[go: up one dir, main page]

KR20230151370A - Urethane with improved insulation performance and refrigerator using the same - Google Patents

Urethane with improved insulation performance and refrigerator using the same Download PDF

Info

Publication number
KR20230151370A
KR20230151370A KR1020220050990A KR20220050990A KR20230151370A KR 20230151370 A KR20230151370 A KR 20230151370A KR 1020220050990 A KR1020220050990 A KR 1020220050990A KR 20220050990 A KR20220050990 A KR 20220050990A KR 20230151370 A KR20230151370 A KR 20230151370A
Authority
KR
South Korea
Prior art keywords
urethane
insulation performance
thermal insulation
improved thermal
refrigerator
Prior art date
Application number
KR1020220050990A
Other languages
Korean (ko)
Inventor
임정수
고영덕
강지웅
김성준
김정철
박종성
정민규
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020220050990A priority Critical patent/KR20230151370A/en
Priority to PCT/KR2023/003010 priority patent/WO2023210948A1/en
Publication of KR20230151370A publication Critical patent/KR20230151370A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/065Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/12Insulation with respect to heat using an insulating packing material
    • F25D2201/126Insulation with respect to heat using an insulating packing material of cellular type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Refrigerator Housings (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Disclosed is a urethane having improved thermal insulation performance by reducing the thermal conductivity of the urethane, and a refrigerator applied with the same. The urethane with improved thermal insulation performance according to one embodiment of the present invention can comprise: a plurality of closed cells containing an internal gas; a plurality of open cells connected to an external atmosphere; and a cell wall between the closed cells and the open cells, or between the plurality of closed cells, connecting the closed cells and the open cells, or the plurality of closed cells, wherein the internal gas comprises CO_2, and wherein the CO_2 content can be greater than 0 and less than or equal to 0.1 by mole fraction.

Description

단열 성능이 향상된 우레탄 및 이를 적용한 냉장고 {Urethane with improved insulation performance and refrigerator using the same}Urethane with improved insulation performance and refrigerator using it {Urethane with improved insulation performance and refrigerator using the same}

본 발명은 단열 성능이 향상된 우레탄 및 이를 적용한 냉장고에 관한 것으로, 보다 상세하게는, 우레탄의 열전도도를 낮춤으로써 단열 성능을 향상시킨 우레탄 및 이를 적용한 냉장고에 관한 것이다.The present invention relates to urethane with improved thermal insulation performance and a refrigerator to which it is applied. More specifically, it relates to urethane with improved thermal insulation performance by lowering the thermal conductivity of urethane and a refrigerator to which it is applied.

단열재로 사용되는 우레탄은, 냉장고의 외상(cabinet)과 내상(cavity) 사이에 액상으로 주입되고, 굳은 상태로 벽체를 구성한다. 종래의 우레탄으로 구성되는 단열재의 가장 낮은 열전도도의 한계는 20 mW/m·K로써, 강화되는 환경규제를 충족시키기 어렵다.Urethane, which is used as an insulating material, is injected as a liquid between the cabinet and cavity of the refrigerator, and forms the wall in a hardened state. The lowest thermal conductivity limit of conventional insulation materials made of urethane is 20 mW/m·K, making it difficult to meet strengthening environmental regulations.

단열재의 단열효과를 높이기 위해서는 우레탄의 두께를 두껍게 하는 방법이 있다. 그러나, 우레탄의 두께를 두껍게 하는 경우에는, 냉장고의 크기가 커지거나, 보관용량이 작아지는 문제점이 발생한다.In order to increase the insulation effect of the insulation material, there is a way to increase the thickness of the urethane. However, when the thickness of urethane is increased, problems arise such as the size of the refrigerator becoming larger or the storage capacity becoming smaller.

우레탄 자체의 열전도도는 내부 가스 열전도도의 기여도가 높다. 특히, 내부 가스 중 CO2 분율이 높아질수록 우레탄의 열전도도가 올라가게 된다. 따라서, 우레탄의 열전도도를 낮추기 위해서는, CO2 분율을 최소화하는 것이 필요하다.The thermal conductivity of urethane itself is largely contributed by the thermal conductivity of the internal gas. In particular, as the CO 2 fraction of the internal gas increases, the thermal conductivity of urethane increases. Therefore, in order to lower the thermal conductivity of urethane, it is necessary to minimize the CO2 fraction.

상기와 같은 문제점을 해결하기 위한 본 발명의 목적은, 우레탄 발포 반응에서 생성되는 CO2의 양을 최소화하여 우레탄의 열전도도를 낮춤으로써, 단열 성능이 향상된 우레탄 및 이를 적용한 냉장고를 제공하는데 있다.The purpose of the present invention to solve the above problems is to provide urethane with improved thermal insulation performance and a refrigerator to which it is applied by minimizing the amount of CO 2 generated in the urethane foaming reaction and lowering the thermal conductivity of urethane.

본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄은, 내부 가스를 담고 있는 복수개의 밀폐 셀; 외부 대기와 연결된 복수개의 개방 셀; 및 상기 밀폐 셀과 상기 개방 셀 사이, 또는 상기 복수개의 밀폐 셀 사이에 마련되어, 상기 밀폐 셀과 상기 개방 셀, 또는 상기 복수개의 밀폐 셀을 연결시켜주는 셀 벽을 포함하고, 상기 내부가스는 CO2를 포함하고, 상기 CO2함량은 몰 분율로 0 초과 0.1 이하일 수 있다.Urethane with improved thermal insulation performance according to an embodiment of the present invention includes a plurality of closed cells containing internal gas; a plurality of open cells connected to the external atmosphere; and a cell wall provided between the closed cell and the open cell or between the plurality of closed cells to connect the closed cell and the open cell or the plurality of closed cells, wherein the internal gas contains CO2. Included, the CO 2 content may be greater than 0 and less than or equal to 0.1 in terms of mole fraction.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄은, 열전도도(λurethane)가 17.6 내지 18.7 mW/m·K일 수 있다.In addition, urethane with improved thermal insulation performance according to an embodiment of the present invention may have a thermal conductivity (λ urethane ) of 17.6 to 18.7 mW/m·K.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄은, 부피분율로, 상기 복수개의 밀폐 셀은 92 내지 93%이고, 상기 복수개의 개방 셀은 7 내지 8%를 포함할 수 있다.In addition, the urethane with improved thermal insulation performance according to an embodiment of the present invention may include, in terms of volume fraction, 92 to 93% of the plurality of closed cells and 7 to 8% of the plurality of open cells.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄에서, 상기 내부 가스는, CP(Cyclopentane) 및 대기(Air)를 더 포함할 수 있다.Additionally, in the urethane with improved insulation performance according to an embodiment of the present invention, the internal gas may further include CP (cyclopentane) and atmosphere (air).

