KR20240068187A - Manufacturing method for highly densified Ni-Co-Mn composite precursor for Litium secondary battery - Google Patents
Manufacturing method for highly densified Ni-Co-Mn composite precursor for Litium secondary battery Download PDFInfo
- Publication number
- KR20240068187A KR20240068187A KR1020220149324A KR20220149324A KR20240068187A KR 20240068187 A KR20240068187 A KR 20240068187A KR 1020220149324 A KR1020220149324 A KR 1020220149324A KR 20220149324 A KR20220149324 A KR 20220149324A KR 20240068187 A KR20240068187 A KR 20240068187A
- Authority
- KR
- South Korea
- Prior art keywords
- precursor
- cobalt
- nickel
- composite precursor
- manganese
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 93
- 239000002131 composite material Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims description 12
- 229910018060 Ni-Co-Mn Inorganic materials 0.000 title 1
- 229910018209 Ni—Co—Mn Inorganic materials 0.000 title 1
- 239000002245 particle Substances 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 43
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims abstract description 27
- 230000006911 nucleation Effects 0.000 claims abstract description 21
- 238000010899 nucleation Methods 0.000 claims abstract description 21
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims abstract description 13
- 229910052938 sodium sulfate Inorganic materials 0.000 claims abstract description 13
- 235000011152 sodium sulphate Nutrition 0.000 claims abstract description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 21
- 238000000975 co-precipitation Methods 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 229910052744 lithium Inorganic materials 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 10
- 229910017052 cobalt Inorganic materials 0.000 claims description 9
- 239000010941 cobalt Substances 0.000 claims description 9
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 239000011572 manganese Substances 0.000 claims description 8
- 229910052723 transition metal Inorganic materials 0.000 claims description 8
- 150000003624 transition metals Chemical class 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 6
- 238000003756 stirring Methods 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 5
- 241000080590 Niso Species 0.000 claims description 5
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 4
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 claims 2
- 239000000243 solution Substances 0.000 description 14
- 238000009826 distribution Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000007774 positive electrode material Substances 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- -1 ammonium ions Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006182 cathode active material Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- SEVNKUSLDMZOTL-UHFFFAOYSA-H cobalt(2+);manganese(2+);nickel(2+);hexahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mn+2].[Co+2].[Ni+2] SEVNKUSLDMZOTL-UHFFFAOYSA-H 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 150000002696 manganese Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229910000652 nickel hydride Inorganic materials 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C01G53/006—
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/80—Compounds containing nickel, with or without oxygen or hydrogen, and containing one or more other elements
- C01G53/82—Compounds containing nickel, with or without oxygen or hydrogen, and containing two or more other elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
본 발명은 고밀도 니켈-코발트-망간 복합전구체의 제조 방법에 관한 기술로서, pH의 조절을 통한 전구체 핵 생성 공정과 입자 성장 공정을 나누어 진행할 뿐만 아니라, 이온 강도를 높여 콜로이드 환경에서 핵 생성을 억제하고, 입자 성장을 촉진하도록 황산나트륨을 더 포함하는 것을 특징으로 한다.The present invention relates to a method for manufacturing a high-density nickel-cobalt-manganese composite precursor. In addition, the precursor nucleation process and the particle growth process are divided by adjusting the pH, and the ionic strength is increased to suppress nucleation in a colloidal environment. , characterized in that it further contains sodium sulfate to promote particle growth.
Description
본 발명은 리튬이차전지용 니켈―코발트―망간의 3성분계 복합전구체(NixCoyMn1-x-y(OH)2, 여기서, 0<x<1, 0<y<1, 0<x+y<1)의 제조 방법에 관한 기술로서, 특히 5㎛ 이하의 소입경 고밀도의 니켈―코발트―망간의 복합전구체를 제조하는 기술에 관한 것이다.The present invention provides a 3 - component composite precursor of nickel-cobalt-manganese for lithium secondary batteries ( Ni This is a technology related to the manufacturing method of 1), and in particular, it relates to a technology for manufacturing a high-density nickel-cobalt-manganese composite precursor with a small particle diameter of 5㎛ or less.
휴대용의 소형 전기ㆍ전자기기의 보급이 확산에 따라 니켈수소전지나 리튬 이차전지와 같은 신형 이차전지 개발이 활발하게 진행되고 있다. 이 중 리튬이차전지는 흑연 등의 카본을 음극 활물질로 사용하고, 리튬이 포함되어 있는 금속 산화물을 양극 활물질로 사용하며, 비수 용매를 전해액으로 사용하는 전지이다.As the spread of portable, small-sized electrical and electronic devices increases, the development of new types of secondary batteries such as nickel hydride batteries and lithium secondary batteries is actively underway. Among these, lithium secondary batteries are batteries that use carbon such as graphite as a negative electrode active material, a metal oxide containing lithium as a positive electrode active material, and a non-aqueous solvent as an electrolyte.
