[go: up one dir, main page]

KR20240099660A - Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same - Google Patents

Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same Download PDF

Info

Publication number
KR20240099660A
KR20240099660A KR1020220181396A KR20220181396A KR20240099660A KR 20240099660 A KR20240099660 A KR 20240099660A KR 1020220181396 A KR1020220181396 A KR 1020220181396A KR 20220181396 A KR20220181396 A KR 20220181396A KR 20240099660 A KR20240099660 A KR 20240099660A
Authority
KR
South Korea
Prior art keywords
plastic resin
resin
paek
fiber
engineering plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
KR1020220181396A
Other languages
Korean (ko)
Inventor
박명철
조신제
이정민
이상우
임종성
Original Assignee
한화솔루션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한화솔루션 주식회사 filed Critical 한화솔루션 주식회사
Priority to KR1020220181396A priority Critical patent/KR20240099660A/en
Priority to PCT/KR2023/018548 priority patent/WO2024136152A1/en
Publication of KR20240099660A publication Critical patent/KR20240099660A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/288Feeding the extrusion material to the extruder in solid form, e.g. powder or granules
    • B29C48/2886Feeding the extrusion material to the extruder in solid form, e.g. powder or granules of fillers or of fibrous materials, e.g. short-fibre reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/297Feeding the extrusion material to the extruder at several locations, e.g. using several hoppers or using a separate additive feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/682Barrels or cylinders for twin screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2071/00Use of polyethers, e.g. PEEK, i.e. polyether-etherketone or PEK, i.e. polyetherketone or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

본 발명은 고분자 수지의 컴파운딩 방법에 관한 것으로서, 좀 더 구제척으로는 무기 필러를 고함량으로 포함하는 슈퍼 엔지니어링 플라스틱 수지를 컴파운딩하는 방법 및 이 방법으로 제조한 슈퍼 엔지니어링 플라스틱에 관한 것이다. The present invention relates to a method of compounding a polymer resin, and more broadly, to a method of compounding a super engineering plastic resin containing a high content of an inorganic filler, and to a super engineering plastic manufactured by this method.

Description

슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법 및 이 방법으로 제조한 슈퍼엔지니어링 플라스틱{Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same}Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same}

본 발명은 무기필러를 고함량으로 포함하는 슈퍼 엔지니어링 플라스틱 수지를 효율적으로 컴파운딩하는 방법 및 이 방법으로 제조한 슈퍼엔지니어링 플라스틱에 관한 것이다.The present invention relates to a method for efficiently compounding a super engineering plastic resin containing a high content of inorganic filler and to super engineering plastic manufactured by this method.

공업용 플라스틱에 비교하면 강도, 탄성 및 내열성 등이 우수하며, 금속이나 세라믹스에 가까운 특성을 지닌 슈퍼 엔지니어링 플라스틱에 대한 수요가 증가하고 있으며, 이러한 슈퍼 엔지니어링 플라스틱은 경량으로 뛰어난 역학 특성을 가지면서 다양한 분야의 소재로 사용되고 있으며, 특정 용도에서 요구되는 물성 향상을 위해서 다양한 필러를 적용하며, 일례를 들면, 강화 섬유를 이용한 수지로 제조한 성형품은 경량으로 뛰어난 역학 특성을 갖기 때문에, 스포츠 용품 용도, 항공 우주 용도 및 일반 산업용도 등에 넓게 이용되고 있다. Compared to industrial plastics, the demand for super engineering plastics, which are superior in strength, elasticity, and heat resistance, and have properties close to those of metals or ceramics, is increasing. These super engineering plastics are lightweight, have excellent mechanical properties, and are widely used in various fields. It is used as a material, and various fillers are applied to improve the physical properties required for specific applications. For example, molded products made from resin using reinforced fibers are lightweight and have excellent mechanical properties, so they are used for sporting goods and aerospace applications. It is widely used for general industrial purposes, etc.

이와 같이 슈퍼 엔지니어링 플라스틱은 내열성이 우수한 소재로서 유리전이온도, 용융온도 등이 매우 높은 소재인데, 여기에 강도, 내열성을 높이고, 특수한 물성을 부여하기 위해서 다양한 필러를 압출기를 이용하여 컴파운딩시키는데, 컴파운딩 시, 슈퍼 엔지니어링 플라스틱 수지의 가공 온도 범위가 매우 높고, 결정성 소재이기 때문에, 필러를 짧은 시간 안에 다량으로 공급되는 경우, 내부에서 슈퍼 엔지니어링 플라스틱 수지의 급냉이 발생하여 압출기의 토크가 올라가고, 압출기 설비에 무리가 발생하며, 급냉으로 인해 용융된 슈퍼 엔지니어링 플라스틱 수지와 필러간의 함침성 및 혼련성이 크게 감소하는 문제가 발생하는 문제가 있었다. In this way, super engineering plastic is a material with excellent heat resistance and a very high glass transition temperature and melting temperature. In order to increase strength and heat resistance and provide special physical properties, various fillers are compounded using an extruder. During pounding, the processing temperature range of super engineering plastic resin is very high, and since it is a crystalline material, when filler is supplied in large quantities in a short period of time, rapid cooling of the super engineering plastic resin occurs internally, increasing the torque of the extruder and There was a problem that equipment was strained and the impregnation and mixing properties between the melted super engineering plastic resin and the filler were greatly reduced due to rapid cooling.

용융온도(Tm)가 높고 가공온도가 용융온도 보다 조금밖에 높지 않은 PEKK (poly ether ketone ketone)의 경우, 특히 겨울철 또는 혹한기에 컴파운딩 가공시, 이축압출기의 사이드 공급기(side feeder)로 통해 섬유(fiber)가 공급되어 컴파운딩이 될 때 이미 주변 온도 수준으로 냉각된 섬유의 공급으로 인해 압출기 내부의 온도(에너지)는 낮아지고(뺏기고), 이로 인해 섬유 함침성이 낮아지고 압출기 토크, 수지 압력 상승, 이로 인해 섬유는 저항을 받아 단사되어 최종 컴파운딩 제품의 섬유 길이는 짧아지게 되며, 이로 인해, 기계적 물성이 감소하게 되는 문제가 있다.In the case of PEKK (poly ether ketone ketone), which has a high melting temperature (Tm) and a processing temperature that is only slightly higher than the melting temperature, especially during compounding processing in winter or cold weather, fiber ( When fiber is supplied and compounded, the temperature (energy) inside the extruder is lowered (lost) due to the supply of fiber that has already cooled to ambient temperature, which lowers fiber impregnation and increases extruder torque and resin pressure. , this causes the fibers to undergo resistance and become single yarns, shortening the fiber length of the final compounded product, which causes a problem in that mechanical properties are reduced.

