagcttcacgggttaccgcgaattctagcttcacgggttaccgc

이후 H30DavBHisA 오페론 삽입을 위하여 lysE upstream (500bp)와 lysE downstream (500 bp) 사이의 XbaI site에 H30DavBHisA를 하기 표에 기재한 프라이머를 이용해 클로닝하였다.Afterwards, for insertion of the H30DavBHisA operon, H30DavBHisA was cloned into the XbaI site between lysE upstream (500 bp) and lysE downstream (500 bp) using the primers listed in the table below.

SequenceSequence pCES208H30-F (서열번호 26)pCES208H30-F (SEQ ID NO: 26) tctagacacctgcagactaaagggaacaaaagctgtctagacacctgcagactaaagggaacaaaagctg pCES208H30-R (서열번호 27)pCES208H30-R (SEQ ID NO: 27) tctagagtcggatccggtccacctacaacaaagcttctagagtcggatccggtccacctacaacaaagct

클로닝을 위한 작업으로 PCR은 Thermocycler (TP600, TAKARA BIO Inc., 일본)를 이용하여 각각의 데옥시뉴클레오티드 트리포스페이트 (dATP, dCTP, dGTP, dTTP) 100 μM가 첨가된 반응액에 올리고뉴클레오티드 1 pM 및 주형 (template) DNA 10 ng을 첨가하고 PrimeSTAR Max DNA Polymerase (Takara, 일본) 1 유닛의 존재 하에서 94℃에서 30초, 55℃에서 30초, 및 72℃에서 1분의 조건으로 25 ~ 30 주기(cycle)를 실시하였다.For cloning, PCR was performed using a Thermocycler (TP600, TAKARA BIO Inc., Japan). 1 pM of oligonucleotides and 10 ng of template DNA were added to a reaction solution containing 100 μM of each deoxynucleotide triphosphate (dATP, dCTP, dGTP, dTTP), and 25 to 30 cycles were performed at 94°C for 30 sec, 55°C for 30 sec, and 72°C for 1 min in the presence of 1 unit of PrimeSTAR Max DNA Polymerase (Takara, Japan).

클로닝된 벡터를 E. coli DH5a (HIT Competent cellsTM, Cat No. RH618)에 형질전환시키고, 50 ㎍/㎖의 카나마이신을 함유하는 LB-한천 플레이트 상에 도말하여, 37℃ 에서 24시간 배양하였다. 최종 형성되는 콜로니를 분리하여 삽입물(insert)이 정확히 벡터에 존재하는지 확인한 후, 이 벡터를 분리하였으며 이 때 Wizard Genomic DNA Purification Kit (Promega, 미국)를 사용하였다. 이후의 연구에서도 동일한 조건을 사용하였다.The cloned vector was transformed into E. coli DH5a (HIT Competent cells TM , Cat No. RH618), spread on LB agar plates containing 50 ㎍/㎖ of kanamycin, and cultured at 37℃ for 24 hours. The colonies formed were isolated to confirm whether the insert was exactly present in the vector, and the vector was isolated using the Wizard Genomic DNA Purification Kit (Promega, USA). The same conditions were used in subsequent studies.

(3) (3) PKC-5HA 균주의 제조Preparation of PKC-5HA strain

글루타르산(Glutaric acid)의 생성을 막고 5-아미노발레레이트(5AVA)의 5-(히드록시발레레이트(5HV)로의 효율적인 전환을 위해 코리네박테리움 내에 존재하는 gabD 유전자와 같은 반응을 매개하는 gabD3 유전자를 타겟으로 해당 유전자를 삭제하면서 H30DavTYahK (5AVA → 5HV 전환 모듈; H30프로모터-P. putida DavT & E. coli YahK-터미네이터) 오페론을 삽입하여 C. glutamicum PKC △gabDlysE::H30DavBHisA △gabD3::H30DavTYahK 균주 (PKC-5HV 균주)를 개발하였다. C. glutamicum 의 유전자 조작은 염색체 삽입용 벡터 pK19mobsacB (제조사 NEB)를 이용하여 수행되었다.To block the production of glutaric acid and efficiently convert 5-aminovalerate (5AVA) to 5-(hydroxyvalerate (5HV), the gabD3 gene, which mediates the same reaction as the gabD gene present in Corynebacterium, was targeted and deleted, while inserting the H30DavTYahK (5AVA → 5HV conversion module; H30 promoter- P. putida DavT & E. coli YahK-terminator) operon, developing the C. glutamicum PKC △ gabDlysE :: H30DavBHisA △ gabD3::H30DavTYahK strain (PKC-5HV strain). Genetic manipulation of C. glutamicum was performed using the chromosomal integration vector pK19mobsacB (NEB, Manufactured by).

GabD3 유전자 삭제 및 H30DavTYahK 삽입용 pK19mobsacB 기반 벡터를 제작하기 위하여 먼저 gabD3 유전자 upstream 및 downstream의 homologous region 500bp를 overlap PCR을 통해 증폭하여 1000 bp의 PCR product를 제작한 뒤 HindIII/EcoRI 사이트에 클로닝하였다: pK19mobsacBcg0067. 이때 사용한 프라이머 서열은 하기 표에 기재하였다.To construct a pK19mobsacB-based vector for GabD3 gene deletion and H30DavTYahK insertion, 500 bp of the homologous regions upstream and downstream of the gabD3 gene were first amplified by overlap PCR to produce a 1000 bp PCR product, which was then cloned into HindIII/EcoRI sites: pK19mobsacBcg0067. The primer sequences used here are listed in the table below.

SequenceSequence pK19mobsacBCg0067f-F (서열번호 28)pK19mobsacBCg0067f-F (SEQ ID NO: 28) aagcttagtgaccatcggcggagtgttcgaagcttagtgaccatcggcggagtgttcg pK19mobsacBCg0067f-R (서열번호 29)pK19mobsacBCg0067f-R (SEQ ID NO: 29) ggggcagatgtctagagatgcgttattttccttcacggggcagatgtctagagatgcgttattttccttcac pK19mobsacBCg0067b-F (서열번호 30)pK19mobsacBCg0067b-F (SEQ ID NO: 30) cgcatctctagacatctgcccctttacaaatcccgcatctctagacatctgcccctttacaaatcc pK19mobsacBCg0067b-R (서열번호 31)pK19mobsacBCg0067b-R (SEQ ID NO: 31) gaattccctgccatccagtcggcatacgaattccctgccatccagtcggcatac

이후 H30DavTYahK 오페론 삽입을 위하여 gabD3 upstream (500bp)와 gabD3 downstream (500bp) 사이의 XbaI site에 H30DavTYahK를 하기 표에 기재한 프라이머를 이용해 클로닝하였다.Afterwards, for insertion of the H30DavTYahK operon, H30DavTYahK was cloned into the XbaI site between gabD3 upstream (500 bp) and gabD3 downstream (500 bp) using the primers listed in the table below.

