KR20210068209A - Process for preparing PHB using mixed microbs - Google Patents
Process for preparing PHB using mixed microbs Download PDFInfo
- Publication number
- KR20210068209A KR20210068209A KR1020190157042A KR20190157042A KR20210068209A KR 20210068209 A KR20210068209 A KR 20210068209A KR 1020190157042 A KR1020190157042 A KR 1020190157042A KR 20190157042 A KR20190157042 A KR 20190157042A KR 20210068209 A KR20210068209 A KR 20210068209A
- Authority
- KR
- South Korea
- Prior art keywords
- phb
- strain
- medium
- culture
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims abstract description 114
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims abstract description 114
- 241000122230 Acinetobacter junii Species 0.000 claims abstract description 33
- 238000012258 culturing Methods 0.000 claims abstract description 31
- 241000607528 Aeromonas hydrophila Species 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 29
- 235000015097 nutrients Nutrition 0.000 claims description 13
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical group [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 claims description 10
- 239000001632 sodium acetate Substances 0.000 claims description 10
- 235000017281 sodium acetate Nutrition 0.000 claims description 10
- MFBOGIVSZKQAPD-UHFFFAOYSA-M sodium butyrate Chemical compound [Na+].CCCC([O-])=O MFBOGIVSZKQAPD-UHFFFAOYSA-M 0.000 claims description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 6
- 239000001888 Peptone Substances 0.000 claims description 3
- 108010080698 Peptones Proteins 0.000 claims description 3
- 229940041514 candida albicans extract Drugs 0.000 claims description 3
- 235000019319 peptone Nutrition 0.000 claims description 3
- 239000011734 sodium Substances 0.000 claims description 3
- 239000011780 sodium chloride Substances 0.000 claims description 3
- 239000012138 yeast extract Substances 0.000 claims description 3
- 235000012041 food component Nutrition 0.000 claims 1
- 244000005700 microbiome Species 0.000 abstract description 7
- 239000002609 medium Substances 0.000 description 47
- 239000002028 Biomass Substances 0.000 description 19
- 230000012010 growth Effects 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229920003023 plastic Polymers 0.000 description 9
- 239000004033 plastic Substances 0.000 description 9
- 210000004027 cell Anatomy 0.000 description 8
- 238000011534 incubation Methods 0.000 description 8
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000012851 eutrophication Methods 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000012136 culture method Methods 0.000 description 4
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 3
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 241000607534 Aeromonas Species 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920000704 biodegradable plastic Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 1
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 1
- PKAUICCNAWQPAU-UHFFFAOYSA-N 2-(4-chloro-2-methylphenoxy)acetic acid;n-methylmethanamine Chemical compound CNC.CC1=CC(Cl)=CC=C1OCC(O)=O PKAUICCNAWQPAU-UHFFFAOYSA-N 0.000 description 1
- JQMFQLVAJGZSQS-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-N-(2-oxo-3H-1,3-benzoxazol-6-yl)acetamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)NC1=CC2=C(NC(O2)=O)C=C1 JQMFQLVAJGZSQS-UHFFFAOYSA-N 0.000 description 1
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- CONKBQPVFMXDOV-QHCPKHFHSA-N 6-[(5S)-5-[[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]methyl]-2-oxo-1,3-oxazolidin-3-yl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C[C@H]1CN(C(O1)=O)C1=CC2=C(NC(O2)=O)C=C1 CONKBQPVFMXDOV-QHCPKHFHSA-N 0.000 description 1
- 101100283604 Caenorhabditis elegans pigk-1 gene Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 229920006328 Styrofoam Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000007514 bases Chemical class 0.000 description 1
- 229920006167 biodegradable resin Polymers 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003501 co-culture Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 150000002013 dioxins Chemical class 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 210000003495 flagella Anatomy 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000008261 styrofoam Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/62—Carboxylic acid esters
- C12P7/625—Polyesters of hydroxy carboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Virology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
본 발명은 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 포함하는 PHB(polyhydroxybutyrate) 생산용 조성물, 상기 PHB 생산용 조성물을 포함하는 PHB(polyhydroxybutyrate) 생산용 키트 및 상기 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주의 혼합균주를 부영양(feast) 배지와 빈영양(famine) 배지에서 순차적으로 반복하여 배양하는 단계를 포함하는 PHB(polyhydroxybutyrate)의 제조방법에 관한 것이다. 본 발명에서 제공하는 PHB 생산용 조성물을 이용하면, 보다 효과적이면서도 높은 수율로 PHB를 생산할 수 있으므로, 미생물을 이용한 유용성분의 생산에 널리 활용될 수 있을 것이다.The present invention provides a composition for producing polyhydroxybutyrate (PHB) comprising the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain, a PHB (polyhydroxybutyrate) production kit comprising the PHB production composition, and a mixed strain of the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain It relates to a method for producing polyhydroxybutyrate (PHB) comprising the step of sequentially and repeatedly culturing in a eutrophic (feast) medium and a famine (famine) medium. By using the composition for producing PHB provided in the present invention, since PHB can be produced more effectively and in high yield, it will be widely used in the production of useful components using microorganisms.
Description
본 발명은 혼합균주를 이용한 PHB의 생산방법에 관한 것으로, 보다 구체적으로 본 발명은 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 포함하는 PHB(polyhydroxybutyrate) 생산용 조성물, 상기 PHB 생산용 조성물을 포함하는 PHB(polyhydroxybutyrate) 생산용 키트 및 상기 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주의 혼합균주를 부영양(feast) 배지와 빈영양(famine) 배지에서 순차적으로 반복하여 배양하는 단계를 포함하는 PHB(polyhydroxybutyrate)의 제조방법에 관한 것이다.The present invention relates to a method for producing PHB using a mixed strain, and more specifically, the present invention relates to a composition for producing PHB (polyhydroxybutyrate) comprising Acinetobacter junii BP25 strain and Aeromonas hydrophila strain, PHB comprising the PHB production composition ( A method for producing polyhydroxybutyrate (PHB) comprising the step of culturing a kit for production of polyhydroxybutyrate and a mixed strain of the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain in a eutrophic (feast) medium and a famine (famine) medium. is about
플라스틱 소재는 현대인의 풍요로운 일상생활과 산업발달에 큰 공헌을 해 온 반면, 대량으로 발생되는 각종 폐비닐, 스티로폼, 플라스틱 용기 등의 소각이나 매립에 따른 환경호르몬 누출, 맹독성의 다이옥신 검출, 폐기물의 불완전 연소에 의한 대기오염 발생 등과 같은 심각한 환경오염의 원인으로 대두되고 있다. 이러한 문제를 해결하기 위하여 쓸 때는 보통 플라스틱처럼 간편하게 쓸 수 있고 사용 후에는 토양 중의 미생물에 의해 썩는 환경 친화적이고 무해한 플라스틱인 생분해성 플라스틱의 상용화 및 의무화의 압력이 거세지면서 독일, 이태리, 미국 등 선진 각국에서는 쇼핑백, 플라스틱제 병의 생분해성 수지 사용을 의무화하는 등 생분해성 플라스틱의 실용화가 활발히 진행되고 있다.While plastic materials have contributed greatly to the affluent daily life and industrial development of modern people, environmental hormone leakage due to incineration or landfill of various waste vinyl, Styrofoam, and plastic containers that are generated in large quantities, detection of highly toxic dioxins, and incomplete waste It is emerging as a cause of serious environmental pollution such as air pollution caused by combustion. In order to solve this problem, as the pressure to commercialize and make mandatory biodegradable plastics, which are environmentally friendly and harmless plastics that can be used as easily as ordinary plastics and rot by microorganisms in the soil after use, is growing, advanced countries such as Germany, Italy, and the United States Practical use of biodegradable plastics is actively progressing, such as making it mandatory for shopping bags and plastic bottles to use biodegradable resins.