한국 등록특허번호 제10-1969613호(공고일 2019.04.16)Korean Patent No. 10-1969613 (announcement date 2019.04.16) 한국 공개특허번호 제10-2019-0094827호(공개일 2019.08.14)Korean Patent Publication No. 10-2019-0094827 (publication date 2019.08.14)

본 발명은 이축 스크류 압출기를 이용하여 슈퍼 엔지니어링 수지와 무기필러를 함침, 혼련시 발생하는 슈퍼 엔지니어링 수지의 급냉 방지를 통해 무기필러를 고함량으로 포함하는 슈퍼 엔지니어링 플라스틱을 제조할 수 있는 컴파운딩 방법을 제공하고자 한다.The present invention provides a compounding method that can produce super engineering plastic containing a high content of inorganic filler by impregnating super engineering resin and inorganic filler using a twin screw extruder and preventing rapid cooling of the super engineering resin that occurs during kneading. We would like to provide

상술한 과제를 해결하기 위한 본 발명은 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법은, 이축 스크류 압출기(twin screw extruder)를 이용한 섬유 강화 폴리아릴에테르케톤(PAEK, poly aryl ether ketone) 플라스틱 제조에 있어서, 상기 이축 스크류 압출기는 예열기가 장착된 사이드 공급기(side feeder)가 구비되어 있고, 상기 예열기는 사이드 공급기의 배럴 외부를 감싸면서 형성된 전기 히터기(electric heater) 또는 열매체유(heating medium oil)기로 구성되고, 이축 스크류 압출기의 수지 공급부로 용융된 PAEK 플라스틱 수지를 공급하며, 상기 사이드 공급기로 무기 필러를 공급하여 용융된 PAEK 플라스틱 수지와 무기 필러가 혼합된 섬유 강화 PAEK 플라스틱 수지를 제조한다.The present invention to solve the above-mentioned problems is a method of compounding a super engineering plastic resin, in the production of fiber-reinforced polyaryl ether ketone (PAEK, poly aryl ether ketone) plastic using a twin screw extruder, The twin screw extruder is equipped with a side feeder equipped with a preheater, and the preheater consists of an electric heater or a heating medium oil device formed surrounding the outside of the barrel of the side feeder. Molten PAEK plastic resin is supplied to the resin supply part of the screw extruder, and inorganic filler is supplied to the side feeder to produce fiber-reinforced PAEK plastic resin in which the molten PAEK plastic resin and inorganic filler are mixed.

본 발명의 바람직한 일실시예로서, 상기 PAEK 플라스틱 수지는 PEEK(poly ether ether ketone) 수지, PEKK(poly ether ketone ketone) 수지 및 PEK(poly ether ketone) 수지 중에서 선택된 1종 이상을 포함할 수 있다. As a preferred embodiment of the present invention, the PAEK plastic resin may include one or more selected from poly ether ether ketone (PEEK) resin, poly ether ketone ketone (PEKK) resin, and poly ether ketone (PEK) resin.

본 발명의 바람직한 일실시예로서, 상기 무기 필러는 GCF(glass chopped fiber), CCF(carbon chopped fiber) 및 아라미드 섬유 중에서 선택된 1종 이상의 무기섬유계 필러; 및 탈크; 중에서 선택된 1종 이상을 포함할 수 있다. In a preferred embodiment of the present invention, the inorganic filler is one or more inorganic fiber-based fillers selected from glass chopped fiber (GCF), carbon chopped fiber (CCF), and aramid fiber; and talc; It may include one or more types selected from among.

본 발명의 바람직한 일실시예로서, 상기 무기섬유계 필러는, 에폭시 수지 에멀젼(Epoxy resin emulsion), 폴리우레탄 필름 형성제(Polyurethane film former), 에폭시실란 커플링제(epoxy silane coupling agent), 아미노실란 커플링제(aminosilane coupling agent), 비이온성 윤제(non-ionic lubricant), 아세트산(acetic acid), 붕산(boric acid) 및 물 중에서 선택된 1종 이상을 포함하는 사이징제(sizing agent)로 코팅처리된 것일 수 있다.As a preferred embodiment of the present invention, the inorganic fiber-based filler includes an epoxy resin emulsion, a polyurethane film former, an epoxy silane coupling agent, and an aminosilane couple. It may be coated with a sizing agent containing one or more selected from aminosilane coupling agent, non-ionic lubricant, acetic acid, boric acid, and water. there is.

본 발명의 바람직한 일실시예로서, 상기 섬유 강화 PAEK 플라스틱 수지는, 상기 무기 필러 5 ~ 60 중량% 및 나머지 잔량의 상기 PAEK 플라스틱 수지를 포함할 수 있다.As a preferred embodiment of the present invention, the fiber-reinforced PAEK plastic resin may include 5 to 60% by weight of the inorganic filler and the remaining amount of the PAEK plastic resin.

본 발명의 바람직한 일실시예로서, 상기 사이드 공급기로부터 이축 스크류 압출기로 공급되는 무기 필러의 온도는 50 ~ 200℃일 수 있다.In a preferred embodiment of the present invention, the temperature of the inorganic filler supplied from the side feeder to the twin screw extruder may be 50 to 200°C.

본 발명의 바람직한 일실시예로서, 사이드 공급기로부터 이축 스크류 압출기로 공급되는 무기 필러의 온도와 용융된 PAEK 플라스틱 수지의 온도는 하기 방정식 1을 만족할 수 있다.As a preferred embodiment of the present invention, the temperature of the inorganic filler supplied from the side feeder to the twin screw extruder and the temperature of the molten PAEK plastic resin may satisfy Equation 1 below.

[방정식 1][Equation 1]

210℃ ≤ A-B ≤ 280℃210℃ ≤ A-B ≤ 280℃

방정식 1에서 A는 용융된 PAEK 플라스틱 수지의 온도(℃)이고, B는 이축 스크류 압출기로 공급되는 무기 필러의 온도(℃)이다.In Equation 1, A is the temperature of the molten PAEK plastic resin (°C), and B is the temperature of the inorganic filler supplied to the twin screw extruder (°C).

