[go: up one dir, main page]

KR20210050133A - 리튬-황 이차전지 - Google Patents

리튬-황 이차전지 Download PDF

Info

Publication number
KR20210050133A
KR20210050133A KR1020190134367A KR20190134367A KR20210050133A KR 20210050133 A KR20210050133 A KR 20210050133A KR 1020190134367 A KR1020190134367 A KR 1020190134367A KR 20190134367 A KR20190134367 A KR 20190134367A KR 20210050133 A KR20210050133 A KR 20210050133A
Authority
KR
South Korea
Prior art keywords
lithium
ether
secondary battery
solvent
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020190134367A
Other languages
English (en)
Other versions
KR102812160B1 (ko
Inventor
정하빈
손권남
박창훈
김민수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020190134367A priority Critical patent/KR102812160B1/ko
Priority to CN202080028482.5A priority patent/CN113692666B/zh
Priority to JP2021564178A priority patent/JP7254210B2/ja
Priority to US17/605,952 priority patent/US20220231323A1/en
Priority to EP20883659.3A priority patent/EP3951992A4/en
Priority to PCT/KR2020/013759 priority patent/WO2021085887A1/ko
Publication of KR20210050133A publication Critical patent/KR20210050133A/ko
Application granted granted Critical
Publication of KR102812160B1 publication Critical patent/KR102812160B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • H01M10/14Assembling a group of electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 본 발명은 리튬-황 이차전지에 관한 것으로, 양극, 음극, 분리막 및 전해액을 포함하고, 상기 전해액은 리튬염 및 용매를 포함하고, 상기 용매는 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매를 특정 부피비로 포함함으로써, 고로딩, 저기공도의 특정 조건을 만족하는 양극에 대하여, 상기 전해액을 포함하는 리튬-황 이차전지의 초기 방전 용량 및 평균 방전 전압을 향상시킬 수 있다.