PHB는 미생물에 의해 합성되는 에너지 저장 고분자물질로서 기존의 플라스틱원료가 되는 화학합성 고분자와 물리적 성질이 비슷하면서, 또한, 생분해성이 매우우수하여 토양미생물에 의하여 짧은시간 내에 물과 이산화탄소로 완전분해되는 환경친화적 플라스틱 원료이다. 그러나, 이러한 PHB의 친환경 플라스틱 원료로서의 높은 이용가치에 비하여 상대적으로 범용적인 비분해성 일반 플라스틱원료보다 생산단가가 높아 고가의 의료용품 외에는 그 사용에 있어 매우 한계가 있는 실정이다.PHB is an energy-storing polymer synthesized by microorganisms that has similar physical properties to chemically synthesized polymers used as plastic raw materials, and has excellent biodegradability, so that it can be completely decomposed into water and carbon dioxide by soil microorganisms within a short time. It is an environmentally friendly plastic raw material. However, compared to the high use value of PHB as an eco-friendly plastic raw material, the production cost is higher than that of general-purpose, non-degradable general plastic raw material, so there is a very limit in its use except for expensive medical supplies.
자연계에 존재하는 대부분의 미생물이 PHB를 에너지 저장물질로서 주변환경이 열악한 상황 하에서는 세포 내에 건조균체 중량의 20-40% 정도로만 축적할 수 있는 것으로 알려져 있었으나, 최근 PHB의 상업화를 준비중인 국내외 일부 기업체 및 연구기관 등에서는 대장균에 PHB 생합성 유전자를 전이 시키는 방법 등을 이용한 더욱 진보된 생물공학적 기법 및 유전공학 기법을 사용하여 PHB를 건조균체 중량의 80% 이상까지 축적 가능케 한 것으로 알려져 있다. 이같은 PHB 생산을 위하여 주로 알칼리게네스 유트로퍼스, 알칼리게네스 레이터스 등의 균주를 사용하는 방법이 개발되고 있으나, 최근에는 알칼리게네스 유트로퍼스의 PHB합성 유전자를 성장속도가 빠르고 산업적으로 가장 널리 이용되고 있는 대장균에 형질전환하여 PHB의 생산성을 높이기 위한 연구가 활발히 진행되고 있다. 예를 들어, 한국공개특허 제10-2004-0046678호에는 PHB의 생산성을 향상시킬 수 있는 신규한 균주를 이용한 기술이 개시되어 있고, 한국등록특허 제10-0454250호에는 3단계 배양방법으로 형질전환 대장균을 배양하여 PHB의 생산성을 향상시키는 방법이 개시되어 있다.Most microorganisms in nature use PHB as an energy storage material and it was known that they can only accumulate about 20-40% of the dry cell weight in cells under poor environmental conditions. However, some domestic and foreign companies preparing for commercialization of PHB recently and Research institutes are known to have enabled the accumulation of PHB up to 80% or more of the dry cell weight by using more advanced bioengineering and genetic engineering techniques, such as the method of transferring the PHB biosynthesis gene to E. coli. For the production of such PHB, a method using mainly strains such as Alkaligenes eutrophus and Alkaligenes reuters has been developed, but recently, the PHB synthesis gene of Alkaligenes eutrophus has a fast growth rate and is the most industrially Research to increase the productivity of PHB by transforming the widely used E. coli is being actively conducted. For example, Korean Patent Application Laid-Open No. 10-2004-0046678 discloses a technique using a novel strain capable of improving the productivity of PHB, and Korean Patent No. 10-0454250 discloses transformation with a three-step culture method. A method for improving the productivity of PHB by culturing E. coli is disclosed.
이러한 배경하에서, 본 발명자들은 PHB의 생산성을 향상시키는 방법을 개발하고자 예의 연구노력한 결과, Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주의 혼합균주를 두 가지 배지에서 순차적으로 반복배양하는 방법을 사용할 경우, PHB의 생산성을 현저히 향상시킬 수 있음을 확인하고, 본 발명을 완성하였다.Under this background, the present inventors have made intensive research efforts to develop a method for improving the productivity of PHB. As a result, when using a method of sequentially repeating a mixed strain of Acinetobacter junii BP25 strain and Aeromonas hydrophila strain in two media, PHB It was confirmed that productivity can be significantly improved, and the present invention was completed.
본 발명의 주된 목적은 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 포함하는 PHB(polyhydroxybutyrate) 생산용 조성물을 제공하는 것이다.The main object of the present invention is to provide a composition for producing PHB (polyhydroxybutyrate) comprising the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain.
본 발명의 다른 목적은 상기 PHB 생산용 조성물을 포함하는 PHB(polyhydroxybutyrate) 생산용 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for producing PHB (polyhydroxybutyrate) comprising the composition for producing PHB.
본 발명의 또 다른 목적은 상기 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주의 혼합균주를 부영양(feast) 배지와 빈영양(famine) 배지에서 순차적으로 반복하여 배양하는 단계를 포함하는 PHB(polyhydroxybutyrate)의 제조방법을 제공하는 것이다.Another object of the present invention is the production of polyhydroxybutyrate (PHB) comprising the step of sequentially and repeatedly culturing a mixed strain of the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain in a nutrient medium and a famine medium. to provide a way
상술한 목적을 달성하기 위한 본 발명의 일 실시양태는 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 포함하는 PHB(polyhydroxybutyrate) 생산용 조성물을 제공한다.One embodiment of the present invention for achieving the above object provides a composition for producing PHB (polyhydroxybutyrate) comprising the Acinetobacter junii BP25 strain and Aeromonas hydrophila strain.
본 발명자들은 PHB의 생산성을 향상시키기 위하여, 다양한 연구를 수행하던 중, 종래에 PHB를 생산하는 것으로 알려진 균주를 조합하여 배양할 경우, 균주의 성장율이 현저히 향상됨을 확인하였다. 즉, 지금까지 알려진 PHB 생산 균주 중에서 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주는 이들 각각을 개별적으로 배양할 경우 보다도, 균체수를 기준으로 1:1로 혼합한 후에 배양할 경우에 균주의 성장율이 현저히 향상됨을 확인하였다. 균체의 성장율이 향상되어 균체의 바이오매스가 증가되면, 이같은 균체로부터 생산되는 PHB의 생산성이 증가되므로, 상기 2종 균주를 포함하는 조성물은 PHB의 생산성이 향상된 PHB 생산용 조성물로 사용될 수 있다.In order to improve the productivity of PHB, the present inventors confirmed that the growth rate of the strain was remarkably improved when a combination of a strain known to produce PHB was conventionally cultured while conducting various studies. That is, among the PHB-producing strains known so far, the Acinetobacter junii BP25 strain and Aeromonas hydrophila strain significantly improved the growth rate of the strains when cultured after mixing 1:1 based on the number of cells than when culturing each of them individually. was confirmed. When the growth rate of the cells is improved and the biomass of the cells is increased, the productivity of PHB produced from such cells is increased, so the composition comprising the two strains can be used as a composition for producing PHB with improved productivity of PHB.