본 발명의 바람직한 일실시예로서, 이축 스크류 압출기의 공급부로 공급된 용융된 PAEK 플라스틱 수지의 온도는 350 ~ 400℃일 수 있다.As a preferred embodiment of the present invention, the temperature of the molten PAEK plastic resin supplied to the feeder of the twin screw extruder may be 350 to 400°C.

본 발명의 다른 목적은 앞서 설명한 컴파운딩 방법으로 제조한 슈퍼 엔지니어링 플라스틱 수지를 포함하는 슈퍼 엔지니어링 플라스틱을 제공하는데 있다.Another object of the present invention is to provide a super engineering plastic containing the super engineering plastic resin manufactured by the compounding method described above.

본 발명의 바람직한 일실시예로서, 상기 슈퍼 엔지니어링 플라스틱은 펠럿 및/또는 칩 형태일 수 있다. As a preferred embodiment of the present invention, the super engineering plastic may be in the form of pellets and/or chips.

본 발명의 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법은 계절 및 주변 온도 변화에 영향을 받지 않으며, 컴파운딩 공정상 발생할 수 있는 이축 스크류 압출기 등의 설비의 무리를 방지하면서도, 무기필러를 고함량으로 포함하는 품질이 우수한 슈퍼 엔지니어링 플라스틱을 제공할 수 있다.The compounding method of the super engineering plastic resin of the present invention is not affected by seasonal and ambient temperature changes, prevents strain on equipment such as twin screw extruders that may occur during the compounding process, and contains a high content of inorganic filler. We can provide high quality super engineering plastics.

도 1은 본 발명 섬유 강화 PAEK 수지 및 슈퍼 엔지니어링 플라스틱 제조에 사용된 이축 스크류 압출기의 개략도를 나타낸 것이다.
도 2는 실시예 1에서 사용한 무기 필러인 GCF(glass chopped filler)의 TAG 측정 데이터이다.
도 3은 실시예 2에서 사용한 무기 필러인 CCF(carbon chopped filler)의 TAG 측정 데이터이다.
Figure 1 shows a schematic diagram of a twin screw extruder used to manufacture the fiber-reinforced PAEK resin and super engineering plastic of the present invention.
Figure 2 shows TAG measurement data of GCF (glass chopped filler), an inorganic filler used in Example 1.
Figure 3 shows TAG measurement data of CCF (carbon chopped filler), an inorganic filler used in Example 2.

이하, 본 발명의 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법은 도 1에 개략도로 나타낸 바와 같이, 무기필러가 공급되는 사이드 공급기(side feeder)가 구비된 이축 스크류 압출기를 이용하여 컴파운딩을 수행한다. 기존 이축 스크류 압출기는 가공온도가 높고, 용융온도와 가공 온도 차이가 크지 않은 슈퍼 엔지니어링 플라스틱 수지의 압착 가공, 컴파운딩 가공시, 사이드 공급기를 통해 과량의 무기 첨가물이 공급(feeding)될 경우, 용융 수지가 급냉되어 가공성, 기계적 강도, 품질 저하가 발생할 수 있는데, 이와 달리 본 발명의 이축 스크류 압축기는 히팅(heating)이 가능한 사이드 공급기가 구비된 이축 스크류 압출기를 사용함으로써, 이러한 문제점을 방지할 수 있다.Hereinafter, in the compounding method of the super engineering plastic resin of the present invention, as schematically shown in FIG. 1, compounding is performed using a twin screw extruder equipped with a side feeder through which inorganic filler is supplied. Existing twin screw extruders have a high processing temperature, and during compression and compounding processing of super engineering plastic resins where the difference between the melt temperature and processing temperature is not large, if excessive amounts of inorganic additives are fed through the side feeder, the molten resin Rapid cooling may cause deterioration in processability, mechanical strength, and quality. In contrast, the twin screw compressor of the present invention can prevent these problems by using a twin screw extruder equipped with a side feeder capable of heating.

즉, 본 발명의 슈퍼 엔지니어링 플라스틱 수지 컴파운딩 방법은, 이축 스크류 압출기(twin screw extruder)를 이용한 섬유 강화 폴리아릴에테르케톤(PAEK, poly aryl ether ketone) 플라스틱 제조하는 방법으로서, 상기 이축 스크류 압출기는 예열기가 장착된 사이드 공급기(side feeder)가 구비되어 있다. That is, the super engineering plastic resin compounding method of the present invention is a method of manufacturing fiber-reinforced poly aryl ether ketone (PAEK) plastic using a twin screw extruder, wherein the twin screw extruder is a preheater. A side feeder equipped with is provided.

그리고, 상기 예열기는 사이드 공급기의 배럴 외부를 감싸면서 형성된 전기 히터기(electric heater) 또는 열매체유(heating medium oil)기로 구성된다. In addition, the preheater is composed of an electric heater or a heating medium oil device formed surrounding the outside of the barrel of the side feeder.

상기 이축 스크류 압출기의 수지 공급부로 용융된 PAEK 플라스틱 수지를 공급되면, 스크류에 의해 사이드 공급기 방향으로 용융된 PAEK 플라스틱 수지가 이동하게 되며, 사이드 공급기로부터 무기 필러가 공급되여, 용융된 PAEK 플라스틱 수지와 함침 및 혼련되어 섬유 강화 PAEK 플라스틱 수지를 제조한 후, 이를 스트랜드(strand)로 압출 및 펠럿화하여 슈퍼 엔지니어링 플라스틱을 제조할 수 다.When the molten PAEK plastic resin is supplied to the resin supply part of the twin screw extruder, the molten PAEK plastic resin is moved in the direction of the side feeder by the screw, and an inorganic filler is supplied from the side feeder to impregnate the molten PAEK plastic resin. and kneading to produce fiber-reinforced PAEK plastic resin, and then extruding it into strands and pelletizing it to produce super engineering plastic.