SequenceSequence pCES208H30-F (서열번호 32)pCES208H30-F (SEQ ID NO: 32) tctagacacctgcagactaaagggaacaaaagctgtctagacacctgcagactaaagggaacaaaagctg pCES208H30-R (서열번호 33)pCES208H30-R (SEQ ID NO: 33) tctagagtcggatccggtccacctacaacaaagcttctagagtcggatccggtccacctacaacaaagct

(4) (4) 5HV의 15PDO로의 전환을 위한 다양한 Carboxylic Acid Reductase (CAR) 스크리닝 및 15PDO 생산용 재조합 균주의 제작Screening of various Carboxylic Acid Reductase (CAR) for conversion of 5HV to 15PDO and construction of recombinant strains for 15PDO production

5-hydroxyvalerate → 5-hydroxyvaleraldehyde 전환을 위하여 총 14가지의 CAR (서열번호 6 내지 19)를 스크닝하였다. 5-Hydroxyvaleraldeyhde → 15PDO의 전환은 대장균 유래 yqhD 유전자 (서열번호 21)를 통해 이루어졌다.A total of 14 CARs (SEQ ID NOs: 6 to 19) were screened for the conversion of 5-hydroxyvalerate → 5-hydroxyvaleraldehyde. The conversion of 5-hydroxyvaleraldehyde → 15PDO was accomplished via the yqhD gene from E. coli (SEQ ID NO: 21).

14개의 CAR와 Sfp [Bacillus subtils pptase, 포스포판테테이닐 트랜스퍼라아제(phosphopantetheinyl transferase)로써 작동하여 phosphopantetheinylation 을 통해 apoenzyme인 CAR를 활성화시키기 위해 발현, 서열번호 20] 및 YqhD (E. coli, alcohol dehydrogenase, 서열번호 21)의 발현을 위하여 아래와 같이 플라스미드를 제작하였다.Plasmids were constructed as follows for the expression of 14 CARs and Sfp [ Bacillus subtils pptase, which acts as a phosphopantetheinyl transferase to activate the apoenzyme CAR through phosphopantetheinylation, SEQ ID NO: 20] and Yqh D ( E. coli, alcohol dehydrogenase , SEQ ID NO: 21).