본 발명의 용어 "Acinetobacter junii BP25 균주"란, 패혈증 또는 호흡기 질환을 유발시키는 것으로 알려진 병원균의 일종인 Acinetobacter junii 균주의 아종으로서 알려져 있으며, PHB를 생산하는 능력을 갖는다고 알려져 있다. The term "Acinetobacter junii BP25 strain" of the present invention is known as a subspecies of Acinetobacter junii strain, which is a type of pathogen known to cause sepsis or respiratory disease, and is known to have the ability to produce PHB.
본 발명의 용어 "Aeromonas hydrophila 균주"란, 에어로모나스 속에 속하는 그람음성의 통지성형기성단가균의 일종으로서, 편모를 지니는 수생균의 형태이며, 포도당을 발효시켜서 다양한 유기가스를 생산하며, 사람에서는 병원균의 일종인 것으로 알려져 있고, PHB를 생산하는 능력을 갖는다고 알려져 있다. The term " Aeromonas hydrophila strain " as used in the present invention is a kind of Gram-negative globular bacterium belonging to the genus Aeromonas, in the form of aquatic bacteria with flagella, and produces various organic gases by fermenting glucose, and in humans, It is known to be a kind, and is known to have the ability to produce PHB.
본 발명의 다른 실시양태는 상기 PHB 생산용 조성물을 포함하는 PHB(polyhydroxybutyrate) 생산용 키트를 제공한다.Another embodiment of the present invention provides a kit for producing polyhydroxybutyrate (PHB) comprising the composition for producing PHB.
본 발명의 PHB 생산용 조성물을 포함하는 PHB 생산용 키트는 상기 조성물을 이용한 PHB 생산성을 증가시키는데 필요한 다양한 구성요소를 포함할 수 있다. 이러한 구성요소는 특별히 이에 제한되지 않으나, 상기 조성물에 포함된 균주의 배양에 사용되는 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치가 포함될 수 있다. 일 예로서, 배양용기, 배양용 배지, 배양용 진탕배양기, 배양용 타이머 등이 될 수 있다.A kit for producing PHB comprising the composition for producing PHB of the present invention may include various components necessary to increase PHB productivity using the composition. These components are not particularly limited thereto, but may include one or more other component compositions, solutions or devices suitable for culturing the strains included in the composition. As an example, it may be a culture vessel, a culture medium, a shaking incubator for culture, a culture timer, and the like.
본 발명의 또 다른 실시양태는 상기 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주의 혼합균주를 이용하여 PHB를 생산하는 방법을 제공한다.Another embodiment of the present invention provides a method for producing PHB using a mixed strain of the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain.
구체적으로, 본 발명의 PHB 생산방법은 (a) Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 동일수준으로 포함하는 혼합균주를 수득하는 단계; (b) 상기 수득한 혼합균주를 부영양(feast) 배지에 접종하고 배양한 다음, 빈영양(famine) 배지에 접종하고 배양하는 과정을 순차적으로 반복하여 수행하는 단계; 및. (c) 배양이 종료된 후, 배양물로부터 PHB를 회수하는 단계를 포함한다.Specifically, the PHB production method of the present invention comprises the steps of (a) obtaining a mixed strain containing the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain at the same level; (b) inoculating and culturing the obtained mixed strain in a eutrophic medium, and then sequentially repeating the process of inoculating and culturing in a famine medium; and. (c) after the end of the culture, recovering the PHB from the culture.
본 발명의 용어 "배양"이란, 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 것을 의미하며 플라스크배양(flask culture), 회분배양(batch culture)등이 포함되나 특별히 이에 제한되는 것은 아니다.The term "culture" of the present invention means to grow microorganisms in an appropriately artificially controlled environmental condition, and includes flask culture, batch culture, etc., but is not particularly limited thereto.
본 발명에 있어서, 상기 (b) 단계의 부영양(feast) 배지는 상기 균주를 성장시킬 수 잇는 배지로서, 탄소원과 다양한 영양성분을 포함하는 배지인 것으로 해석될 수 있다.In the present invention, the eutrophic (feast) medium of step (b) is a medium capable of growing the strain, and may be interpreted as a medium containing a carbon source and various nutrients.
상기 부영양 배지에 포함되는 탄소원은 특별히 이에 제한되지 않으나, 일 예로서, 본 발명에서 제공하는 2종의 PHB 생산균주의 성장을 보조할 수 있는 탄소원이 될 수 있고, 다른 예로서, 소듐아세테이트, 소듐부티레이트 등을 단독으로 사용하거나 또는 조합하여 사용한 것이 될 수 있다.The carbon source contained in the eutrophic medium is not particularly limited thereto, but as an example, it may be a carbon source that can support the growth of the two PHB-producing strains provided in the present invention, and as another example, sodium acetate, Sodium butyrate and the like may be used alone or in combination.
상기 부여양 배지에 포함되는 영양성분은 특별히 이에 제한되지 않으나, 일 예로서, 본 발명에서 제공하는 2종의 PHB 생산균주의 성장을 보조할 수 있는 다양한 미네랄 성분이 될 수 있고, 다른 예로서, NaCl, Na2HPO4, KH2PO4, (NH4)2HPO4, MgSO47H2O, 펩톤(peptone), 효모 추출물(yeast extract) 등을 단독으로 사용하거나 또는 조합하여 사용한 것이 될 수 있다.Nutrient components included in the feeding medium are not particularly limited thereto, but as an example, may be various mineral components that can support the growth of the two PHB-producing strains provided in the present invention, and as another example, NaCl, Na 2 HPO 4 , KH 2 PO 4 , (NH 4 ) 2 HPO 4 , MgSO 4 7H 2 O, peptone, yeast extract, etc. may be used alone or in combination. have.
상기 부영양 배지와 대비되는 빈영양 배지는 상기 균주의 성장에는 별다른 영향을 미치지 않고, 상기 균주에서 생산되는 PHB의 생산성을 향상시키는 배지인 것으로 해석될 수 있다.The oligotrophic medium in contrast to the eutrophic medium has no significant effect on the growth of the strain, and can be interpreted as a medium that improves the productivity of PHB produced in the strain.
상기 빈영양 배지는 탄소원만을 포함하는데, 이에 포함되는 탄소원은 앞서 설명한 바와 동일하다.The oligotrophic medium contains only a carbon source, and the carbon source included therein is the same as described above.
상기 (b) 단계의 배양은 부영양 배지에서 배양한 다음 빈영양 배지에서 배양하고, 이후 다시 부영양 배지에서 배양하는 방식으로, 두 가지 배지를 사용하여 순차적으로 반복배양하는 방식으로 수행될 수 있다. The culturing in step (b) can be performed by culturing in a nutrient medium, then culturing in a nutrient medium, and then culturing in a nutrient medium again, sequentially repeating culture using two mediums. .