Description

리튬-황 이차전지{LITHIUM-SULFUR SECONDARY BATTERY}
본 발명은 리튬-황 이차전지에 관한 것이다.
이차전지의 응용 영역이 전기 자동차(EV)나 에너지 저장 장치(ESS) 등으로 확대됨에 따라, 상대적으로 낮은 무게 대비 에너지 저장 밀도(~250 Wh/kg)를 갖는 리튬-이온 이차전지는 이러한 제품에 대한 적용의 한계가 있다. 이와 달리, 리튬-황 이차전지는 이론상으로 높은 무게 대비 에너지 저장 밀도(~2,600 Wh/kg)를 구현할 수 있기 때문에, 차세대 이차전지 기술로 각광을 받고 있다.
리튬-황 이차전지는 S-S 결합(Sulfur-Sulfur Bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용한 전지 시스템을 의미한다. 상기 양극 활물질의 주재료인 황은 전 세계적으로 자원량이 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다.
리튬-황 이차전지는 방전 시에 음극 활물질인 리튬이 전자를 내어놓고 이온화되면서 산화되며, 양극 활물질인 황 계열 물질이 전자를 받아들여 환원된다. 여기서, 리튬의 산화반응은 리튬 금속이 전자를 내어놓고 리튬 양이온 형태로 변환되는 과정이다. 또한, 황의 환원반응은 S-S 결합이 2개의 전자를 받아들여 황 음이온 형태로 변환되는 과정이다. 리튬의 산화반응에 의해 생성된 리튬 양이온은 전해질을 통해 양극으로 전달되고, 황의 환원반응에 의해 생성된 황 음이온과 결합하여 염을 형성한다. 구체적으로, 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 이는 환원반응에 의해 리튬 폴리설파이드(Lithium polysulfide, LiSx)로 변환된다. 리튬 폴리설파이드가 완전히 환원되는 경우에는 리튬 설파이드(Li2S)가 생성되게 된다.
양극 활물질인 황은 낮은 전기전도도의 특성으로 인해, 고상 형태에서는 전자 및 리튬 이온과의 반응성을 확보하기가 어렵다. 기존 리튬-황 이차전지는 이러한 황의 반응성을 개선하기 위해 Li2Sx 형태의 중간 폴리설파이드(intermediate polysulfide)를 생성하여 액상 반응을 유도하고 반응성을 개선한다. 이 경우, 전해액의 용매로 리튬 폴리설파이드에 대해 용해성이 높은 디옥솔란(dioxolane), 디메톡시에탄(dimethoxyethane) 등의 에테르계 용매가 사용된다.
이와 같이, 리튬-황 이차전지의 충방전시 형성되는 중간 생성물인 리튬 폴리설파이드는 전지가 구동될 수 있게 하는 역할을 하는 동시에 전지의 성능을 퇴화시키는 주요 원인이 된다.
종래의 리튬-황 이차전지는 반응성을 개선하기 위해 캐솔라이트(catholyte) 타입의 리튬-황 이차전지 시스템을 구축하는데, 이러한 캐솔라이트 타입의 전해액의 경우, 리튬 폴리설파이드를 다량 용해시킬 수 있는 용매를 사용하여 반응성을 높이는데, 전해액 내에 녹는 리튬 폴리설파이드의 특성으로 인해 전해액의 함량에 따라 황의 반응성 및 수명 특성이 영향을 받게 된다. 항공기 및 차세대 전기 자동차 등에 요구되는 500Wh/kg 이상의 고에너지 밀도 리튬-황 이차전지를 개발하기 위해서는 황의 로딩량이 높고, 기공도가 낮은 전극이 필요하며, 전해액의 함량은 최소화하는 것이 필요하다.
그러나, 상기 캐솔라이트 타입의 전해액의 특성상 전해액의 함량이 낮아질수록 충방전 중에 빠르게 점도가 높아지고, 그로 인하여 과전압이 높아져 퇴화될 수 있는 문제가 있다.
이에, 낮은 함량의 전해액을 주액해야 하나, 전해액 함량이 감소함에 따라 전해액 내 리튬 폴리설파이드의 농도가 증가하게 되어, 활물질의 유동성 감소 및 부반응 증가로 인해 정상적인 전지의 구동이 어렵다.
대안으로, 리튬 폴리설파이드를 전극 표면에서만 미량 형성하는 Sparingly solvating electrolyte(SSE)의 전해질 시스템이 연구되고 있다.
3상기 SSE 시스템에서는 리튬 폴리설파이드가 거의 용해되지 않기 때문에, 전극 중 황의 손실이 적고, 낮은 기공도의 전극에서도 구동되지만, 전해액의 높은 점도와 낮은 이온 전도도로 인하여 상온에서의 구성이 어렵고, 과전압이 높은 문제가 있다. 또한, 에너지 밀도도 한계에 다다르고 있어서 추가적인 방안이 요구되는 실정이다. 고에너지 밀도의 리튬-황 이차전지를 구축하기 위해서는 고로딩, 저기공도의 전극을 구동할 수 있는 전지 시스템을 필요로 하고, 해당 기술 분야에서는 이러한 전지 시스템에 대한 연구가 지속적으로 수행되고 있다.
Abbas Fotouhi et al., Lithium-Sulfur Battery Technology Readiness and Applications―A Review, Energies 2017, 10, 1937.
본 발명의 목적은, 고에너지 밀도의 리튬-황 이차전지를 구축하기 위해서, 고로딩, 저기공도의 특정 조건을 만족하는 양극을 포함하는 리튬-황 이차 전지에 있어서, 전해액에 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매를 적절한 부피비로 포함함으로써, 초기 방전 용량이 증가하고, 평균 방전 전압이 상승된 리튬-황 이차전지를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명은, 양극, 음극, 분리막 및 전해액을 포함하는 리튬-황 이차전지로서, 상기 전해액이 리튬염 및 용매를 포함하고, 상기 용매가 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매를 포함하고, 상기 디설파이드계 용매의 함유량이 용매 전체 부피에 대하여 20 내지 35부피%인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 리튬염이 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 리튬염의 농도가 1.5M(mol/L) 내지 2.5M(mol/L)인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 니트릴계 용매가 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군으로부터 선택되는 1종 이상인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 20 내지 40부피%인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 불소화된 에테르계 용매가 2,2,2-트리플루오로에틸메틸에테르(CF3CH2OCH3), 2,2,2-트리플루오로에틸디플루오로메틸에테르(CF3CH2OCHF2), 2,2,3,3,3-펜타플루오로프로필메틸에테르(CF3CF2CH2OCH3), 2,2,3,3,3-펜타플루오로프로필디플루오로메틸에테르(CF3CF2CH2OCHF2), 2,2,3,3,3-펜타플루오로프로필-1,1,2,2-테트라플루오로에틸에테르(CF3CF2CH2OCF2CF2H), 1,1,2,2-테트라플루오로에틸메틸에테르(HCF2CF2OCH3), 1,1,2,2-테트라플루오로에틸에틸에테르(HCF2CF2OCH2CH3), 1,1,2,2-테트라플루오로에틸프로필에테르(HCF2CF2OC3H7), 1,1,2,2-테트라플루오로에틸부틸에테르(HCF2CF2OC4H9), 2,2,3,3-테트라플루오로에틸디플루오로메틸에테르(H(CF2)2CH2O(CF2)H), 1,1,2,2-테트라플루오로에틸이소부틸에테르(HCF2CF2OCH2CH(CH3)2), 1,1,2,2-테트라플루오로에틸이소펜틸에테르(HCF2CF2OCH2C(CH3)3), 1,1,2,2-테트라플루오로에틸-2,2,2-트리플루오로에틸에테르(HCF2CF2OCH2CF3), 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(HCF2CF2OCH2CF2CF2H), 헥사플루오로이소프로필메틸에테르((CF3)2CHOCH3), 1,1,3,3,3-펜타플루오로-2-트리플루오로메틸프로필메틸에테르((CF3)2CHCF2OCH3), 1,1,2,3,3,3-헥사플루오로프로필메틸에테르(CF3CHFCF2OCH3), 1,1,2,3,3,3-헥사플루오로프로필에틸에테르(CF3CHFCF2OCH2CH3), 2,2,3,4,4,4-헥사플루오로부틸디플루오로메틸에테르(CF3CHFCF2CH2OCHF2)로 이루어진 군으로부터 선택되는 1종 이상인, 리튬-황 이차 전지를 제공한다.
또한, 본 발명은, 상기 디설파이드계 용매가 디메틸디설파이드(Dimethyldisulfide)인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 25 내지 35 부피%이고, 상기 불소화된 에테르계 용매의 함유량이 용매 전체 부피에 대하여 30 내지 50부피%이고, 상기 디설파이드계 용매의 함유량이 용매 전체 부피에 대하여 20 내지 35부피%인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 25 내지 35 부피%이고, 상기 불소화된 에테르계 용매와 상기 디설파이드계 용매의 부피비가 1:0.75 내지 1:1인, 리튬-황 이차전지를 제공한다.
또한, 본 발명은, 상기 양극이 하기 수학식 1로 표시되는 SC factor 값이 0.45 이상인, 리튬-황 이차전지를 제공한다.
[수학식 1]
Figure pat00001
여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)이며, α는 10(상수)이다.
본 발명은, 상기 양극 내 양극 활물질층의 단위 면적당 황의 질량(mg/㎠)이 2.5 mg/㎠ 내지 5.0 mg/㎠인, 리튬-황 이차전지를 제공한다.
본 발명은, 상기 양극 내 양극 활물질 층의 공극률(%)이 50 내지 70%인, 리튬-황 이차전지를 제공한다.
본 발명에 따른 리튬-황 이차전지는, 고로딩, 저기공도의 특정 조건을 만족하는 양극에 대하여, 용매 중 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매를 특정 부피비로 포함하는 전해액을 사용함으로써, 높은 초기 방전 용량 및 평균 방전 전압을 나타낸다.
