KR20240116478A - Zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, Mn and manufacturing method thereof - Google Patents
Zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, Mn and manufacturing method thereof Download PDFInfo
- Publication number
- KR20240116478A KR20240116478A KR1020247019793A KR20247019793A KR20240116478A KR 20240116478 A KR20240116478 A KR 20240116478A KR 1020247019793 A KR1020247019793 A KR 1020247019793A KR 20247019793 A KR20247019793 A KR 20247019793A KR 20240116478 A KR20240116478 A KR 20240116478A
- Authority
- KR
- South Korea
- Prior art keywords
- steel
- aluminum
- zinc
- plating layer
- magnesium alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
- C23C2/16—Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
- C23C2/18—Removing excess of molten coatings from elongated material
- C23C2/20—Strips; Plates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
Abstract
본 발명은 V, Ce, La 및 Mn을 포함하는 아연-알루미늄-마그네슘 합금 도금층 강재 및 그의 제조방법에 관한 것으로서, 강철 야금 생산 기술 분야에 속한다. 본 발명은 V, Ce, La, Mn을 포함하는 아연-알루미늄-마그네슘 합금 도금층 강재를 제공하였고, 도금층의 화학 성분은 질량백분율에 따라 알루미늄 0.5%~5%, 마그네슘 0.5%~3.0%, 바나듐 0.05%~1%, 세륨 0.01%~0.50%, 란탄 0.01%~0.30%, Mn 0.025%~1.0%, 나머지는 아연 및 불가피한 불순물이며, 그 중 Al/Mg은 1.0~1.5, 바나듐+세륨+란탄의 총량은 0.03%~1.0%이다. 본 발명에서 제공한 아연-알루미늄- 마그네슘 합금 도금층 강재는 사용자의 강재에 대한 높은 내식성 요구를 충족하였을 뿐만 아니라 우수한 스탬핑 성형성 또는 고강도 강재에 대한 사용자의 요구를 충족하였는 바, 특히 가전 및 자동차 분야에 적합하며 보급화 및 응용 전망이 우수하다. The present invention relates to a zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La and Mn and a method for manufacturing the same, and belongs to the field of steel metallurgy production technology. The present invention provides a zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, and Mn, and the chemical composition of the plating layer is 0.5% to 5% aluminum, 0.5% to 3.0% magnesium, and 0.05% vanadium depending on mass percentage. %~1%, cerium 0.01%~0.50%, lanthanum 0.01%~0.30%, Mn 0.025%~1.0%, the rest is zinc and inevitable impurities, of which Al/Mg is 1.0~1.5, vanadium + cerium + lanthanum The total amount is 0.03% to 1.0%. The zinc-aluminum-magnesium alloy plating layer steel material provided in the present invention not only met users' requirements for high corrosion resistance for steel materials, but also satisfied users' demands for excellent stamping formability or high-strength steel materials, especially in the home appliance and automobile fields. It is suitable and has excellent prospects for popularization and application.
Description
본 발명은 V, Ce, La 및 Mn을 포함하는 아연-알루미늄-마그네슘 합금 도금층 강재 및 그의 제조방법에 관한 것으로서, 강철 야금 생산 기술 분야에 속한다.The present invention relates to a zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La and Mn and a method for manufacturing the same, and belongs to the field of steel metallurgy production technology.
Zn-Al-Mg 합금 도금층은 1980년대에 해외에서 널리 주목받았고 용융 도금 아연 및 아연 합금 도금층 전문 분야의 연구 초점이 되었다. 국내외 연구 결과에 따르면 동일한 수준의 도금층 Zn 및 Al 함량 조건에서 Mg를 첨가한 용융 아연 도금 Zn-Al-Mg 합금 도금층 강판은 내식성이 더 우수하고 재료의 가공 응용 성능(성형성, 용접성 및 도장성)이 우수하여 현재 상응한 용융 도금 아연 또는 아연 합급 도금층 강판을 대체할 수 있으며 시장 수요 전망이 매우 광범하다. Zn-Al-Mg alloy plating layer attracted widespread attention overseas in the 1980s and became the research focus in the specialized field of hot-dip galvanized zinc and zinc alloy plating layer. According to domestic and foreign research results, under the same level of Zn and Al content in the plating layer, hot-dip galvanized Zn-Al-Mg alloy plating layer steel sheet with Mg added has better corrosion resistance and processing application performance (formability, weldability and paintability) of the material. It is excellent and can replace the current corresponding hot-dip galvanized zinc or zinc alloy galvanized steel sheets, and the market demand prospects are very broad.
용융 도금 Zn-Al-Mg 합금 도금층 강판은 21세기 초반에 nippon steel, nisshin steel, Thyssenkrupp등 강철 회사에서 산업화 생산 및 응용을 실현하였고, 현재 주요 응용 분야는 건설 산업이며 가전, 자동차 제조 등 산업으로 점차 보급되고 있다. 중국에서 Zn-Al-Mg 합금 도금층에 대한 연구는 비교적 늦었고 현재 단지 보산 강철, 수강, 구천 강철, 판지화 강철 등 기업만이 용융 도금 Zn-Al-Mg 합금 도금층 강판을 출시했다. Hot-dip galvanized Zn-Al-Mg alloy coated steel sheets were industrialized production and application by steel companies such as nippon steel, nisshin steel, and Thyssenkrupp in the early 21st century. Currently, the main application field is the construction industry, and it is gradually expanding to industries such as home appliances and automobile manufacturing. It is spreading. In China, the research on Zn-Al-Mg alloy plating layer is relatively late, and at present, only Boshan Steel, Shugang, Guqian Steel, Panzhihua Steel and other enterprises have launched hot-dip galvanized Zn-Al-Mg alloy plating layer steel sheets.