이때, 부영양 배지에서 배양하는 시간과 빈영양 배지에서 배양하는 시간은 동일하게 설정하여야 하는데, 이들 배양시간은 특별히 이에 제한되지 않으나, 일 예로서, 36 내지 60시간이 될 수 있고, 다른 예로서, 72 내지 54시간이 될 수 있으며, 또 다른 예로서, 48시간이 될 수 있다.At this time, the time of culturing in the nutrient medium and the time of culturing in the nutrient medium should be set to be the same. These incubation times are not particularly limited thereto, but as an example, may be 36 to 60 hours, and as another example , may be 72 to 54 hours, and as another example, may be 48 hours.
아울러, 상기 배양을 수행하는 온도조건은 특별히 이에 제한되지 않으나, 일 예로서, 20 내지 45℃가 될 수 있고, 다른 예로서, 25 내지 40℃가 될 수 잇으며, 또 다른 예로서 30 내지 35℃가 될 수 있다.In addition, the temperature conditions for performing the culture are not particularly limited thereto, but as an example, may be 20 to 45 ℃, as another example, may be 25 to 40 ℃, as another example, 30 to 35 It can be °C.
또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양과정에서 배양물에 적절한 방식에 의해 회분식, 유가식 또는 연속식으로 첨가될 수 있으나, 특별히 이에 제한되지는 않는다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다.In addition, precursors suitable for the culture medium may be used. The above-mentioned raw materials may be added in a batch, fed-batch or continuous manner by an appropriate method to the culture during the culturing process, but is not particularly limited thereto. Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia or acid compounds such as phosphoric acid or sulfuric acid may be used in an appropriate manner to adjust the pH of the culture.
또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예, 공기)를 주입한다. 배양물의 온도는 보통 27℃ 내지 37℃, 바람직하게는 30℃ 내지 35℃이다. 배양은 상기 펩타이드의 생성량이 최대로 얻어질 때까지 계속한다. 이러한 목적으로 보통 10 내지 100시간에서 달성된다.In addition, an antifoaming agent such as a fatty acid polyglycol ester may be used to inhibit the formation of bubbles. Oxygen or oxygen-containing gas (eg air) is injected into the culture to maintain aerobic conditions. The temperature of the culture is usually 27°C to 37°C, preferably 30°C to 35°C. Cultivation is continued until the maximum amount of the peptide is obtained. This is usually achieved in 10 to 100 hours for this purpose.
상기 (c) 단계의 PHB 회수는 투석, 원심분리, 여과, 용매추출, 크로마토그래피, 결정화 등의 당업계에 공지된 방법에 의해 수행될 수 있다. 예를 들면, 상기 배양물을 원심분리하여 형질전환체가 제거된 상등액을 수득하고, 상기 수득한 상등액을 용매추출법에 적용하여 목적하는 PHB를 회수하는 방법을 사용할 수 있고, 이외에도 상기 목적하는 PHB의 특성에 맞추어 공지된 실험방법을 조합하여 상기 PHB를 회수할 수 있는 방법이라면 특별히 제한되지 않고 사용될 수 있다.The PHB recovery of step (c) may be performed by methods known in the art, such as dialysis, centrifugation, filtration, solvent extraction, chromatography, and crystallization. For example, a method of recovering the desired PHB by centrifuging the culture to obtain a supernatant from which the transformant is removed, and applying the obtained supernatant to a solvent extraction method can be used, in addition to the characteristics of the desired PHB Any method capable of recovering the PHB by combining known experimental methods in accordance with the present invention is not particularly limited and may be used.
본 발명에서 제공하는 PHB 생산용 조성물을 이용하면, 보다 효과적이면서도 높은 수율로 PHB를 생산할 수 있으므로, 미생물을 이용한 유용성분의 생산에 널리 활용될 수 있을 것이다.By using the composition for producing PHB provided in the present invention, since PHB can be produced more effectively and in high yield, it will be widely used in the production of useful components using microorganisms.
도 1은 2종의 균주(Acinetobacter junii BP25 균주, Aeromonas hydrophila 균주)를 각각 개별적으로 또는 공동배양할 경우, 배양시간의 경과에 따른 바이오매스의 수준변화를 나타내는 그래프이다.
도 2는 Acinetobacter junii BP25 균주를 2회의 Cycle-2 조건으로 배양하면서 배양시간의 경과에 따른, 탄소원 흡수율의 변화를 나타내는 그래프이다.
도 3은 Aeromonas hydrophila 균주를 2회의 Cycle-2 조건으로 배양하면서 배양시간의 경과에 따른, 탄소원 흡수율의 변화를 나타내는 그래프이다.
도 4는 공동배양 균주를 2회의 Cycle-2 조건으로 배양하면서 배양시간의 경과에 따른, 탄소원 흡수율의 변화를 나타내는 그래프이다.
도 5a는 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 각각 개별적으로 배양하거나 또는 공동배양할 경우, 배지의 pH 변화를 분석한 결과를 나타내는 그래프이다.
도 5b는 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 각각 개별적으로 배양하거나 또는 공동배양할 경우, 배지내 용존산소의 변화를 분석한 결과를 나타내는 그래프이다.1 is a graph showing the change in the level of biomass with the passage of culture time when two strains ( Acinetobacter junii BP25 strain, Aeromonas hydrophila strain) are individually or co-cultured.
Figure 2 is a graph showing the change in the carbon source absorption rate with the lapse of incubation time while culturing the Acinetobacter junii BP25 strain under Cycle-2 conditions twice.
3 is a graph showing the change in carbon source absorption rate with the lapse of incubation time while culturing Aeromonas hydrophila strain under Cycle-2 conditions twice.
4 is a graph showing the change in the carbon source absorption rate with the lapse of incubation time while culturing the co-cultured strain under Cycle-2 conditions twice.
5a is a graph showing the results of analyzing the pH change of the medium when Acinetobacter junii BP25 strain and Aeromonas hydrophila strain are individually or co-cultured, respectively.
Figure 5b is a graph showing the results of analyzing the change in dissolved oxygen in the medium when Acinetobacter junii BP25 strain and Aeromonas hydrophila strain are individually or co-cultured, respectively.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.
실시예 1: PHB 생산균주의 배양Example 1: Culture of PHB-producing strains
PHB 생산특성을 나타내는 것으로 알려진 2종의 균주(Acinetobacter junii BP25 균주, Aeromonas hydrophila 균주)를 각각 개별적으로 또는 공동배양하고, 배양이 종료된 후, 배양물에 포함된 바이오매스의 수준을 분석하였다(도 1). 상기 바이오매스의 수준은 하기 Gompertz equation 응용공식(1)에 의해 산출되었다. Two strains (Acinetobacter junii BP25 strain, Aeromonas hydrophila strain) known to exhibit PHB production characteristics were each individually or co-cultured, and after the culture was terminated, the level of biomass contained in the culture was analyzed (Fig. One). The level of biomass was calculated by the following Gompertz equation application formula (1).
f = a x Exp (-Exp (b*2.71828 x (c-x)/a+1))+d ......(1)f = a x Exp (-Exp (b*2.71828 x (c-x)/a+1))+d ......(1)
상기 식에서,In the above formula,
f는 biomass concentration (g/L)를 나타내고; f represents the biomass concentration (g/L);
a는 maximum biomass growth (g/L)를 나타내며; a represents maximum biomass growth (g/L);
b는 maximum growth rate (g/L-h)를 나타내고; b represents the maximum growth rate (g/L-h);
c는 lag phase (h)를 나타내며; c represents the lag phase (h);
x는 time (h)를 나타내고; x represents time (h);
d는 initial biomass concentration (g/L)를 나타낸다.d represents the initial biomass concentration (g/L).