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄에서, 상기 우레탄의 밀도는 33 내지 37 kg/㎥일 수 있다.Additionally, in the urethane with improved thermal insulation performance according to an embodiment of the present invention, the density of the urethane may be 33 to 37 kg/㎥.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄에서, 상기 밀폐 셀의 평균 직경이 220 내지 270 ㎛일 수 있다.Additionally, in the urethane with improved thermal insulation performance according to an embodiment of the present invention, the average diameter of the closed cells may be 220 to 270 ㎛.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄에서, 셀 벽의 평균 두께가 0.35 내지 0.5 ㎛ 이하일 수 있다.Additionally, in the urethane with improved thermal insulation performance according to an embodiment of the present invention, the average thickness of the cell walls may be 0.35 to 0.5 ㎛ or less.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법은, 이소시아네이트(Isocyanate)와 폴리올(Polyol) 액을 반응시키는, 우레탄 고분자 형성 단계; 내부 공극을 만들기 위해 발포제를 첨가하여 발포시키는, 밀폐 셀 형성 단계;를 포함하고, 상기 폴리올 액은, 폴리올 액 100 중량부 기준으로, H2O 2 중량부 이하 및 나머지 폴리올을 포함하고, 상기 발포제는 CP(Cyclopentane)일 수 있다.In addition, a method for producing urethane with improved thermal insulation performance according to an embodiment of the present invention includes the step of reacting isocyanate and polyol liquid to form a urethane polymer; A closed cell forming step of foaming by adding a foaming agent to create internal voids, wherein the polyol liquid contains not more than 2 parts by weight of H 2 O 2 and the remaining polyol, based on 100 parts by weight of the polyol liquid, and the foaming agent may be CP (Cyclopentane).

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법에서, 상기 폴리올 액은, 별도의 아민류를 더 포함할 수 있다.Additionally, in the method for producing urethane with improved thermal insulation performance according to an embodiment of the present invention, the polyol liquid may further include separate amines.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법에서, 상기 별도의 아민류는, 알릴기 (Ally group), 아릴기 (Aryl group) 및 알킬기 (Alkyl group)가 결합된 아민류 중 적어도 하나일 수 있다.In addition, in the method for producing urethane with improved thermal insulation performance according to an embodiment of the present invention, the separate amines are at least one of amines to which an allyl group, an aryl group, and an alkyl group are bonded. It could be one.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법은, 상기 밀폐 셀 형성 단계 이전에 나노 필러를 혼합할 수 있다.In addition, the method for manufacturing urethane with improved thermal insulation performance according to an embodiment of the present invention may mix nano-filler before the closed cell forming step.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법에서, 상기 나노 필러는, 나노 파이버, 나노 튜브, 나노 다공체, 메탈 오가닉 프레임워크(MOF) 및 에어로겔 중 적어도 하나일 수 있다.Additionally, in the method for manufacturing urethane with improved thermal insulation performance according to an embodiment of the present invention, the nano-filler may be at least one of nanofibers, nanotubes, nanoporous materials, metal organic framework (MOF), and airgel.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법에서, 상기 나노 필러의 표면은, 에폭사이드(Epoxide)기로 개질되고, 에폭사이드기와 CO2의 반응을 촉진할 수 있도록, 상기 폴리올 액에 촉매를 추가할 수 있다.In addition, in the method for producing urethane with improved thermal insulation performance according to an embodiment of the present invention, the surface of the nano-filler is modified with an epoxide group, and the polyol is added to promote the reaction between the epoxide group and CO 2 A catalyst can be added to the liquid.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법에서, 상기 촉매는, 주촉매로써, 테트라부틸암모늄 브로마이드 (Bu4NBr) 및 테트라부틸암모늄 요오다이드 (Bu4NI) 중 적어도 하나를 포함하고, 보조촉매로써, 세륨옥사이드 (CeO2), 염화아연 (ZnCl2), 니켈 아연 시아나이드 (Ni-Zn cyanide) 복합체 및 과불소화 트리올 (Perfluorinated triol) 중 적어도 하나를 포함할 수 있다.In addition, in the method for producing urethane with improved thermal insulation performance according to an embodiment of the present invention, the catalyst is at least one of tetrabutylammonium bromide (Bu 4 NBr) and tetrabutylammonium iodide (Bu 4 NI) as a main catalyst. Contains one, and as a cocatalyst, it may include at least one of cerium oxide (CeO 2 ), zinc chloride (ZnCl 2 ), nickel zinc cyanide (Ni-Zn cyanide) complex, and perfluorinated triol. there is.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 냉장고는, 냉장고의 최외곽에 마련되는 외상(cabinet); 냉장고의 안쪽 벽을 형성하는 내상(cavity); 및 상기 외상과 상기 내상 사이에 마련되는 우레탄을 포함하고, 상기 우레탄은, 내부 가스를 담고 있는 복수개의 밀폐 셀; 외부 대기와 연결된 복수개의 개방 셀; 및 상기 밀폐 셀과 상기 개방 셀 사이, 또는 상기 복수개의 밀폐 셀 사이에 마련되어, 상기 밀폐 셀과 상기 개방 셀, 또는 상기 복수개의 밀폐 셀을 연결시켜주는 셀 벽을 포함하고, 상기 내부가스는 CO2를 포함하고, 상기 CO2함량은 몰 분율로 0 초과 0.1 이하일 수 있다.In addition, a refrigerator with improved thermal insulation performance according to an embodiment of the present invention includes a cabinet provided on the outermost side of the refrigerator; Cavity forming the inner wall of the refrigerator; and urethane provided between the outer case and the inner case, wherein the urethane includes: a plurality of closed cells containing internal gas; a plurality of open cells connected to the external atmosphere; and a cell wall provided between the closed cell and the open cell or between the plurality of closed cells to connect the closed cell and the open cell or the plurality of closed cells, wherein the internal gas contains CO2. Included, the CO 2 content may be greater than 0 and less than or equal to 0.1 in terms of mole fraction.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 냉장고에서, 상기 우레탄의 열전도도(λurethane)가 17.6 내지 18.7 mW/m·K일 수 있다.Additionally, in a refrigerator with improved thermal insulation performance according to an embodiment of the present invention, the thermal conductivity (λ urethane ) of the urethane may be 17.6 to 18.7 mW/m·K.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 냉장고에서, 상기 내부 가스는, CP(Cyclopentane) 및 대기(Air)를 더 포함할 수 있다.Additionally, in the refrigerator with improved insulation performance according to an embodiment of the present invention, the internal gas may further include CP (Cyclopentane) and atmosphere (air).

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 냉장고에서, 상기 우레탄의 밀도는 33 내지 37 kg/㎥일 수 있다.Additionally, in the refrigerator with improved thermal insulation performance according to an embodiment of the present invention, the density of the urethane may be 33 to 37 kg/㎥.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 냉장고에서, 상기 밀폐 셀의 평균 직경이 220 내지 270 ㎛일 수 있다.Additionally, in a refrigerator with improved thermal insulation performance according to an embodiment of the present invention, the average diameter of the closed cells may be 220 to 270 ㎛.

또한, 본 발명의 일 실시예에 따른 단열 성능이 향상된 냉장고에서, 셀 벽의 평균 두께가 0.35 내지 0.5 ㎛일 수 있다.Additionally, in a refrigerator with improved thermal insulation performance according to an embodiment of the present invention, the average thickness of the cell walls may be 0.35 to 0.5 ㎛.