리튬이차전지에 사용되는 양극 활물질로는 리튬 단독이 아닌 니켈, 코발트, 망간 등을 혼합하여 양극 활물질로 제조함으로써 에너지밀도 및 전기전도성 등의 양극 물성을 만족시키고 있다. 예를 들어, Li2CO3와 니켈-코발트-망간 복합전구체(NixCoyMn1-x-y(OH)2)를 혼합 소성 가공하여 양극 활물질로 사용하고 있다. 통상 상기 니켈-코발트-망간 복합전구체는 공침법을 이용하여 제조되는데, 니켈염, 망간염 및 코발트염을 증류수에 용해한 후, 암모니아 수용액(킬레이팅제) 및 NaOH수용액(염기성 수용액, pH 조절제)과 함께 반응기에 투입하여 공침반응에 의해 니켈-코발트-망간 복합전구체가 침전된다.The cathode active material used in lithium secondary batteries is manufactured by mixing nickel, cobalt, manganese, etc., rather than lithium alone, to satisfy cathode physical properties such as energy density and electrical conductivity. For example, Li 2 CO 3 and nickel-cobalt-manganese composite precursor (Ni x Co y Mn 1-xy (OH) 2 ) are mixed and processed to be used as a positive electrode active material. Typically, the nickel-cobalt-manganese composite precursor is manufactured using a coprecipitation method, in which nickel salt, manganese salt, and cobalt salt are dissolved in distilled water, then ammonia aqueous solution (chelating agent) and NaOH aqueous solution (basic aqueous solution, pH adjuster) When placed together in a reactor, a nickel-cobalt-manganese composite precursor is precipitated through a coprecipitation reaction.
니켈-코발트-망간 복합전구체의 제조에 있어서, 입자분포가 균일한 니켈-코발트-망간 복합전구체를 제조하는 것은 중요한 연구과제이다. 리튬이차전지에서 고성능(고사이클 특성, 저저항, 고출력)을 얻기 위해서는, 양극 재료가 균일하고 적절한 입경을 갖는 입자로 구성되어 있는 것이 요구되는데, 이는 입경이 크고 비표면적이 작은 재료를 사용하면, 전해액과의 반응 면적을 충분히 확보할 수 없어, 반응 저항이 상승하여 고출력의 전지를 얻을 수 없으며, 입도 분포가 넓은 재료를 사용하면, 전지 용량이 저하되고 반응 저항이 상승하는 등의 문제가 생기기 때문이다. 전지 용량이 저하되는 이유는, 전극 내에서 입자에 인가되는 전압이 불균일해지기 때문에, 충방전을 반복하면 미립자가 선택적으로 열화하기 때문이다. 따라서, 양극 재료의 성능을 향상시키기 위해서는 니켈-코발트-망간 복합전구체는 적절한 크기의 소입경이면서, 입경이 균일하고 고밀도로 제조되는 것이 필요하다.In the production of a nickel-cobalt-manganese composite precursor, manufacturing a nickel-cobalt-manganese composite precursor with uniform particle distribution is an important research task. In order to achieve high performance (high cycle characteristics, low resistance, high output) in lithium secondary batteries, it is required that the positive electrode material be composed of particles with a uniform and appropriate particle size. This is achieved by using a material with a large particle size and a small specific surface area. Because a sufficient reaction area with the electrolyte cannot be secured, reaction resistance increases, making it impossible to obtain a high-output battery, and if materials with a wide particle size distribution are used, problems such as lower battery capacity and increased reaction resistance arise. am. The reason why the battery capacity decreases is because the voltage applied to the particles within the electrode becomes non-uniform and the fine particles selectively deteriorate when charging and discharging are repeated. Therefore, in order to improve the performance of the anode material, the nickel-cobalt-manganese composite precursor needs to be manufactured with a small particle size of an appropriate size, uniform particle size, and high density.
소입경의 균일한 입도 분포를 갖는 니켈-코발트-망간 복합 전구체를 제조하는 기술로서, 국제공개 WO2004/092073호에서는, 니켈 코발트 망간염 수용액과, 알칼리 금속 수산화물 수용액과, 암모늄 이온 공급체를 각각 연속적 또는 간헐적으로 반응계에 공급하고, 그 반응계의 온도를 30∼70℃의 범위 내의 거의 일정치로 하고 pH를 10∼13의 범위 내의 거의 일정치로 유지한 상태로 반응을 진행시켜, 니켈 코발트 망간 복합 수산화물을 석출하는 기술을 공개하고 있다. 상기 특허에서는 반응을 1단으로 행하는 것보다 다단으로 행하는 것을 통해 입도 분포가 바람직한 중간체를 얻을 수 있다는 점을 공개하고 있다.As a technology for producing a nickel-cobalt-manganese composite precursor with a uniform particle size distribution of small particle size, in International Publication No. WO2004/092073, an aqueous solution of nickel cobalt manganese salt, an aqueous alkali metal hydroxide solution, and an ammonium ion supplier are each continuously used. Alternatively, the reaction system is intermittently supplied to the reaction system, the temperature of the reaction system is maintained at a substantially constant value within the range of 30 to 70°C, and the reaction is allowed to proceed while maintaining the pH at an approximately constant value within the range of 10 to 13, thereby forming a nickel cobalt manganese complex. The technology to precipitate hydroxide is being disclosed. The patent discloses that an intermediate with a desirable particle size distribution can be obtained by performing the reaction in multiple stages rather than in one stage.