도 1은 2종의 균주(Acinetobacter junii BP25 균주, Aeromonas hydrophila 균주)를 각각 개별적으로 또는 공동배양할 경우, 배양시간의 경과에 따른 바이오매스의 수준변화를 나타내는 그래프이다.1 is a graph showing the change in the level of biomass with the passage of culture time when two strains ( Acinetobacter junii BP25 strain, Aeromonas hydrophila strain) are individually or co-cultured.
도 1에서 보듯이, Acinetobacter junii BP25 균주의 최대 성장율은 0.25/h이고, Aeromonas hydrophila 균주의 최대 성장율은 0.17/h이며, 공동배양 균주의 최대 성장율은 0.30/h로 확인되었다.As shown in FIG. 1, the maximum growth rate of the Acinetobacter junii BP25 strain was 0.25/h, the maximum growth rate of the Aeromonas hydrophila strain was 0.17/h, and the maximum growth rate of the co-cultured strain was 0.30/h.
상기 결과로부터, 공동배양 균주는 개별적으로 배양된 각 균주 보다도 성장율이 우수하므로, 상대적으로 우수한 바이오매스의 생산량을 나타냄을 알 수 있었다.From the above results, it can be seen that the co-cultured strains exhibit a relatively good production of biomass because the growth rate is superior to that of each strain individually cultured.
실시예 2: Example 2: Acinetobacter juniiAcinetobacter junii BP25 균주의 배양 Culture of BP25 strain
실시예 2-1: 균주배양Example 2-1: Strain culture
먼저, 탄소원(소듐아세테이트 6g/L 및 소듐부티레이트 4g/L)과 기타 영양성분(NaCl 1 g/L, Na2HPO4 0.37 g/L, KH2PO4 0.1 g/L, (NH4)2HPO4 0.05g/L, MgSO47H2O 0.02 g/L, peptone 0.5 g/L, yeast extract 0.05 g/L)을 포함하는 부영양(feast) 배지(pH 7.0±0.2)와 탄소원(소듐아세테이트 6g/L 및 소듐부티레이트 4g/L) 만을 포함하는 빈영양(famine) 배지(pH 7.0±0.2)를 각각 준비하였다.First, a carbon source (sodium acetate 6g/L and sodium butyrate 4g/L) and other nutrients (NaCl 1 g/L, Na 2 HPO 4 0.37 g/L, KH 2 PO 4 0.1 g/L, (NH 4 ) 2 A eutrophic medium (pH 7.0±0.2) and a carbon source (sodium acetate) containing HPO 4 0.05 g/L, MgSO 4 7H 2 O 0.02 g/L, peptone 0.5 g/L, yeast extract 0.05 g/L) A famine medium (pH 7.0±0.2) containing only 6 g/L and sodium butyrate 4 g/L) was prepared, respectively.
상기 준비된 부영양 배지에 10%(v/v)의 Acinetobacter junii BP25 균주를 접종하고, 호기성 조건에서 48시간 동안 배양한 다음, 배지를 빈영양 배지로 교체하고 호기성 조건에서 48시간 동안 배양하였다(Cycle-1). 이어, 다시 배지를 부영양 배지로 교체하고 호기성 조건에서 48시간 동안 배양한 다음, 배지를 빈영양 배지로 교체하고 호기성 조건에서 48시간 동안 배양하였다(Cycle-2).The prepared eutrophic medium was inoculated with 10% (v/v) of Acinetobacter junii BP25 strain, and cultured for 48 hours under aerobic conditions, then the medium was replaced with a nutrient-dense medium and cultured under aerobic conditions for 48 hours (Cycle). -One). Then, the medium was again replaced with a eutrophic medium and cultured under aerobic conditions for 48 hours, then the medium was replaced with a oligotrophic medium and cultured under aerobic conditions for 48 hours (Cycle-2).
실시예 2-2: 탄소원 분석Example 2-2: Carbon Source Analysis
상기 실시예 2-1의 방법으로 배양을 진행하면서, 배양시간의 경과에 따른, 탄소원의 배지내 농도변화 및 이용율을 측정하였다(도 2).While culturing in the method of Example 2-1, changes in the concentration and utilization rate of the carbon source in the medium according to the lapse of culture time were measured (FIG. 2).
도 2는 Acinetobacter junii BP25 균주를 2회의 Cycle-2 조건으로 배양하면서 배양시간의 경과에 따른, 탄소원 흡수율의 변화를 나타내는 그래프이다.Figure 2 is a graph showing the change in the carbon source absorption rate with the lapse of incubation time while culturing the Acinetobacter junii BP25 strain under Cycle-2 conditions twice.
도 2에서 보듯이, 부영양 단계에서는 소듐아세테이트의 최대 이용율은 약 75%이고, 소듐부티레이트의 최대 이용율은 약 68%를 나타냄을 확인하였다. 반면, 빈영양 단계에서는 소듐아세테이트의 최대 이용율은 약 69%이고, 소듐부티레이트의 최대 이용율은 약 61%를 나타냄을 확인하였다.As shown in Figure 2, in the eutrophic stage, it was confirmed that the maximum utilization of sodium acetate was about 75%, and the maximum utilization of sodium butyrate was about 68%. On the other hand, in the oligotrophic stage, it was confirmed that the maximum utilization of sodium acetate was about 69%, and the maximum utilization of sodium butyrate was about 61%.
실시예 2-3: PHB 생산성 분석Example 2-3: PHB Productivity Analysis
상기 실시예 2-1의 방법으로부터 수득한 배양물에서 생성된 PHB의 생산성을 분석하였다(표 1). 상기 PHB의 생산성 분석은 배양물로부터 PHB를 분리정제하고, 분리정제된 PHB의 수준을 HPLC를 사용하여 정량분석함으로써 수행되었다.The productivity of PHB produced in the culture obtained from the method of Example 2-1 was analyzed (Table 1). The productivity analysis of the PHB was performed by separating and purifying PHB from the culture, and quantitatively analyzing the level of the separated and purified PHB using HPLC.
이때. PHB의 분리정제는 다음과 같이 수행되었다: 먼저, 배양물을 원심분리(4℃, 3000 x g, 10분)하여, 침전된 바이오매스를 수득하고, 이를 70 % 에탄올로 세척한 다음 다시 원심분리하여 불순물이 제거된 바이오매스를 수득하였다. 상기 수득한 바이오매스에 동일부피의 클로로포름과 10% 차염소산나트륨을 가하고, 진탕반응(120 rpm, 35±0.2℃, 3시간)시켜서, 바이오매스를 분쇄한 다음, PHB를 포함하는 클로로포름 하부층 분획을 수집하였다. 상기 수집한 클로로포름 하부층 분획에 차가운 메탄올을 가하여 침전물을 형성하고, 이를 원심분리하여 침전물을 회수한 다음 이를 건조하여, PHB를 분리정제하였다.At this time. Separation and purification of PHB was performed as follows: First, the culture was centrifuged (4° C., 3000 x g, 10 minutes) to obtain a precipitated biomass, which was washed with 70% ethanol and then centrifuged again. A biomass from which impurities were removed was obtained. Equal volumes of chloroform and 10% sodium hypochlorite were added to the obtained biomass, followed by a shaking reaction (120 rpm, 35±0.2° C., 3 hours) to pulverize the biomass, and then the chloroform lower layer fraction containing PHB was obtained. collected. Cold methanol was added to the collected chloroform lower layer fraction to form a precipitate, which was centrifuged to recover the precipitate, and then dried to separate and purify PHB.