본 발명의 일 예에 의하면, 우레탄 발포 반응에서 생성되는 CO2의 양을 최소화하여 우레탄의 열전도도를 낮춤으로써, 단열 성능이 향상된 우레탄 및 이를 적용한 냉장고를 제공할 수 있다.According to an example of the present invention, by minimizing the amount of CO 2 generated in the urethane foaming reaction and lowering the thermal conductivity of urethane, urethane with improved thermal insulation performance and a refrigerator to which it is applied can be provided.

다만, 본 발명의 실시예 들에 따른 단열 성능이 향상된 우레탄 및 이를 적용한 냉장고가 달성할 수 있는 효과는 이상에서 언급한 것들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the effects that can be achieved by the urethane with improved thermal insulation performance according to the embodiments of the present invention and the refrigerator to which it is applied are not limited to those mentioned above, and other effects not mentioned can be obtained from the description below. It will be clearly understandable to those with ordinary knowledge in the relevant technical field.

도 1은, 본 발명의 일 예에 따른 우레탄을 주사전자현미경(SEM, Scanning Electron Microscope)으로 촬영한 단면 사진이다.
도 2는, 본 발명의 일 예에 따른 냉장고의 단면을 나타낸 모식도이다.
Figure 1 is a cross-sectional photograph of urethane according to an example of the present invention taken with a scanning electron microscope (SEM) .
Figure 2 is a schematic diagram showing a cross section of a refrigerator according to an example of the present invention.

이하에서는 본 발명의 실시 예를 첨부 도면을 참고하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following examples are presented to sufficiently convey the idea of the present invention to those skilled in the art. The present invention is not limited to the embodiments presented herein and may be embodied in other forms. In order to clarify the present invention, the drawings may omit illustrations of parts unrelated to the description and may slightly exaggerate the sizes of components to aid understanding.

명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary.

단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Singular expressions include plural expressions unless the context clearly makes an exception.

본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄은, 내부 가스를 담고 있는 복수개의 밀폐 셀; 외부 대기와 연결된 복수개의 개방 셀; 및 상기 밀폐 셀과 상기 개방 셀 사이, 또는 상기 복수개의 밀폐 셀 사이에 마련되어, 상기 밀폐 셀과 상기 개방 셀, 또는 상기 복수개의 밀폐 셀을 연결시켜주는 셀 벽을 포함할 수 있다.Urethane with improved thermal insulation performance according to an embodiment of the present invention includes a plurality of closed cells containing internal gas; a plurality of open cells connected to the external atmosphere; and a cell wall provided between the closed cell and the open cell or between the plurality of closed cells to connect the closed cell and the open cell or the plurality of closed cells.

도 1은, 본 발명의 일 예에 따른 우레탄을 주사전자현미경(SEM, Scanning Electron Microscope)으로 촬영한 단면 사진이다.Figure 1 is a cross-sectional photograph of urethane according to an example of the present invention taken with a scanning electron microscope (SEM) .

도 1을 참고하면, 본 발명의 일 예에 따른 우레탄은, 복수개의 개방 셀, 복수개의 밀폐 셀 및 셀 벽을 포함하고 있다.Referring to FIG. 1, urethane according to an example of the present invention includes a plurality of open cells, a plurality of closed cells, and a cell wall.

상기 밀폐 셀은, 우레탄 발포 시 발생되는 내부 가스를 담고 있는 밀폐된 동공을 의미한다. 상기 개방 셀은, 밀폐 셀을 구성하지 못하고, 외부의 대기와 연결된 개방된 동공을 의미한다. The closed cell refers to a closed cavity containing internal gas generated during urethane foaming. The open cell refers to an open pupil that does not constitute a closed cell and is connected to the external atmosphere.

셀 벽은 상기 밀폐 셀과 상기 개방 셀 사이, 또는 상기 복수개의 밀폐 셀 사이에 마련되어, 상기 밀폐 셀과 상기 개방 셀, 또는 상기 복수개의 밀폐 셀을 연결시켜주는 구조체를 의미한다. 또한, 스트럿(strut)은, 밀폐 셀 또는 개방 셀이 3개 이상 만나는 지점을 의미한다.The cell wall refers to a structure provided between the closed cell and the open cell, or between the plurality of closed cells, and connecting the closed cell and the open cell, or the plurality of closed cells. Additionally, a strut refers to a point where three or more closed cells or open cells meet.

상기 내부가스는 CO2를 포함하고, 상기 CO2함량은 몰 분율로 0 초과 0.1 이하일 수 있다.The internal gas includes CO 2 , and the CO 2 content may be greater than 0 and less than or equal to 0.1 in terms of mole fraction.

CO2는 열전도도가 높은 기체로써, 내부 가스에서 CO2의 분율이 높아질수록 내부 가스에 의한 열전도도가 높아진다. 특히, 내부 가스의 열전도도가 우레탄 자체 열전도도에 기여도가 높으므로, CO2 분율을 낮추는 것이 우레탄 자체 열전도도를 낮추는데 매우 효과적이다.CO 2 is a gas with high thermal conductivity. As the fraction of CO 2 in the internal gas increases, the thermal conductivity of the internal gas increases. In particular, since the thermal conductivity of the internal gas has a high contribution to the thermal conductivity of the urethane itself, lowering the CO 2 fraction is very effective in lowering the thermal conductivity of the urethane itself.

종래 우레탄의 경우에는 CO2 몰 분율이 0.52 내지 0.56 정도이다. 그러나 본 발명에서는 후술하는 우레탄 제조방법에 의해 CO2 몰 분율을 0 초과 0.1 이하로 낮춤으로써 우레탄 열전도도를 종래 대비 10% 이상 낮추고자 한다.In the case of conventional urethane, the CO 2 mole fraction is about 0.52 to 0.56. However, the present invention seeks to lower the urethane thermal conductivity by more than 10% compared to the prior art by lowering the CO 2 mole fraction from more than 0 to 0.1 or less by using the urethane production method described later.

본 발명의 일 예에 따른 단열 성능이 향상된 우레탄은, 열전도도(λurethane)가 17.6 내지 18.7 mW/m·K일 수 있다.Urethane with improved thermal insulation performance according to an example of the present invention may have a thermal conductivity (λ urethane ) of 17.6 to 18.7 mW/m·K.

또한, 본 발명의 일 예에 따른 단열 성능이 향상된 우레탄은, 부피분율로, 상기 복수개의 밀폐 셀은 92 내지 93%이고, 상기 복수개의 개방 셀은 7 내지 8%를 포함할 수 있다.In addition, the urethane with improved thermal insulation performance according to an example of the present invention may include, in terms of volume fraction, 92 to 93% of the plurality of closed cells and 7 to 8% of the plurality of open cells.

한편, 상기 내부 가스는, CP(Cyclopentane) 및 대기(Air)를 더 포함할 수 있다.Meanwhile, the internal gas may further include CP (Cyclopentane) and atmosphere (Air).

우레탄의 단열성능을 결정하는 우레탄 열전도도(λurethane)는 아래 식 (1)로 계산할 수 있다. Urethane thermal conductivity (λ urethane ), which determines the insulation performance of urethane, can be calculated using equation (1) below.