또한, 본 발명에 따른 리튬-황 이차전지에 사용되는 전해액은, 특정 부피비의 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매를 포함하는 용매를 특정 부피비로 함유함으로써, 전해액의 점도를 감소시키고, 전해액의 이온전도도를 증가시킨다. 이로 인하여, 고로딩, 저기공도의 특정 조건을 만족하는 양극에 대하여, 상기 전해액을 포함하는 리튬-황 이차전지의 평균 방전 전압을 상승시키고, 과전압을 감소시키며, 초기 방전 용량을 향상시키는 효과를 나타낸다.
도 1은 제조예 1 및 비교제조예 1에 따른 전해액의 점도를 측정하여 나타낸 그래프이다.
도 2는 제조예 1 및 비교제조예 1에 따른 전해액의 이온전도도를 측정하여 나타낸 그래프이다.
도 3은 실시예 1에 따른 리튬-황 이차전지의 초기 충방전 특성(0.1C/0.1C)을 나타내는 그래프이다.
도 4는 비교예 1에 따른 리튬-황 이차전지의 초기 충방전 특성(0.1C/0.1C)을 나타내는 그래프이다.
도 5는 실시예 1 및 비교예 1에 따른 리튬-황 이차전지의 10번째 사이클에서의 충방전 특성(0.1C/0.3C)을 나타내는 그래프이다.
본 발명에 따라 제공되는 구체예는 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아님을 이해해야 한다.
본 발명은 양극, 음극, 분리막 및 전해액을 포함하는 리튬-황 이차전지를 제공한다.
본 발명에 따른 리튬-황 이차전지는 기공도가 낮고, 양극 활물질인 황의 로딩양이 높은 양극을 포함할 수 있다. 여기서, 상기 양극에서 기공도를 낮추고, 양극 활물질의 함량을 높이면, 양극을 포함하는 전지의 에너지 밀도가 증가한다. 그러나, 리튬-황 이차전지에서 양극의 기공도를 최소한으로 낮추고, 황의 함량을 최대한으로 높이면, 단위 황 함량당 전해액을 비율이 감소하게 되므로, 이러한 양극을 리튬-황 이차전지에 적용하는 경우, 목표로 한 성능을 구현하기 어렵다.
본 발명에서는 양극에 있어서 황과 관련된 조건을 특정하고, 이러한 양극과 병용하기에 적절한 전해액 조건을 한정함으로써, 실제로 구현 시에 종래의 리튬-황 이차전지에 비하여 높은 초기 방전 용량 및 높은 평균 방전 전압을 갖는 리튬-황 이차전지를 제공하고자 한다.
본 발명에서 상기 양극은 특별히 제한하는 것은 아니나, 리튬 박막이거나 집전체 일면 상에 양극 활물질 층이 형성되어 있는 것일 수 있다. 만약, 상기 양극이 집전체 일면 상에 양극 활물질 층이 형성되어 있는 것인 경우, 상기 양극은 집전체 일면 상에 양극 활물질을 포함하는 양극 활물질 슬러리를 도포한 후 건조하여 제조할 수 있으며, 이때 상기 슬러리는 양극 활물질 이외에 바인더 및 도전재, 충진제, 분산제와 같은 첨가제를 더 포함하는 것일 수 있다.
상기 양극 활물질은 특별히 제한되는 것은 아니나, 예컨대, 황 계열 활물질, 망간계 스피넬(spinel) 활물질, 리튬 금속 산화물 또는 이들의 혼합물일 수 있다.
상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x = 2.5 ~ 50, n≥2) 등일 수 있다. 상기 리튬 금속 산화물은 리튬-망간계 산화물, 리튬-니켈-망간계 산화물, 리튬-망간 코발트계 산화물 및 리튬-니켈-망간-코발트계 산화물 등일 수 있다.
구체적으로, 상기 양극 활물질은 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, Li(NiaCobMnc)O2(여기서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1), LiNi1-yCoyO2, LiCo1-yMnyO2, LiNi1-yMnyO2(여기서, 0≤y<1), Li(NidCoeMnf)O4(여기서, 0<d<2, 0<e<2, 0<f<2, d+e+f=2), LiMn2-zNizO4, 또는 LiMn2-zCo2O4(여기서, 0<z<2)일 수 있다.
상기 바인더는 상기 양극 활물질과 도전재의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질 슬러리 총량을 기준으로 1 중량% 내지 30 중량%로 첨가될 수 있다. 이러한 바인더는 특별히 제한하는 것은 아니나, 예컨대 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌-부티렌 고무(SBR) 및 불소 고무로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 혼합물일 수 있다.
상기 도전재는 특별히 제한하지 않으나, 예컨대 천연흑연이나 인조흑연 등의 흑연; 카본블랙(super-p), 아세틸렌 블랙, 케첸블랙, 채널블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙, 덴카 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등일 수 있다. 상기 도전재는 통상적으로 상기 양극 활물질 슬러리 전체 중량을 기준으로 0.05 중량% 내지 5 중량%의 함량일 수 있다.
상기 충진제는 양극의 팽창을 억제하는 성분으로서 필요에 따라 사용 여부를 정할 수 있으며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한하는 것은 아니나, 예컨대 폴리에틸렌 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질일 수 있다.
상기 분산제(분산액)로는 특별히 제한하는 것은 아니나, 예컨대 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등일 수 있다.
상기 도포는 당업계에 통상적으로 공지된 방법에 의하여 수행할 수 있으나, 예컨대 상기 양극 활물질 슬러리를 상기 양극 집전체 일측 상면에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시켜 수행할 수 있다. 이외에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 통하여 수행할 수 있다.
상기 건조는 특별히 제한하는 것은 아니나 50℃ 내지 200℃의 진공오븐에서 1일 이내로 수행하는 것일 수 있다.
상술한 소재 및 방법으로 제조된 본 발명의 양극은, 하기 수학식 1로 표시되는 SC factor 값에 의해 구분된다.
[수학식 1]
Figure pat00002
여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 부피 당 황의 질량(mg/㎤)이며, α는 10(상수)이다.
본 발명에 따른 리튬-황 이차전지의 상기 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)은 2.5 mg/㎠ 내지 5.0 mg/㎠일 수 있고, 바람직하게는 3.0 mg/㎠ 내지 4.5 mg/㎠일 수 있다. 상기 양극 내 양극 활물질 층의 단위 면적당 황의 질량이 상기 범위 미만인 경우, 이를 포함하는 리튬-황 이차전지가 500Wh/kg 이상의 에너지 밀도를 충족시키기 어려운 문제점이 존재하고, 상기 양극 내 양극 활물질 층의 단위 면적당 황의 질량이 상기 범위를 초과하면, 충·방전 용량의 프로파일이 제대로 발현되지 못하는 문제점이 존재하므로, 상기 양극 내 양극 활물질 층의 단위 면적당 황의 질량은 상기 범위를 만족하는 것이 바람직하다.
또한, 본 발명에 따른 리튬-황 이차전지의 상기 양극 내 양극 활물질 층의 공극률(%)은 50 내지 70%일 수 있으며, 바람직하게는 55 내지 65%일 수 있다. 상기 양극 내 양극 활물질 층의 공극률(%)이 상기 범위를 초과하는 경우, 전해액의 침투 및 충·방전 과정에서의 활물질의 부피변화가 확대되어 성능이 감소되는 문제점이 존재하고, 상기 양극 내 양극 활물질 층의 단위 면적당 황의 질량이 상기 범위를 초과하면, 부피당 에너지 밀도가 감소하는 문제점이 존재하므로, 상기 양극 내 양극 활물질 층의 공극율은 상기 범위를 만족하는 것이 바람직하다.
본 발명에 따른 리튬-황 이차전지는 상술한 양극 뿐만 아니라 음극, 분리막 및 전해질 등의 유기적인 결합에 의해 고에너지 밀도를 구현하며, 상기 리튬-황 이차전지가 고에너지 밀도를 구현하기 위해, 상기 SC factor 값은 0.45 이상, 바람직하게는 0.5 이상일 수 있다. 상기 SC factor 값이 0.45 이상인 경우, 기존의 리튬-황 이차전지의 경우에는 실제 구현시 전지의 에너지 밀도 등의 성능이 저하되지만, 본 발명에 따른 리튬-황 이차전지의 경우에는 실제 구현시에도 전지의 성능이 저하되지 않고 유지된다.
본 발명에서 상기 음극은 음극 집전체, 및 음극 집전체 상에 형성된 음극 활물질 층을 포함할 수 있다.
상기 음극 활물질 층은 음극 활물질, 바인더 및 도전재를 포함할 수 있다. 상기 음극 활물질로는 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은, 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.
상기 바인더는 상술한 바인더에 한정되지 않고, 해당 기술 분야에서 바인더로 사용될 수 있는 것이라면 모두 가능하다.
상기 음극 활물질 및 도전재를 제외한 집전체 등의 구성은 상술한 양극에서 사용된 물질 및 방법 등이 사용될 수 있다.
본 발명에서 상기 분리막은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액의 이온 이동에 대하여 저 저항이면서 전해액 함습 능력이 우수한 것이 바람직하다.
또한, 상기 분리막은 양극과 음극을 서로 분리 또는 절연시키면서, 양극과 음극 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막은 기공도 30~50%의 다공성이고, 비전도성 또는 절연성인 물질로 이루어질 수 있다.
구체적으로는, 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 사용할 수 있고, 고융점의 유리 섬유 등으로 된 부직포를 사용할 수 있다. 이 중 바람직하게는 다공성 고분자 필름을 사용할 수 있다.