상기 분리정제된 PHB의 정량분석은 HPLC를 사용하여 수행되었는데, 대략적으로, 상기 분리정제된 PHB 시료를 황산에 용해시켜 수득한 용액을 90℃에서 30분 동안 가열하여 반응물을 수득하고, 수득한 반응물을 대상으로 HPLC 분석(Aminex HPX-87H 컬럼 (Bio-Rad Laboratories, USA), 210 nm 자외선 검출기(Waters 2487, MA, USA) 및 5mM H2SO4 이동상)을 수행하였다.Quantitative analysis of the separated and purified PHB was performed using HPLC. Roughly, a solution obtained by dissolving the separated and purified PHB sample in sulfuric acid was heated at 90° C. for 30 minutes to obtain a reactant, and the obtained reactant HPLC analysis (Aminex HPX-87H column (Bio-Rad Laboratories, USA), 210 nm UV detector (Waters 2487, MA, USA) and 5 mM H2SO4 mobile phase) was performed on the .
상기 표 1에서 보듯이, 부영양 단계에서는 바이오매스가 급격하게 증식되었으나, PHB의 최대수율은 0.41 g/L를 나타내었고, 빈영양 단계에서는 바이오매스의 증식이 확인되지 않았으나, PHB의 최대수율은 1.82 g/L를 나타냄을 확인하였다.As shown in Table 1, biomass was rapidly increased in the eutrophic stage, but the maximum yield of PHB was 0.41 g/L, and the growth of biomass was not confirmed in the oligotrophic stage, but the maximum yield of PHB was It was confirmed that 1.82 g/L was shown.
상기 도 2 및 표 1의 결과로부터, Acinetobacter junii BP25 균주의 배양시 부영양 단계에서는 균체의 성장이 수행되었고, 빈영양 단계에서는 PHB의 생산이 수행된 것으로 분석되었다.From the results of FIG. 2 and Table 1, it was analyzed that the growth of the cells was performed in the eutrophic stage and the production of PHB was performed in the oligotrophic stage when the Acinetobacter junii BP25 strain was cultured.
실시예 3: Example 3: Aeromonas hydrophilaAeromonas hydrophila 균주의 배양 culture of strains
실시예 3-1: 균주배양Example 3-1: Strain culture
Acinetobacter junii BP25 균주 대신에, Aeromonas hydrophila 균주를 사용하는 것을 제외하고는, 실시예 2-1과 동일한 방법으로 균주를 배양하였다.The strain was cultured in the same manner as in Example 2-1, except that the Aeromonas hydrophila strain was used instead of the Acinetobacter junii BP25 strain.
실시예 3-2: 탄소원 분석Example 3-2: Carbon Source Analysis
상기 실시예 3-1의 방법으로 배양을 진행하면서, 배양시간의 경과에 따른, 탄소원의 배지내 농도변화 및 이용율을 측정하였다(도 3).While culturing in the method of Example 3-1, changes in the concentration and utilization rate of the carbon source in the medium were measured according to the lapse of culture time (FIG. 3).
도 3은 Aeromonas hydrophila 균주를 2회의 Cycle-2 조건으로 배양하면서 배양시간의 경과에 따른, 탄소원 흡수율의 변화를 나타내는 그래프이다.3 is a graph showing the change in carbon source absorption rate with the lapse of incubation time while culturing Aeromonas hydrophila strain under Cycle-2 conditions twice.
도 3에서 보듯이, 부영양 단계에서는 소듐아세테이트의 최대 이용율은 약 67%이고, 소듐부티레이트의 최대 이용율은 약 52%를 나타냄을 확인하였다. 반면, 빈영양 단계에서는 소듐아세테이트의 최대 이용율은 약 61%이고, 소듐부티레이트의 최대 이용율은 약 44%를 나타냄을 확인하였다.As shown in Figure 3, in the eutrophic stage, it was confirmed that the maximum utilization of sodium acetate was about 67%, and the maximum utilization of sodium butyrate was about 52%. On the other hand, in the oligotrophic stage, it was confirmed that the maximum utilization of sodium acetate was about 61%, and the maximum utilization of sodium butyrate was about 44%.
실시예 3-3: PHB 생산성 분석Example 3-3: PHB Productivity Analysis
상기 실시예 2-1의 방법으로부터 수득한 배양물 대신에, 상기 실시예 3-1의 방법으로부터 수득한 배양물을 사용하는 것을 제외하고는, 상기 실시예 2-3과 동일한 방법으로 PHB의 생산성을 분석하였다(표 2).PHB productivity in the same manner as in Example 2-3, except that the culture obtained from the method of Example 3-1 was used instead of the culture obtained from the method of Example 2-1. were analyzed (Table 2).
상기 표 2에서 보듯이, 부영양 단계에서는 바이오매스가 급격하게 증식되었으나, PHB의 수율은 0.17 g/L를 나타내었고, 빈영양 단계에서는 바이오매스의 증식이 확인되지 않았으나, PHB의 수율은 1.12 g/L를 나타냄을 확인하였다.As shown in Table 2, in the eutrophic stage, the biomass was rapidly proliferated, but the yield of PHB was 0.17 g/L, and in the oligotrophic stage, the growth of biomass was not confirmed, but the yield of PHB was 1.12 g It was confirmed that /L was represented.
상기 도 3 및 표 2의 결과로부터, Aeromonas hydrophila 균주의 배양시에도 역시 부영양 단계에서는 균체의 성장이 수행되었고, 빈영양 단계에서는 PHB의 생산이 수행된 것으로 분석되었다.From the results of FIG. 3 and Table 2, it was analyzed that the growth of cells was performed in the eutrophic stage, and the production of PHB was performed in the oligotrophic stage even when the Aeromonas hydrophila strain was cultured.
실시예 4: 공동배양Example 4: Co-culture
실시예 4-1: 균주배양Example 4-1: Strain culture
Acinetobacter junii BP25 균주 대신에, Acinetobacter junii BP25 균주와 Aeromonas hydrophila 균주가 동량으로 혼합된 혼합균주를 사용하는 것을 제외하고는, 실시예 2-1과 동일한 방법으로 균주를 배양하였다. Acinetobacter junii BP25 instead strain, Acinetobacter junii the strain to strain BP25 and Aeromonas same manner as in Example 2-1 except that the hydrophila strain using a mixed strain mixed in equal volume and incubated.
실시예 4-2: 탄소원 분석Example 4-2: Carbon Source Analysis
상기 실시예 4-1의 방법으로 배양을 진행하면서, 배양시간의 경과에 따른, 탄소원의 배지내 농도변화 및 이용율을 측정하였다(도 4).While culturing in the method of Example 4-1, changes in the concentration and utilization rate of the carbon source in the medium were measured according to the lapse of culture time (FIG. 4).