특허공개 제10-2012-0099098호에서는 pH 12 ~ 14에서 전구체 핵 생성을 하고, pH 10~12에서 전구체 입자를 성장시키는 2단계의 pH 조절을 통해 입경이 작고 균일한 입도 분포를 갖는 니켈 코발트 망간 복합 수산화물 입자 제조 방법을 공개하고 있다.In Patent Publication No. 10-2012-0099098, nickel cobalt manganese with small particle size and uniform particle size distribution is produced through two-step pH control, which involves generating precursor nuclei at pH 12 to 14 and growing precursor particles at pH 10 to 12. A method for producing composite hydroxide particles is disclosed.
상기 종래 기술에서는 니켈-코발트-망간 복합전구체를 제조함에 있어서, pH를 달리하는 점에 대해서는 공개하고 있으나, pH를 달리하는 점만으로는 빠른 시간 안에 원하는 고밀도의 소입경 복합전구체를 제조하는데 있어서 한계가 있다.In the above prior art, it is disclosed that the pH is changed when manufacturing the nickel-cobalt-manganese composite precursor, but there are limitations in producing the desired high-density, small-diameter composite precursor in a short time simply by varying the pH. .
본 발명은 니켈-코발트-망간 복합전구체를 제조함에 있어서, 고밀도로 5㎛ 이하의 소입경 복합전구체를 제조하는 방법을 제공하는 것을 목적으로 한다. The purpose of the present invention is to provide a method of manufacturing a nickel-cobalt-manganese composite precursor with a small particle size of 5 μm or less at high density.
또한, 본 발명은 종래의 2단의 pH 조절을 통한 니켈-코발트-망간 복합전구체를 제조 방법을 개선하여 보다 효율적으로 복합전구체를 제조할 수 있는 방법을 제공하는 것을 목적으로 한다. In addition, the purpose of the present invention is to provide a method for producing a nickel-cobalt-manganese composite precursor more efficiently by improving the conventional method of manufacturing a nickel-cobalt-manganese composite precursor through two-stage pH control.
본 발명은 니켈-코발트-망간 복합전구체(NixCoyMn1-x-y(OH)2, 여기서, 0<x<1, 0<y<1, 0<x+y<1)의 제조방법으로서, 배치식 반응기에 니켈, 코발트 및 망간을 함유하는 전이금속 함유 용액, 암모늄 이온 용액 및 수산화나트륨 용액을 포함하는 공침액을 넣은 후, 온도 50 ~ 60℃, pH 12.0 ~ 13.0에서 공침 반응을 진행하는, 전구체 핵 생성 공정(1); 및 상기 반응기의 pH를 10.0 ~ 11.5로 낮추어 공침 반응을 진행하는, 전구체 입자 성장 공정(2)을 포함하되, 상기 전구체 핵 생성 공정(1)의 반응기에는 이온 강도를 높여 콜로이드 환경에서 전구체 핵 생성을 억제하며, 전구체 핵 성장을 촉진하는 환경으로 만들기 위하여 황산나트륨을 더 첨가하는 것을 특징으로 하는, 고밀도 니켈-코발트-망간 복합전구체 제조 방법을 제공한다. The present invention is a method for producing a nickel - cobalt-manganese composite precursor ( Ni , a coprecipitation solution containing a transition metal-containing solution containing nickel, cobalt, and manganese, an ammonium ion solution, and a sodium hydroxide solution is placed in a batch reactor, and then the coprecipitation reaction is performed at a temperature of 50 to 60°C and pH of 12.0 to 13.0. , precursor nucleation process (1); and a precursor particle growth process (2) in which a coprecipitation reaction is performed by lowering the pH of the reactor to 10.0 to 11.5, wherein the ionic strength is increased in the reactor of the precursor nucleation process (1) to generate precursor nuclei in a colloidal environment. Provided is a method for producing a high-density nickel-cobalt-manganese composite precursor, characterized in that additional sodium sulfate is added to create an environment that inhibits and promotes precursor nuclear growth.
특히, 상기 전구체 핵 생성 공정(1) 및 전구체 입자 성장 공정(2)은 반복할 수 있다. In particular, the precursor nucleation process (1) and the precursor particle growth process (2) can be repeated.
특히, 상기 반복 공정에서는 별도로 황산나트륨을 첨가하지 않을 수 있다. In particular, sodium sulfate may not be added separately in the repeated process.