상기 수지 공급부 되는 상기 PAEK 플라스틱 수지는 PEEK(poly ether ether ketone) 수지, PEKK(poly ether ketone ketone) 수지 및 PEK(poly ether ketone) 수지 중에서 선택된 1종 이상을 포함할 수 있다.The PAEK plastic resin serving as the resin supply unit may include at least one selected from poly ether ether ketone (PEEK) resin, poly ether ketone ketone (PEKK) resin, and poly ether ketone (PEK) resin.

그리고, 이축 스크류 압출기의 공급부로 공급된 용융된 PAEK 플라스틱 수지의 온도는 300℃ 이상, 바람직하게는 350 ~ 400℃일 수 있다.Additionally, the temperature of the molten PAEK plastic resin supplied to the supply unit of the twin screw extruder may be 300°C or higher, preferably 350 to 400°C.

상기 무기 필러는 GCF(glass chopped fiber), CCF(carbon chopped fiber), 및 아라미드 섬유 중에서 선택된 1종 이상의 무기섬유계 필러; 및 탈크; 중에서 선택된 1종 이상을 포함할 수 있으며, 바람직하게는 무기섬유계 필러를 포함할 수있다.The inorganic filler may include at least one inorganic fiber-based filler selected from glass chopped fiber (GCF), carbon chopped fiber (CCF), and aramid fiber; and talc; It may contain one or more types selected from among, and preferably may contain an inorganic fiber-based filler.

그리고, 상기 무기섬유계 필러는, 에폭시 수지 에멀젼(Epoxy resin emulsion), 폴리우레탄 필름 형성제(Polyurethane film former), 에폭시실란 커플링제(epoxy silane coupling agent), 아미노실란 커플링제(aminosilane coupling agent), 비이온성 윤제(non-ionic lubricant), 아세트산(acetic acid), 붕산(boric acid) 및 물로 코팅처리된 것일 수 있다.In addition, the inorganic fiber-based filler includes an epoxy resin emulsion, a polyurethane film former, an epoxy silane coupling agent, an aminosilane coupling agent, It may be coated with a non-ionic lubricant, acetic acid, boric acid, and water.

상기 무기 필러의 온도는 50 ~ 250℃, 바람직하게는 100 ~ 200℃, 더욱 바람직하게는 120 ~ 150℃일 수 있다. The temperature of the inorganic filler may be 50 to 250°C, preferably 100 to 200°C, and more preferably 120 to 150°C.

상기 사이드 공급기의 배럴은 예열기에 의해 예열 처리되며, 사이드 공급기로부터 이축 스크류 압출기에 공급되는 무기 필러의 온도가 하기 방정식 1을 만족하도록 사이드 공급기의 배럴을 예열 처리할 수 있다.The barrel of the side feeder is preheated by a preheater, and the barrel of the side feeder can be preheated so that the temperature of the inorganic filler supplied from the side feeder to the twin screw extruder satisfies Equation 1 below.

[방정식 1][Equation 1]

210℃ ≤ A-B ≤ 280℃, 바람직하게는 230℃ ≤ A-B ≤ 280℃210°C ≤ A-B ≤ 280°C, preferably 230°C ≤ A-B ≤ 280°C

방정식 1에서 A는 용융된 PAEK 플라스틱 수지의 온도(℃)이고, B는 이축 스크류 압출기로 공급되는 무기 필러의 온도(℃)이다. 이때, A-B의 온도값이 210℃ 미만이면 무기 필러에 처리된 사이징제 성분이 열분해 되어 무기 필러로부터 사이징제가 손실되는 문제가 있을 수 있고, A-B의 온도값이 280℃를 초과하면 PAEK 플라스틱 수지와 무기 필러의 온도차가 너무 크고, 낮은 온도의 섬유 다발이 사이드 피더를 통해 공급되어서 압출기 실린더 내부의 PAKK 플라스틱 수지를 냉각시키게 되고, 그 결과 섬유화 수지간의 함침성을 낮추어 복합재료의 기계적강도를 저하시키는 문제가 있을 수 있다.In Equation 1, A is the temperature of the molten PAEK plastic resin (°C), and B is the temperature of the inorganic filler supplied to the twin screw extruder (°C). At this time, if the temperature value of A-B is less than 210℃, there may be a problem of sizing agent being lost from the inorganic filler due to thermal decomposition of the sizing agent treated with the inorganic filler, and if the temperature value of A-B exceeds 280℃, the PAEK plastic resin and the inorganic filler may be damaged. The temperature difference between the fillers is too large, and low-temperature fiber bundles are supplied through the side feeder, which cools the PAKK plastic resin inside the extruder cylinder. As a result, the impregnation between fiberized resins is lowered, which reduces the mechanical strength of the composite material. There may be.

그리고, 이축 스크류 압출기의 공급부로 공급된 용융된 PAEK 플라스틱 수지의 상기 방정식 1을 만족하는 바람직한 온도는 350 ~ 400℃일 수 있다.In addition, the preferred temperature that satisfies Equation 1 of the molten PAEK plastic resin supplied to the feed section of the twin screw extruder may be 350 to 400°C.

위와 같이 이축 스크류 압출기에 공급된 무기 필러는 용융된 PAEK 플라스틱 수지에 함침 및 혼련시켜서 섬유 강화 PAEK 플라스틱 수지를 제조할 수 있다. As described above, the inorganic filler supplied to the twin screw extruder can be impregnated and kneaded into the molten PAEK plastic resin to produce fiber-reinforced PAEK plastic resin.

그리고, 섬유 강화 PAEK 플라스틱 수지는 압출기에 의해 스트랜드(strand)로 압출된 후, 특정 형태의 섬유 강화 PAEK 플라스틱, 즉, 슈퍼 엔지니어링 플라스틱을 제조하게 된다. Then, the fiber-reinforced PAEK plastic resin is extruded into strands by an extruder, and then a specific type of fiber-reinforced PAEK plastic, that is, super engineering plastic, is manufactured.

상기 특정 형태는 펠럿(pallet), 칩(chip), 그래뉼(granule) 또는 파우더(powder) 형태일 수 있으며, 바람직하게는 팰럿화 처리되어 팰럿 형태의 섬유 강화 PAEK 플라스틱을 제조할 수 있다.The specific form may be in the form of a pellet, chip, granule, or powder, and is preferably pelletized to produce fiber-reinforced PAEK plastic in the form of a pellet.