플라스미드Plasmid 관련 정보Related Information pCES208H30-MCSpCES208H30-MCS Sohn et al., ACS Sustainable Chem. Eng. 2021, 9, 6, 2523-2533Sohn et al., ACS Sustainable Chem. Eng. 2021, 9, 6, 2523-2533 pBL712H30-MCSpBL712H30-MCS Sohn et al., ACS Sustainable Chem. Eng. 2021, 9, 6, 2523-2533Sohn et al., ACS Sustainable Chem. Eng. 2021, 9, 6, 2523-2533 pCES208H30DavTYahKBHisApCES208H30DavTYahKB His A pCES208 derivative; PH30, P. putida KT2440 davTB His A, E. coli yahK; Kmr pCES208 derivative; P H30 , P. putida KT2440 davTB His A, E. coli yahK ; km r pCES208H30CAR1pptasepCES208H30CAR1pptase pCES208 derivative; PH30, Mycobacterium smegmatis CAR (I7FIG7), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium smegmatis CAR (I7FIG7), B. subtils pptase ; km r pCES208H30CAR2pptasepCES208H30CAR2pptase pCES208 derivative; PH30, Mycobacterium abscessus CAR (B1MCR9), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium abscessus CAR (B1MCR9), B. subtils pptase ; km r pCES208H30CAR3pptasepCES208H30CAR3pptase pCES208 derivative; PH30, Mycobacterium abscessus CAR (B1MLD7), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium abscessus CAR (B1MLD7), B. subtils pptase ; km r pCES208H30CAR4pptasepCES208H30CAR4pptase pCES208 derivative; PH30, Mycobacterium smegmatis CAR (A0R484), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium smegmatis CAR (A0R484), B. subtils pptase ; km r pCES208H30CAR5pptasepCES208H30CAR5pptase pCES208 derivative; PH30, Mycobacterium smegmatis CAR (B1MDX4), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium smegmatis CAR (B1MDX4), B. subtils pptase ; km r pCES208H30CAR6pptasepCES208H30CAR6pptase pCES208 derivative; PH30, Mycobacterium smegmatis CAR (A0QWI7), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium smegmatis CAR (A0QWI7), B. subtils pptase ; km r pCES208H30CAR7pptasepCES208H30CAR7pptase pCES208 derivative; PH30, Mycobacterium smegmatis CAR (B1MCS0), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium smegmatis CAR (B1MCS0), B. subtils pptase ; km r pCES208H30CAR8pptasepCES208H30CAR8pptase pCES208 derivative; PH30, Mycobacterium smegmatis CAR (I7GER2), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium smegmatis CAR (I7GER2), B. subtils pptase ; km r pCES208H30CAR9pptasepCES208H30CAR9pptase pCES208 derivative; PH30, Mycobacterium marinum CAR (B2HN69), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium marinum CAR (B2HN69), B. subtils pptase ; km r pCES208H30CAR10pptasepCES208H30CAR10pptase pCES208 derivative; PH30, Mycobacterium marinum CAR (B2HE95), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium marinum CAR (B2HE95), B. subtils pptase ; km r pCES208H30CAR11pptasepCES208H30CAR11pptase pCES208 derivative; PH30, Mycobacterium paratuberculosis K-10 CAR (Q741P9), B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium paratuberculosis K-10 CAR (Q741P9), B. subtils pptase ; km r pCES208H30CAR12pptasepCES208H30CAR12pptase pCES208 derivative; PH30, Nocardia brasiliensis ATCC19296 CAR (A0A034UK40), B. subtils pptase; Kmr pCES208 derivative; P H30 , Nocardia brasiliensis ATCC19296 CAR (A0A034UK40), B. subtils pptase ; km r pCES208H30CAR13pptasepCES208H30CAR13pptase pCES208 derivative; PH30, Nocardia brasiliensis ATCC19296 CAR (A0A034UFC8), B. subtils pptase; Kmr pCES208 derivative; P H30 , Nocardia brasiliensis ATCC19296 CAR (A0A034UFC8), B. subtils pptase ; km r pCES208H30CAR14pptasepCES208H30CAR14pptase pCES208 derivative; PH30, Mycobacterium phlei CAR, B. subtils pptase; Kmr pCES208 derivative; P H30 , Mycobacterium phlei CAR, B. subtils pptase; km r pBL712H30YqhDpBL712H30YqhD pBL712 derivative; PH30, E. coli yqhD; Spr pBL712 derivative; P H30 , E. coli yqhD ; Sp r pBL712H30CAR1pptaseyqhDpBL712H30CAR1pptaseyqhD pBL712 derivative; PH30, Mycobacterium smegmatis CAR (I7FIG7), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium smegmatis CAR (I7FIG7), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR2pptaseyqhDpBL712H30CAR2pptaseyqhD pBL712 derivative; PH30, Mycobacterium abscessus CAR (B1MCR9), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium abscessus CAR (B1MCR9), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR3pptaseyqhDpBL712H30CAR3pptaseyqhD pBL712 derivative; PH30, Mycobacterium abscessus CAR (B1MLD7), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium abscessus CAR (B1MLD7), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR4pptaseyqhDpBL712H30CAR4pptaseyqhD pBL712 derivative; PH30, Mycobacterium smegmatis CAR (A0R484), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium smegmatis CAR (A0R484), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR5pptaseyqhDpBL712H30CAR5pptaseyqhD pBL712 derivative; PH30, Mycobacterium smegmatis CAR (B1MDX4), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium smegmatis CAR (B1MDX4), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR6pptaseyqhDpBL712H30CAR6pptaseyqhD pBL712 derivative; PH30, Mycobacterium smegmatis CAR (A0QWI7), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium smegmatis CAR (A0QWI7), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR7pptaseyqhDpBL712H30CAR7pptaseyqhD pBL712 derivative; PH30, Mycobacterium smegmatis CAR (B1MCS0), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium smegmatis CAR (B1MCS0), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR8pptaseyqhDpBL712H30CAR8pptaseyqhD pBL712 derivative; PH30, Mycobacterium smegmatis CAR (I7GER2), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium smegmatis CAR (I7GER2), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR9pptaseyqhDpBL712H30CAR9pptaseyqhD pBL712 derivative; PH30, Mycobacterium marinum CAR (B2HN69), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium marinum CAR (B2HN69), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR10pptaseyqhDpBL712H30CAR10pptaseyqhD pBL712 derivative; PH30, Mycobacterium marinum CAR (B2HE95), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium marinum CAR (B2HE95), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR11pptaseyqhDpBL712H30CAR11pptaseyqhD pBL712 derivative; PH30, Mycobacterium paratuberculosis K-10 CAR (Q741P9), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium paratuberculosis K-10 CAR (Q741P9), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR12pptaseyqhDpBL712H30CAR12pptaseyqhD pBL712 derivative; PH30, Nocardia brasiliensis ATCC19296 CAR (A0A034UK40), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Nocardia brasiliensis ATCC19296 CAR (A0A034UK40), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR13pptaseyqhDpBL712H30CAR13pptaseyqhD pBL712 derivative; PH30, Nocardia brasiliensis ATCC19296 CAR (A0A034UFC8), B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Nocardia brasiliensis ATCC19296 CAR (A0A034UFC8), B. subtils pptase, E. coli yqhD ; Sp r pBL712H30CAR14pptaseyhhDpBL712H30CAR14pptaseyhhD pBL712 derivative; PH30, Mycobacterium phlei CAR, B. subtils pptase, E. coli yqhD; Spr pBL712 derivative; P H30 , Mycobacterium phlei CAR, B. subtils pptase, E. coli yqhD ; Sp r

이 때 pCES208H30CAR~ 플라스미드와 pBL712H30YqhD는 하기 프라이머로 유전자를 증폭하여 각각 제한효소 사이트를 이용하여 클로닝하였고, pBL712H30CAR~ 플라스미드는 하기 프라이머를 이용하여 Gibson Assembly 방법을 통해 제작하였다 (표 6 에서 순서대로 서열번호 34 ~ 97).At this time, pCES208H30CAR~ plasmid and pBL712H30YqhD were cloned using restriction enzyme sites by amplifying genes with the following primers, and pBL712H30CAR~ plasmid was produced using the Gibson Assembly method using the following primers (sequence numbers 34 to 97 in order in Table 6).