기존의 용융 도금 Zn-Al-Mg 합금 도금층 강판은 “저알루미늄”(WAl<5%), “중알루미늄”(5%≤WAl<13%) 및 “고알루미늄”(47%≤WAl≤57%)의 세 가지 유형으로 나눌 수 있다. Zn-Al-Mg 합금 도금층 강판의 품종에 따라 도금층 내의 Al 및 Mg 함량이 다르고 도금층 구조 및 품질 성능이 다르므로 응용 분야도 상이하다. 특허문헌 CN105063532A에서 단일 용융 도금 방법을 사용하여 금속 표면에 아연-알루미늄-마그네슘 합금 도금층을 얻는 고내식성 단일 도금형 아연-알루미늄-마그네슘 희토류 보호 도금층 및 제조 공정을 개시하였다. 도금층과 금속 매트릭스는 각각 원래의 성능을 유지하지만 99.9% 이상의 야금 결합 계면을 가지며 동시에 도금층의 구조가 조밀하고 성분이 안정적이며 누출이 없으며 내식성이 우수하고 염 분무 부식(salt spray corrosion)이 2060h에 달한다. 합금 도금층은 일반 용융 도금 순수 아연층보다 내식성이 우수하여 수명을 향상시켰다. 해당 단일 도금 공정은 재사용 및 산업적 생산이 가능하며 금속 및 아연-알루미늄-마그네슘 합금 용액의 도금하기 어려운 점, 양자가 우수한 결합 계면을 형성하기 어려운 점, 스킵 플레이팅이 발생하기 쉬운 단점을 극복하였고, 금속 표면에 광범하게 적용하여 5%-12%의 Al 및 1%-6%의 Mg 함량의 아연-알루미늄-마그네슘 합금 도금액 용액을 제조할 수 있으며, 제조된 공침층은 Zn/Al/MgZn2 삼차원 공결정 및 다양한 유형의 이차원 공결정을 형성하며 이는 공침층이 높은 내식성을 갖는 주요 원인이다. 위에서 언급한 고내식성 단일 도금형 아연-알루미늄-마그네슘 희토류 보호 도금층은 중알루미늄 성분 시스템을 사용하였다. Conventional hot-dip galvanized Zn-Al-Mg alloy plated steel sheets are classified into “low aluminum” (WAl<5%), “medium aluminum” (5%≤WAl<13%), and “high aluminum” (47%≤WAl≤57%) ) can be divided into three types: Depending on the type of Zn-Al-Mg alloy plated steel sheet, the Al and Mg content in the plated layer is different, and the structure and quality performance of the plated layer are different, so the application fields are also different. Patent document CN105063532A discloses a highly corrosion-resistant single-plated zinc-aluminum-magnesium rare earth protective plating layer and manufacturing process for obtaining a zinc-aluminum-magnesium alloy plating layer on a metal surface using a single hot-dip plating method. The plating layer and the metal matrix each maintain their original performance, but have a metallurgical bonding interface of more than 99.9%, and at the same time, the structure of the plating layer is dense, the composition is stable, there is no leakage, and the corrosion resistance is excellent, and the salt spray corrosion reaches 2060h. . The alloy plating layer has better corrosion resistance than a regular hot-dip plating pure zinc layer, improving lifespan. This single plating process can be reused and industrially produced, and overcomes the difficulties of plating metal and zinc-aluminum-magnesium alloy solutions, the difficulty of forming an excellent bonding interface between the two, and the tendency for skip plating to occur. It can be widely applied to metal surfaces to prepare a zinc-aluminum-magnesium alloy plating solution with 5%-12% Al and 1%-6% Mg content, and the produced co-precipitation layer is Zn/Al/MgZn 2 three-dimensional It forms co-crystals and various types of two-dimensional co-crystals, which is the main reason why the co-precipitation layer has high corrosion resistance. The high corrosion resistance single plating type zinc-aluminum-magnesium rare earth protective plating layer mentioned above used a heavy aluminum component system.
특허문헌 CN109402547A는 기판과 기판에 도금된 Al-Zn-Si-Mg 도금층을 포함하는 우수한 내식성을 갖는 용융 도금층 강판 및 그의 제조 방법을 제공하였고, 상기 도금층의 화학 성분 질량백분율은 Al: 45%~65%, Si: 0.1%~3%, Mg: 0.2%~5%, Mn: 0.001%~0.15%, Cr: 0.001%~0.5%, 나머지는 Zn 및 불가피한 불순물이다. 제조 방법은 (1) 강판 전처리 단계, (2) 강판을 560~595℃의 온도인 도금 탱크에 열 침지하는 단계, (3) 강판을 도금 용액에서 꺼내어 단계별로 냉각하는 단계를 포함한다. 해당 용용 도금층 강판은 내식성이 우수하고 백색 녹의 발생 및 적색 녹의 발전에 대해 우수한 억제 효과가 있으며 절개부에서 유래한 처리 필름의 고장 및 확산을 방지하는데 효과가 우수하다. 위에서 언급한 내식성이 우수한 용융 도금층 강판은 고알루미늄 성분 시스템을 사용하여 도금되었다. Patent document CN109402547A provides a hot-dip galvanized steel sheet with excellent corrosion resistance, including a substrate and an Al-Zn-Si-Mg plating layer plated on the substrate, and a method for manufacturing the same, and the chemical composition mass percentage of the plating layer is Al: 45% to 65. %, Si: 0.1% to 3%, Mg: 0.2% to 5%, Mn: 0.001% to 0.15%, Cr: 0.001% to 0.5%, the remainder is Zn and inevitable impurities. The manufacturing method includes (1) a steel sheet pretreatment step, (2) heat immersing the steel sheet in a plating tank with a temperature of 560 to 595°C, and (3) removing the steel sheet from the plating solution and cooling it step by step. The galvanized steel sheet has excellent corrosion resistance, has an excellent suppressing effect on the occurrence of white rust and the development of red rust, and is effective in preventing failure and spread of the treated film originating from the incision. The above-mentioned hot-dip galvanized steel sheet with excellent corrosion resistance was plated using a high aluminum component system.
고내식성 아연-알루미늄-마그네슘 강판은 주로 중/고 알루미늄 성분계의 아연-알루미늄-마그네슘 강판임을 알 수 있으며 Al과 Mg의 함량이 증가할수록 도금층의 내식성은 증가하지만 동시에 성형 성능과 용접 성능이 저하된다. 가전 및 자동차 응용 분야에서 Zn-Al-Mg 합금 도금층 강판이 사용자의 스템핑 성형 요구를 확보하기 위하여 성형성이 우수해야 하며 현재 중/고 알루미늄 성분 시스템의 Zn-Al-Mg 합금 도금층 강판은 아직 사용자의 요구 사항을 충족할 수 없다. 자동차 판의 경우 강도가 높은 고강도 강철일수록 강철 베이스에 합금 원소가 많아 도금액과 강철 베이스의 젖음성이 좋지 않아 아연, 알루미늄 및 마그네슘이 고강도 강철에 사용하는데 심각한 영향을 미치게 되었다. 따라서 성형성과 내식성이 모두 높은 Zn-Al-Mg 합금 도금층 강판을 제공하는 것이 중요한 의의를 갖고 있다.It can be seen that the high corrosion resistance zinc-aluminum-magnesium steel sheet is mainly a zinc-aluminum-magnesium steel sheet of medium/high aluminum content. As the content of Al and Mg increases, the corrosion resistance of the plating layer increases, but at the same time, the forming performance and welding performance deteriorate. In home appliance and automotive applications, Zn-Al-Mg alloy plated steel sheets must have excellent formability to meet the stamping forming needs of users. Currently, Zn-Al-Mg alloy plated steel sheets with medium/high aluminum composition systems are not yet available to users. cannot meet the requirements. In the case of automobile plates, the higher the strength of high-strength steel, the more alloying elements are contained in the steel base, and the wettability of the plating solution and the steel base is poor, which seriously affects the use of zinc, aluminum, and magnesium in high-strength steel. Therefore, it is important to provide a Zn-Al-Mg alloy plated steel sheet that has both high formability and corrosion resistance.
본 발명이 해결하고자 하는 기술적 과제는 성형성과 내식성이 모두 높은 V, Ce, La, Mn을 포함하는 아연-알루미늄-마그네슘 합금 도금층 강재 및 그의 제조방법을 제공하고자 하는 것이다.The technical problem to be solved by the present invention is to provide a zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, and Mn, which has both high formability and corrosion resistance, and a method for manufacturing the same.
본 발명의 목적을 이루기 위한 기술방안은 하기와 같다.The technical solution for achieving the purpose of the present invention is as follows.