상기 섬유 강화 PAEK 플라스틱 수지는, 상기 무기 필러 5 ~ 60 중량% 및 나머지 잔량의 상기 PAEK 플라스틱 수지를 포함할 수 있으며, 바람직하게는 무기 필러 10 ~ 40중량% 및 나머지 잔량의 상기 PAEK 플라스틱 수지를 포함할 수 있다.The fiber-reinforced PAEK plastic resin may include 5 to 60% by weight of the inorganic filler and the remaining amount of the PAEK plastic resin, and preferably includes 10 to 40% by weight of the inorganic filler and the remaining amount of the PAEK plastic resin. can do.

이하에서는 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples do not limit the scope of the present invention, and should be interpreted to aid understanding of the present invention.

[실시예] [Example]

실시예 1 : 섬유 강화 PAEK 플라스틱(슈퍼 엔지니어링 플라스틱)의 제조Example 1: Preparation of fiber-reinforced PAEK plastic (super engineering plastic)

사이드 공급기가 구비된 이축 스크류 압출기(스크류 직경 25mm, L/D = 44)를 이용하여 다음과 같은 조건으로 섬유 강화 PEKK 플라스틱을 제조하였으며, 이축 스크류 압출기 사진은 도 1의 A에 나타내었다. 상기 사이드 공급기의 배럴 외부를 감싸면서 형성된 전기 세라믹히터(electric heater)가 구비되어 있다Fiber-reinforced PEKK plastic was manufactured under the following conditions using a twin-screw extruder equipped with a side feeder (screw diameter 25 mm, L/D = 44), and a photo of the twin-screw extruder is shown in Figure 1A. An electric ceramic heater is provided surrounding the outside of the barrel of the side feeder.

T/I 비율이 80/20인 PEKK 수지를 중합하여 파이더(Powder)를 제조한 후 이축압출기의 실린더 온도를 호퍼에서 다이까지 순차적으로 330~390℃로 상승시켜 압출 준비를 한 후, 이를 이축압출기의 수지 공급부에 투입하였으며, 압출기의 스크류 회전 속도는 300 rpm으로 하였다. 레진 공급은 7kg/hr의 속도로 중량 감속식 공급장치(Loss in weight feeder)를 이용하여 정량 공급하였고, 150℃로 예열된 사이드 공급기를 통해 에폭시 실란 커플링제(사이즈제)로 사이징 처리된 GCF(Glass chopped fiber, Jushi사의 상품명 ECS13-03)를 공급하였다. 상기 GCF의 TGA 분석 데이터를 도 2에 나타내었으며, 사이드 공급기의 배럴은 150℃가 유지되도록 예열기에 의해 열처리하여, 연결 공급부로 이축 스크류 압출기에 공급되는 GCF의 온도가 120℃가 되도록 예열 처리하였다.After manufacturing powder by polymerizing PEKK resin with a T/I ratio of 80/20, the cylinder temperature of the twin-screw extruder is sequentially raised to 330~390℃ from the hopper to the die to prepare for extrusion, and then the twin-screw extruder is used to prepare powder. It was put into the resin supply part of the extruder, and the screw rotation speed of the extruder was set to 300 rpm. Resin was supplied in a fixed quantity using a loss in weight feeder at a rate of 7 kg/hr, and GCF (sizing agent) sized with an epoxy silane coupling agent (sizing agent) was supplied through a side feeder preheated to 150°C. Glass fiber chopped, Jushi's product name ECS13-03) was supplied. The TGA analysis data of the GCF is shown in Figure 2, and the barrel of the side feeder was heat treated by a preheater to maintain 150°C, and the temperature of the GCF supplied to the twin screw extruder through the connection feeder was preheated to 120°C.

그리고, 수지 공급부로 공급되는 PAEK 플라스틱 수지의 공급량 및 사이드 공급기에 공급되는 무기 필러 공급량은 3kg/hr으로 공급하여, 함침 및 혼련 공정을 수행하여, 무기 필러인 사이징 처리된 GCF 30 중량% 및 나머지 잔량의 PEKK 플라스틱 수지를 포함하는 섬유 강화 PAEK 플라스틱 수지를 제조한 다음, 이를 압출하여 스트랜드로 제조한 후, 팰럿화하여 슈퍼 엔지니어링 플라스틱을 제조하였다. In addition, the amount of PAEK plastic resin supplied to the resin supply part and the amount of inorganic filler supplied to the side feeder are supplied at 3 kg/hr, and an impregnation and kneading process is performed to produce 30% by weight of sized GCF, which is an inorganic filler, and the remaining amount. A fiber-reinforced PAEK plastic resin containing PEKK plastic resin was manufactured, and then extruded into strands, which were then pelletized to produce super engineering plastic.

실시예 2Example 2

상기 실시예 1과 동일한 방법 및 조건으로 섬유 강화 PAEK 플라스틱 수지를 제조한 다음, 이를 압출하여 스트랜드로 제조한 후, 팰럿화하여 슈퍼 엔지니어링 플라스틱을 제조하되, 상기 GCF 대신 폴리우레탄 필름 형성제(Polyurethane film former)로 사이징 처리된 CCF(carbon chopped fiber, 상품명 Aceca 6PU)를 사용하여, 섬유 강화 PAEK 플라스틱 수지 및 슈퍼 엔지니어링 플라스틱을 제조하였다. 그리고, 상기 CCF의 TGA 분석 데이터를 도 3에 나타내었다.Fiber-reinforced PAEK plastic resin was manufactured using the same method and conditions as in Example 1, and then extruded to form strands and then pelletized to produce super engineering plastic, but instead of the GCF, a polyurethane film former was used. Fiber-reinforced PAEK plastic resin and super engineering plastic were manufactured using CCF (carbon chopped fiber, product name: Aceca 6PU) sized using former). And, the TGA analysis data of the CCF is shown in Figure 3.

비교예 1Comparative Example 1

상기 실시예 1과 동일한 방법으로 사이징 처리된 GCF를 사이드 공급기로 공급하여 GCF 30 중량% 및 나머지 잔량의 PEKK 플라스틱 수지를 포함하는 섬유 강화 PAEK 플라스틱 수지를 포함하는 팰럿화된 슈퍼 엔지니어링 플라스틱을 제조하되, 사이드 공급기를 열처리하지 않고서 사이징 처리된 GCF를 공급하여 슈퍼 엔지니어링 플라스틱을 제조하였다.GCF sized in the same manner as in Example 1 is supplied to a side feeder to manufacture a palletized super engineering plastic containing fiber-reinforced PAEK plastic resin containing 30% by weight of GCF and the remaining amount of PEKK plastic resin, Super engineering plastic was manufactured by supplying sized GCF without heat treatment through the side feeder.