특히, 상기 전구체 핵 생성 공정(1)은 10 ~ 30분 동안 진행할 수 있다. In particular, the precursor nucleation process (1) may proceed for 10 to 30 minutes.
특히, 상기 전구체 입자 성장 공정(2)은 60 ~ 120분 동안 진행할 수 있다. In particular, the precursor particle growth process (2) can be performed for 60 to 120 minutes.
특히, 상기 니켈, 코발트 및 망간은 각각 NiSO4ㆍ6H2O, CoSO4ㆍ7H2O 및 MnSO4ㆍH2O일 수 있다. In particular, the nickel, cobalt, and manganese may be NiSO 4 .6H 2 O, CoSO 4 .7H 2 O, and MnSO 4 .H 2 O, respectively.
특히, 상기 전구체 핵 생성 공정(1) 및 전구체 입자 성장 공정(2)은 700 ~ 1000 rpm의 교반 조건에서 행해질 수 있다. In particular, the precursor nucleation process (1) and the precursor particle growth process (2) may be performed under stirring conditions of 700 to 1000 rpm.
특히, 상기 배치식 반응기에 투입되는 황산나트륨의 농도는 0.01 ~ 2.5M일 수 있다. In particular, the concentration of sodium sulfate introduced into the batch reactor may be 0.01 to 2.5M.
특히, 상기 공침 반응 완료 후 제조된 복합전구체를 탈이온수와 알칼리수로 세정을 반복하여 불순물을 제거하고, 상기 불순물 제거 후에 열풍 건조를 통해 함수율이 낮은 복합전구체를 제조할 수 있다. In particular, after completion of the coprecipitation reaction, the prepared composite precursor is repeatedly washed with deionized water and alkaline water to remove impurities, and after removing the impurities, a composite precursor with a low moisture content can be manufactured through hot air drying.
본 발명에 따른 니켈-코발트-망간 복합전구체를 공침에 의해 짧은 시간 안에 고밀도 소입경으로 제조할 수 있는 방법을 제공한다. 특히, 본 발명에서는 콜로이드 환경에서 전구체 핵 생성을 억제하고, 입자 성장을 촉진하는 조건을 만들기 위하여 황산나트륨을 추가함으로써, 평균 입경 5㎛ 이하의 소입경 고밀도의 복합전구체를 빠른 시간 안에 제조할 수 있는 방법을 제공한다.A method for producing a nickel-cobalt-manganese composite precursor according to the present invention with high density and small particle size in a short time by co-precipitation is provided. In particular, in the present invention, by adding sodium sulfate to suppress precursor nucleation in a colloidal environment and create conditions that promote particle growth, a method can be used to quickly produce high-density composite precursors with small particle diameters of 5㎛ or less on average. provides.
도 1은 본 발명의 방법을 설명하는 플로우차트이다.
도 2는 실시예에 의해 제조된 복합전구체의 입도분포도이다.
도 3은 비교예에 의해 제조된 복합전구체의 입도분포도이다.1 is a flow chart explaining the method of the present invention.
Figure 2 is a particle size distribution chart of the composite precursor prepared according to the example.
Figure 3 is a particle size distribution chart of the composite precursor prepared by Comparative Example.
본 발명은 리튬이차전지의 양극 활물질 전구체인 니켈-코발트-망간 복합전구체(NixCoyMn1-x-y(OH)2 , 여기서, 0<x<1, 0<y<1, 0<x+y<1, 이하 "복합전구체" 또는 "전구체"로 약칭함)의 신규한 제조방법을 제공한다. 본 발명은 특히, 평균입경 5㎛ 이하의 고밀도 소입경의 복합전구체의 제조 방법을 제공한다. The present invention relates to a nickel - cobalt-manganese composite precursor ( Ni y<1, hereinafter abbreviated as “composite precursor” or “precursor”). In particular, the present invention provides a method for producing a high-density, small-particle diameter composite precursor with an average particle diameter of 5 μm or less.
도 1은 본 발명의 방법을 설명하는 플로우차트이다. 도 1을 참고하여 본 발명의 방법에 대해서 설명하기로 한다. 1 is a flow chart explaining the method of the present invention. The method of the present invention will be described with reference to Figure 1.