본 발명의 일 측면은, V, Ce, La, Mn을 포함하는 아연-알루미늄-마그네슘 합금 도금층 강재를 제공하고자 하는 것으로서, 도금층의 화학 성분은 질량백분율에 따라 알루미늄 0.5%~5%, 마그네슘 0.5%~3.0%, 바나듐 0.05~1.0%, 세륨 0.01%~0.50%, 란탄 0.01%~0.30%, 망간 0.025%~1.0%, 기타 미량 합금 원소≤0.3%이고, 나머지는 아연 및 불가피한 불순물이며, 그 중 Al/Mg은 1.0~1.5이고, 바나듐+세륨+란탄의 총량은 0.3~1.0%이다. One aspect of the present invention is to provide a zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, and Mn, and the chemical composition of the plating layer is 0.5% to 5% aluminum and 0.5% magnesium depending on mass percentage. ~3.0%, vanadium 0.05~1.0%, cerium 0.01%~0.50%, lanthanum 0.01%~0.30%, manganese 0.025%~1.0%, other trace alloy elements ≤0.3%, the remainder is zinc and inevitable impurities, among which Al/Mg is 1.0 to 1.5, and the total amount of vanadium + cerium + lanthanum is 0.3 to 1.0%.
또한, 도금층의 화학 성분은, 도금층에 알루미늄 0.8%~3.2%, 마그네슘 0.8%~2.5%, 바나듐 0.05%~0.40%, 세륨 0.03%~0.30%, 란탄 0.02%~0.20%, 망간 0.10%~1.0%를 포함하는 것; Al/Mg는 1~1.2인 것; 바나듐+세륨+란탄의 총량은 0.10%~0.35%인 것; 중의 적어도 하나를 충족하는 것이 바람직하다.In addition, the chemical composition of the plating layer is 0.8% to 3.2% aluminum, 0.8% to 2.5% magnesium, 0.05% to 0.40% vanadium, 0.03% to 0.30% cerium, 0.02% to 0.20% lanthanum, and 0.10% to 1.0% manganese. Containing %; Al/Mg is 1 to 1.2; The total amount of vanadium + cerium + lanthanum is 0.10% to 0.35%; It is desirable to satisfy at least one of the following.
또한, 상기 불가피한 불순물의 총합≤0.010%이고, 그 중 납≤0.002%, 안티몬≤0.002%, 주석≤0.002%, 비소≤0.002%, 텔루륨≤0.002%, 카드뮴≤0.002% 인것이 바람직하다. In addition, it is preferable that the total of the above inevitable impurities is ≤0.010%, of which lead ≤0.002%, antimony ≤0.002%, tin ≤0.002%, arsenic ≤0.002%, tellurium ≤0.002%, and cadmium ≤0.002%.
또한, 상기 도금층의 중량은 30~400g/m2이고, 양면에 따라 계산하며, 바람직하게는 상기 도금층의 중량은 150~320g/m2이고, 양면에 따라 계산하는 것이 바람직하다. In addition, the weight of the plating layer is 30 to 400 g/m 2 and is calculated according to both sides. Preferably, the weight of the plating layer is 150 to 320 g/m 2 and is preferably calculated according to both sides.
또한, 상기 강재의 강철 베이스는 IF강, 저탄소 알루미늄 진정강, 베이킹 경화강, QP강, DP강, TRIP강 및 TWIP강 중 적어도 하나에서 선택되는 것이 바람직하다.In addition, the steel base of the steel material is preferably selected from at least one of IF steel, low carbon aluminum quenching steel, bake hardening steel, QP steel, DP steel, TRIP steel, and TWIP steel.
본 발명의 또 다른 측면은, 상기 아연-알루미늄-마그네슘 합금 도금층 강재의 제조방법을 제공하고자 하는 것으로서, 해당 제조방법은, 강철 베이스 탈지 세척, 연속 어닐링, 열침지, 에어 나이프 퍼지 단계를 포함한다.Another aspect of the present invention is to provide a method for manufacturing the zinc-aluminum-magnesium alloy plating layer steel, which includes the steps of degreasing and cleaning the steel base, continuous annealing, heat dipping, and air knife purge.
또한, 연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소≥3.5%로 제어하고, 바람직하게는 연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소를 4.0%~8.0%로 제어하는 것이 바람직하다. In addition, the continuous annealing process is calculated as a volume percentage and controlled to ≥3.5% hydrogen in the oven. Preferably, the continuous annealing process is calculated as a volume percentage and controlled to control the hydrogen in the oven to 4.0% to 8.0%.
또한, 강철 베이스의 아연냄비 진입 온도는 420℃~520℃로 제어하고, 열침지 과정의 도금액 온도는 410℃~520℃로 제어하며, 아연냄비 진입 온도와 도금액 온도의 온도차는 ±10℃로 제어하는 것이 바람직하다. In addition, the steel-based zinc pot entry temperature is controlled to 420℃~520℃, the plating solution temperature during the heat dipping process is controlled to 410℃~520℃, and the temperature difference between the zinc pot entry temperature and the plating solution temperature is controlled to ±10℃. It is desirable to do so.
또한, 도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를≤260℃로 제어하고, 바람직하게는 도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를 200℃~260℃로 제어하는 것이 바람직하다.In addition, by rapid cooling after plating, the temperature at which the steel strip reaches the upper steering roller is controlled to ≤260℃. Preferably, by rapid cooling after plating, the temperature at which the steel strip reaches the upper steering roller is controlled to 200℃~260℃. Control is desirable.
본 발명에서 제공하는 아연-알루미늄-마그네슘 합금 도금층 강재는, 저알루미늄 성분 시스템을 사용하였으며 도금층 성분의 제어를 통해 내식성과 성형성이 모두 높은 Zn-Al-Mg 합금 도금층 강판을 생산할 수 있다. 검측 결과에 따르면, 본 발명의 아연-알루미늄-마그네슘 합금 도금층 강재는 중성염 분무 시험 조건에서 적색 녹이 발생하는 시간이 600h, 심지어 3200h 이상이며, 0T 굽힘 후 육안관찰 시 뚜렷한 균열이 보이지 않고, 또한 굽힘 부위가 중성염 분무 시험 조건에서 적색 녹이 발생하는 시간은 500h, 심지어 3000h 이상이며, 분무 후 분무 코팅층의 접착성이 우수하다. 해당 아연-알루미늄-마그네슘 합금 도금층 강재는 특히 가전 및 자동차 분야에 적합하며 보급화 및 응용 전망이 우수하다. The zinc-aluminum-magnesium alloy plated layer steel material provided by the present invention uses a low aluminum component system, and can produce a Zn-Al-Mg alloy plated layer steel sheet with both high corrosion resistance and formability through control of the plated layer components. According to the inspection results, the zinc-aluminum-magnesium alloy plated layer steel material of the present invention has a time for red rust to occur over 600h and even 3200h under neutral salt spray test conditions, and no clear cracks are visible upon visual observation after bending at 0T. The time for red rust to occur under neutral salt spray test conditions is 500h or even 3000h or more, and the adhesion of the sprayed coating layer after spraying is excellent. The zinc-aluminum-magnesium alloy plating layer steel is particularly suitable for home appliances and automobile fields and has excellent prospects for popularization and application.