CAR1-F-BamHI CAR1-F-BamHI aaaaaggatccatgtgggacatgctcttcaaaaa ggatcc atgtgggacatgctcttc CAR1
(I7FIG7)
CAR1
(I7FIG7)
CAR1-R-SpeICAR1-R-SpeI aaaaaactagtttacaacaggccgaccttcaaaaa actagt ttacaacaggccgaccttc CAR1-F-GibsonCAR1-F-Gibson gcaggagtatattggaattcatgtgggacatgctcttcgcaggagtatattggaattcatgtgggacatgctcttc CAR1-R-GibsonCAR1-R-Gibson cgggtaccgagctcgaattcttacaacaggccgaccttccgggtaccgagctcgaattcttacaacaggccgaccttc CAR2-F-SpeICAR2-F-SpeI aaaaaactagtatgaccgtgaccaacgaaaaaaaa actagt atgaccgtgaccaacgaaa CAR2
(B1MCR9)
CAR2
(B1MCR9)
CAR2-R-SbfICAR2-R-SbfI aaaaacctgcaggttataggagtccgagctgaaaaa cctgcagg ttataggagtccgagctg CAR2-F-GibsonCAR2-F-Gibson gcaggagtatattggaattcatgaccgtgaccaacgaaagcaggagtatattggaattcatgaccgtgaccaacgaaa CAR2-R-GibsonCAR2-R-Gibson cgggtaccgagctcgaattcttataggagtccgagctgcgggtaccgagctcgaattcttataggagtccgagctg CAR3-F-BamHICAR3-F-BamHI aaaaaggatccatgactgaaacgatctccaaaaa ggatcc atgactgaaacgatctcc CAR3
(B1MLD7)
CAR3
(B1MLD7)
CAR3-R-SpeICAR3-R-SpeI aaaaaactagtttacaccaggcccaacagaaaaa actagt ttacaccaggcccaacag CAR3-F-GibsonCAR3-F-Gibson gcaggagtatattggaattcatgactgaaacgatctccgcaggagtatattggaattcatgactgaaacgatctcc CAR3-R-GibsonCAR3-R-Gibson cgggtaccgagctcgaattcttacaccaggcccaacagcgggtaccgagctcgaattcttacaccaggcccaacag CAR4-F-SpeICAR4-F-SpeI aaaaaactagtatgaccagcgatgttcacaaaaa actagt atgaccagcgatgttcac CAR4
(A0R484)
CAR4
(A0R484)
CAR4-R-SbfICAR4-R-SbfI aaaaacctgcaggttagatcagaccgaactcaaaaa cctgcagg ttagatcagaccgaactc CAR4-F-GibsonCAR4-F-Gibson gcaggagtatattggaattcatgaccagcgatgttcacgcaggagtatattggaattcatgaccagcgatgttcac CAR4-R-GibsonCAR4-R-Gibson cgggtaccaggctcgaattcttagatcagaccgaactccgggtaccaggctcgaattcttagatcagaccgaactc CAR5-F-SpeICAR5-F-SpeI aaaaaactagtatgacggctggtgcggcgaaaaa actagt atgacggctggtgcggcg CAR5
(B1MDX4)
CAR5
(B1MDX4)
CAR5-R-SbfICAR5-R-SbfI aaaaacctgcaggttacagcagcctgtgtgcaaaaa cctgcagg ttacagcagcctgtgtgc CAR5-F-GibsonCAR5-F-Gibson gcaggagtatattggaattcatgacggctggtgcggcggcaggagtatattggaattcatgacggctggtgcggcg CAR5-R-GibsonCAR5-R-Gibson cgggtaccgagctcgaattcttacagcagcctgtgtgccgggtaccgagctcgaattcttacagcagcctgtgtgc CAR6-F-SpeICAR6-F-SpeI aaaaaactagtatgacgatcgaaacgcgcaaaaa actagt atgacgatcgaaacgcgc CAR6
(A0QWI7)
CAR6
(A0QWI7)
CAR6-R-SbfICAR6-R-SbfI aaaaacctgcaggttacagcaatccgagcatcaaaaa cctgcagg ttacagcaatccgagcatc CAR6-F-GibsonCAR6-F-Gibson gcaggagtatattggaattcatgacgatcgaaacgcgcgcaggagtatattg gaattc atgacgatcgaaacgcgc CAR6-R-GibsonCAR6-R-Gibson cgggtaccgagctcgaattcttacagcaatccgagcatccgggtaccgagctcgaattcttacagcaatccgagcatc CAR7-F-BamHICAR7-F-BamHI aaaaaggatccatgacgatcgacgccaccaaaaa ggatcc atgacgatcgacgccacc CAR7
(B1MCS0)
CAR7
(B1MCS0)
CAR7-R-SpeICAR7-R-SpeI aaaaaactagttagagtaacccgagctgaaaaa actagt tagagtaacccgagctg CAR7-F-GibsonCAR7-F-Gibson gcaggagtatattggaattcatgacgatcgacgccaccgcaggagtatattggaattcatgacgatcgacgccacc CAR7-R-GibsonCAR7-R-Gibson cgggtaccgagctcgaattcttagagtaacccgagctgcgggtaccgagctcgaattcttagagtaacccgagctg CAR8-F-SpeICAR8-F-SpeI aaaaaactagtatgcaccagctcacggtcaaaaa actagt atgcaccagctcacggtc CAR8
(I7GER2)
CAR8
(I7GER2)
CAR8-R-SbfICAR8-R-SbfI aaaaacctgcaggttagatcagaccgaactcaaaaa cctgcagg ttagatcagaccgaactc CAR8-F-GibsonCAR8-F-Gibson gcaggagtatattggaattcatgcaccagctcacggtcgcaggagtatattggaattcatgcaccagctcacggtc CAR8-R-GibsonCAR8-R-Gibson cgggtaccgagctcgaattcttagatcagaccgaactccgggtaccgagctcgaattcttagatcagaccgaactc CAR9-F-BamHICAR9-F-BamHI aaaaaggatccatgtcgccaatcacgcgtgaaaaa ggatcc atgtcgccaatcacgcgtg CAR9
(B2HN69)
CAR9
(B2HN69)
CAR9-R-SpeICAR9-R-SpeI aaaaaactagtttagagcaggccgagtagaaaaa actagt ttagagcaggccgagtag CAR9-F-GibsonCAR9-F-Gibson gcaggagtatattggaattcatgtcgccaatcacgcgtggcaggagtatattggaattcatgtcgccaatcacgcgtg CAR9-R-GibsonCAR9-R-Gibson cgggtaccgagctcgaattcttagagcaggccgagtagcgggtaccgagctcgaattcttagagcaggccgagtag CAR10-F-BamHICAR10-F-BamHI aaaaaggatccatgtcaattacctgtgtgaaaaa ggatcc atgtcaattacctgtgtg CAR10
(B2HE95)
CAR10
(B2HE95)
CAR10-R-SpeICAR10-R-SpeI aaaaaactagtttaagccaggccgagaagaaaaa actagt ttaagccaggccgagaag CAR10-F-GibsonCAR10-F-Gibson gcaggagtatattggaattcatgtcaattacctgtgtggcaggagtatattggaattcatgtcaattacctgtgtg CAR10-R-GibsonCAR10-R-Gibson cgggtaccgagctcgaattcttaagccaggccgagaagcgggtaccgagctcgaattcttaagccaggccgagaag CAR11-F-SpeICAR11-F-SpeI aaaaaactagtatgtcgactgccacccatgaaaaa actagt atgtcgactgccaccccatg CAR11
(Q741P9)
CAR11
(Q741P9)
CAR11-R-SbfICAR11-R-SbfI aaaaacctgcaggttagagcagcccgagcagaaaaa cctgcagg ttagagcagcccgagcag CAR11-F-GibsonCAR11-F-Gibson gcaggagtatattggaattcatgtcgactgccacccatggcaggagtatattggaattcatgtcgactgccaccccatg CAR11-R-GibsonCAR11-R-Gibson cgggtaccgagctcgaattcttagagcagcccgagcagcgggtaccgagctcgaattcttagagcagcccgagcag CAR12-F-SpeICAR12-F-SpeI aaaaaactagtatggagcgcaaggcggaagaaaaa actagt atggagcgcaaggcggaag CAR12
(A0A034UK40)
CAR12
(A0A034UK40)
CAR12-R-SbfICAR12-R-SbfI aaaaacctgcaggttacagcaggtttcgcaataaaaa cctgcagg ttacagcaggtttcgcaat CAR12-F-GibsonCAR12-F-Gibson gcaggagtatattggaattcatggagcgcaaggcggaaggcaggagtatattggaattcatggagcgcaaggcggaag CAR12-R-GibsonCAR12-R-Gibson cgggtaccgagctcgaattcttacagcaggtttcgcaatcgggtaccgagctcgaattcttacagcaggtttcgcaat CAR13-F-BamHICAR13-F-BamHI aaaaaggatccatgacagatgtagaggtagaaaaaggatccatgacagatgtagaggtag CAR13
(A0A034UFC8)
CAR13
(A0A034UFC8)
CAR13-R-SpeICAR13-R-SpeI aaaaaactagtttacagtccgaggtgctccagaaaaaactagtttacagtccgaggtgctccag CAR13-F-GibsonCAR13-F-Gibson gcaggagtatattggaattcatgacagatgtagaggtaggcaggagtatattggaattcatgacagatgtagaggtag CAR13-R-GibsonCAR13-R-Gibson cgggtaccgagctcgaattcttacagtccgaggtgctccagcgggtaccgagctcgaattcttacagtccgaggtgctccag CAR14-F-SpeICAR14-F-SpeI aaaaaactagtatggcatcagaatcccgtgaaaaaactagtatggcatcagaatcccgtg CAR 14
(WP_003889896.1)
CAR 14
(WP_003889896.1)
CAR14-R-SbfICAR14-R-SbfI aaaaacctgcaggttacagcccgagcagccgcagatcgaaaaacctgcaggttacagcccgagcagccgcagatcg CAR14-F-GibsonCAR14-F-Gibson gcaggagtatattggaattcatggcatcagaattccgtggcaggagtatattggaattcatggcatcagaattccgtg CAR14-R-GibsonCAR14-R-Gibson cgggtaccgagctcgaattcttacagcccgagcagccgcagatcgcgggtaccgagctcgaattcttacagcccgagcagccgcagatcg Pptase-F-SbfIPptase-F-SbfI aaaaacctgcaggtctagataactttaagaaggagatatacatgaagatttacggaatttaaaaa cctgcagg tctagataactttaagaaggagatatacatgaagaatttacggaattt Pptase