식 (1): λurethane = λgas + λsolid + λradiation + λconvection Equation (1): λ urethane = λ gas + λ solid + λ radiation + λ convection

우레탄 열전도도(λurethane)는 상기 밀폐 셀에 담겨있는 내부 가스 열전도도(λgas), 셀 벽 열전도도(λsolid), 셀 벽과 내부 가스 전체에 걸쳐 발생하는 복사 에너지에 의한 열전도도(λradiation) 및 내부 가스의 순환에 의해 발생되는 대류 열전도도(λconvection)의 합으로 계산할 수 있다. 다만, 일반적으로 대류 열전도도는 우레탄 내부에서 영향이 거의 없는 것으로 알려져 있으므로, 본 발명에서는 우레탄 열전도도(λurethane) 계산 시 고려하지 않는다.Urethane thermal conductivity (λ urethane ) is the internal gas thermal conductivity (λ gas ) contained in the closed cell, the cell wall thermal conductivity (λ solid ), and the thermal conductivity (λ) due to radiant energy generated throughout the cell wall and internal gas. It can be calculated as the sum of radiation ) and convection heat conductivity (λ convection ) generated by circulation of internal gas. However, since convective thermal conductivity is generally known to have little effect inside urethane, it is not considered when calculating urethane thermal conductivity (λ urethane ) in the present invention.

우레탄 열전도도(λurethane)를 낮추기 위해서는, 상기 내부 가스 열전도도(λgas), 상기 셀 벽 열전도도(λsolid)및 상기 복사 에너지에 의한 열전도도(λradiation)를 낮추어야 한다.In order to lower the urethane thermal conductivity (λ urethane ), the internal gas thermal conductivity (λ gas ), the cell wall thermal conductivity (λ solid ), and the thermal conductivity due to radiant energy (λ radiation ) must be lowered.

본 발명에서는, 내부 가스 열전도도(λgas)를 낮추고자 하고, 셀 벽 열전도도(λsolid)및 복사 에너지에 의한 열전도도(λradiation)는 종래와 유사한 값을 가진다. 즉, λsolid 는 2.5 내지 3.5 mW/m·K이고, λradiation 는 2.0 내지 3.0 mW/m·K 정도 값을 갖는다.In the present invention, the internal gas thermal conductivity (λ gas ) is intended to be lowered, and the cell wall thermal conductivity (λ solid ) and thermal conductivity due to radiant energy (λ radiation ) have similar values to those of the prior art. That is, λ solid is 2.5 to 3.5 mW/m·K, and λ radiation has a value of about 2.0 to 3.0 mW/m·K.

상기 내부 가스 열전도도(λgas)는 아래의 식 (2)로 표시될 수 있다.The internal gas thermal conductivity (λ gas ) can be expressed as equation (2) below.

식 (2): Equation (2):

상기 식 (2)에서, Aij는 아래 식 (3)으로 표시될 수 있다.In equation (2) above, A ij can be expressed as equation (3) below.

식 (3): Equation (3):

상기 식 (3)에서, aij는 아래 식 (4)로 표시될 수 있다.In equation (3) above, a ij can be expressed as equation (4) below.

식 (4): Equation (4):

상기 식 (2), 식 (3) 및 식 (4)에서, λg는 λgas를 의미하고, ni 또는 nj는 임의의 가스 i 또는 j의 몰 분율을 의미하고, λi는 임의의 가스 i의 열전도도를 의미하고, Mi 및 Mj는 임의의 가스 i 또는 j의 몰분자량을 의미하고, μi 또는 μj는 임의의 가스 i 또는 j의 점성계수를 의미힌다.In the above equations (2), (3) and (4), λ g means λ gas , ni or n j means the mole fraction of any gas i or j, and λ i means any It means the thermal conductivity of gas i, M i and M j mean the molar molecular weight of any gas i or j, and μ i or μ j means the viscosity coefficient of any gas i or j.

상기 몰 분율은, 내부 가스의 체적비를 100으로 나눈 값을 의미한다.The mole fraction means the volume ratio of the internal gas divided by 100.

내부 가스 중, CO2의 몰분자량은 44이고, CO2의 열전도도는 15.7 mW/m·K이고, CO2의 점성계수는 1.44*10-5이다.Among the internal gases, the molar molecular weight of CO 2 is 44, the thermal conductivity of CO 2 is 15.7 mW/m·K, and the viscosity coefficient of CO 2 is 1.44*10 -5 .

또한, 내부 가스 중, CP(Cyclopentane)의 몰분자량은 70이고, CP의 열전도도는 12.7 mW/m·K이고, CP의 점성계수는 4.37*10-4이다.In addition, among the internal gases, the molar molecular weight of CP (Cyclopentane) is 70, the thermal conductivity of CP is 12.7 mW/m·K, and the viscosity coefficient of CP is 4.37*10 -4 .

또한, 내부 가스 중, 대기(Air)의 몰분자량은 30이고, 대기의 열전도도는 25 mW/m·K이고, 대기의 점성계수는 1.79*10-5이다.Additionally, among the internal gases, the molar molecular weight of air is 30, the thermal conductivity of the air is 25 mW/m·K, and the viscosity coefficient of the air is 1.79*10 -5 .

내부 가스 열전도도(λgas)를 낮추기 위해서는, 대기(Air)와 CO2의 몰 분율이 작고, CP(Cyclopentane)의 몰 분율이 높아야 한다. 한편, 대기(Air)의 몰 분율은, 우레탄 발포 시 발생할 수밖에 없는 개방 셀 구조로 인해, 몰 분율 조절이 힘들다. 따라서, 본 발명에서는, CO2의 몰 분율을 낮게 제어함으로써, 내부 가스의 열전도도(λgas)를 낮추고자 한다.In order to lower the internal gas thermal conductivity (λ gas ), the mole fraction of air and CO 2 must be small and the mole fraction of CP (Cyclopentane) must be high. Meanwhile, it is difficult to control the mole fraction of air due to the open cell structure that inevitably occurs during urethane foaming. Therefore, in the present invention, the thermal conductivity (λ gas ) of the internal gas is attempted to be lowered by controlling the mole fraction of CO 2 to be low.

상기 우레탄의 밀도는 33 내지 37 kg/㎥이고, 상기 밀폐 셀의 평균 직경이 220 내지 270 ㎛일 수 있다. 또한, 상기 우레탄의 셀 벽의 평균 두께가 0.35 내지 0.5 ㎛ 이하일 수 있다. The density of the urethane may be 33 to 37 kg/㎥, and the average diameter of the closed cells may be 220 to 270 ㎛. Additionally, the average thickness of the cell walls of the urethane may be 0.35 to 0.5 ㎛ or less.

한편, 본 발명에서 평균은, 임의의 5개 지점에서 측정한 값의 평균값을 의미한다. Meanwhile, in the present invention, average refers to the average value of values measured at five arbitrary points.