본 발명은 V, Ce, La, Mn을 포함하는 아연-알루미늄-마그네슘 합금 도금층 강재를 제공하며, 도금층의 화학 성분은 질량백분율에 따라 알루미늄 0%~5%, 마그네슘 0.5%~3.0%, 바나듐 0.05%~1%, 세륨 0.01%~0.50%, 란탄 0.01%~0.30%, 망간 0.025%~1.0%, 기타 미량 합금 원소는 ≤0.3%이고 나머지는 아연 및 불가피한 불순물이며; 그 중 Al/Mg은 1.0~1.5이고, 바나듐+세륨+란탄의 총량은 0.3~1.0%이며, 상기 기타 미량 합금 원소는 붕소, 규소, 티타늄, 칼슘, 망간, 몰리브덴, 크롬, 니오브, 이트륨 및 비스무트 중 적어도 하나에서 선택된다.The present invention provides a zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, and Mn, and the chemical composition of the plating layer is 0% to 5% aluminum, 0.5% to 3.0% magnesium, and 0.05% vanadium depending on mass percentage. %~1%, cerium 0.01%~0.50%, lanthanum 0.01%~0.30%, manganese 0.025%~1.0%, other trace alloy elements ≤0.3%, the rest are zinc and inevitable impurities; Among them, Al/Mg is 1.0 to 1.5, the total amount of vanadium + cerium + lanthanum is 0.3 to 1.0%, and the other trace alloy elements are boron, silicon, titanium, calcium, manganese, molybdenum, chromium, niobium, yttrium and bismuth. is selected from at least one of
Zn-Al-Mg 합금 도금층 강재의 내식성을 확보하기 위해 현재 본 분야는 주로 중/고 알루미늄 성분 시스템을 사용하고 있지만 Al 및 Mg 함량이 증가함에 따라 강재의 성형 성능과 용접 성능이 크게 저하되어 가전, 자동차 등 분야의 스템핑 성형 성능 요구 사항을 충족하기 어렵다. 위의 문제에 대응하여 본 발명은 도금층의 Mg, Al 함량(함량비) 및 기타 합금 원소의 첨가를 최적화하여 도금층 형성 과정에서 V가 이질적인 핵점을 제공하고 도금층의 결정립 크기를 미세화하고 감소시켜 도금층의 연성을 개선한 상황하에서 도금층의 내식성을 향상시켰으며, Ce 및 La는 도금액의 유동성을 증가시켜 도금액의 표면 장력을 감소시켰으며 도금액의 강재 베이스에 대한 침투성을 증가시켰고 도금층과 강재 베이스의 결합 작용을 향상시켰다. Mn은 도금층과 강철 베이스(특히 Mn을 함유한 고강도 강철)의 결합 작용을 강화하여 Mn이 풍부한 금속간 화합물을 형성하여 도금층이 우수한 플라스틱 인성을 얻고 후속 가공이 용이하여 높은 내식성 및 높은 성형성에 대한 사용자의 요구 사항을 충족할 수 있다. 그러나 V, Ce, La 및 Mn의 과도한 함량은 합금 도금액의 표면에 산화 껍질을 형성하여 아연 슬래그를 증가시키고 도금층의 표면 품질에 영향을 미치게 된다. In order to secure the corrosion resistance of Zn-Al-Mg alloy plating layer steel, the current field mainly uses a medium/high aluminum component system. However, as the Al and Mg content increases, the forming and welding performance of the steel significantly deteriorates, making it suitable for home appliances, It is difficult to meet stamping forming performance requirements in fields such as automobiles. In response to the above problem, the present invention optimizes the addition of Mg, Al content (content ratio) and other alloy elements in the plating layer to provide core points where V is heterogeneous during the plating layer formation process and refines and reduces the grain size of the plating layer to improve the plating layer's density. Under the condition of improved ductility, the corrosion resistance of the plating layer was improved, Ce and La increased the fluidity of the plating solution, reduced the surface tension of the plating solution, increased the permeability of the plating solution to the steel base, and improved the bonding effect between the plating layer and the steel base. improved. Mn strengthens the bonding action of the plating layer and the steel base (especially Mn-containing high-strength steel) to form a Mn-rich intermetallic compound, so that the plating layer obtains excellent plastic toughness and easy subsequent processing, providing users with high corrosion resistance and high formability. can meet the requirements. However, excessive contents of V, Ce, La, and Mn form an oxide shell on the surface of the alloy plating solution, increasing zinc slag and affecting the surface quality of the plating layer.
도금층 준비 과정에서 도금층의 우수한 표면 품질과 성능을 확보하기 위해 공정 제한이 필요하다. 에어 나이프의 능력과 도금액의 유동성을 고려하여 도금층 두께를 일정 범위 내에 제어해야 한다. 도금층 중량이 너무 크고 에어 나이프의 압력이 낮으면 도금층의 표면 품질과 두께를 제어하기가 쉽지 않으며, 에어 나이프의 유량이 제한되고 도금액의 유동성이 일정하면 도금층의 두께를 너무 얇게 제어할 수 없다. 도금액은 강판 표면에 따라 습윤성이 다르기 때문에 습윤성이 좋은 강판에만 부착력이 좋은 도금층을 형성할 수 있으며, 어닐링 분위기는 강철 베이스 표면의 우수한 환원성을 향상시키기 위한 것으로 일반적으로 H2 함량이 높을수록 좋지만 H2 함량이 높을수록 폭발 위험이 높아지게 된다. 도금액 온도는 용융 상태이고 유동성이 좋은 상태를 확보해야 하고, V와 Mn을 첨가하면 도금액 온도 범위가 증가하지만 온도가 너무 높으면 산화되기 쉬워 아연 슬래그가 증가하게 된다. 도금층의 완전한 응고를 확보하기 위해서는 첫 번째 스티어링 롤러 전에 강판의 온도를 응고점 이하로 낮춰야 하며, 아연, 알루미늄, 마그네슘은 쉽게 산화되기에 급속 냉각은 표면 품질을 향상시킬 수 있다. During the plating layer preparation process, process restrictions are necessary to ensure excellent surface quality and performance of the plating layer. The thickness of the plating layer must be controlled within a certain range considering the ability of the air knife and the fluidity of the plating solution. If the weight of the plating layer is too large and the pressure of the air knife is low, it is not easy to control the surface quality and thickness of the plating layer. If the flow rate of the air knife is limited and the fluidity of the plating solution is constant, the thickness of the plating layer cannot be controlled to be too thin. Since the wettability of the plating solution varies depending on the surface of the steel sheet, a plating layer with good adhesion can be formed only on steel sheets with good wettability, and the annealing atmosphere is intended to improve the excellent reducing properties of the steel base surface. In general, the higher the H 2 content, the better, but H 2 The higher the content, the higher the risk of explosion. The temperature of the plating solution must be in a molten state and have good fluidity. Adding V and Mn increases the temperature range of the plating solution, but if the temperature is too high, it is easy to oxidize and zinc slag increases. To ensure complete solidification of the plating layer, the temperature of the steel sheet must be lowered below the solidification point before the first steering roller. Since zinc, aluminum, and magnesium are easily oxidized, rapid cooling can improve surface quality.