만일, 버퍼층 및 분리막으로 모두 고분자 필름을 사용하게 되면, 전해액 함침량 및 이온 전도 특성이 감소하고, 과전압 감소 및 용량 특성 개선 효과가 미미하게 된다. 반대로, 모두 부직포 소재를 사용할 경우는 기계적 강성이 확보되지 못하여 전지 단락의 문제가 발생한다. 그러나, 필름형의 분리막과 고분자 부직포 버퍼층을 함께 사용하면, 버퍼층의 채용으로 인한 전지 성능 개선 효과와 함께 기계적 강도 또한 확보할 수 있다.
상기 에틸렌 단독중합체(폴리에틸렌) 고분자 필름을 분리막으로, 폴리이미드 부직포를 버퍼층으로 사용할 수 있다. 이때, 상기 폴리에틸렌 고분자 필름은 두께가 10 내지 25㎛, 기공도가 40 내지 50%인 것이 바람직하다.
본 발명에서 상기 전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염 및 용매를 포함할 수 있다.
상기 리튬염은, 비수계 유기 용매에 쉽게 용해될 수 있는 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 하나 이상일 수 있다. 본 발명의 일 구체예에 있어서, 상기 리튬염은 LiTFSI 등과 같은 리튬 이미드가 바람직할 수 있다.
또한, 상기 리튬염의 농도는, 전해액의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 이차전지 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 1.5 내지 2.5M(mol/L), 바람직하게는 1.7 내지 2.3M(mol/L), 더욱 바람직하게는 2.0M(mol/L)일 수 있다. 만약, 리튬염의 농도가 상기 범위 미만이면, 용매 분자와 Li 금속과 부반응이 일어나는 문제가 있고, 상기 범위를 초과하면, 전해액의 이온전도도가 감소하여 전지 성능이 저하될 수 있으므로, 상기 범위 내에서 적정 농도를 선택하는 것이 바람직하다.
상기 용매는 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매를 포함할 수 있다.
상기 니트릴계 용매는, 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.
또한, 상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 25 내지 35부피%일 수 있고, 바람직하게는 30 내지 35부피%일 수 있고, 보다 바람직하게는 30 내지 33.3부피%일 수 있다. 상기 니트릴계 용매의 함유량이 상기 범위 미만인 경우, 전해액에 용해 가능한 리튬염의 농도가 제한되는 문제점이 있고, 상기 범위를 초과하는 경우, 전해액의 점도가 증가하고 이온 전도도가 감소하는 문제점이 존재하므로, 상기 니트릴계 용매의 함유량은 상기 범위를 만족하는 것이 바람직하다.
상기 불소화된 에테르계 용매는 해당 기술분야에서 일반적으로 사용되는 불소화된 에테르계 용매이면, 그 종류는 특별히 한정되지 않으나, 예를 들면, 2,2,2-트리플루오로에틸메틸에테르(CF3CH2OCH3), 2,2,2-트리플루오로에틸디플루오로메틸에테르(CF3CH2OCHF2), 2,2,3,3,3-펜타플루오로프로필메틸에테르(CF3CF2CH2OCH3), 2,2,3,3,3-펜타플루오로프로필디플루오로메틸에테르(CF3CF2CH2OCHF2), 2,2,3,3,3-펜타플루오로프로필-1,1,2,2-테트라플루오로에틸에테르(CF3CF2CH2OCF2CF2H), 1,1,2,2-테트라플루오로에틸메틸에테르(HCF2CF2OCH3), 1,1,2,2-테트라플루오로에틸에틸에테르(HCF2CF2OCH2CH3), 1,1,2,2-테트라플루오로에틸프로필에테르(HCF2CF2OC3H7), 1,1,2,2-테트라플루오로에틸부틸에테르(HCF2CF2OC4H9), 2,2,3,3-테트라플루오로에틸디플루오로메틸에테르(H(CF2)2CH2O(CF2)H), 1,1,2,2-테트라플루오로에틸이소부틸에테르(HCF2CF2OCH2CH(CH3)2), 1,1,2,2-테트라플루오로에틸이소펜틸에테르(HCF2CF2OCH2C(CH3)3), 1,1,2,2-테트라플루오로에틸-2,2,2-트리플루오로에틸에테르(HCF2CF2OCH2CF3), 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(HCF2CF2OCH2CF2CF2H), 헥사플루오로이소프로필메틸에테르((CF3)2CHOCH3), 1,1,3,3,3-펜타플루오로-2-트리플루오로메틸프로필메틸에테르((CF3)2CHCF2OCH3), 1,1,2,3,3,3-헥사플루오로프로필메틸에테르(CF3CHFCF2OCH3), 1,1,2,3,3,3-헥사플루오로프로필에틸에테르(CF3CHFCF2OCH2CH3), 2,2,3,4,4,4-헥사플루오로부틸디플루오로메틸에테르(CF3CHFCF2CH2OCHF2)로 이루어진 군으로부터 선택되는 1종 이상일 수 있고, 바람직하게는 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(HCF2CF2OCH2CF2CF2H)일 수 있다.
상기 디설파이드계 용매는 디메틸디설파이드, 디에틸디설파이드, 디-n-프로필 디설파이드, 디-이소프로필 디설파이드, 디-n-부틸디 설파이드, 디-이소부틸 디설파이드, 디-sec-부틸디 설파이드, 디-tert-부틸디 설파이드, 디-n-펜틸 디설파이드, 디-tert-펜틸 디설파이드, 디아이소펜틸 디설파이드, 디-n-헵틸 디설파이드, 디-tert-옥틸 디설파이드, 디-n-디실 디설파이드 및 디사이클로헥실 디설파이드 등의 디알킬디설파이드;디벤질 디설파이드, 디페닐 디설파이드, 디-p-트릴 디설파이드, 5,5'-디티오비스(2-니트로 안식향산) 등의 방향족 고리기를 가지는 디설파이드; 2,2'-디피리딜디설파이드, 4,4'-디피리딜디설파이드, 2,2'-디티오비스(5-니트로피리딘), 6,6'-디티오디니코틴산 및 2,2'-디피리미디닐 디설파이드 등의 헤테로 고리기를 가지는 디설파이드로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 바람직하게는 디메틸디설파이드일 수 있다.
또한, 상기 디설파이드계 용매의 함유량은, 용매 전체 부피에 대하여 10 내지 40부피%일 수 있으며, 바람직하게는 20 내지 35부피%일 수 있다. 상기 디설파이드계 용매의 함유량이 상기 범위 미만인 경우, 전해액의 점도의 감소 및 이온 전도도의 증가 효과가 충분이 나타나지 않고, 의도하지 않은 반응 메커니즘을 갖는 부반응에 의하여, 이를 포함하는 리튬-황 이차전지의 초기 방전 용량이 저하되는 문제점이 존재하고, 상기 디설파이드계 용매의 함유량이 상기 범위를 초과하는 경우, 전해액 중 리튬염이 충분히 용해되지 않고, 니트릴계 용매와 충분히 혼합되지 못하여 전해액의 층분리가 일어나는 문제점이 존재하므로, 상기 디설파이드계 용매의 함유량은 상기 범위를 만족하는 것이 바람직하다.
본 발명의 상기 전해액은, 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매의 부피비를 조절함으로써, 전해액의 점도를 감소시키고, 전해액의 이온전도도를 증가시켜, 이를 포함하는 리튬-황 이차전지의 평균 방전 전압을 상승시키고, 에너지 용량을 증가시킨다.
구체적으로, 본 발명의 상기 전해액은, 상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 25 내지 35 부피%이고, 상기 불소화된 에테르계 용매의 함유량이 용매 전체 부피에 대하여 30 내지 50부피%이고, 상기 디설파이드계 용매의 함유량이 용매 전체 부피에 대하여 20 내지 35부피%일 수 있다. 또한, 본 발명의 상기 전해액은, 상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 25 내지 35 부피%이고, 상기 불소화된 에테르계 용매와 상기 디설파이드계 용매의 부피비가 1:0.75 내지 1:1일 수 있다. 상기 불소화된 에테르계 용매와 상기 디설파이드계 용매의 부피비가 상기 범위 미만인 경우, 전해액의 점도의 감소 및 이온 전도도의 증가 효과가 충분이 나타나지 않고, 의도하지 않은 반응 메커니즘을 갖는 부반응에 의하여, 이를 포함하는 리튬-황 이차전지의 초기 방전 용량이 저하되는 문제점이 존재하고, 상기 불소화된 에테르계 용매와 상기 디설파이드계 용매의 부피비가 상기 범위를 초과하는 경우, 전해액 중 리튬염이 충분히 용해되지 않고, 니트릴계 용매와 충분히 혼합되지 못하여 전해액의 층분리가 일어나는 문제점이 존재하므로, 상기 불소화된 에테르계 용매와 상기 디설파이드계 용매의 부피비는 상기 범위를 만족하는 것이 바람직하다.
본 발명의 리튬-황 이차전지는 양극과 음극 사이에 분리막을 배치하여 전극 조립체를 형성하고, 상기 전극 조립체는 원통형 전지 케이스 또는 각형 전지 케이스에 넣은 다음 전해질을 주입하여 제조할 수 있다. 또는, 상기 전극 조립체를 적층한 후, 이를 전해질에 함침시키고 얻어진 결과물을 전지 케이스에 넣어 밀봉하여 제조할 수 있다.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다.
실시예
리튬-황 이차전지용 전해액의 제조
제조예 1
용매 전체 부피에 대하여 30부피%의 아세토니트릴(Acetonitrile)에 리튬 비스(트리플루오르메틸 설포닐)이미드(LiTFSI)를 2M(mol/L)의 농도로 첨가하여, 상온에서 6시간동안 용해시킨 후, 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS)를 용매 전체 부피에 대하여 각각 40부피% 및 30부피%로 첨가하여 상온에서 스터링하여 리튬-황 이차전지용 전해액을 제조하였다.
제조예 2
1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS) 모두를 용매 전체 부피에 대하여 35부피%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지용 전해액을 제조하였다.
제조예 3