비교예 2Comparative Example 2

상기 실시예 2와 동일한 방법으로 사이징 처리된 CCF를 사이드 공급기로 공급하여 CCF 30 중량% 및 나머지 잔량의 PEKK 플라스틱 수지를 포함하는 섬유 강화 PAEK 플라스틱 수지를 포함하는 팰럿화된 슈퍼 엔지니어링 플라스틱을 제조하되, 사이드 공급기를 열처리하지 않고서 사이징 처리된 CCF를 공급하여 슈퍼 엔지니어링 플라스틱을 제조하였다.CCF sized in the same manner as in Example 2 is supplied to a side feeder to manufacture a palletized super engineering plastic containing fiber-reinforced PAEK plastic resin containing 30% by weight of CCF and the remaining amount of PEKK plastic resin, Super engineering plastic was manufactured by supplying sized CCF to the side feeder without heat treatment.

실험예 1 : 슈퍼 엔지니어링 플라스틱의 물성 측정Experimental Example 1: Measurement of physical properties of super engineering plastic

상기 실시예 1 ~ 2 및 비교예 1 ~ 2에서 제조한 슈퍼 엔지니어링 플라스틱의 인장강도(Tensile strength), 굽힙강도(Flexural strength) 및 충격강도(Notched Impact strength)를 측정하였고, 그 결과를 하기 표 1에 나타내었다. The tensile strength, flexural strength, and notched impact strength of the super engineering plastics manufactured in Examples 1 to 2 and Comparative Examples 1 to 2 were measured, and the results are shown in Table 1 below. shown in

이때, 인장강도는 ISO 527, 굽힘강도는 ISO 178, 충격강도는 ISO 179에 의거하여 측정하였다.At this time, tensile strength was measured according to ISO 527, bending strength according to ISO 178, and impact strength according to ISO 179.

구분division 사이드 피더 열처리/
무기 필러 함량
Side feeder heat treatment/
Inorganic filler content
인장강도
(Mpa)
tensile strength
(Mpa)
굽힘강도
(Mpa)
bending strength
(Mpa)
충격강도
(kJ/㎡)
impact strength
(kJ/㎡)
비교예 1Comparative Example 1 No heating / GCF 30 중량%No heating / GCF 30% by weight 197197 283283 3.43.4 실시예 1Example 1 150℃ 예열처리 /GCF 30 중량%Preheat treatment at 150℃ /GCF 30% by weight 210210 290290 4.54.5 비교예 2Comparative Example 2 No heating /CCF 30 중량%No heating /CCF 30% by weight 265265 371371 4.24.2 실시예 2Example 2 150℃ 예열처리 /CCF 30 중량% Preheat treatment at 150℃ /CCF 30% by weight 280280 380380 5.05.0

상기 표 1의 실시예 및 비교예에서 제조한 슈퍼 엔지니어링 플라스틱의 물성 측정 결과를 살펴보면, 사이드 피더를 통해 무기 필러 공급시 열처리하여 공급하여 제조한 슈퍼 엔지니어링 플라스틱인 실시예 1 및 실시예 2는 비교예 1 및 비교예 2 각각과 비교할 때, 인장강도, 굽힙강도 및 충격강도 모두 전반적으로 우수한 물성 상승 효과 증대가 있음을 확인할 수 있었다.Looking at the physical property measurement results of the super engineering plastics manufactured in the Examples and Comparative Examples in Table 1, Examples 1 and 2, which are super engineering plastics manufactured by heat treatment when supplying inorganic filler through a side feeder, are Comparative Examples. When compared with each of Comparative Example 1 and Comparative Example 2, it was confirmed that there was an increase in the overall excellent physical properties in tensile strength, bending strength, and impact strength.

실시예 3 ~ 4 및 비교예 3 ~ 4Examples 3 to 4 and Comparative Examples 3 to 4

상기 실시예 1과 동일한 방법으로 슈퍼 엔지니어링 플라스틱을 제조하되, 사이드 공급기의 예열 온도를 달리하여, 공급되는 무기 필러의 온도를 하기 표 2와 같이 다르게 공급하여 슈퍼 엔지니어링 플라스틱을 각각 제조하였다. 이때, 이축 스크류 압출기 내에서 무기 필러와 혼합시 PEKK 수지의 온도는 약 375℃였다. Super engineering plastics were manufactured in the same manner as in Example 1, but the preheating temperature of the side feeder was changed and the supplied inorganic filler was supplied at different temperatures as shown in Table 2 below. At this time, the temperature of the PEKK resin when mixed with the inorganic filler in the twin screw extruder was about 375°C.

실험예 2 : 슈퍼 엔지니어링 플라스틱의 물성 측정Experimental Example 2: Measurement of physical properties of super engineering plastic

상기 실시예 3 ~ 4 및 비교예 3 ~ 4에서 제조한 슈퍼 엔지니어링 플라스틱의 물성을 실험예 1과 동일한 방법으로 측정하였고, 그 결과를 하기 표 2에 나타내었다. The physical properties of the super engineering plastics prepared in Examples 3 to 4 and Comparative Examples 3 to 4 were measured in the same manner as Experiment 1, and the results are shown in Table 2 below.

구분division 무기 필러 온도/
무기 필러 함량
Inorganic filler temperature/
Inorganic filler content
PEKK
수지 온도
PEKK
resin temperature
인장강도
(Mpa)
tensile strength
(Mpa)
굽힘강도
(Mpa)
bending strength
(Mpa)
충격강도
(kJ/㎡)
impact strength
(kJ/㎡)
실시예 1Example 1 120℃ /
GCF 30 중량%
120℃ /
GCF 30% by weight
380℃380℃ 210210 290290 4.54.5
실시예 3Example 3 100℃ /
GCF 30 중량%
100℃/
GCF 30% by weight
207207 280280 4.24.2
실시예 4Example 4 160℃ /GCF 30 중량%160℃/GCF 30% by weight 213213 284284 4.34.3 비교예 3Comparative Example 3 70℃ /GCF 30 중량%70℃/GCF 30% by weight 199199 284284 3.53.5 비교예 4Comparative Example 4 210℃ /
GCF 30 중량%
210℃/
GCF 30% by weight
173173 238238 3.03.0

상기 표 2의 물성 측정 결과를 살펴보면, 실시예 3은 비교예 3외 비교하여 상대적으로 인장강도 및 충격강도가 물성이 휠씬 우수했으며, 실시예 4는 비교예 4와 비교할 때, 전반적으로 물성 측정 결과가 높은 결과를 보였다. Looking at the physical property measurement results in Table 2, Example 3 had relatively superior tensile strength and impact strength compared to Comparative Example 3, and Example 4 had overall physical property measurement results compared to Comparative Example 4. showed high results.