이하, 실시예에 따라 본 발명의 방안에 대해 설명하기로 한다. 당업자는 다음 실시예가 본 발명을 설명하는 데만 사용되며 본 발명의 범위를 제한하는 것으로 간주되어서는 안된다는 것을 이해해야 한다. 실시예에 구체적인 기술 또는 조건이 표시되지 않은 경우 해당 분야의 문헌에 설명된 기술 또는 조건 또는 제품 설명서에 따라 수행한다. 사용된 시약 또는 기기에 제조업체가 표시되지 않은 경우 모두 시중에서 구입할 수 있는 기존 제품이다. Hereinafter, the method of the present invention will be described according to examples. Those skilled in the art should understand that the following examples are used only to illustrate the invention and should not be considered as limiting the scope of the invention. If specific techniques or conditions are not indicated in the examples, they are carried out according to the techniques or conditions described in the literature in the relevant field or according to the product description. If the manufacturer is not indicated on the reagents or instruments used, they are all commercially available products.
실시예 1 본 발명의 아연-알루미늄-마그네슘 합금 도금층 강재의 제조Example 1 Preparation of zinc-aluminum-magnesium alloy plating layer steel material of the present invention
도금층 중량은 50g/m2(양면), 도금층의 주성분은 알루미늄 0.8%, 마그네슘 0.6%, 바나듐 0.10%, 란탄 0.05%, 세륨 0.15%, 망간 0.20%, 납 0.002%, 안티몬 0.001%, 크롬 0.001% 카드뮴 0.001% 및 주석 0.001%이고 나머지는 아연이며 강철 베이스는 DP강이다. The weight of the plating layer is 50g/m 2 (both sides), and the main components of the plating layer are aluminum 0.8%, magnesium 0.6%, vanadium 0.10%, lanthanum 0.05%, cerium 0.15%, manganese 0.20%, lead 0.002%, antimony 0.001%, chromium 0.001%. It contains 0.001% cadmium and 0.001% tin, the remainder is zinc, and the steel base is DP steel.
제조 방법: 탈지 세척, 연속 어닐링, 열침지, 에어 나이프 퍼지, 냉각의 단계를 포함하며, 이 중 탈지 세척은 강철 베이스를 탈지 처리 후 깨끗이 세척하는 것이고, 연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소를 5.0%로 제어하고, 강판의 아연냄비 진입 온도는 450℃이며, 열침지 과정의 도금액 온도는 440℃이고, 도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를 260℃로 제어한다. Manufacturing method: includes the steps of degreasing cleaning, continuous annealing, heat soak, air knife purge, and cooling. Among these, degreasing cleaning involves cleaning the steel base thoroughly after degreasing treatment, and continuous annealing process is calculated as a volume percentage and placed in an oven. Hydrogen is controlled to 5.0%, the temperature of the steel sheet entering the zinc pot is 450℃, the plating solution temperature during the heat dipping process is 440℃, and the temperature at which the steel strip reaches the upper steering roller is controlled to 260℃ by rapid cooling after plating. do.
테스트 방법:Test method:
내부식성: 중성염 분무 가속 부식시험을 사용하며, 시험조건 및 방법은 GB/T10125 2012 “인공분위기 부식시험 염분무 시험”에 따라 시행하고, 시험기기는 염분무 부식시험박스이고, 농도 50g/L, pH 6.5의 NaCl 탈이온 수용액을 부식 매질로 하여 시험온도는 35±2℃, 시료 규격은 75mm×150mm×0.8mm이며, 끝부분의 녹이 결과에 영향을 미치지 않도록 가장자리를 5mm 크기로 투명 테이프로 밀봉하고, 샘플은 세로 방향에 15°~25° 각도가 되도록 하여 배치한다. 테스트 샘플 표면에 적색 녹이 생기는 시간을 관찰한다. Corrosion resistance: Neutral salt spray accelerated corrosion test is used. The test conditions and method are conducted in accordance with GB/T10125 2012 “Artificial atmosphere corrosion test salt spray test”. The test device is a salt spray corrosion test box, concentration 50g/L. , NaCl deionized aqueous solution at pH 6.5 was used as the corrosion medium, the test temperature was 35±2℃, the sample size was 75mm Sealed, the sample is placed at an angle of 15° to 25° to the vertical direction. Observe the time for red rust to appear on the surface of the test sample.
성형성: 시료를 0T 절곡(180° 절곡, 중심 반경 0)하여 균열 여부를 육안으로 관찰하고 중성염 분무 시험 조건에서 굴곡 부위의 적색 녹의 발생 시간을 테스트하고 중성 염 분무 시험 조건 및 방법은 GB/T101252012 “인공 분위기 부식 시험 염 분무 시험”에 따라 시행한다. Formability: Bend the sample 0T (180° bend, center radius 0) to visually observe whether there are cracks, and test the occurrence time of red rust at the bent area under neutral salt spray test conditions. Neutral salt spray test conditions and methods are as per GB/ Carry out according to T101252012 “Artificial atmosphere corrosion test salt spray test”.
도장성: 오일 코팅 후 도금층 강판을 탈지세척, 도화 또는 인화시킨 후 분무건조시킨 다음 격자법으로 분무 코팅층과 강판의 결합 정도를 시험하며 코팅층이 벗겨지지 않은 경우 접착성이 우수하다. Paintability: After oil coating, the coated steel sheet is degreased, painted or printed, then spray-dried. Then, the degree of bonding between the spray coating layer and the steel sheet is tested using the grid method. If the coating layer is not peeled off, the adhesion is excellent.
테스트 결과: 본 실시예에서 제조된 아연-알루미늄-마그네슘 합금 도금층 강재는 표면 품질이 양호하고 내식성, 성형성 및 도장성이 우수하였다. 중성염 분무 시험조건에서 적색 녹이 발생하는 시간은 70시간 이상이고, 0T 절곡 후 육안으로 뚜렷한 균열이 관찰되지 않았고, 중성염 분무 시험조건에서 굴곡부위에서 적색 녹이 발생하는 시간은 600시간 이상이며, 분무 후 코팅층의 접착력이 우수하여 사용자의 요구를 충족할 수 있다. Test results: The zinc-aluminum-magnesium alloy plating layer steel manufactured in this example had good surface quality and excellent corrosion resistance, formability, and paintability. The time for red rust to occur under the neutral salt spray test conditions is more than 70 hours, and no clear cracks were observed with the naked eye after bending at 0T. The time for red rust to occur at the bent area under the neutral salt spray test conditions is more than 600 hours, and after spraying, the time for red rust to occur is more than 70 hours. The adhesion of the coating layer is excellent and can meet user needs.
실시예 2 본 발명의 아연-알루미늄-마그네슘 합금 도금층 강재의 제조Example 2 Preparation of zinc-aluminum-magnesium alloy plating layer steel material of the present invention
도금층 중량은 150g/m2(양면), 도금층의 주성분은 알루미늄 1.5%, 마그네슘 1.5%, 바나듐 0.15%, 란탄 0.10%, 세륨 0.10%, 망간 0.15%, 납 0.001%, 안티몬 0.002%, 크롬 0.001% 카드뮴 0.001% 및 주석 0.001%이고 나머지는 아연이며 강철 베이스는 TWIP강이다. The weight of the plating layer is 150g/m 2 (both sides), and the main components of the plating layer are 1.5% aluminum, 1.5% magnesium, 0.15% vanadium, 0.10% lanthanum, 0.10% cerium, 0.15% manganese, 0.001% lead, 0.002% antimony, and 0.001% chromium. It contains 0.001% cadmium and 0.001% tin, the remainder is zinc, and the steel base is TWIP steel.