아세토니트릴(Acetonitrile)을 용매 전체 부피에 대하여 33부피%로 첨가하고, 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS) 모두를 용매 전체 부피에 대하여 33.3부피%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지용 전해액을 제조하였다.
제조예 4
아세토니트릴(Acetonitrile)을 용매 전체 부피에 대하여 30부피%로 첨가하고, 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS)를 용매 전체 부피에 대하여 각각 50부피% 및 20부피%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지용 전해액을 제조하였다.
비교제조예 1
1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE)를 용매 전체 부피에 대하여 70부피%로 하고, 디메틸디설파이드(DMDS)를 첨가하지 않은 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지용 전해액을 제조하였다.
비교제조예 2
1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS)를 각각 용매 전체 부피에 대하여 각각 60부피% 및 10부피%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지용 전해액을 제조하였다.
비교제조예 3
1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS)를 각각 용매 전체 부피에 대하여 각각 30부피% 및 40부피%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지용 전해액을 제조하였다.
비교제조예 4
1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS)를 각각 용매 전체 부피에 대하여 각각 20부피% 및 50부피%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지용 전해액을 제조하였다.
비교제조예 5
아세토니트릴(Acetonitrile)을 용매 전체 부피에 대하여 15부피%로 첨가하고, 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(TTE) 및 디메틸디설파이드(DMDS)를 각각 용매 전체 부피에 대하여 각각 70부피% 및 15부피%로 첨가한 것을 제외하고는, 실시예 1과 동일한 방법으로 제조하였다.
상기 제조예 1 내지 4 및 비교제조예 1 내지 5의 리튬-황 이차전지용 전해액의 조성은 하기 표 1에 나타낸 바와 같다.
용매의 조성(부피%)
ACN TTE DMDS
제조예 1 30 40 30
제조예 2 30 35 35
제조예 3 33.3 33.3 33.3
제조예 4 30 50 20
비교제조예 1 30 70 -
비교제조예 2 30 60 10
비교제조예 3 30 30 40
비교제조예 4 30 20 50
비교제조예 5 15 70 15
실험예 1 : 전해액의 점도 및 이온 전도도 측정
상기 제조예 1 내지 4 및 비교제조예 1 내지 5에 따른 전해액을 이온전도도 측정 장비(Seven compact S230, Mettler toledo사)를 이용하여 22℃에서의 이온전도도를 측정하였고, 점도계(μVISC, Rheo sense사)를 사용하여 22℃에서의 점도를 측정하였다.
그 결과는 하기 표 2, 도 1 및 도 2에 나타내는 바와 같다.
이온전도도(mS/cm) 점도(cP)
제조예 1 3.42 4.28
제조예 2 3.43 4.60
제조예 3 4.12 4.00
제조예 4 3.33 4.89
비교제조예 1 2.49 7.07
비교제조예 2 2.85 5.66
비교제조예 3 - -
비교제조예 4 - -
비교제조예 5 - -
상기 표 2에 나타낸 바와 같이, 리튬염(LiTFSI)의 농도가 3 내지 3.3M로 높은 경우, 디설파이드계 용매(DMDS)를 첨가하지 않은 경우(비교제조예 1)에 비하여, 디설파이드계 용매(DMDS)를 첨가한 제조예 1 내지 4의 전해액이 점도가 낮고, 이온 전도도가 높다는 점을 알 수 있었다(하기 도 1 및 도 2 참조). 또한, 리튬염(LiTFSI)의 농도가 3M인 경우에 있어서, 디설파이드계 용매(DMDS)의 함량이 10부피% 이하인 경우(비교제조예 2)에는 리튬-황 이차전지의 초기용량의 저하가 나타남을 알 수 있었다. 이는, 디설파이드계 용매(DMDS)의 함량이 너무 적어, 점도의 감소 및 이온 전도도의 증가 효과가 충분이 나타나지 않고, 의도하지 않은 반응 메커니즘을 갖는 부반응이 일어나기 때문이다. 또한, 디설파이드계 용매(DMDS)의 함량이 40부피% 이상인 경우에는(비교제조예 3 및 비교제조예 4), 리튬염이 충분히 용해되지 않고, 니트릴계 용매와 충분히 혼합되지 못하여 전해액의 층분리가 일어남을 알 수 있었다. 또한, 니트릴계 용매가 20부피% 미만인 경우(비교제조예 5), 점도가 높고, 리튬염이 충분히 용해되지 않음을 알 수 있었다.
리튬-황 이차전지의 제조
실시예 1
물을 용매로 하고, 황, 슈퍼피(Super-P, SP), 도전재 및 바인더를 볼밀로 혼합하여 양극 활물질층 형성용 조성물을 제조하였다. 이 때, 도전재로는 덴카블랙을, 바인더로는 SBR과 CMC의 혼합 형태의 바인더를 사용하였으며, 혼합 비율은 중량비로 황 및 SP(9:1비율):도전재:바인더가 90:10:10가 되도록 하였다. 제조한 양극 활물질층 형성용 조성물을 알루미늄 집전체에 도포한 후 건조하여 양극을 제조하였다(양극의 에너지 밀도: 4.2 mAh/㎠). 제조된 양극에서 전극 무게와 전극 두께(TESA사 TESA-μHITE 장비 이용)를 측정하여 계산된 양극 활물질 층의 공극률은 58%이었고, 양극 활물질 층의 단위 면적당 황의 질량은 3.24 mg/㎠이었다. 이를 기초로 계산된 SC factor 값은 0.59였다.
상술한 방법으로 제조한 양극과 음극을 대면하도록 위치시킨 후, 두께 20㎛ 기공도 45%의 폴리에틸렌 분리막을 상기 양극과 음극 사이에 개재하였다.
그 후, 케이스 내부로 전해액을 주입하여 리튬-황 이차전지를 제조하였다. 여기서, 상기 전해액으로서 상술한 제조예 1의 전해액을 사용하였다.
실시예 2
전해액을 상술한 제조예 2의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
실시예 3
전해액을 상술한 제조예 3의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
실시예 4
전해액을 상술한 제조예 4의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
비교예 1
전해액을 상술한 비교제조예 1의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
비교예 2
전해액을 상술한 비교제조예 2의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
비교예 3
전해액을 상술한 비교제조예 3의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
비교예 4
전해액을 상술한 제조예 4의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
비교예 5
전해액을 상술한 제조예 4의 전해액을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 리튬-황 이차전지를 제조하였다.
실험예 2 : 초기 방전 용량 및 평균 방전 전압 측정
상기 실시예 1 내지 4 및 비교예 1 내지 비교예 5에 따른 리튬-황 이차전지를 충방전 측정장치(LAND CT-2001A, 우한(Wuhan))를 이용하여 1.0에서 3.6V 까지의 용량을 35℃에서 측정하였다.
구체적으로, 최초 0.1C로 초기방전을 하고, 이후 0.1C/0.1C로 충전/방전을 2회 진행하고, 이후에는 0.1C/0.3C로 충전/방전을 진행하여, 0.1C에서 첫번째 방전용량(초기 방전 용량)을 측정하고, 10번째 방전시 평균 방전 전압을 측정하였다.
그 결과는 하기 표 3, 도 3 내지 5에 나타낸 바와 같다.
초기 방전 용량(mAh/g) 평균 방전 전압(V)
실시예 1 1709 1.95
실시예 2 1654 1.94
실시예 3 1655 1.95
실시예 4 1510 1.91
비교예 1 1469 1.79
비교예 2 875 1.88
비교예 3 - -
비교예 4 - -
비교예 5 - -
상기 표 3에 나타낸 바와 같이, 리튬염(LiTFSI)의 농도가 3 내지 3.3M로 높은 경우, 디설파이드계 용매(DMDS)를 첨가하지 않은 경우(비교예 1)에 비하여, 디설파이드계 용매(DMDS)를 첨가한 실시예 1 내지 4의 리튬-황 이차전지의 초기 방전 용량이 현저하게 향상되었고, 평균 방전 전압 역시 현저하게 향상됨을 확인할 수 있었다(도 3 내지 도 5 참조). 또한, 디설파이드계 용매(DMDS)를 10부피% 이하로 첨가한 경우(비교예 2)에 비하여, 디설파이드계 용매(DMDS)을 20부피% 내지 35부피%로 첨가한 실시예 1 내지 4의 리튬-황 이차전지의 초기 방전 용량이 현저하게 향상되었고, 평균 방전 전압 역시 현저하게 향상됨을 확인할 수 있었다. 이에 대하여, 상기 비교예 2에서는 디설파이드계 용매를 첨가하였음에도 불구하고, 디설파이드계 용매(DMDS)의 함량이 충분하지 않아(10부피%), 전해액의 점도의 감소 및 이온 전도도의 증가 효과가 충분이 나타나지 않고, 의도하지 않은 반응 메커니즘을 갖는 부반응에 의하여, 리튬-황 이차전지의 초기 방전 용량이 현저하게 저하되었다.
한편, 비교예 3 내지 5의 경우에는, 비교제조제 3 내지 5에서 기재한 바와 같이, 전해액의 층분리 및 리튬염의 불충분한 용해에 의하여 초기 방전 용량 및 평균 방전 전압을 측정할 수 없었다.
본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것이며, 본 발명의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.