상기 식 (1)을 참고하여 계산하면, 종래 우레탄의 열전도도는 20 내지 22 mW/m·K인 반면, 본 발명의 일 실시예에 따른 우레탄은, 열전도도(λurethane)가 17.6 내지 18.7 mW/m·K일 수 있다. 따라서, 종래 우레탄에 비해 열전도도를 10% 이상 낮춰 단열 성능을 향상시킴으로써, 5% 이상의 에너지 절감 효과를 기대할 수 있다.When calculated with reference to Equation (1), the thermal conductivity of conventional urethane is 20 to 22 mW/m·K, while the thermal conductivity (λ urethane ) of urethane according to an embodiment of the present invention is 17.6 to 18.7 mW. It can be /m·K. Therefore, by lowering thermal conductivity by more than 10% compared to conventional urethane and improving insulation performance, energy savings of more than 5% can be expected.

다음으로, 본 발명의 다른 일 측면에 따른 단열 성능이 향상된 우레탄 제조방법에 대하여 설명한다.Next, a method for manufacturing urethane with improved thermal insulation performance according to another aspect of the present invention will be described.

본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법은, 이소시아네이트(Isocyanate)와 폴리올(Polyol) 액을 반응시키는, 우레탄 고분자 형성 단계; 내부 공극을 만들기 위해 발포제를 첨가하여 발포시키는, 밀폐 셀 형성 단계;를 포함하고, 상기 폴리올 액은, 폴리올 액 100 중량부 기준으로, H2O 2 중량부 이하 및 나머지 폴리올을 포함하고, 상기 발포제는 CP(Cyclopentane)일 수 있다.A method for producing urethane with improved thermal insulation performance according to an embodiment of the present invention includes the step of reacting isocyanate and polyol liquid to form a urethane polymer; A closed cell forming step of foaming by adding a foaming agent to create internal voids, wherein the polyol liquid contains not more than 2 parts by weight of H 2 O 2 and the remaining polyol, based on 100 parts by weight of the polyol liquid, and the foaming agent may be CP (Cyclopentane).

먼저 아래 반응식 1과 같이, 우레탄 고분자는 이소시아네이트와 폴리올을 반응시켜 형성한다.First, as shown in Scheme 1 below, urethane polymer is formed by reacting isocyanate and polyol.

반응식 1: Scheme 1:

종래에는, 내부 공극을 만들기 위해 발포제(blowing agent)를 첨가하면서, 발포를 돕기 위한 보조제(co-blowing agent)로 H2O을 사용했다. 따라서, 아래 반응식 2와 같이, CO2와 아민이 형성되었다.Conventionally, H 2 O was used as a co-blowing agent to aid foaming while adding a blowing agent to create internal voids. Therefore, CO 2 and an amine were formed, as shown in Scheme 2 below.

반응식 2: Scheme 2:

H2O을 사용하면서 발생되는 CO2는 내부 가스의 열전도도를 높이게 되므로, 본 발명에서는 발생되는 CO2를 최소화하기 위해 H2O 함량을, 폴리올 액 100 중량부 기준으로, 2 중량부 이하로 제어한다.Since CO 2 generated when using H 2 O increases the thermal conductivity of the internal gas, in the present invention, in order to minimize the CO 2 generated, the H 2 O content is set to 2 parts by weight or less based on 100 parts by weight of polyol liquid. Control.

한편, 상기 반응식 2에서 발생되는 아민은, 다음 반응인 유레아(urea) 및 뷰렛(biuret) 반응에 필요하다. 상기 유레아 및 뷰렛 반응에서 유레아, 뷰렛 등이 중간 반응기로 작용하여, 우레탄의 물리적 결합력을 강화시켜 준다.Meanwhile, the amine generated in Scheme 2 is required for the next reaction, the urea and biuret reaction. In the urea and biuret reaction, urea, biuret, etc. act as intermediate reactors and strengthen the physical bonding force of urethane.

본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법에서, 상기 폴리올 액은, 별도의 아민류를 더 포함할 수 있다.In the method for producing urethane with improved thermal insulation performance according to an embodiment of the present invention, the polyol liquid may further include separate amines.

상기 반응식 2를 참고하면, 본 발명에서는 CO2 발생을 최소화하기 위해 H2O를 적게 첨가하므로, 유레아 및 뷰렛 반응에서 필요한 아민이 적게 생성된다. 따라서, 상기 폴리올 액에 별도의 아민류를 더 포함하도록 함으로써, 부족한 아민을 보충하도록 한다.Referring to Scheme 2 above, in the present invention, a small amount of H 2 O is added to minimize CO 2 generation, so less amines required in the urea and biuret reactions are generated. Therefore, by adding additional amines to the polyol solution, the insufficient amines are supplemented.

상기 별도의 아민류는, 알릴기 (Ally group), 아릴기 (Aryl group) 및 알킬기 (Alkyl group)가 결합된 아민류 중 적어도 하나일 수 있다. 다만, 이에 한정되지 않는다.The separate amines may be at least one of amines to which an allyl group, an aryl group, and an alkyl group are bonded. However, it is not limited to this.

본 발명의 일 실시예에 따른 단열 성능이 향상된 우레탄 제조방법은, 상기 밀폐 셀 형성 단계 이전에 나노 필러를 혼합할 수 있다.In the urethane manufacturing method with improved thermal insulation performance according to an embodiment of the present invention, nano-filler may be mixed before the closed cell forming step.

H2O를 적게 첨가하더라도, 상기 반응식 2에 의해 소량의 CO2가 발생할 수 있다. 따라서, 본 발명에서는 발생한 소량의 CO2를 추가적으로 제거하기 위해, CO2를 지속적으로 제거할 수 있는 나노 필러를 혼합하여 발포를 진행할 수 있다. 여기서, 나노 필러는, CO2와 반응할 수 있는 흡착기 또는 반응기가 포함되어, CO2를 제거하는 역할을 수행할 수 있다.Even if a small amount of H 2 O is added, a small amount of CO 2 may be generated according to Scheme 2 above. Therefore, in the present invention, in order to additionally remove the small amount of CO 2 generated, foaming can be performed by mixing a nanofiller capable of continuously removing CO 2 . Here, the nano filler includes an adsorber or reactor capable of reacting with CO 2 and may serve to remove CO 2 .

상기 나노 필러는, 나노 파이버, 나노 튜브, 나노 다공체, 메탈 오가닉 프레임워크(MOF) 및 에어로겔 중 적어도 하나일 수 있으나, 이에 한정되지는 않는다.The nanofiller may be at least one of nanofibers, nanotubes, nanoporous materials, metal organic framework (MOF), and airgel, but is not limited thereto.

상기 나노 필러의 표면은, 에폭사이드(Epoxide)기로 개질되고, 에폭사이드기와 CO2의 반응을 촉진할 수 있도록, 상기 폴리올 액에 촉매를 추가할 수 있다.The surface of the nano-filler is modified with epoxide groups, and a catalyst can be added to the polyol liquid to promote the reaction between epoxide groups and CO 2 .

CO2와 반응할 수 있도록 나노 필러의 표면을 에폭사이드기로 개질시킴으로써, 지속적으로 CO2를 제거할 수 있다. 이때, 촉매를 사용하여 에폭사이드기와 CO2의 반응을 촉진시킬 수 있다.CO 2 can be continuously removed by modifying the surface of the nano filler with an epoxide group so that it can react with CO 2 . At this time, the reaction between the epoxide group and CO 2 can be promoted using a catalyst.