제조 방법: 탈지 세척, 연속 어닐링, 열침지, 에어 나이프 퍼지, 냉각의 단계를 포함하며, 이 중 탈지 세척은 강철 베이스를 탈지 처리 후 깨끗이 세척하는 것이고, 연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소를 6.0%로 제어하고, 강판의 아연냄비 진입 온도는 470℃이며, 열침지 과정의 도금액 온도는 460℃이고, 도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를 200℃로 제어한다. Manufacturing method: includes the steps of degreasing cleaning, continuous annealing, heat soak, air knife purge, and cooling. Among these, degreasing cleaning involves cleaning the steel base thoroughly after degreasing treatment, and continuous annealing process is calculated as a volume percentage and placed in an oven. Hydrogen is controlled to 6.0%, the temperature of the steel sheet entering the zinc pot is 470℃, the plating solution temperature during the heat dipping process is 460℃, and the temperature at which the steel strip reaches the upper steering roller is controlled to 200℃ by rapid cooling after plating. do.
테스트 방법은 실시예 1과 동일하다. The test method is the same as Example 1.
테스트 결과: 본 실시예에서 제조된 아연-알루미늄-마그네슘 합금 도금층 강재는 표면 품질이 양호하고 내식성, 성형성 및 도장성이 우수하였다. 중성염 분무 시험조건에서 적색 녹이 발생하는 시간은 1800시간 이상, 0T 절곡 후 육안으로 뚜렷한 균열이 관찰되지 않았고, 중성염 분무 시험조건에서 굴곡부위에서 적색 녹이 발생하는 시간은 1700시간 이상이며, 분무 후 코팅층의 접착력이 우수하여 사용자의 요구를 충족할 수 있다. Test results: The zinc-aluminum-magnesium alloy plating layer steel manufactured in this example had good surface quality and excellent corrosion resistance, formability, and paintability. The time for red rust to occur under the neutral salt spray test conditions is over 1800 hours, and no clear cracks were observed with the naked eye after 0T bending. The time for red rust to occur at the bent area under the neutral salt spray test conditions is over 1700 hours, and the coating layer after spraying It has excellent adhesion and can meet the needs of users.
실시예 3 본 발명의 아연-알루미늄-마그네슘 합금 도금층 강재의 제조Example 3 Preparation of zinc-aluminum-magnesium alloy plating layer steel material of the present invention
도금층 중량은 320g/m2(양면), 도금층의 주성분은 알루미늄 3.2%, 마그네슘 2.5%, 바나듐 0.10%, 란탄 0.15%, 세륨 0.20%, 망간 0.05%, 납 0.002%, 안티몬 0.001%, 크롬 0.001% 카드뮴 0.002% 및 주석 0.002%이고 나머지는 아연이며 강철 베이스는 QP강이다. The weight of the plating layer is 320g/m 2 (both sides), and the main components of the plating layer are 3.2% aluminum, 2.5% magnesium, 0.10% vanadium, 0.15% lanthanum, 0.20% cerium, 0.05% manganese, 0.002% lead, 0.001% antimony, and 0.001% chromium. It contains 0.002% cadmium and 0.002% tin, the remainder is zinc, and the steel base is QP steel.
제조 방법: 탈지 세척, 연속 어닐링, 열침지, 에어 나이프 퍼지, 냉각의 단계를 포함하며, 이 중 탈지 세척은 강철 베이스를 탈지 처리 후 깨끗이 세척하는 것이고, 연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소를 4.5%로 제어하고, 강판의 아연냄비 진입 온도는 510℃이며, 열침지 과정의 도금액 온도는 500℃이고, 도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를 200℃로 제어한다. Manufacturing method: includes the steps of degreasing cleaning, continuous annealing, heat soak, air knife purge, and cooling. Among these, degreasing cleaning involves cleaning the steel base thoroughly after degreasing treatment, and continuous annealing process is calculated as a volume percentage and placed in an oven. Hydrogen is controlled to 4.5%, the temperature of the steel sheet entering the zinc pot is 510℃, the plating solution temperature during the heat dipping process is 500℃, and the temperature at which the steel strip reaches the upper steering roller is controlled to 200℃ by rapid cooling after plating. do.
테스트 방법은 실시예 1과 동일하다. The test method is the same as Example 1.
테스트 결과: 본 실시예에서 제조된 아연-알루미늄-마그네슘 합금 도금층 강재는 표면 품질이 양호하고 내식성, 성형성 및 도장성이 우수하였다. 중성염 분무 시험조건에서 적색 녹이 발생하는 시간은 3200시간 이상, 0T 절곡 후 육안으로 뚜렷한 균열이 관찰되지 않았고, 중성염 분무 시험조건에서 굴곡부위에서 적색 녹이 발생하는 시간은 3000시간 이상이며, 분무 후 코팅층의 접착력이 우수하여 사용자의 요구를 충족할 수 있다. Test results: The zinc-aluminum-magnesium alloy plating layer steel manufactured in this example had good surface quality and excellent corrosion resistance, formability, and paintability. The time for red rust to occur under neutral salt spray test conditions is more than 3200 hours, and no clear cracks were observed with the naked eye after bending at 0T. The time for red rust to occur at the bent area under neutral salt spray test conditions is more than 3000 hours, and the coating layer after spraying It has excellent adhesion and can meet the needs of users.
비교예Comparative example
코팅 중량은 180g/m2(양면), 도금층의 주성분은 알루미늄 1.6%, 마그네슘 1.6%, 납 0.001%, 안티몬 0.001%, 크롬 0.001%, 카드뮴 0.001%, 주석 0.001%, 나머지는 아연이며, 강철 베이스는 QP강이다. The coating weight is 180g/m 2 (both sides), the main components of the plating layer are aluminum 1.6%, magnesium 1.6%, lead 0.001%, antimony 0.001%, chromium 0.001%, cadmium 0.001%, tin 0.001%, the rest is zinc, and the steel base is QP steel.
제조 방법: 탈지 세척, 연속 어닐링, 열침지, 에어 나이프 퍼지, 냉각의 단계를 포함하며, 이 중 탈지 세척은 강철 베이스를 탈지 처리 후 깨끗이 세척하는 것이고, 연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소를 3.5%로 제어하고, 강판의 아연냄비 진입 온도는 470℃이며, 열침지 과정의 도금액 온도는 470℃이고, 도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를 300℃로 제어한다. Manufacturing method: includes the steps of degreasing cleaning, continuous annealing, heat soak, air knife purge, and cooling. Among these, degreasing cleaning involves cleaning the steel base thoroughly after degreasing treatment, and continuous annealing process is calculated as a volume percentage and placed in an oven. Hydrogen is controlled to 3.5%, the temperature of the steel sheet entering the zinc pot is 470℃, the plating solution temperature during the heat dipping process is 470℃, and the temperature at which the steel strip reaches the upper steering roller is controlled to 300℃ by rapid cooling after plating. do.