구체적으로, 본 발명은 배치식 반응기에 니켈, 코발트 및 망간을 함유하는 전이금속 함유 용액, 암모늄 이온 용액 및 수산화나트륨 용액을 포함하는 공침액을 넣은 후, 온도 50 ~ 60℃, pH 12.0 ~ 13.0에서의 공침 반응을 통한 전구체 핵 생성 공정(1); 및 상기 반응기의 pH를 10.0 ~ 11.5로 낮추어 공침 반응을 진행하는 전구체 입자 성장 공정(2)을 포함하되, 상기 전구체 핵 생성 공정(1)의 반응기에는 이온 강도를 높여 콜로이드 환경에서 전구체 핵 생성을 억제하며, 전구체 입자 성장을 촉진하는 환경으로 만들기 위하여 황산나트륨을 더 첨가하는 것을 특징으로 하는, 고밀도 니켈-코발트-망간 복합전구체의 제조 방법을 제공한다. 본 발명에서는 공침 반응 시 핵 생성이 너무 많이 생성되면 암모늄 이온 대비 입자 성장률이 낮아 원하는 입도로 성장할 수 없고, 너무 적게 생성되면 암모늄 이온 대비 입자 성장률이 너무 높아 원하는 입도보다 큰 입경의 전구체를 얻게 되므로 2개의 pH 조건 및 황산나트륨을 이용한 이온 강도 조절을 통해 핵 생성 및 입자 성장을 조절하여 소입경 전구체 제조한다. Specifically, the present invention involves adding a coprecipitation solution containing a transition metal-containing solution containing nickel, cobalt, and manganese, an ammonium ion solution, and a sodium hydroxide solution into a batch reactor, and then reacting at a temperature of 50 to 60°C and pH of 12.0 to 13.0. Precursor nucleation process through coprecipitation reaction (1); and a precursor particle growth process (2) in which a coprecipitation reaction is performed by lowering the pH of the reactor to 10.0 to 11.5, wherein the ionic strength is increased in the reactor of the precursor nucleation process (1) to suppress precursor nucleation in a colloidal environment. In addition, a method for producing a high-density nickel-cobalt-manganese composite precursor is provided, characterized in that additional sodium sulfate is added to create an environment that promotes the growth of precursor particles. In the present invention, if too many nuclei are generated during the coprecipitation reaction, the particle growth rate relative to ammonium ions is low, making it impossible to grow to the desired particle size, and if too few nuclei are generated, the particle growth rate relative to ammonium ions is too high, resulting in obtaining a precursor with a particle size larger than the desired particle size. A small particle size precursor is manufactured by controlling nucleation and particle growth by controlling pH conditions and ionic strength using sodium sulfate.
상기 공정(1) 및 (2) 이후에 다시 공정 (1) 및 (2)의 순으로 반복하여, 원하는 크기의 소입경 고밀도의 복합전구체를 제조할 수 있다. 이러한 반복 회수는 반응 조건 및 원하는 복합전구체 평균 입경 등에 따라 달라진다. After the above processes (1) and (2), processes (1) and (2) can be repeated in order to produce a high-density, small-diameter composite precursor of the desired size. The number of such repetitions varies depending on reaction conditions and the average particle size of the desired composite precursor.
상기 전구체 핵 생성 공정(1)은 10 ~ 30분 동안 진행할 수 있으며, 상기 전구체 입자 성장 공정(2)은 60 ~ 120분 동안 진행할 수 있으나, 위 시간 범위 이외에 상황에 따라 가감할 수 있다.The precursor nucleation process (1) can be carried out for 10 to 30 minutes, and the precursor particle growth process (2) can be carried out for 60 to 120 minutes, but the time range other than the above can be adjusted depending on the situation.
상기 니켈, 코발트 및 망간은 바람직하게는 각각 NiSO4ㆍ6H2O, CoSO4ㆍ7H2O 및 MnSO4ㆍH2O로 상기 배치식 반응기에 투입될 수 있으나, 위 화합물 이외의 다른 화합물로도 배치식 반응기에 투입될 수 있다. The nickel, cobalt, and manganese may be preferably added to the batch reactor as NiSO 4 ㆍ6H 2 O, CoSO 4 ㆍ7H 2 O, and MnSO 4 ㆍH 2 O, respectively, but may also be used as compounds other than the above compounds. It can be put into a batch reactor.
상기 전구체 핵 형성 공정(1) 및 전구체 입자 성장 공정(2)은 반응기 내에서 균일한 반응 농도를 유지하기 위하여, 교반 하에 이루어지는 것이 바람직한데, 700 ~ 1000 rpm의 교반 조건에서 행해질 수 있다. The precursor nucleus formation process (1) and the precursor particle growth process (2) are preferably carried out under stirring in order to maintain a uniform reaction concentration within the reactor, and may be carried out under stirring conditions of 700 to 1000 rpm.
상기 배치식 반응기에 투입되는 황산나트륨은 0.01M ~ 2.5M 농도로 투입될 수 있으나, 반응 조건에 따라 상기 범위에서 가감될 수 있으며, 배치식 반응기에 황산나트륨은 탈이온수에 용해된 상태로 배치식 반응기에 투입될 수 있다. Sodium sulfate introduced into the batch reactor may be added at a concentration of 0.01M to 2.5M, but may be added or subtracted from the above range depending on reaction conditions. Sodium sulfate is added to the batch reactor in a state dissolved in deionized water. can be put in.