Claims (12)

  1. 양극, 음극, 분리막 및 전해액을 포함하고,
    상기 전해액은 리튬염 및 용매를 포함하고,
    상기 용매는 니트릴계 용매, 불소화된 에테르계 용매 및 디설파이드계 용매를 포함하고, 상기 디설파이드계 용매의 함유량이 용매 전체 부피에 대하여 20 내지 35부피%인, 리튬-황 이차전지.
  2. 제1항에 있어서,
    상기 리튬염이 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiC4BO8, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 테트라 페닐 붕산 리튬 및 리튬 이미드로 이루어진 군으로부터 선택되는 1종 이상인, 리튬-황 이차전지.
  3. 제1항에 있어서,
    상기 리튬염의 농도가 1.5M(mol/L) 내지 2.5M(mol/L)인, 리튬-황 이차전지.
  4. 제1항에 있어서,
    상기 니트릴계 용매가 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 4-플루오로페닐아세토니트릴로 이루어진 군으로부터 선택되는 1종 이상인, 리튬-황 이차전지.
  5. 제1항에 있어서,
    상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 25 내지 35부피%인, 리튬-황 이차전지.
  6. 제1항에 있어서,
    상기 불소화된 에테르계 용매가 2,2,2-트리플루오로에틸메틸에테르(CF3CH2OCH3), 2,2,2-트리플루오로에틸디플루오로메틸에테르(CF3CH2OCHF2), 2,2,3,3,3-펜타플루오로프로필메틸에테르(CF3CF2CH2OCH3), 2,2,3,3,3-펜타플루오로프로필디플루오로메틸에테르(CF3CF2CH2OCHF2), 2,2,3,3,3-펜타플루오로프로필-1,1,2,2-테트라플루오로에틸에테르(CF3CF2CH2OCF2CF2H), 1,1,2,2-테트라플루오로에틸메틸에테르(HCF2CF2OCH3), 1,1,2,2-테트라플루오로에틸에틸에테르(HCF2CF2OCH2CH3), 1,1,2,2-테트라플루오로에틸프로필에테르(HCF2CF2OC3H7), 1,1,2,2-테트라플루오로에틸부틸에테르(HCF2CF2OC4H9), 2,2,3,3-테트라플루오로에틸디플루오로메틸에테르(H(CF2)2CH2O(CF2)H), 1,1,2,2-테트라플루오로에틸이소부틸에테르(HCF2CF2OCH2CH(CH3)2), 1,1,2,2-테트라플루오로에틸이소펜틸에테르(HCF2CF2OCH2C(CH3)3), 1,1,2,2-테트라플루오로에틸-2,2,2-트리플루오로에틸에테르(HCF2CF2OCH2CF3), 1,1,2,2-테트라플루오로에틸-2,2,3,3-테트라플루오로프로필에테르(HCF2CF2OCH2CF2CF2H), 헥사플루오로이소프로필메틸에테르((CF3)2CHOCH3), 1,1,3,3,3-펜타플루오로-2-트리플루오로메틸프로필메틸에테르((CF3)2CHCF2OCH3), 1,1,2,3,3,3-헥사플루오로프로필메틸에테르(CF3CHFCF2OCH3), 1,1,2,3,3,3-헥사플루오로프로필에틸에테르(CF3CHFCF2OCH2CH3), 2,2,3,4,4,4-헥사플루오로부틸디플루오로메틸에테르(CF3CHFCF2CH2OCHF2)로 이루어진 군으로부터 선택되는 1종 이상인, 리튬-황 이차 전지.
  7. 제1항에 있어서,
    상기 디설파이드계 용매가 디메틸디설파이드(Dimethyldisulfide)인, 리튬-황 이차전지.
  8. 제1항에 있어서,
    상기 니트릴계 용매의 함유량이 용매 전체 부피에 대하여 25 내지 35 부피%이고, 상기 불소화된 에테르계 용매의 함유량이 용매 전체 부피에 대하여 30 내지 50부피%인, 리튬-황 이차전지.
  9. 제8항에 있어서,
    상기 불소화된 에테르계 용매와 상기 디설파이드계 용매의 부피비가 1:0.75 내지 1:1인, 리튬-황 이차전지.
  10. 제1항에 있어서,
    상기 양극이 하기 수학식 1로 표시되는 SC factor 값이 0.45 이상인, 리튬-황 이차전지.
    [수학식 1]
    Figure pat00003