테스트 방법은 실시예 1과 동일하다. The test method is the same as Example 1.
테스트 결과: 이 비교예에 따라 제조한 아연-알루미늄-마그네슘 합금 도금층 강철은 표면 품질이 비교적 차하고, 밝은 점 결함이 있으며 내식성, 성형성 및 도장성이 상대적으로 차하였다. 중성 염무 시험 조건에서 적색 녹이 발생하는 시간은 1400시간 이상, 0T 굽힘 후 약간의 균열이 있는 것이 육안으로 관찰 되었고, 굽힘 부분이 중성 염 분무 시험 조건에서 적색 녹이 발생하는 시간은 1100시간 이상이다. Test results: The zinc-aluminum-magnesium alloy plated layer steel manufactured according to this comparative example had relatively poor surface quality, had bright spot defects, and was relatively poor in corrosion resistance, formability, and paintability. The time for red rust to occur under neutral salt spray test conditions was over 1,400 hours, and slight cracks were observed with the naked eye after bending at 0T, and the time for red rust to occur at the bent portion under neutral salt spray test conditions was over 1,100 hours.
설명해야 할 것은, 본 명세서에 설명항 구체적 특성, 구조, 재료 또는 특점은 하나 이상의 실시예에서 적절한 방식으로 결합될 수 있다. 또한, 상충되지 않는 한 본 분야의 기술자는 이 명세서에 설명된 다양한 실시예 및 다양한 실시예의 특성을 결합하고 조합할 수 있다.It should be noted that specific features, structures, materials or features described herein may be combined in any suitable manner in one or more embodiments. Additionally, those skilled in the art may combine and combine the various embodiments and features of the various embodiments described herein unless there is a conflict.
Claims (10)
도금층의 화학 성분은 질량백분율에 따라 알루미늄 0.5%~5%, 마그네슘 0.5%~3.0%, 바나듐 0.05%~1.0%, 세륨 0.01%~0.50%, 란탄 0.01%~0.30%, 망간0.025%~1.0%, 기타 미량 합금 원소≤0.3%이고, 나머지는 아연 및 불가피한 불순물이며, 그 중 Al/Mg은 1.0~1.5이고, 바나듐+세륨+란탄의 총량은 0.3%~1.0%인 것을 특징으로 하는 V, Ce, La, Mn을 포함하는 아연-알루미늄-마그네슘 합금 도금층 강재. In the zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, and Mn,
The chemical composition of the plating layer is 0.5% to 5% aluminum, 0.5% to 3.0% magnesium, 0.05% to 1.0% vanadium, 0.01% to 0.50% cerium, 0.01% to 0.30% lanthanum, and 0.025% to 1.0% manganese, depending on mass percentage. , Other trace alloy elements ≤ 0.3%, the remainder is zinc and inevitable impurities, of which Al/Mg is 1.0 to 1.5, and the total amount of vanadium + cerium + lanthanum is 0.3% to 1.0%. V, Ce Zinc-aluminum-magnesium alloy plating layer steel containing , La, and Mn.
도금층의 화학 성분은, 도금층에 알루미늄 0.8%~3.2%, 마그네슘 0.8%~2.5%, 바나듐 0.05%~0.40%, 세륨 0.03%~0.30%, 란탄 0.02%~0.20%, 망간 0.10%~1.0%를 포함하는 것; Al/Mg는 1~1.2인 것; 바나듐+세륨+란탄의 총량은 0.10%~0.35%인 것; 중의 적어도 하나를 충족하는 것을 특징으로 하는 아연-알루미늄-마그네슘 합금 도금층 강재. According to paragraph 1,
The chemical composition of the plating layer is 0.8% to 3.2% aluminum, 0.8% to 2.5% magnesium, 0.05% to 0.40% vanadium, 0.03% to 0.30% cerium, 0.02% to 0.20% lanthanum, and 0.10% to 1.0% manganese. including; Al/Mg is 1 to 1.2; The total amount of vanadium + cerium + lanthanum is 0.10% to 0.35%; A zinc-aluminum-magnesium alloy plating layer steel material that satisfies at least one of the following.
상기 불가피한 불순물의 총합≤0.010%이고, 그 중 납≤0.002%, 안티몬≤0.002%, 주석≤0.002%, 비소≤0.002%, 텔루륨≤0.002%, 카드뮴≤0.002% 인 것을 특징으로 하는 아연-알루미늄-마그네슘 합금 도금층 강재.According to paragraph 1,
Zinc-aluminum, characterized in that the total of the above inevitable impurities is ≤ 0.010%, of which lead ≤ 0.002%, antimony ≤ 0.002%, tin ≤ 0.002%, arsenic ≤ 0.002%, tellurium ≤ 0.002%, and cadmium ≤ 0.002%. -Magnesium alloy plating layer steel.
상기 도금층의 중량은 30~400g/m2이고, 양면에 따라 계산하며, 바람직하게는 상기 도금층의 중량은 150~320g/m2이고, 양면에 따라 계산하는 것을 특징으로 하는 아연-알루미늄-마그네슘 합금 도금층 강재. According to paragraph 1,
The weight of the plating layer is 30 to 400 g/m 2 and calculated according to both sides. Preferably, the weight of the plating layer is 150 to 320 g/m 2 and calculated according to both sides. Zinc-aluminum-magnesium alloy Plated layer steel.
상기 강재의 강철 베이스는 IF강, 저탄소 알루미늄 진정강, 베이킹 경화강, QP강, DP강, TRIP강 및 TWIP강 중 적어도 하나에서 선택되는 것을 특징으로 하는 아연-알루미늄-마그네슘 합금 도금층 강재. According to paragraph 1,
The steel base of the steel is selected from at least one of IF steel, low carbon aluminum quenching steel, bake hardening steel, QP steel, DP steel, TRIP steel, and TWIP steel. Zinc-aluminum-magnesium alloy plating layer steel.
강철 베이스 탈지 세척, 연속 어닐링, 열침지, 에어 나이프 퍼지 단계를 포함하는 것을 특징으로 하는 제조방법. In the method of manufacturing a zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, and Mn according to any one of claims 1 to 5,
A manufacturing method comprising the following steps: steel base degreasing cleaning, continuous annealing, heat soaking, and air knife purge.
연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소≥3.5%로 제어하고, 바람직하게는 연속 어닐링 과정은 부피 백분율로 계산하여 오븐 내의 수소를 4.0%~8.0%로 제어하는 것을 특징으로 하는 제조방법.According to clause 6,
A manufacturing method characterized in that the continuous annealing process is calculated as a volume percentage and controlled to ≥3.5% hydrogen in the oven, and preferably, the continuous annealing process is calculated as a volume percentage and the hydrogen in the oven is controlled to 4.0% to 8.0%.
강철 베이스의 아연냄비 진입 온도는 420℃~520℃로 제어하고, 열침지 과정의 도금액 온도는 410℃~520℃로 제어하며, 아연냄비 진입 온도와 도금액 온도의 온도차는 ±10℃로 제어하는 것을 특징으로 하는 제조방법.According to clause 6,
The steel-based zinc pot entry temperature is controlled to 420℃~520℃, the plating solution temperature during the heat dipping process is controlled to 410℃~520℃, and the temperature difference between the zinc pot entry temperature and the plating solution temperature is controlled to ±10℃. Characterized manufacturing method.