상기 공침 반응 완료 후 제조된 복합전구체를 탈이온수와 알칼리수로 세정을 반복하여 불순물을 제거하고, 그 후 열풍 건조를 통해 함수율이 낮은 복합전구체를 제조할 수 있다. 이러한 세정 및 건조 단계는 종래 잘 알려진 기술이므로 구체적인 설명을 생략하기로 한다. After completion of the coprecipitation reaction, the prepared composite precursor is repeatedly washed with deionized water and alkaline water to remove impurities, and then hot air dried to produce a composite precursor with a low moisture content. Since these cleaning and drying steps are well-known techniques, detailed description will be omitted.
실시예Example
배치식 반응기(5L)에 암모니아수, NaOH를 투입하여 pH 12.5로 조절한 후 질소 가스로 퍼징하여 용존 산소를 제거하였고, 이후 온도 60℃에서 교반속도 900rpm으로 교반하여, 반응기 내부 와류가 형성되도록 하였다. Aqueous ammonia and NaOH were added to a batch reactor (5L) to adjust the pH to 12.5, then purged with nitrogen gas to remove dissolved oxygen, and then stirred at a temperature of 60°C and a stirring speed of 900 rpm to form a vortex inside the reactor.
상기 반응기에 탈이온수와 황산나트륨을 투입하되, 반응기 내의 황산나트륨의 농도가 0.1M로 되도록 투입하여 이온 강도를 높여서 콜로이드 환경에서 핵 생성을 억제하며 입자 성장을 촉진하는 환경으로 만들었다. Deionized water and sodium sulfate were added to the reactor so that the concentration of sodium sulfate in the reactor was 0.1M to increase the ionic strength to create an environment that suppresses nucleation in a colloidal environment and promotes particle growth.
NiSO4ㆍ6H2O, CoSO4ㆍ7H2O, MnSO4ㆍH2O을 니켈:코발트:망간의 몰비가 8:1:1이 되도록 하는 양으로 탈이온수 중에서 혼합하여 2.5M의 전이금속 함유 용액을 준비하였다. NiSO 4 ㆍ6H 2 O, CoSO 4 ㆍ7H 2 O, MnSO 4 ㆍH 2 O are mixed in deionized water in an amount such that the molar ratio of nickel:cobalt:manganese is 8:1:1 to contain 2.5M of transition metal. A solution was prepared.
이후, 상기 전이금속 함유 용액을 반응기 내로 투입하고 30분 동안 공침 반응시켜 니켈코발트망간 수산화물의 입자 핵을 형성하였다. Thereafter, the transition metal-containing solution was introduced into the reactor and co-precipitated for 30 minutes to form particle nuclei of nickel cobalt manganese hydroxide.
이어서 전이금속 함유 용액과 NaOH를 투입하여 pH 11로 조절한 후 120분 동안 전구체 입자 성장을 진행하였다. Next, a transition metal-containing solution and NaOH were added to adjust the pH to 11, and precursor particle growth was performed for 120 minutes.
위의 두 과정(전구체 핵 생성, 전구체 입자 성장)을 반복하며 평균 입경(D50)이 5.0μm이고, 평균 조성이 Ni0.80Co0.10Mn0.10(OH)2의 양극 활물질 복합전구체를 제조하였다. By repeating the above two processes (precursor nucleation, precursor particle growth), a positive electrode active material composite precursor with an average particle diameter (D 50 ) of 5.0 μm and an average composition of Ni 0.80 Co 0.10 Mn 0.10 (OH) 2 was manufactured.
공침에 의한 복합전구체의 제조 완료 후에는, 이온 강도를 높이기 위한 환경으로 불순물이 발생하여 탈이온수/알칼리 세정 반복을 통해 불순물 농도를 제어하였고, 120℃에서 24시간 열풍 건조를 통해 함수율이 낮은 수산화물 전구체를 수득하였다. After the production of the composite precursor by co-precipitation was completed, impurities were generated in an environment to increase ionic strength, so the impurity concentration was controlled through repeated deionized water/alkaline washing, and a hydroxide precursor with a low moisture content was dried with hot air at 120°C for 24 hours. was obtained.
비교예Comparative example
배치식 반응기에 암모니아수, NaOH를 투입하여 pH가 11.3으로 조절한 후 질소 가스로 퍼징하여 용존 산소를 제거하였고, 이후 온도 60℃에서 교반속도 900rpm으로 교반하여, 반응기 내부 와류가 형성되도록 하였다. Aqueous ammonia and NaOH were added to the batch reactor to adjust the pH to 11.3, then purged with nitrogen gas to remove dissolved oxygen, and then stirred at a temperature of 60°C and a stirring speed of 900 rpm to form a vortex inside the reactor.