Pptase


Pptase-R-NdeIPptase-R-NdeI aaaaacatatgttataaaagctcttcgtacaaaaa catatg ttataaaagctcttcgtac Pptase-F-GibsonPptase-F-Gibson taaagaggagatatacatatgaagatttacggaatttaaagaggagatatacatatgaagaatttacggaatt Pptase-R-GibsonPptase-R-Gibson ttcatatgtatatctcctttataaaagctcttcgtacttcatatgtatatctcctttataaaagctcttcgtac YqhD-F-EcoRIYqhD-F-EcoRI aaaaaggatccaggagatatacatatgaacaactttaatctgcacacccaaaaa ggatcc aggagatatacatatgaacaactttaatctgcacaccc YqhDYqhD YqhD-R-KpnIYqhD-R-KpnI aaaaaagatctatgtatatctcctttagcgggcggcttcgtatatacaaaaa agatct atgtatatctcctttagcgggcggcttcgtatatac YqhD-F-GibsonYqhD-F-Gibson tataaaggagatatacatatgaacaactttaatctgctataaaggagatatacatatgaacaactttaatctgc YqhD-R-GibsonYqhD-R-Gibson tagaggatccccgggtaccttagcgggcggcttcgtatatactagaggatccccgggtaccttagcgggcggcttcgtatatac

위에서 제작한 플라스미드를 각각 pKC-5HV 균주 (C. glutamicum PKC △gabDlysE::H30DavBHisA △gabD3::H30DavTYahK)에 트랜스포매이션을 하여 아래 표 7과 같은 균주를 제작하였다.The plasmids constructed above were each transformed into the pKC-5HV strain ( C. glutamicum PKC △ gabDlysE :: H30DavBHisA △ gabD3:: H30DavTYahK) to construct the strains shown in Table 7 below.

균주Strain 정보information PKC-5HV(수탁번호:
KCTC 19163P)
PKC-5HV (Accession number:
KCTC 19163P)
C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK
5HVx1-CAR15HVx1-CAR1 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR1pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR1pptase + pBL172H30YqhD 5HVx1-CAR25HVx1-CAR2 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR2pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR2pptase + pBL172H30YqhD 5HVx1-CAR35HVx1-CAR3 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR3pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR3pptase + pBL172H30YqhD 5HVx1-CAR45HVx1-CAR4 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR4pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR4pptase + pBL172H30YqhD 5HVx1-CAR55HVx1-CAR5 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR5pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR5pptase + pBL172H30YqhD 5HVx1-CAR65HVx1-CAR6 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR6pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR6pptase + pBL172H30YqhD 5HVx1-CAR75HVx1-CAR7 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR7pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR7pptase + pBL172H30YqhD 5HVx1-CAR85HVx1-CAR8 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR8pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR8pptase + pBL172H30YqhD 5HVx1-CAR95HVx1-CAR9 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR9pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR9pptase + pBL172H30YqhD 5HVx1-CAR105HVx1-CAR10 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR10pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR10pptase + pBL172H30YqhD 5HVx1-CAR115HVx1-CAR11 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR11pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR11pptase + pBL172H30YqhD 5HVx1-CAR125HVx1-CAR12 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR12pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR12pptase + pBL172H30YqhD 5HVx1-CAR135HVx1-CAR13 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR13pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR13pptase + pBL172H30YqhD 5HVx1-CAR145HVx1-CAR14 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30CAR14pptase + pBL172H30YqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30CAR14pptase + pBL172H30YqhD 5HVx2-CAR15HVx2-CAR1 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR1pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR1pptaseYqhD 5HVx2-CAR25HVx2-CAR2 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR2pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR2pptaseYqhD 5HVx2-CAR35HVx2-CAR3 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR3pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR3pptaseYqhD 5HVx2-CAR45HVx2-CAR4 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR4pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR4pptaseYqhD 5HVx2-CAR55HVx2-CAR5 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR5pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR5pptaseYqhD 5HVx2-CAR65HVx2-CAR6 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR6pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR6pptaseYqhD 5HVx2-CAR75HVx2-CAR7 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR7pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR7pptaseYqhD 5HVx2-CAR85HVx2-CAR8 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR8pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR8pptaseYqhD 5HVx2-CAR95HVx2-CAR9 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR9pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR9pptaseYqhD 5HVx2-CAR105HVx2-CAR10 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR10pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR10pptaseYqhD 5HVx2-CAR115HVx2-CAR11 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR11pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR11pptaseYqhD 5HVx2-CAR125HVx2-CAR12 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR12pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR12pptaseYqhD 5HVx2-CAR135HVx2-CAR13 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR13pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR13pptaseYqhD 5HVx2-CAR145HVx2-CAR14 C. glutamicum PKC ΔgabD ΔlysE::H30DavBHisA ΔgabD3::H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR14pptaseYqhD C. glutamicum PKC Δ gabD ΔlysE :: H30DavBHisA Δ gabD3:: H30DavTYahK harboring pCES208H30DavTYahKDavBHisA + pBL172H30CAR14pptaseYqhD