상기 촉매는, 주촉매로써, 테트라부틸암모늄 브로마이드 (Bu4NBr) 및 테트라부틸암모늄 요오다이드 (Bu4NI) 중 적어도 하나를 포함하고, 보조촉매로써, 세륨옥사이드 (CeO2), 염화아연 (ZnCl2), 니켈 아연 시아나이드 (Ni-Zn cyanide) 복합체 및 과불소화 트리올 (Perfluorinated triol) 중 적어도 하나를 포함할 수 있다. 다만, 이에 한정되지 않고, 나노 필러와 CO2의 반응을 촉진시킬 수 있는 모든 종류의 촉매가 사용될 수 있다.The catalyst includes at least one of tetrabutylammonium bromide (Bu 4 NBr) and tetrabutylammonium iodide (Bu 4 NI) as a main catalyst, and cerium oxide (CeO 2 ) and zinc chloride ( It may include at least one of ZnCl 2 ), nickel zinc cyanide (Ni-Zn cyanide) complex, and perfluorinated triol. However, it is not limited to this, and any type of catalyst that can promote the reaction between nanofiller and CO 2 can be used.

다음으로, 본 발명의 다른 일 측면에 따른 단열 성능이 향상된 냉장고에 대하여 설명한다.Next, a refrigerator with improved thermal insulation performance according to another aspect of the present invention will be described.

본 발명의 일 실시예에 따른 단열 성능이 향상된 냉장고는, 냉장고의 최외곽에 마련되는 외상(cabinet); 냉장고의 안쪽 벽을 형성하는 내상(cavity); 및 상기 외상과 상기 내상 사이에 마련되는 우레탄을 포함하고, 상기 우레탄은, 내부 가스를 담고 있는 복수개의 밀폐 셀; 외부 대기와 연결된 복수개의 개방 셀; 및 상기 밀폐 셀과 상기 개방 셀 사이, 또는 상기 복수개의 밀폐 셀 사이에 마련되어, 상기 밀폐 셀과 상기 개방 셀, 또는 상기 복수개의 밀폐 셀을 연결시켜주는 셀 벽을 포함하고, 상기 내부가스는 CO2를 포함하고, 상기 CO2함량은 몰 분율로 0 초과 0.1 이하일 수 있다.A refrigerator with improved thermal insulation performance according to an embodiment of the present invention includes a cabinet provided on the outermost side of the refrigerator; Cavity forming the inner wall of the refrigerator; and urethane provided between the outer case and the inner case, wherein the urethane includes: a plurality of closed cells containing internal gas; a plurality of open cells connected to the external atmosphere; and a cell wall provided between the closed cell and the open cell or between the plurality of closed cells to connect the closed cell and the open cell or the plurality of closed cells, wherein the internal gas is CO 2 It includes, and the CO 2 content may be greater than 0 and less than or equal to 0.1 in terms of mole fraction.

도 2는, 본 발명의 일 예에 따른 냉장고의 단면을 나타낸 모식도이다.Figure 2 is a schematic diagram showing a cross section of a refrigerator according to an example of the present invention.

도 2를 참고하면, 본 발명의 일 예에 따른 단열 성능이 향상된 냉장고는, 최외곽에 외상이 마련되고, 냉장고의 안쪽 벽을 내상이 형성하며, 상기 외상 및 상기 내상 사이에 단열재로서 우레탄을 포함할 수 있다.Referring to FIG. 2, the refrigerator with improved thermal insulation performance according to an example of the present invention is provided with an outer shell on the outermost layer, an inner shell forms the inner wall of the refrigerator, and urethane is included as an insulating material between the outer shell and the inner shell. can do.

상기 외상은 스틸(steel)로 구성될 수 있고, 상기 내상은 플라스틱으로 구성될 수 있다.The outer case may be made of steel, and the inner case may be made of plastic.

상기 우레탄의 열전도도(λurethane)는 17.6 내지 18.7 mW/m·K이고, 상기 내부 가스는, CP(Cyclopentane) 및 대기(Air)를 더 포함할 수 있다.The thermal conductivity (λ urethane ) of the urethane is 17.6 to 18.7 mW/m·K, and the internal gas may further include Cyclopentane (CP) and air.

또한, 상기 우레탄의 밀도는 33 내지 37 kg/㎥이고, 상기 밀폐 셀의 평균 직경이 220 내지 270 ㎛이고, 셀 벽의 평균 두께가 0.35 내지 0.5 ㎛일 수 있다.Additionally, the density of the urethane may be 33 to 37 kg/㎥, the average diameter of the closed cells may be 220 to 270 ㎛, and the average thickness of the cell walls may be 0.35 to 0.5 ㎛.

이하에서, 본 발명에 대한 이해를 돕기 위하여 실시예 및 비교예를 기재한다. 다만, 하기 기재는 본 발명의 내용 및 효과에 관한 일 예에 해당할 뿐, 본 발명의 권리범위 및 효과가 반드시 이에 한정되는 것은 아니다.Below, examples and comparative examples are described to aid understanding of the present invention. However, the following description only corresponds to an example of the content and effects of the present invention, and the scope and effects of the present invention are not necessarily limited thereto.

{실시예}{Example}

아래 표 1에는, 내부 가스의 몰 분율에 따른 λgas 계산값 및 λurethane 계산값을 나타냈다. λgas 계산값은, 상기 식 (2), 식 (3) 및 식 (4)를 통해 계산했고, λurethane 계산값은, 상기 식 (1)을 통해 계산했다. 이때, λsolid는 2.5mW/mK로 대입했고, λradiation은 2.0mW/mK로 대입했다.Table 1 below shows the calculated values of λ gas and λ urethane according to the mole fraction of the internal gas. The calculated value of λ gas was calculated using Equation (2), Equation (3), and (4) above, and the calculated value of λ urethane was calculated using Equation (1) above. At this time, λ solid was substituted as 2.5mW/mK, and λ radiation was substituted as 2.0mW/mK.

몰 분율mole fraction λgas 계산값
(mW/mK)
λ gas calculated value
(mW/mK)
λurethane 계산값
(mW/mK)
λ urethane calculated value
(mW/mK)
AirAir CO2 CO2 CPCP 실시예1Example 1 0.10.1 0.010.01 0.890.89 13.113.1 17.617.6 실시예2Example 2 0.20.2 0.050.05 0.750.75 13.513.5 18.018.0 실시예3Example 3 0.10.1 0.10.1 0.80.8 14.214.2 18.718.7 비교예1Comparative Example 1 0.30.3 0.20.2 0.50.5 15.715.7 20.220.2 비교예2Comparative example 2 0.10.1 0.30.3 0.50.5 16.816.8 21.321.3 비교예3Comparative Example 3 0.20.2 0.50.5 0.30.3 1818 22.522.5

상기 표 1을 참고하면, 실시예 1 내지 3은 CO2함량이 몰 분율로 0 초과 0.1 이하를 만족했다. 따라서, 실시예 1 내지 3은, 우레탄 열전도도(λurethane)가 17.6 내지 18.7 mW/m·K를 만족할 수 있었다.Referring to Table 1, Examples 1 to 3 satisfied that the CO 2 content was greater than 0 and less than 0.1 in mole fraction. Therefore, Examples 1 to 3 were able to satisfy urethane thermal conductivity (λ urethane ) of 17.6 to 18.7 mW/m·K.