    여기서, P는 양극 내 양극 활물질 층의 공극률(%)이고, L은 양극 내 양극 활물질 층의 단위 면적당 황의 질량(mg/㎠)이며, α는 10(상수)이다.
  11. 제10항에 있어서,
    상기 양극 내 양극 활물질층의 단위 면적당 황의 질량(mg/㎠)이 2.5 mg/㎠ 내지 5.0 mg/㎠인, 리튬-황 이차전지.
  12. 제10항에 있어서,
    상기 양극 내 양극 활물질 층의 공극률(%)이 50 내지 70%인, 리튬-황 이차전지.
KR1020190134367A 2019-10-28 2019-10-28 리튬-황 이차전지 Active KR102812160B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020190134367A KR102812160B1 (ko) 2019-10-28 2019-10-28 리튬-황 이차전지
CN202080028482.5A CN113692666B (zh) 2019-10-28 2020-10-08 锂硫二次电池
JP2021564178A JP7254210B2 (ja) 2019-10-28 2020-10-08 リチウム-硫黄二次電池
US17/605,952 US20220231323A1 (en) 2019-10-28 2020-10-08 Lithium-sulfur secondary battery
EP20883659.3A EP3951992A4 (en) 2019-10-28 2020-10-08 SECONDARY LITHIUM-SULFUR BATTERY
PCT/KR2020/013759 WO2021085887A1 (ko) 2019-10-28 2020-10-08 리튬-황 이차전지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190134367A KR102812160B1 (ko) 2019-10-28 2019-10-28 리튬-황 이차전지