PEKK 수지와의 온도차가 280℃를 초과한 비교예 3의 경우, 낮은 온도의 섬유 다발이 사이드 피더를 통해 공급되어 압출기 실린더 내부의 PEKK 용융 수지를 냉각시켜 섬유화 수지간의 함침성을 낮추어 복합재료의 기계적강도를 낮춘 결과를 보인 것으로 판단된다. 또한, PEKK 수지와의 온도차가 200℃ 미만인 비교예 4의 경우, 무기필러에 처리된 사이징제 성분이 열분해 되어 무기 필러인 GCF가 표면에 손실이 발생하였고, 그 결과 제조된 PEKK 복합재료의 물성을 감소시킨 것으로 판단된다.In the case of Comparative Example 3, where the temperature difference with the PEKK resin exceeded 280°C, low-temperature fiber bundles were supplied through the side feeder to cool the PEKK molten resin inside the extruder cylinder, lowering the impregnation between fiberized resins and improving the mechanical properties of the composite material. It is believed that this resulted in lowering the intensity. In addition, in the case of Comparative Example 4, where the temperature difference with the PEKK resin was less than 200°C, the sizing agent component treated with the inorganic filler was thermally decomposed, causing loss of the inorganic filler, GCF, on the surface, and as a result, the physical properties of the manufactured PEKK composite material were damaged. It is believed to have decreased.

Claims (7)

이축 스크류 압출기(twin screw extruder)를 이용한 섬유 강화 폴리아릴에테르케톤(PAEK, poly aryl ether ketone) 플라스틱 제조에 있어서,
상기 이축 스크류 압출기는 예열기가 장착된 사이드 공급기(side feeder)가 구비되어 있고,
상기 예열기는 사이드 공급기의 배럴 외부를 감싸면서 형성된 전기 히터기(electric heater) 또는 열매체유(heating medium oil)기로 구성되고,
이축 스크류 압출기의 수지 공급부로 용융된 PAEK 플라스틱 수지를 공급하며,
상기 사이드 공급기로 무기 필러를 공급하여 용융된 PAEK 플라스틱 수지와 무기 필러가 혼합된 섬유 강화 PAEK 플라스틱 수지를 제조하는 것을 특징으로 하는 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법.
In the production of fiber-reinforced polyaryl ether ketone (PAEK) plastic using a twin screw extruder,
The twin screw extruder is equipped with a side feeder equipped with a preheater,
The preheater consists of an electric heater or a heating medium oil device formed surrounding the outside of the barrel of the side feeder,
Molten PAEK plastic resin is supplied to the resin supply part of the twin screw extruder.
A compounding method of super engineering plastic resin, characterized in that the fiber-reinforced PAEK plastic resin is manufactured by supplying an inorganic filler to the side feeder and mixing the molten PAEK plastic resin and the inorganic filler.
제1항에 있어서, 상기 PAEK 플라스틱 수지는 PEEK(poly ether ether ketone) 수지, PEKK(poly ether ketone ketone) 수지 및 PEK(poly ether ketone) 수지 중에서 선택된 1종 이상을 포함하고,
상기 무기 필러는 GCF(glass chopped fiber), CCF(carbon chopped fiber) 및 아라미드 섬유 중에서 선택된 1종 이상의 무기섬유계 필러; 및 탈크; 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법.
The method of claim 1, wherein the PAEK plastic resin includes at least one selected from poly ether ether ketone (PEEK) resin, poly ether ketone ketone (PEKK) resin, and poly ether ketone (PEK) resin,
The inorganic filler may include at least one inorganic fiber-based filler selected from glass chopped fiber (GCF), carbon chopped fiber (CCF), and aramid fiber; and talc; A method of compounding a super engineering plastic resin comprising one or more selected from among.
제2항에 있어서, 상기 무기섬유계 필러는,
에폭시 수지 에멀젼(Epoxy resin emulsion), 폴리우레탄 필름 형성제(Polyurethane film former), 에폭시실란 커플링제(epoxy silane coupling agent), 아미노실란 커플링제(aminosilane coupling agent), 비이온성 윤제(non-ionic lubricant), 아세트산(acetic acid), 붕산(boric acid) 및 물 중에서 선택된 1종 이상을 포함하는 사이징제(sizing agent)로 코팅처리된 것을 특징으로 하는 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법.
The method of claim 2, wherein the inorganic fiber-based filler is:
Epoxy resin emulsion, polyurethane film former, epoxy silane coupling agent, aminosilane coupling agent, non-ionic lubricant. , A method of compounding a super engineering plastic resin, characterized in that it is coated with a sizing agent containing at least one selected from acetic acid, boric acid, and water.
제1항에 있어서, 상기 섬유 강화 PAEK 플라스틱 수지는,
상기 무기 필러 5 ~ 60 중량% 및 나머지 잔량의 상기 PAEK 플라스틱 수지를 포함하는 것을 특징으로 하는 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법.
The method of claim 1, wherein the fiber reinforced PAEK plastic resin,
A method of compounding a super engineering plastic resin, comprising 5 to 60% by weight of the inorganic filler and the remaining amount of the PAEK plastic resin.
제1항에 있어서, 상기 사이드 공급기로부터 이축 스크류 압출기로 공급되는 무기 필러의 온도는 50 ~ 200℃인 것을 특징으로 하는 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법.
The method of compounding super engineering plastic resin according to claim 1, wherein the temperature of the inorganic filler supplied from the side feeder to the twin screw extruder is 50 to 200°C.
제5항에 있어서, 사이드 공급기로부터 이축 스크류 압출기로 공급되는 무기 필러의 온도와 용융된 PAEK 플라스틱 수지의 온도는 하기 방정식 1을 만족하는 것을 특징으로 하는 슈퍼 엔지니어링 플라스틱 수지의 컴파운딩 방법.
[방정식 1]
210℃ ≤ A-B ≤ 280℃
방정식 1에서 A는 용융된 PAEK 플라스틱 수지의 온도(℃)이고, B는 이축 스크류 압출기로 공급되는 무기 필러의 온도(℃)이다.
The compounding method of super engineering plastic resin according to claim 5, wherein the temperature of the inorganic filler supplied from the side feeder to the twin screw extruder and the temperature of the molten PAEK plastic resin satisfy the following Equation 1.
[Equation 1]
210℃ ≤ AB ≤ 280℃
In Equation 1, A is the temperature of the molten PAEK plastic resin (°C), and B is the temperature of the inorganic filler supplied to the twin screw extruder (°C).
제1항 내지 제6항 중에서 선택된 어느 한 항의 컴파운딩 방법으로 제조한 슈퍼 엔지니어링 플라스틱 수지를 포함하는 것을 특징으로 하는 슈퍼엔지니어링 플라스틱.A super engineering plastic comprising a super engineering plastic resin manufactured by the compounding method of any one of claims 1 to 6.
KR1020220181396A 2022-12-22 2022-12-22 Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same Pending KR20240099660A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220181396A KR20240099660A (en) 2022-12-22 2022-12-22 Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same
PCT/KR2023/018548 WO2024136152A1 (en) 2022-12-22 2023-11-17 Method for compounding super engineering plastic resin, and super engineering plastic produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220181396A KR20240099660A (en) 2022-12-22 2022-12-22 Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same