그러나, 비교예 1 내지 3은 CO2함량이 몰 분율로 0 초과 0.1 이하를 만족하지 못했다. 따라서, 비교예 1 내지 3은, 우레탄 열전도도(λurethane)가 17.6 내지 18.7 mW/m·K를 만족하지 못했다. 즉, 우레탄 열전도도가 높으므로, 단열 성능이 열위하다고 평가할 수 있었다.However, Comparative Examples 1 to 3 did not satisfy the CO 2 content of more than 0 and less than 0.1 in mole fraction. Therefore, Comparative Examples 1 to 3 did not satisfy the urethane thermal conductivity (λ urethane ) of 17.6 to 18.7 mW/m·K. In other words, since urethane thermal conductivity was high, it could be evaluated that the thermal insulation performance was inferior.

Claims (20)

내부 가스를 담고 있는 복수개의 밀폐 셀;
외부 대기와 연결된 복수개의 개방 셀; 및
상기 밀폐 셀과 상기 개방 셀 사이, 또는 상기 복수개의 밀폐 셀 사이에 마련되어, 상기 밀폐 셀과 상기 개방 셀, 또는 상기 복수개의 밀폐 셀을 연결시켜주는 셀 벽을 포함하고,
상기 내부가스는 CO2를 포함하고,
상기 CO2함량은, 몰 분율로 0 초과 0.1 이하인, 단열 성능이 향상된 우레탄.
a plurality of closed cells containing gas therein;
a plurality of open cells connected to the external atmosphere; and
It includes a cell wall provided between the closed cell and the open cell or between the plurality of closed cells, connecting the closed cell and the open cell or the plurality of closed cells,
The internal gas includes CO 2 ,
Urethane with improved thermal insulation performance, wherein the CO 2 content is greater than 0 and less than or equal to 0.1 in mole fraction.
청구항 1에 있어서,
열전도도(λurethane)가 17.6 내지 18.7 mW/m·K인, 단열 성능이 향상된 우레탄.
In claim 1,
Urethane with improved thermal conductivity (λ urethane ) of 17.6 to 18.7 mW/m·K.
청구항 1에 있어서,
부피분율로, 상기 복수개의 밀폐 셀은 92 내지 93%이고, 상기 복수개의 개방 셀은 7 내지 8%를 포함하는, 단열 성능이 향상된 우레탄.
In claim 1,
In terms of volume fraction, the plurality of closed cells comprises 92 to 93%, and the plurality of open cells comprises 7 to 8%.
청구항1에 있어서,
상기 내부 가스는, CP(Cyclopentane) 및 대기(Air)를 더 포함하는, 단열 성능이 향상된 우레탄.
In claim 1,
The internal gas is urethane with improved thermal insulation performance, further containing CP (Cyclopentane) and air.
청구항 1에 있어서,
상기 우레탄의 밀도는 33 내지 37 kg/㎥인, 단열 성능이 향상된 우레탄.
In claim 1,
Urethane with improved thermal insulation performance, wherein the urethane has a density of 33 to 37 kg/㎥.
청구항 1에 있어서,
상기 밀폐 셀의 평균 직경이 220 내지 270 ㎛인, 단열 성능이 향상된 우레탄.
In claim 1,
Urethane with improved thermal insulation performance, wherein the closed cells have an average diameter of 220 to 270 ㎛.
청구항 1에 있어서,
셀 벽의 평균 두께가 0.35 내지 0.5 ㎛인, 단열 성능이 향상된 우레탄.
In claim 1,
Urethane with improved thermal insulation performance, with an average cell wall thickness of 0.35 to 0.5 ㎛.
이소시아네이트(Isocyanate)와 폴리올(Polyol) 액을 반응시키는, 우레탄 고분자 형성 단계;
내부 공극을 만들기 위해 발포제를 첨가하여 발포시키는, 밀폐 셀 형성 단계;를 포함하고,
상기 폴리올 액은, 폴리올 액 100 중량부 기준으로, H2O 2 중량부 이하 및 나머지 폴리올을 포함하고,
상기 발포제는 CP(Cyclopentane)인, 단열 성능이 향상된 우레탄 제조방법.
A step of forming a urethane polymer by reacting isocyanate and polyol liquid;
It includes a closed cell forming step of foaming by adding a foaming agent to create internal voids,
The polyol liquid contains not more than 2 parts by weight of H 2 O 2 and the remaining polyol, based on 100 parts by weight of the polyol liquid,
A method of manufacturing urethane with improved thermal insulation performance, wherein the foaming agent is CP (Cyclopentane).
청구항 8에 있어서,
상기 폴리올 액은, 별도의 아민류를 더 포함하는, 단열 성능이 향상된 우레탄 제조방법.
In claim 8,
A method for producing urethane with improved thermal insulation performance, wherein the polyol liquid further contains separate amines.
청구항 9에 있어서,
상기 별도의 아민류는, 알릴기 (Ally group), 아릴기 (Aryl group) 및 알킬기 (Alkyl group)가 결합된 아민류 중 적어도 하나인, 단열 성능이 향상된 우레탄 제조방법.
In claim 9,
The separate amines are at least one of amines to which an allyl group, an aryl group, and an alkyl group are bonded. A method of producing urethane with improved thermal insulation performance.
청구항 8에 있어서,
상기 밀폐 셀 형성 단계 이전에 나노 필러를 혼합하는, 단열 성능이 향상된 우레탄 제조방법.
In claim 8,
A method for manufacturing urethane with improved thermal insulation performance, wherein nano-filler is mixed before the closed cell forming step.
청구항 11에 있어서,
상기 나노 필러는, 나노 파이버, 나노 튜브, 나노 다공체, 메탈 오가닉 프레임워크(MOF) 및 에어로겔 중 적어도 하나인, 단열 성능이 향상된 우레탄 제조방법.
In claim 11,
The nanofiller is at least one of nanofibers, nanotubes, nanoporous materials, metal organic framework (MOF), and airgel. A method of manufacturing urethane with improved thermal insulation performance.
청구항 11에 있어서,
상기 나노 필러의 표면은, 에폭사이드(Epoxide)기로 개질되고,
에폭사이드기와 CO2의 반응을 촉진할 수 있도록, 상기 폴리올 액에 촉매를 추가하는, 단열 성능이 향상된 우레탄 제조방법.
In claim 11,
The surface of the nano-filler is modified with an epoxide group,
A method for producing urethane with improved thermal insulation performance by adding a catalyst to the polyol liquid to promote the reaction between epoxide groups and CO 2 .
청구항 13에 있어서,
상기 촉매는,
주촉매로써, 테트라부틸암모늄 브로마이드 (Bu4NBr) 및 테트라부틸암모늄 요오다이드 (Bu4NI) 중 적어도 하나를 포함하고,
보조촉매로써, 세륨옥사이드 (CeO2), 염화아연 (ZnCl2), 니켈 아연 시아나이드 (Ni-Zn cyanide) 복합체 및 과불소화 트리올 (Perfluorinated triol) 중 적어도 하나를 포함하는, 단열 성능이 향상된 우레탄 제조방법.
In claim 13,
The catalyst is,
As a main catalyst, it contains at least one of tetrabutylammonium bromide (Bu 4 NBr) and tetrabutylammonium iodide (Bu 4 NI),
As a cocatalyst, urethane with improved thermal insulation performance containing at least one of cerium oxide (CeO 2 ), zinc chloride (ZnCl 2 ), nickel-zinc cyanide (Ni-Zn cyanide) complex, and perfluorinated triol. Manufacturing method.
냉장고의 최외곽에 마련되는 외상(cabinet);
냉장고의 안쪽 벽을 형성하는 내상(cavity); 및
상기 외상과 상기 내상 사이에 마련되는 우레탄을 포함하고,
상기 우레탄은,
내부 가스를 담고 있는 복수개의 밀폐 셀;
외부 대기와 연결된 복수개의 개방 셀; 및
상기 밀폐 셀과 상기 개방 셀 사이, 또는 상기 복수개의 밀폐 셀 사이에 마련되어, 상기 밀폐 셀과 상기 개방 셀, 또는 상기 복수개의 밀폐 셀을 연결시켜주는 셀 벽을 포함하고,
상기 내부가스는 CO2를 포함하고,
상기 CO2함량은 몰 분율로 0 초과 0.1 이하인, 단열 성능이 향상된 냉장고.
A cabinet provided on the outermost side of the refrigerator;
Cavity forming the inner wall of the refrigerator; and
Including urethane provided between the outer box and the inner box,
The urethane is,
a plurality of closed cells containing gas therein;
a plurality of open cells connected to the external atmosphere; and
It includes a cell wall provided between the closed cell and the open cell or between the plurality of closed cells, connecting the closed cell and the open cell or the plurality of closed cells,
The internal gas includes CO 2 ,
A refrigerator with improved thermal insulation performance, wherein the CO 2 content is greater than 0 and less than or equal to 0.1 in mole fraction.
청구항 15에 있어서,
상기 우레탄의 열전도도(λurethane)가 17.6 내지 18.7 mW/m·K인, 단열 성능이 향상된 냉장고.
In claim 15,
A refrigerator with improved insulation performance, wherein the urethane has a thermal conductivity (λ urethane ) of 17.6 to 18.7 mW/m·K.
청구항 15에 있어서,
상기 내부 가스는, CP(Cyclopentane) 및 대기(Air)를 더 포함하는, 단열 성능이 향상된 냉장고.
In claim 15,
The internal gas further includes Cyclopentane (CP) and air. A refrigerator with improved insulation performance.
청구항 15에 있어서,
상기 우레탄의 밀도는 33 내지 37 kg/㎥인, 단열 성능이 향상된 냉장고.
In claim 15,
A refrigerator with improved insulation performance, wherein the density of the urethane is 33 to 37 kg/㎥.
청구항 15에 있어서,
상기 밀폐 셀의 평균 직경이 220 내지 270 ㎛인, 단열 성능이 향상된 냉장고.
In claim 15,
A refrigerator with improved thermal insulation performance, wherein the closed cell has an average diameter of 220 to 270 ㎛.
청구항 15에 있어서,
셀 벽의 평균 두께가 0.35 내지 0.5 ㎛인, 단열 성능이 향상된 냉장고.
In claim 15,
A refrigerator with improved thermal insulation performance, wherein the cell wall has an average thickness of 0.35 to 0.5 ㎛.
KR1020220050990A 2022-04-25 2022-04-25 Urethane with improved insulation performance and refrigerator using the same KR20230151370A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220050990A KR20230151370A (en) 2022-04-25 2022-04-25 Urethane with improved insulation performance and refrigerator using the same
PCT/KR2023/003010 WO2023210948A1 (en) 2022-04-25 2023-03-06 Urethane with improved insulation performance and refrigerator using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220050990A KR20230151370A (en) 2022-04-25 2022-04-25 Urethane with improved insulation performance and refrigerator using the same