NiSO4ㆍ6H2O, CoSO4ㆍ7H2O, MnSO4ㆍH2O을 니켈:코발트:망간의 몰비가 8:1:1이 되도록 하는 양으로 탈이온수 중에서 혼합하여 2.5M의 전이금속 함유 용액을 준비하였다. NiSO 4 ㆍ6H 2 O, CoSO 4 ㆍ7H 2 O, MnSO 4 ㆍH 2 O are mixed in deionized water in an amount such that the molar ratio of nickel:cobalt:manganese is 8:1:1 to contain 2.5M of transition metal. A solution was prepared.
이후, 전이금속 함유 용액을 반응기 내로 투입하고 150분 동안 공침 반응시켜 니켈-코발트-망간 복합전구체를 제조하였다. Afterwards, the transition metal-containing solution was introduced into the reactor and co-precipitated for 150 minutes to prepare a nickel-cobalt-manganese composite precursor.
실험예Experiment example
실험예 1 : 입도분포도Experimental Example 1: Particle size distribution
도 2는 본 실시예의 복합전구체의 입도분포도이며, 도 3은 비교예의 복합전구체의 입도분포도이다. 실시예 및 비교예의 복합전구체는 상대적으로 짧은 반응 시간으로 목표 평균 입경(D50)인 5㎛ 이하의 수치를 얻었다. 다만, 실시예의 복합전구체는 비교예에 비해 보다 균일한 크기로 제조됨을 도 2 및 도 3의 입도분포도를 통해 확인할 수 있다. Figure 2 is a particle size distribution diagram of the composite precursor of this example, and Figure 3 is a particle size distribution diagram of the composite precursor of the comparative example. The composite precursors of Examples and Comparative Examples achieved a target average particle diameter (D50) of 5 ㎛ or less with a relatively short reaction time. However, it can be confirmed through the particle size distribution diagrams in FIGS. 2 and 3 that the composite precursor of the example is manufactured with a more uniform size compared to the comparative example.
실험예 2 : 탭밀도Experimental Example 2: Tap density
실시예 및 비교예의 복합전구체 모두 5.0μm 이하의 평균 입경(D50)을 만족했지만, 동일 반응 시간 동안 제조된 실시예 및 비교예의 복합전구체에서 탭밀도를 측정한 결과는 아래 표 1과 같다. 탭밀도 측정 결과, 실시예의 복합전구체가 비교예의 복합전구체에 비해 탭밀도가 높게 나타나 상대적으로 고밀도로 제조됨을 확인할 수 있었다. Although the composite precursors of the Examples and Comparative Examples all satisfied an average particle diameter (D 50 ) of 5.0 μm or less, the results of measuring the tap density in the composite precursors of the Examples and Comparative Examples prepared during the same reaction time are shown in Table 1 below. As a result of measuring the tap density, it was confirmed that the composite precursor of the example had a higher tap density than the composite precursor of the comparative example and was manufactured at a relatively high density.
Claims (8)
배치식 반응기에 니켈, 코발트 및 망간을 함유하는 전이금속 함유 용액, 암모늄 이온 용액 및 수산화나트륨 용액을 포함하는 공침액을 넣은 후, 온도 50 ~ 60℃, pH 12.0 ~ 13.0에서 공침 반응을 진행하는 전구체 핵 생성 공정(1); 및
상기 반응기에 pH를 10.0 ~ 11.5로 낮추어 공침 반응을 진행하는 전구체 입자 성장 공정(2)을 포함하되,
상기 전구체 핵 생성 공정(1)의 반응기에는 이온 강도를 높여 콜로이드 환경에서 전구체 핵 생성을 억제하며, 전구체 입자 성장을 촉진하는 환경으로 만들기 위하여 황산나트륨을 더 첨가하는 것을 특징으로 하는, 리튬이차전지용 고밀도 니켈-코발트-망간 복합전구체 제조 방법.
Nickel-cobalt-manganese composite precursor (Ni x Co y Mn 1-xy (OH) 2, where, As a manufacturing method of 0<x<1, 0<y<1, 0<x+y<1),
After adding a coprecipitation solution containing a transition metal-containing solution containing nickel, cobalt, and manganese, an ammonium ion solution, and a sodium hydroxide solution to a batch reactor, the precursor undergoes a coprecipitation reaction at a temperature of 50 to 60°C and pH of 12.0 to 13.0. Nucleation process (1); and
It includes a precursor particle growth process (2) in which a coprecipitation reaction is performed by lowering the pH in the reactor to 10.0 to 11.5,
High-density nickel for lithium secondary batteries, characterized in that sodium sulfate is further added to the reactor of the precursor nucleation process (1) to increase ionic strength to suppress precursor nucleation in a colloidal environment and to create an environment that promotes precursor particle growth. -Method for manufacturing cobalt-manganese composite precursor.
The method of claim 1, wherein the precursor nucleation process (1) and the precursor particle growth process (2) are repeated one or more times.
In claim 1, the precursor nucleation process (1) is performed for 10 to 30 minutes.