Publications (1)

Publication Number Publication Date
KR20240099660A true KR20240099660A (en) 2024-07-01

Family

ID=91589265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220181396A Pending KR20240099660A (en) 2022-12-22 2022-12-22 Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same

Country Status (2)

Country Link
KR (1) KR20240099660A (en)
WO (1) WO2024136152A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101969613B1 (en) 2011-11-29 2019-04-16 도레이 카부시키가이샤 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
KR20190094827A (en) 2018-02-06 2019-08-14 효성화학 주식회사 Long Fiber Reinforced Polyketone Pellet With Enhanced Processability And Manufacturing Method Thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288342A (en) * 2000-04-04 2001-10-16 Sumitomo Chem Co Ltd Liquid crystal polyester resin composition, method for producing the same, and molded product thereof
CN101502987A (en) * 2008-02-04 2009-08-12 王广武 Method and device for preparing polymer glassy alloy
BR112017008785A2 (en) * 2014-10-31 2017-12-26 3M Innovative Properties Co thermoplastic composites, method of preparing thermoplastic composites, and injection molded products
KR101542834B1 (en) * 2015-03-05 2015-08-07 유태욱 Apparatus and method for removing moisture from polymer resin
CN110303675A (en) * 2019-06-28 2019-10-08 西安交通大学 A screw-type directional control 3D printing method for composite materials based on ultrasonic dispersion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101969613B1 (en) 2011-11-29 2019-04-16 도레이 카부시키가이샤 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
KR20190094827A (en) 2018-02-06 2019-08-14 효성화학 주식회사 Long Fiber Reinforced Polyketone Pellet With Enhanced Processability And Manufacturing Method Thereof

Also Published As

Publication number Publication date
WO2024136152A1 (en) 2024-06-27

Similar Documents

Publication Publication Date Title
EP1499484B1 (en) Method for producing filled granulates consisting of high or ultra-high molecular weight polyethylenes
US4422992A (en) Extruder process for preparation of carbon fiber reinforced fluoropolymer compositions
CN102827436A (en) Long glass fiber-reinforced polyvinyl chloride sheet as well as preparation method of on-line mixing of polyvinyl chloride sheet
CN111662545B (en) Long basalt fiber reinforced thermoplastic resin composite master batch, and preparation method and application thereof
CN101113240A (en) Highly heat conductive polyphenylene sulfide composite material and method for making same
CN101475729A (en) Polyether-ether-ketone ketone resin special material for electric connector and preparation thereof
CN102558679A (en) Novel bamboo fiber/polypropylene composite material and method for preparing same
CN106967250B (en) Composition of long fiber reinforced thermoplastic molding material and use method thereof
CN106700411A (en) PEEK compound materials suitable for 3D printing
CN115216087B (en) Preparation and forming method and application of novel low-thermal expansion coefficient low-dielectric composite material
CN109749373B (en) Modified liquid crystal polyester resin compound and preparation method thereof
KR20240099660A (en) Compounding method of super-engineering plastic resin and Super-engineering plastic manufactured by the same
WO2019057929A1 (en) Method of moulding a fibre-reinforced thermosetting resin to form a moulded article
CN101891947A (en) Polyarylether nitrile composite material and preparation method thereof
CN100381498C (en) Method for preparing polycondensation reaction type reinforced thermoplastic resin in long fibres
CN104403257A (en) Ceramic fiber reinforced ABS/PC (acrylonitrile butadiene styrene/polycarbonate) alloy and preparation method thereof
CN104626618B (en) A kind of preparation method of glass fiber reinforced polyester ether ether ketone bar
KR101790577B1 (en) Method for producing fiber-reinforced plastic pellets, resin molded article molded by different pellets produced by the method
Mondadori et al. Relationship between processing method and microstructural and mechanical properties of poly (ethylene terephthalate)/short glass fiber composites
CN107841090A (en) A kind of impact resistance PEEK composites
KR102642395B1 (en) Molded composition comprising decrosslinked regenerated polyethylene
KR102411285B1 (en) Masterbatch composition for adjusting physical properties of 3d printed output
KR102439566B1 (en) Manufacturing method of carbon fiber-reinforced PA6 composite by LFT process and long-fiber reinforced PA6 composite manufactured thereby
KR102284335B1 (en) Nigrosine Masterbatch Composition for Polyamide-glass Fiber Composite and Manufacturing Method thereof
CN110982263A (en) Heat-conducting nylon material, preparation method and application thereof, and heat dissipation device

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20221222

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20231115

Comment text: Request for Examination of Application

PG1501 Laying open of application