Publications (1)

Publication Number Publication Date
KR20230151370A true KR20230151370A (en) 2023-11-01

Family

ID=88519191

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220050990A KR20230151370A (en) 2022-04-25 2022-04-25 Urethane with improved insulation performance and refrigerator using the same

Country Status (2)

Country Link
KR (1) KR20230151370A (en)
WO (1) WO2023210948A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742010A1 (en) * 1997-09-24 1999-03-25 Basf Ag Storage-stable emulsions for the production of fine-celled rigid foams based on isocyanate
CN101346420B (en) * 2005-10-21 2012-06-13 卡伯特公司 Aerogel based composites
KR20110079470A (en) * 2009-12-31 2011-07-07 고려대학교 산학협력단 Polyurethane foam-carbon nanotube composite and preparation method thereof
CN112074564A (en) * 2018-05-04 2020-12-11 科慕埃弗西有限公司 Improved thermal insulation foam

Also Published As

Publication number Publication date
WO2023210948A1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
KR101631717B1 (en) Composition for Rigid Polyurethane Foam and Rigid Polyurethane Foam
KR20120021979A (en) Rigid polyurethane foam having good insulation property and method for preparing the same
CN1724577A (en) Preparation of Expandable Graphite Filled High Density Rigid Polyurethane Foam
CN105524299B (en) Functionalization graphene and preparation method and with its fire-retardant cross-linked type polyurethane rigid foam
KR102557526B1 (en) A semi-nonflammable foam used as insulation
KR20230151370A (en) Urethane with improved insulation performance and refrigerator using the same
CN113604034B (en) Flame-retardant environment-friendly foamed plastic and preparation method thereof
US20230331897A1 (en) Expanded foam solution and thermosetting expanded foam having excellent flame retardancy using the same
KR20110079470A (en) Polyurethane foam-carbon nanotube composite and preparation method thereof
Bahrambeygi et al. Morphological and structural developments in nanoparticles polyurethane foam nanocomposite's synthesis and their effects on mechanical properties
CN1532213A (en) Hard polyurethane foam composite and low temperature heat preserving insulation material made therefrom
JP5546785B2 (en) Rigid polyurethane foam composition
JPH03243614A (en) Rigid polyurethane foam, its production and article made thereof
CN105175711B (en) Preparation method for polyhydric alcohol used for flame retardant polyurethane foaming plastic
JP3960624B2 (en) Insulating foam, method for producing the same, and insulating box
CN1468880A (en) Hard polyurethane foam material and insulator
KR102015093B1 (en) Cryogenic Insulation Panel And Method for Manufacturing the Same
KR20230174124A (en) Urethane and refrigerator comprising same
US20240263062A1 (en) Urethane having improved insulation performance and refrigerator having same applied thereto
CN214461373U (en) Foam material filling body with flame-retardant reinforced composite layer
CN114921088A (en) Modified polyurethane thermal insulation material for cold-chain logistics and preparation method thereof
US20230406989A1 (en) Urethane and refrigerator comprising same
KR20140083361A (en) Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same
CN114213642A (en) High-temperature-resistant and high-strength PET (polyethylene terephthalate) foam material as well as preparation method and application thereof
KR20190138973A (en) A manufacturing method of semi-inflammable insulation material

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20220425

PG1501 Laying open of application