[실험예 1] PKC-5HA 균주의 5HV 생산력 측정[Experimental Example 1] Measurement of 5HV productivity of PKC-5HA strain

상기 제조예의 (3) 단계에서 제조한 PKC-5HV 균주(수탁번호: KCTC 19163P)를 사용하여 1,5-펜탄디올 생산의 핵심 전구체인 5-히드록시발레레이트의 생산 능력을 측정해보았다. The production capacity of 5-hydroxyvalerate, a key precursor for 1,5-pentanediol production, was measured using the PKC-5HV strain (accession number: KCTC 19163P) manufactured in step (3) of the above manufacturing example.

상기 비특허문헌 3 (Sohn et al., 2021)에 기재된 배양 조건과 동일한 조건 하에서, 본 발명의 제조예 (3)에서 제조한 PKC-5HV 균주를 120 시간 플라스크 배양하였다. 그 결과, 본 발명의 균주는 플라스미드 기반의 5HV 생산 시스템 (pCES208H30DavTBHisA + pBL712H30YahK; Sohn et al., 2021)의 추가적인 도입 없이도 5HV-7 균주와 비슷한 정도의 5HV 생산능을 보였다 (도 2 참조). 특히, 본 발명의 균주는 라이신, 5AVA, glutaric acid 등의 부산물 생성을 보이지 않았다.Under the same conditions as those described in the above Non-Patent Document 3 (Sohn et al., 2021), the PKC-5HV strain produced in Manufacturing Example (3) of the present invention was cultured in a flask for 120 hours. As a result, the strain of the present invention showed a similar level of 5HV production ability to the 5HV-7 strain without the additional introduction of a plasmid-based 5HV production system (pCES208H30DavTBHisA + pBL712H30YahK; Sohn et al., 2021) (see Fig. 2). In particular, the strain of the present invention did not show production of by-products such as lysine, 5AVA, and glutaric acid.

[실험예 2] 1,5-펜탄디올 생산력 측정을 통한 CAR 스크리닝[Experimental Example 2] CAR screening through measurement of 1,5-pentanediol productivity

PKC-5HA 균주를 이용하여 제작한 [표 7]의 재조합 균주 각각을 120 시간 플라스크 배양 (Sohn et al., 2021과 같은 배양조건)을 통해 15PDO 생산량을 비교하였다 (도 3). 결과적으로, CAR11을 발현한 C. glutamicum 5HVx1-CAR11 균주와 C. glutamicum 5HVx2-CAR11 균주에서 각각 1.2 g/L와 1.8 g/L의 1,5-PDO를 생산할 수 있었다.The production of 15PDO was compared for each recombinant strain produced using the PKC-5HA strain in [Table 7] through 120 h of flask culture (same culture conditions as Sohn et al., 2021) (Fig. 3). As a result, 1.2 g/L and 1.8 g/L of 1,5-PDO were produced in the C. glutamicum 5HVx1-CAR11 strain and the C. glutamicum 5HVx2-CAR11 strain expressing CAR11, respectively.

[실험예 3] 개발한 재조합 코리네박테리움을 이용한 1,5-펜탄디올 생산(1)[Experimental Example 3] Production of 1,5-pentanediol using developed recombinant Corynebacterium (1)

더 높은 양의 1,5-PDO 생산량을 지원하기 위하여 5HVx1-11균주와 5HVx2-11 균주의 회분식 발효 (Batch fermentation, 5 L CNS 발효기에 working volume 1.5 L, 나머지 조건은 Sohn et al., 2021과 같음)를 수행하였다. 5HVx1-CAR11 균주의 경우 7 g/L 의 15PDO를 (도 4), 5HVx2-CAR11 균주의 경우 9.97 g/L의 15PDO를 생산하였다 (도 5).To support higher 1,5-PDO production, batch fermentation of strains 5HVx1-11 and 5HVx2-11 (working volume 1.5 L in a 5 L CNS fermenter, the other conditions are the same as Sohn et al., 2021) was performed. The 5HVx1-CAR11 strain produced 7 g/L of 15PDO (Fig. 4), and the 5HVx2-CAR11 strain produced 9.97 g/L of 15PDO (Fig. 5).