도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를≤260℃로 제어하고, 바람직하게는 도금 후 급속 냉각하여 스틸 스트립이 상부 스티어링 롤러에 도달하는 온도를 200℃~260℃로 제어하는 것을 특징으로 하는 제조방법. According to clause 6,
The temperature at which the steel strip reaches the upper steering roller is controlled to ≤260℃ by rapid cooling after plating, and preferably the temperature at which the steel strip reaches the upper steering roller is controlled to 200℃~260℃ by rapid cooling after plating. A manufacturing method characterized by:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111440098.9A CN114107737A (en) | 2021-11-30 | 2021-11-30 | Zinc-aluminum-magnesium alloy plated steel containing V, Ce, La and Mn and preparation method thereof |
CN202111440098.9 | 2021-11-30 | ||
PCT/CN2022/109957 WO2023098126A1 (en) | 2021-11-30 | 2022-08-03 | Zinc-aluminum-magnesium alloy coating steel containing v, ce, la and mn, and preparation method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240116478A true KR20240116478A (en) | 2024-07-29 |
Family
ID=80368287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020247019793A Pending KR20240116478A (en) | 2021-11-30 | 2022-08-03 | Zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, Mn and manufacturing method thereof |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2024544668A (en) |
KR (1) | KR20240116478A (en) |
CN (1) | CN114107737A (en) |
WO (1) | WO2023098126A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114107737A (en) * | 2021-11-30 | 2022-03-01 | 攀钢集团攀枝花钢铁研究院有限公司 | Zinc-aluminum-magnesium alloy plated steel containing V, Ce, La and Mn and preparation method thereof |
CN116162824B (en) * | 2023-03-07 | 2024-04-12 | 保定奥琦圣新型金属材料制造有限公司 | Zinc-aluminum-magnesium alloy containing Mo and Cr and production method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3728298B2 (en) * | 2003-05-28 | 2005-12-21 | 新日本製鐵株式会社 | Hot-dip Zn-Al alloy-plated steel and method for producing the same |
CN103507324B (en) * | 2012-06-20 | 2015-06-03 | 鞍钢股份有限公司 | Alloyed zinc-aluminum-magnesium coated steel plate and production method thereof |
CN103614592A (en) * | 2013-12-17 | 2014-03-05 | 葫芦岛锌业股份有限公司 | Production method of zinc-aluminum-manganese-magnesium alloy for hot dipping |
CN104498850A (en) * | 2014-12-15 | 2015-04-08 | 中国钢研科技集团有限公司 | A kind of plating solution and dipping method thereof for steel strip continuous hot-dip plating |
CN106222593A (en) * | 2016-08-29 | 2016-12-14 | 甘肃酒钢集团宏兴钢铁股份有限公司 | A kind of high anti-corrosion galvanizing magnalium nickel rare earth alloy clad steel sheet and production method thereof |
CN108588491A (en) * | 2018-06-05 | 2018-09-28 | 马鞍山钢铁股份有限公司 | A kind of hot dip galvanizing-Al-Mg clad steel sheets that immersion plating is excellent and production method |
CN108913950B (en) * | 2018-08-07 | 2020-02-18 | 鞍钢股份有限公司 | Zinc-magnesium-coated steel sheet for hot stamping and its manufacturing and hot stamping method |
CN112575276A (en) * | 2020-12-03 | 2021-03-30 | 攀钢集团研究院有限公司 | Hot-dip zinc-aluminum-magnesium alloy coated steel plate for ultra-deep drawing and preparation method thereof |
CN114107737A (en) * | 2021-11-30 | 2022-03-01 | 攀钢集团攀枝花钢铁研究院有限公司 | Zinc-aluminum-magnesium alloy plated steel containing V, Ce, La and Mn and preparation method thereof |
-
2021
- 2021-11-30 CN CN202111440098.9A patent/CN114107737A/en active Pending
-
2022
- 2022-08-03 WO PCT/CN2022/109957 patent/WO2023098126A1/en active Application Filing
- 2022-08-03 JP JP2024532884A patent/JP2024544668A/en active Pending
- 2022-08-03 KR KR1020247019793A patent/KR20240116478A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2024544668A (en) | 2024-12-03 |
CN114107737A (en) | 2022-03-01 |
WO2023098126A1 (en) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11248287B2 (en) | Zinc alloy plated steel material having excellent weldability and processed-part corrosion resistance | |
CN100334250C (en) | Zn-Al-Mg-Si alloy plated steel product having excellent corrosion resistance and method for preparing the same | |
US9403343B2 (en) | Aluminum plated steel sheet having excellent corrosion resistance with respect to alcohol or mixed gasoline of same and appearance | |
AU2012293118B2 (en) | Molten Zn-Al alloy-plated steel sheet and manufacturing method thereof | |
CN111270182A (en) | Hot dip Zn-Al-Mg alloy coated steel sheet and preparation method thereof | |
CN110423971B (en) | Hot-dip galvanized steel plate with excellent welding performance and corrosion resistance and preparation method thereof | |
KR20240116478A (en) | Zinc-aluminum-magnesium alloy plating layer steel containing V, Ce, La, Mn and manufacturing method thereof | |
KR102305753B1 (en) | Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME | |
CN114107865A (en) | Preparation method of zinc-aluminum-magnesium alloy coating steel | |
CN108018513A (en) | A kind of dip galvanized aluminum magnesium clad steel sheet and its manufacture method | |
CN112011752B (en) | High-corrosion-resistance hot-formed steel part and manufacturing method thereof | |
JP4267184B2 (en) | Hot-dip aluminized steel sheet with excellent corrosion resistance and appearance and manufacturing method thereof | |
JP7315634B2 (en) | Hot-dip Zn-Al-Mg alloy plated steel sheet for ultra-deep drawing and its manufacturing method | |
KR20240116477A (en) | Zinc-aluminum-magnesium alloy plating layer steel containing V and B and manufacturing method thereof | |
JP3485457B2 (en) | Corrosion-resistant steel plates for fuel tanks with excellent corrosion resistance and weldability | |
JP4469030B2 (en) | Aluminum plated steel plate for automobile fuel tank with excellent corrosion resistance | |
JP4264157B2 (en) | Hot-dip aluminized steel sheet for fuel tanks with excellent corrosion resistance | |
CN114107868A (en) | A kind of zinc-aluminum-magnesium alloy coated steel and preparation method thereof | |
KR20230118156A (en) | hot stamp member | |
JP2001355051A (en) | Hot-dip Zn-Sn-based plated steel sheet with excellent corrosion resistance | |
CN110241369B (en) | Zinc-aluminum-nickel-tantalum alloy for hot dipping and hot galvanizing method | |
CN114107864B (en) | Zinc-aluminum-magnesium alloy coated steel containing Ti and Bi and preparation method thereof | |
CN114086096A (en) | Zinc-aluminum-magnesium alloy coated steel containing V, Ti and Nb and preparation method thereof | |
JP2900748B2 (en) | High corrosion resistance steel with excellent weldability | |
CN114134444A (en) | Zinc-aluminum-magnesium alloy coated steel plate and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20240613 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application |