Publications (2)

Publication Number Publication Date
KR20210050133A true KR20210050133A (ko) 2021-05-07
KR102812160B1 KR102812160B1 (ko) 2025-05-22

Family

ID=75716404

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190134367A Active KR102812160B1 (ko) 2019-10-28 2019-10-28 리튬-황 이차전지

Country Status (6)

Country Link
US (1) US20220231323A1 (ko)
EP (1) EP3951992A4 (ko)
JP (1) JP7254210B2 (ko)
KR (1) KR102812160B1 (ko)
CN (1) CN113692666B (ko)
WO (1) WO2021085887A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136282A1 (ko) * 2022-12-23 2024-06-27 주식회사 엘지에너지솔루션 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230327208A1 (en) * 2022-04-11 2023-10-12 Uchicago Argonne, Llc Electrolytes for lithium batteries

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036206A1 (en) 1999-11-12 2001-05-25 Fargo Electronics, Inc. Thermal printhead compensation
JP4974404B2 (ja) 2000-07-10 2012-07-11 日立マクセルエナジー株式会社 非水二次電池
EP2378602B1 (en) * 2007-04-05 2018-12-19 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
US20140134501A1 (en) * 2012-11-12 2014-05-15 Novolyte Technologies, Inc. Non-Aqueous Electrolytic Solutions And Electrochemical Cells Comprising Same
WO2014093978A1 (en) 2012-12-14 2014-06-19 The Penn State Research Foundation Liquid electrolyte for increasing capacity and cycling retention of lithium sulfur battery
JP6448352B2 (ja) * 2014-12-18 2019-01-09 株式会社アルバック アルカリ金属−硫黄電池用正極及びこれを備えた二次電池の製造方法
KR102407139B1 (ko) * 2015-05-20 2022-06-10 삼성전자주식회사 리튬금속전지
US10472571B2 (en) * 2017-03-02 2019-11-12 Battelle Memorial Institute Low flammability electrolytes for stable operation of electrochemical devices
EP3598558A4 (en) 2017-03-17 2021-09-01 Asahi Kasei Kabushiki Kaisha WATER-FREE ELECTROLYTE, WATER-FREE SECONDARY BATTERY, CELL PACK AND HYBRID SYSTEM
JP7110564B2 (ja) 2017-09-07 2022-08-02 株式会社Gsユアサ 非水電解質及び非水電解質蓄電素子
WO2019059698A2 (ko) * 2017-09-21 2019-03-28 주식회사 엘지화학 리튬 이차 전지용 전해액 및 이를 포함하는 리튬-이차 전지
KR102021071B1 (ko) * 2017-11-29 2019-09-11 울산과학기술원 소듐전지용 전해액 및 이를 채용한 소듐전지
KR102641720B1 (ko) 2018-05-25 2024-02-28 주식회사 선익시스템 증착용 각도제한판 및 이를 포함하는 증착장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Abbas Fotouhi et al., Lithium-Sulfur Battery Technology Readiness and Applications―A Review, Energies 2017, 10, 1937.
Angew. Chem. Int. Ed. 2016.05.17., 55, pp.4231-4235 1부.* *
Energy Environmental Science, 2014.05.12., 7, pp.2697-2705 1부.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136282A1 (ko) * 2022-12-23 2024-06-27 주식회사 엘지에너지솔루션 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
JP7254210B2 (ja) 2023-04-07
WO2021085887A1 (ko) 2021-05-06
KR102812160B1 (ko) 2025-05-22
CN113692666B (zh) 2024-11-05
EP3951992A1 (en) 2022-02-09
US20220231323A1 (en) 2022-07-21
CN113692666A (zh) 2021-11-23
EP3951992A4 (en) 2022-07-20
JP2022530786A (ja) 2022-07-01

Similar Documents

Publication Publication Date Title
KR102434070B1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
JP7134556B2 (ja) リチウム二次電池
KR20190001556A (ko) 리튬 이차전지
KR102601603B1 (ko) 리튬 금속 전지
KR102221799B1 (ko) 리튬 이차 전지
KR102229455B1 (ko) 리튬-황 전지의 수명 개선 방법
KR102829147B1 (ko) 리튬-황 이차전지
KR102763145B1 (ko) 리튬-황 이차전지
JP7254210B2 (ja) リチウム-硫黄二次電池
KR102494419B1 (ko) 리튬 이차전지용 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR102799570B1 (ko) 리튬-황 이차전지
KR102633568B1 (ko) 리튬 이차전지용 전해액 첨가제 및 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
KR20210009272A (ko) 리튬 이차전지
CN108140878A (zh) 用作离子循环电池的电解质中的添加剂的化合物
KR101676164B1 (ko) 신규한 화합물, 이를 포함하는 비수성 전해액 첨가제 및 이를 포함하는 리튬 이차전지
KR102196852B1 (ko) 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
KR102799569B1 (ko) 리튬-황 이차전지
KR20200076230A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR102799568B1 (ko) 리튬-황 이차전지
US12374727B2 (en) Battery system including control unit configured to set driving voltage range for charging and discharging of secondary battery to specific range, and method of using same and battery pack including same
KR20180065755A (ko) 비수성 전해액 및 이를 포함하는 리튬 이차전지
US20230198023A1 (en) Lithium-sulfur secondary battery comprising electrolyte containing borate-based lithium salt
KR20250080569A (ko) 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
CN120413750A (zh) 锂硫二次电池
KR20200076229A (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20191028

PG1501 Laying open of application
PN2301 Change of applicant

Patent event date: 20211102

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20220422

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20191028

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20241002

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20250228

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20250520

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20250520

End annual number: 3

Start annual number: 1

PG1601 Publication of registration