[실험예 4] 개발한 재조합 코리네박테리움을 이용한 1,5-펜탄디올 생산(2)[Experimental Example 4] Production of 1,5-pentanediol using developed recombinant Corynebacterium (2)

5HVx1-CAR11 균주와 5HVx2-CAR11 균주에 대해 각각 유가식 배양(fed batch culture)을 수행하였다. 구체적으로, 발효기(bioCNS 5L)에서 GC100 미디엄(리터당 yeast extract 30 g, (NH4)2S04 30 g, glucose 100 g, KH2PO4 0.5 g, MgSO7H2O 0.01 g, MnSO1H2O 0.01 g, biotin 0.5 mg, thiamine-HCl 0.3 mg) 1.5L를 사용하고 30℃에서 600 rpm, DO(Dissolved Oxygen Level) 30%, pH 6.9를 유지하며 배양하였다. 글루코스 농도를 10 내지 20 g/L로 유지하기 위해 펌프 유속을 조절해가면서 글루코스, (NH4)2S04, MgSO7H2O를 연속적으로 공급하였다.Fed batch culture was performed for the 5HVx1-CAR11 strain and the 5HVx2-CAR11 strain, respectively. Specifically, 1.5 L of GC100 medium (30 g of yeast extract, 30 g of ( NH4 ) 2S04 , 100 g of glucose, 0.5 g of KH2PO4 , 0.01 g of MgSO4 ·7H2O, 0.01 g of MnSO4· 1H2O , 0.5 mg of biotin, and 0.3 mg of thiamine-HCl) was used in a fermenter (bioCNS 5 L) and cultured at 30℃, 600 rpm, DO (Dissolved Oxygen Level) 30%, and pH 6.9. Glucose, (NH 4 ) 2 S0 4 , and MgSO 7H 2 O were continuously supplied while controlling the pump flow rate to maintain the glucose concentration at 10 to 20 g/L.

5HVx1-CAR11 균주의 경우 17.83 g/L 의 15PDO(수율로는 0.13 mol/mol)를 (도 6), 5HVx2-CAR11 균주의 경우 17.52 g/L의 15PDO(t수율로는 0.13 mol/mol)를 생산하였다 (도 7).For the 5HVx1-CAR11 strain, 17.83 g/L of 15PDO (yield of 0.13 mol/mol) was produced (Fig. 6), and for the 5HVx2-CAR11 strain, 17.52 g/L of 15PDO (yield of 0.13 mol/mol) was produced (Fig. 7).

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the present invention has been described above with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various modifications and changes may be made to the present invention without departing from the spirit and scope of the present invention as set forth in the claims below.

한국생명공학연구원 생물자원센터(KCTC)Korea Research Institute of Bioscience and Biotechnology, Biological Resource Center (KCTC) KCTC19163PKCTC19163P 2024021320240213

서열목록 전자파일 첨부Attach electronic file of sequence list

Claims (17)

라이신(lysine)을 5-아미노발레레이트(5-aminovalerate)로 전환하는 유전자 및 5-아미노발레레이트를 5-히드록시발레레이트(5-hydroxyvalerate)로 전환하는 유전자가 도입되고,
5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자 및/또는 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자를 포함하는 벡터로 형질 전환된,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 (Corynebacterium glutamicum) 균주.
A gene that converts lysine to 5-aminovalerate and a gene that converts 5-aminovalerate to 5-hydroxyvalerate are introduced.
A vector transformed with a gene encoding an enzyme that converts 5-hydroxyvalerate into 5-hydroxyvaleraldehyde and/or a gene encoding an enzyme that converts 5-hydroxyvaleraldehyde into 1,5-pentanediol,
A recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
상기 벡터는 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자를 포함하는 제1 벡터 및 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자를 포함하는 제2 벡터로 이루어지는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
The above vector comprises a first vector including a gene encoding an enzyme that converts 5-hydroxyvalerate into 5-hydroxyvaleraldehyde and a second vector including a gene encoding an enzyme that converts 5-hydroxyvaleraldehyde into 1,5-pentanediol.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
상기 균주는 라이신을 5-아미노발레레이트로 전환하는 유전자 및/또는 5-아미노발레레이트를 5-히드록시발레레이트로 전환하는 유전자를 포함하는 제3 벡터로 더 형질 전환된 것인,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
The strain is further transformed with a third vector comprising a gene for converting lysine to 5-aminovalerate and/or a gene for converting 5-aminovalerate to 5-hydroxyvalerate.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
gabD 유전자 및 lysE 유전자가 결손된,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
Defective gabD and lysE genes,
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
gabD3 유전자가 결손된,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
gabD3 gene deletion,
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
상기 라이신을 5-아미노발레레이트로 전환하는 유전자는 Pseudomonas putida 유래의 유전자인,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
The gene that converts the above lysine into 5-aminovalerate is a gene derived from Pseudomonas putida .
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제6항에 있어서,
상기 라이신을 5-아미노발레레이트로 전환하는 유전자는 서열번호 3의 서열을 포함하는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In Article 6,
The gene that converts the above lysine into 5-aminovalerate comprises the sequence of sequence number 3.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
상기 5-아미노발레레이트를 5-히드록시발레레이트로 전환하는 유전자는 Pseudomonas putida 유래의 유전자 및 대장균 YahK 유래의 유전자를 포함하는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
The gene that converts the above 5-aminovalerate into 5-hydroxyvalerate includes a gene derived from Pseudomonas putida and a gene derived from E. coli YahK.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제8항에 있어서,
상기 5-아미노발레레이트를 5-히드록시발레레이트로 전환하는 유전자는 서열번호 5의 서열을 포함하는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In Article 8,
The gene that converts the above 5-aminovalerate into 5-hydroxyvalerate comprises the sequence of sequence number 5.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
상기 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자는 카르복실산 리덕타아제(Carboxylic Acid Reductase, CAR)를 코딩하는 유전자인,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
The gene encoding the enzyme that converts the above 5-hydroxyvalerate into 5-hydroxyvaleraldehyde is a gene encoding carboxylic acid reductase (CAR).
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제10항에 있어서,
상기 5-히드록시발레레이트를 5-히드록시발레르알데히드로 전환하는 효소를 코딩하는 유전자는 서열번호 16의 서열을 포함하는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In Article 10,
The gene encoding the enzyme that converts the above 5-hydroxyvalerate into 5-hydroxyvaleraldehyde comprises the sequence of SEQ ID NO: 16.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
상기 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자는 YahD 유전자인,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
The gene encoding the enzyme that converts the above 5-hydroxyvaleraldehyde into 1,5-pentanediol is the YahD gene.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제12항에 있어서,
상기 5-히드록시발레르알데히드를 1,5-펜탄디올로 전환하는 효소를 코딩하는 유전자는 서열번호 21의 서열을 포함하는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In Article 12,
The gene encoding the enzyme that converts the above 5-hydroxyvaleraldehyde into 1,5-pentanediol comprises the sequence of SEQ ID NO: 21.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제4항에 있어서,
상기 내생의 gabD 유전자는 서열번호 1의 서열을 포함하고, 상기 내생의 lysE 유전자는 서열번호 2의 서열을 포함하는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In paragraph 4,
The endogenous gabD gene comprises the sequence of SEQ ID NO: 1, and the endogenous lysE gene comprises the sequence of SEQ ID NO: 2.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제5항에 있어서,
상기 내생의 gabD3 유전자는 서열번호 4의 서열을 포함하는,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In paragraph 5,
The endogenous gabD3 gene comprises the sequence of sequence number 4.
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항에 있어서,
수탁번호 KCTC 19163P로 기탁된,
1,5-펜탄디올 생산용 재조합 코리네박테리움 글루타미쿰 균주.
In the first paragraph,
Deposited under the deposit number KCTC 19163P,
Recombinant Corynebacterium glutamicum strain for producing 1,5-pentanediol.
제1항 내지 제16항 중 어느 한 항의 재조합 코리네박테리움 글루타미쿰 균주를 배양하여 배양물을 수득하는 단계를 포함하는, 1,5-펜탄디올의 생산 방법.A method for producing 1,5-pentanediol, comprising the step of culturing a recombinant Corynebacterium glutamicum strain of any one of claims 1 to 16 to obtain a culture.
KR1020240042381A 2023-03-31 2024-03-28 Recombinant corynebacterium glutamicum producing 1,5-pentanediol and uses thereof Pending KR20240147949A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020230043218 2023-03-31
KR20230043218 2023-03-31