In claim 1, the precursor particle growth process (2) proceeds for 60 to 120 minutes, Method for manufacturing high-density nickel-cobalt-manganese composite precursor for lithium secondary batteries.
In claim 1, the nickel, cobalt, and manganese are NiSO 4 ㆍ6H 2 O, CoSO 4 ㆍ7H 2 O, and MnSO 4 ㆍH 2 O, respectively. A method for producing a high-density nickel-cobalt-manganese composite precursor for a lithium secondary battery.
In claim 1, the precursor nucleation process (1) and the precursor particle growth process (2) are performed under stirring conditions of 700 to 1000 rpm.
In claim 1, the concentration of sodium sulfate is 0.01 to 2.5M, Method for manufacturing high-density nickel-cobalt-manganese composite precursor for lithium secondary batteries.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220149324A KR20240068187A (en) | 2022-11-10 | 2022-11-10 | Manufacturing method for highly densified Ni-Co-Mn composite precursor for Litium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220149324A KR20240068187A (en) | 2022-11-10 | 2022-11-10 | Manufacturing method for highly densified Ni-Co-Mn composite precursor for Litium secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240068187A true KR20240068187A (en) | 2024-05-17 |
Family
ID=91331984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220149324A Ceased KR20240068187A (en) | 2022-11-10 | 2022-11-10 | Manufacturing method for highly densified Ni-Co-Mn composite precursor for Litium secondary battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240068187A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004092073A1 (en) | 2003-04-17 | 2004-10-28 | Seimi Chemical Co. Ltd. | Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these |
KR20120099098A (en) | 2009-12-02 | 2012-09-06 | 도요타지도샤가부시키가이샤 | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery |
-
2022
- 2022-11-10 KR KR1020220149324A patent/KR20240068187A/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004092073A1 (en) | 2003-04-17 | 2004-10-28 | Seimi Chemical Co. Ltd. | Lithium-nickel-cobalt-manganese containing composite oxide, material for positive electrode active material for lithium secondary battery, and methods for producing these |
KR20120099098A (en) | 2009-12-02 | 2012-09-06 | 도요타지도샤가부시키가이샤 | Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113247970B (en) | Hollow positive electrode material, precursor thereof and preparation method | |
CN107004852B (en) | Positive electrode active material for lithium battery having porous structure and method for producing same | |
KR101547972B1 (en) | Manufacturing method for Ni-Co-Mn composite precursor | |
KR20150016125A (en) | Lithium complex oxide and manufacturing method of the same | |
CN112830527B (en) | A kind of precursor of hollow positive electrode material and preparation method thereof | |
KR101883406B1 (en) | Positive active material precursor and manufacturing method thereof, positive active material and manufacturing method thereof, lithium rechargeable battery including the same positive active material | |
KR102182289B1 (en) | Manufacturing method for high density Ni-Co-Mn composite precursor | |
KR101950202B1 (en) | Manufacturing method for Ni-Co-Mn composite precursor with high specific surface area | |
CN113582254B (en) | Layered positive electrode material and preparation method and application thereof | |
CN116605922B (en) | A copper-containing hydroxide precursor and its preparation method and application | |
CN110668507A (en) | Preparation method of ternary cathode material of lithium-rich manganese-based coating layer | |
CN113697823A (en) | Quaternary positive electrode material and preparation method and application thereof | |
CN111362318B (en) | Nickel-cobalt-manganese carbonate and preparation method and application thereof | |
KR102559734B1 (en) | Manufacturing method of NCM precursor using recycled materials | |
KR20230102931A (en) | Method of manufacturing cathode material for lithium secondary batteries | |
CN118289840A (en) | Manganese-rich precursor, preparation method thereof, positive electrode material and lithium ion battery | |
KR20240068187A (en) | Manufacturing method for highly densified Ni-Co-Mn composite precursor for Litium secondary battery | |
CN112142125B (en) | Method for preparing high-nickel ternary positive electrode material by secondary growth method | |
CN115215385A (en) | A kind of high nickel layered oxide microdomain structure regulation and preparation method | |
KR102816576B1 (en) | A PROCESS FOR PREPARING Ni-Co-Mn COMPOSITE PRECURSOR HAVING IMPROVED PROPERTIES THROUGH MULTISTEP CONTROL | |
KR102669012B1 (en) | Cathode active precursor for lithium secondary battery and method of preparing the same | |
KR102753540B1 (en) | A cathode active material precursor for a lithium secondary battery, and a method for manufacturing the same | |
CN115893515B (en) | Preparation method of nickel-cobalt-containing hydroxide positive electrode material precursor | |
KR20250032490A (en) | Manufacturing method of precursor for lithium secondary battery and precursor for lithium secondary battery manufactured using the same | |
KR20240106206A (en) | Manufacturing method of cathode active material for cobalt free secondary battery and cathode active material manufactured thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20221110 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240617 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20241220 Comment text: Decision to Refuse Application Patent event code: PE06012S01D |