도 4는 공동배양 균주를 2회의 Cycle-2 조건으로 배양하면서 배양시간의 경과에 따른, 탄소원 흡수율의 변화를 나타내는 그래프이다.4 is a graph showing the change in the carbon source absorption rate with the lapse of incubation time while culturing the co-cultured strain under Cycle-2 conditions twice.
도 4에서 보듯이, 부영양 단계에서는 소듐아세테이트의 최대 이용율은 약 78%이고, 소듐부티레이트의 최대 이용율은 약 74%를 나타냄을 확인하였다. 반면, 빈영양 단계에서는 소듐아세테이트의 최대 이용율은 약 73%이고, 소듐부티레이트의 최대 이용율은 약 70%를 나타냄을 확인하였다.As shown in FIG. 4 , it was confirmed that the maximum utilization of sodium acetate was about 78% in the eutrophic stage, and the maximum utilization of sodium butyrate was about 74%. On the other hand, in the oligotrophic stage, it was confirmed that the maximum utilization of sodium acetate was about 73%, and the maximum utilization of sodium butyrate was about 70%.
실시예 4-3: PHB 생산성 분석Example 4-3: PHB Productivity Analysis
상기 실시예 2-1의 방법으로부터 수득한 배양물 대신에, 상기 실시예 4-1의 방법으로부터 수득한 배양물을 사용하는 것을 제외하고는, 상기 실시예 2-3과 동일한 방법으로 PHB의 생산성을 분석하였다(표 3).PHB productivity in the same manner as in Example 2-3, except that the culture obtained from the method of Example 4-1 was used instead of the culture obtained from the method of Example 2-1. were analyzed (Table 3).
상기 표 3에서 보듯이, 부영양 단계에서는 바이오매스가 급격하게 증식되었으나, PHB의 수율은 0.44 g/L를 나타내었고, 빈영양 단계에서는 바이오매스의 증식이 확인되지 않았으나, PHB의 수율은 2.46 g/L를 나타냄을 확인하였다.As shown in Table 3, biomass was rapidly increased in the eutrophic stage, but the yield of PHB was 0.44 g/L, and the growth of biomass was not confirmed in the oligotrophic stage, but the yield of PHB was 2.46 g It was confirmed that /L was represented.
상기 도 4 및 표 3의 결과로부터, 공동배양을 수행할 경우, 각 균주를 개별적으로 배양할 경우 보다도, 탄소원의 이용율이 상향되고, PHB의 생산수율 역시 증가됨을 알 수 있었다.From the results of Figures 4 and 3, it was found that when co-culturing was performed, the utilization rate of the carbon source was increased, and the production yield of PHB was also increased, compared to when each strain was individually cultured.
실시예 5: 배지분석Example 5: Medium analysis
상기 실시예 2 내지 4에서 배양된 배양물에 포함된 배지내 pH 변화와 용존산소 변화를 분석하였다.Changes in pH and dissolved oxygen in the medium contained in the cultures cultured in Examples 2 to 4 were analyzed.
실시예 5-1: 배지 pH 분석Example 5-1: Medium pH Analysis
상기 실시예 2 내지 4에서 배양된 3종의 배양물에 포함된 배지의 pH 변화를 분석하였다(도 5a).The pH change of the medium contained in the three cultures cultured in Examples 2 to 4 was analyzed (FIG. 5a).
도 5a는 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 각각 개별적으로 배양하거나 또는 공동배양할 경우, 배지의 pH 변화를 분석한 결과를 나타내는 그래프이다.5a is a graph showing the results of analyzing the pH change of the medium when Acinetobacter junii BP25 strain and Aeromonas hydrophila strain are individually or co-cultured, respectively.
도 5a에서 보듯이, 부영양 단계에서는 각 균주를 개별적으로 배양할 경우 보다도 공동배양할 경우, 전체적인 배지의 pH가 높은 수준을 나타내는 반면, 빈영양 단계에서는 Acinetobacter junii BP25 균주를 개별적으로 배양하거나 또는 공동배양할 경우 보다도, Aeromonas hydrophila 균주를 개별적으로 배양할 경우에 전체적인 배지의 pH가 높은 수준을 나타냄을 확인하였다.As shown in Figure 5a, in the eutrophic stage, when co-culturing each strain individually, the pH of the overall medium shows a higher level, whereas in the oligotrophic stage, the Acinetobacter junii BP25 strain is individually or co-cultured. It was confirmed that the pH of the entire medium exhibited a higher level when culturing Aeromonas hydrophila strains individually than when culturing.
실시예 5-2: 배지내 용존산소 분석Example 5-2: Analysis of dissolved oxygen in medium
상기 실시예 2 내지 4에서 배양된 3종의 배양물에 포함된 배지내 용존산소의 변화를 분석하였다(도 5b).Changes in dissolved oxygen in the medium contained in the three cultures cultured in Examples 2 to 4 were analyzed (FIG. 5b).
도 5b는 Acinetobacter junii BP25 균주 및 Aeromonas hydrophila 균주를 각각 개별적으로 배양하거나 또는 공동배양할 경우, 배지내 용존산소의 변화를 분석한 결과를 나타내는 그래프이다.Figure 5b is a graph showing the results of analyzing the change in dissolved oxygen in the medium when Acinetobacter junii BP25 strain and Aeromonas hydrophila strain are individually or co-cultured, respectively.
도 5b에서 보듯이, 부영양 단계 및 빈영양 단계의 수행에 따라 배지가 교체될 때, 배지내 용존산소의 수준이 급격기 증가된 후, 배양시간이 경과함에 따라, 배지내 용존산소의 수준이 감소되는 경향이 반복됨을 확인하였다.As shown in Figure 5b, when the medium is replaced according to the performance of the eutrophic phase and the oligotrophic phase, the level of dissolved oxygen in the medium increases sharply, and then, as the incubation time elapses, the level of dissolved oxygen in the medium increases It was confirmed that the decreasing trend was repeated.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art to which the present invention pertains will understand that the present invention may be embodied in other specific forms without changing the technical spirit or essential characteristics thereof. In this regard, it should be understood that the embodiments described above are illustrative in all respects and not restrictive. The scope of the present invention should be construed as being included in the scope of the present invention, rather than the above detailed description, all changes or modifications derived from the meaning and scope of the claims described below and their equivalents.
Claims (10)
A composition for producing polyhydroxybutyrate (PHB) comprising the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain.
A kit for producing PHB (polyhydroxybutyrate) comprising the composition for producing PHB of claim 1.
(b) 상기 수득한 혼합균주를 부영양(feast) 배지에 접종하고 배양한 다음, 빈영양(famine) 배지에 접종하고 배양하는 과정을 순차적으로 반복하여 수행하는 단계; 및.
(c) 배양이 종료된 후, 배양물로부터 PHB를 회수하는 단계를 포함하는, PHB(polyhydroxybutyrate)의 생산방법.
(a) obtaining a mixed strain comprising the Acinetobacter junii BP25 strain and the Aeromonas hydrophila strain at the same level;
(b) inoculating and culturing the obtained mixed strain in a eutrophic medium, and then sequentially repeating the process of inoculating and culturing in a famine medium; and.