Publications (1)

Publication Number Publication Date
KR20240147949A true KR20240147949A (en) 2024-10-10

Family

ID=92906423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020240042381A Pending KR20240147949A (en) 2023-03-31 2024-03-28 Recombinant corynebacterium glutamicum producing 1,5-pentanediol and uses thereof

Country Status (2)

Country Link
KR (1) KR20240147949A (en)
WO (1) WO2024205260A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119823931B (en) * 2025-03-18 2025-06-20 东晓生物科技股份有限公司 Recombinant vector, engineered bacteria for synthesizing 1,5-pentanediol and their application

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP2011005673A0 (en) * 2008-10-28 2011-04-30 Ls9 Inc Methods and composition for producing fatty alcohols.
EP3260532A1 (en) * 2008-12-12 2017-12-27 CJ Research Center LLC Green process and compositions for producing poly(5hv) and 5 carbon chemicals
KR102108021B1 (en) * 2018-08-23 2020-05-07 한국화학연구원 Recombinant Corynebacterium glutamicum strain for producing glutaric acid and a method of producing glutaric acid using the same
KR20200145981A (en) * 2019-06-21 2020-12-31 한국화학연구원 Method for improvement of glutaric acid production by applying dual vector system and modulating cofactor specificity of lysin biosynthesis enzyme in recombinant Corynebacterium glutamicum strain
KR102693462B1 (en) * 2020-09-29 2024-08-09 한국화학연구원 Recombinant Corynebacterium glutamicum strain for producing 5-hydroxyvaleric acid and a method of producing glutaric acid using the same
KR102707464B1 (en) * 2020-12-15 2024-09-23 한국화학연구원 Recombinant Corynebacterium glutamicum strain for producing glutaric acid and a method of producing bio-plasticizer using the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Cen et al., ACS Synth. Biol. 2021, 10, 1, 192-203
Sohn et al., ACS Sustainable Chem. Eng. 2021, 9, 6, 2523-2533
Wang et al., PNAS, 2020, 117, 32, 19159-19167

Also Published As

Publication number Publication date
WO2024205260A1 (en) 2024-10-03

Similar Documents

Publication Publication Date Title
EP2201115B2 (en) Mutants having capability to produce 1,4-butanediol and method for preparing 1,4-butanediol using the same
KR102569806B1 (en) Microorganism transformed by a gene encoding adenosyltransferase and uses thereof
JP2009540860A (en) Amino acid production method using glycerol
Guo et al. De novo biosynthesis of butyl butyrate in engineered Clostridium tyrobutyricum
KR101483012B1 (en) Method for production of 3-hydroxypropionic acid using recombinant E. coli with high yield
US8338148B2 (en) Method of producing 1,3-propanediol using recombinant Klebsiella strain in which glycerol oxidative pathway has been blocked
CN114395575B (en) A recombinant strain of Clostridium tyrobutyricum producing butyl butyrate and its construction method and application
US8343736B2 (en) Xylitol producing microorganism introduced with arabinose metabolic pathway and production method of xylitol using the same
KR20240147949A (en) Recombinant corynebacterium glutamicum producing 1,5-pentanediol and uses thereof
EP2977444B1 (en) Recombinant microorganism with increased productivity of 2,3-butanediol, and method for producing 2,3-butanediol using same
CA2737429C (en) Method for producing lactic acid from plant-derived raw material, and lactic-acid-producing bacterium
EP1669460B1 (en) Biocatalyst for producing d-lactic acid
CN109652434B (en) Recombinant bacterium for producing succinic acid by using glycerol as substrate and construction method and application thereof
EP4481050A1 (en) Genetically modified microorganism for producing 3-hydroxyadipic acid and/or alpha-hydromuconic acid, and method for producing chemical product
EP3153575A1 (en) Microorganism having ability to produce o-succinylhomoserine or succinic acid, and method for producing succinic acid or o-succinylhomoserine by using same
CN101255448A (en) Process for producing xylitol with high yield and high productivity
KR102696014B1 (en) Method for producing 3-hydroxypropionic acid
KR20240147934A (en) Mutant microorganism producing 1,4-butanediol and method for producing 1,4-butanediol using the same
KR101743021B1 (en) Method for Preparing L-type 2,3-Butandiol Using Mutant Microorganism
US10808265B2 (en) Microbes and methods for improved conversion of a feedstock
KR20200041168A (en) 5'-UTR for improving conversion of glucose to glycerol and uses thereof
KR20150115289A (en) An aldehyde dehydrogenase mutant, a polynucleotide coding the mutant, a vector and a microorganism having the polynucleotide, and a method for producing 1,4-butanediol using the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20240328

PA0201 Request for examination

Patent event code: PA02011R01I

Patent event date: 20240328

Comment text: Patent Application

PG1501 Laying open of application