(c) after the culture is terminated, a method for producing PHB (polyhydroxybutyrate) comprising the step of recovering PHB from the culture.
상기 부영양(feast) 배지는 탄소원과 영양성분을 포함하는 배지인 것인, PHB의 생산방법.
4. The method of claim 3,
The eutrophic (feast) medium is a medium containing a carbon source and nutrients, the production method of PHB.
상기 탄소원은 소듐아세테이트 및 소듐부티레이트인 것인, PHB의 생산방법.
5. The method of claim 4,
The carbon source is sodium acetate and sodium butyrate, the method for producing PHB.
상기 영양성분은 NaCl, Na2HPO4, KH2PO4, (NH4)2HPO4, MgSO47H2O, 펩톤(peptone), 효모 추출물(yeast extract) 및 이들의 조합으로 구성된 군으로부터 선택되는 성분인 것인, PHB의 생산방법.
5. The method of claim 4,
The nutritional component is selected from the group consisting of NaCl, Na 2 HPO 4 , KH 2 PO 4 , (NH 4 ) 2 HPO 4 , MgSO 4 7H 2 O, peptone, yeast extract, and combinations thereof A method for producing PHB, which is a component that becomes
상기 부영양 배지에서의 배양은 호기성 조건에서 36 내지 60시간 동안 수행되는 것인, PHB의 생산방법.
4. The method of claim 3,
Culturing in the eutrophic medium will be performed for 36 to 60 hours under aerobic conditions, the production method of PHB.
상기 빈영양(famine) 배지는 탄소원 만을 포함하는 배지인 것인, PHB의 생산방법.
4. The method of claim 3,
The method for producing PHB, wherein the famine medium is a medium containing only a carbon source.
상기 빈영양 배지에서의 배양은 호기성 조건에서 36 내지 60시간 동안 수행되는 것인, PHB의 생산방법.
4. The method of claim 3,
The method for producing PHB, wherein the culture in the nutrient medium is performed for 36 to 60 hours under aerobic conditions.
상기 부영양 배지에서의 배양과 빈영양 배지에서의 배양은 동일시간 동안 수행되는 것인, PHB의 생산방법.
4. The method of claim 3,
The method for producing PHB, wherein the culture in the nutrient medium and the culture in the nutrient medium are performed for the same time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190157042A KR102348818B1 (en) | 2019-11-29 | 2019-11-29 | Process for preparing PHB using mixed microbs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190157042A KR102348818B1 (en) | 2019-11-29 | 2019-11-29 | Process for preparing PHB using mixed microbs |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210068209A true KR20210068209A (en) | 2021-06-09 |
KR102348818B1 KR102348818B1 (en) | 2022-01-11 |
Family
ID=76415199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190157042A Active KR102348818B1 (en) | 2019-11-29 | 2019-11-29 | Process for preparing PHB using mixed microbs |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102348818B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240052374A (en) * | 2022-10-14 | 2024-04-23 | 한국생산기술연구원 | A composition and method for producing PHB comprising strain using lignocellulosic biomass |
KR102732836B1 (en) * | 2023-12-06 | 2024-11-25 | 한국콜마주식회사 | Method for evaluation effect of composition using resident skin flora |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20250082149A (en) | 2023-11-29 | 2025-06-09 | 한국생산기술연구원 | A strain of Halomonas sp. JJY01 overexpressing acetyl-CoA acetyltransferase and Method for producing polyhydroxybutyl acid (PHB) from acetic acid using the same |
-
2019
- 2019-11-29 KR KR1020190157042A patent/KR102348818B1/en active Active
Non-Patent Citations (3)
Title |
---|
Applied and Environmental Microbiology, Vol. 72, pp. 2322-2330 (2006.)* * |
International Journal of Biological Macromolecules, Vol. 126, pp. 977-986 (2019.01.03.)* * |
Polymers, Vol. 11, pp. 1328(1-16) (2019.08.09.)* * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20240052374A (en) * | 2022-10-14 | 2024-04-23 | 한국생산기술연구원 | A composition and method for producing PHB comprising strain using lignocellulosic biomass |
KR102732836B1 (en) * | 2023-12-06 | 2024-11-25 | 한국콜마주식회사 | Method for evaluation effect of composition using resident skin flora |
WO2025121621A1 (en) * | 2023-12-06 | 2025-06-12 | 한국콜마주식회사 | Method for evaluating efficacy of composition using skin resident bacteria |
Also Published As
Publication number | Publication date |
---|---|
KR102348818B1 (en) | 2022-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2459871C2 (en) | Method for enzymatic production of 2-hydroxy-2-methyl carboxylic acids | |
CN101240259B (en) | Newly constructed high-yield fumaric acid genetically engineered bacteria and method for producing fumaric acid | |
KR102348818B1 (en) | Process for preparing PHB using mixed microbs | |
CN111593006B (en) | Self-flocculating halophilic bacteria and application thereof | |
KR20090066958A (en) | Succinic Acid Purification by Crystallization of Culture Media | |
JP2007502102A5 (en) | ||
WO2009140929A1 (en) | A method for co-production of 1, 3-propanediol, 2,3-butanediol and polyhydroxypropionic acid by fermentation of constructed genetic engineering bacteria | |
CN101619299B (en) | Rhodococcus ruber and method for preparing 5-cyanovaleramide by utilizing same | |
CN101892271A (en) | Fermentation method for producing polyhydroxyalkanoate | |
US20140242654A1 (en) | Butyrate Producing Clostridium species, Clostridium pharus | |
JP7197086B2 (en) | Microorganism producing allitol and D-talitol from D-allulose and method for producing allitol and D-talitol using the same | |
JP6521243B2 (en) | Method for aerobically producing 3-hydroxybutyric acid or a salt thereof | |
Menchavez et al. | Fed-batch acetone-butanol-ethanol fermentation using immobilized Clostridium acetobutylicum in calcium alginate beads | |
Choudhury et al. | Lactic acid fermentation in cell-recycle membrane bioreactor | |
CN112680484A (en) | Method for producing 3, 4-dihydroxybutyric acid by using double-bacterium co-culture system | |
US20230332098A1 (en) | A bioprocess for the simultaneous production of polyhydroxybutyrate and violacein pigment from himalayan bacterium iodobacter sp. pch 194 | |
JP2023126755A (en) | Gas fermentation for the production of protein-based bioplastics | |
JPS58158189A (en) | Preparation of beta-hydroxypropionic acid | |
CN112941117A (en) | Method for synthesizing L-lactide from chiral L-lactic acid produced by using lignocellulose biomass as raw material | |
WO2012137771A1 (en) | Process for producing adipic acid | |
CN118516416B (en) | Engineered halomonas for producing PHA and PHA production method | |
CN111100901B (en) | Method for producing 1, 3-propylene glycol by glycerol fermentation | |
WO2010024715A1 (en) | Strain of clostridium acetobutylicum and method of producing organic solvents | |
WO2010095975A2 (en) | Method for regulation of ratio of organic solvents during biosynthesis | |
KR20120033460A (en) | Methods for purifying lactic acid from lactic acid fermented broth comprising ammonium lactate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20191129 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210608 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20211209 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20220104 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20220105 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
PR1001 | Payment of annual fee |
Payment date: 20241223 Start annual number: 4 End annual number: 4 |