KR20210037347A - Composition for 3D Printing and Filament for 3D Printer - Google Patents
Composition for 3D Printing and Filament for 3D Printer Download PDFInfo
- Publication number
- KR20210037347A KR20210037347A KR1020190119889A KR20190119889A KR20210037347A KR 20210037347 A KR20210037347 A KR 20210037347A KR 1020190119889 A KR1020190119889 A KR 1020190119889A KR 20190119889 A KR20190119889 A KR 20190119889A KR 20210037347 A KR20210037347 A KR 20210037347A
- Authority
- KR
- South Korea
- Prior art keywords
- filament
- printing
- styrene
- acrylonitrile
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 35
- 238000010146 3D printing Methods 0.000 title claims abstract description 27
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 40
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 40
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims description 13
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 10
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 7
- 229920001971 elastomer Polymers 0.000 claims description 7
- 239000000155 melt Substances 0.000 claims description 7
- 239000005060 rubber Substances 0.000 claims description 7
- 229920000459 Nitrile rubber Polymers 0.000 claims description 6
- 239000005062 Polybutadiene Substances 0.000 claims description 4
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 3
- 238000007334 copolymerization reaction Methods 0.000 claims description 3
- 239000004816 latex Substances 0.000 claims description 3
- 229920000126 latex Polymers 0.000 claims description 3
- 239000000178 monomer Substances 0.000 claims description 3
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 claims description 3
- 238000010526 radical polymerization reaction Methods 0.000 claims description 3
- 229920003048 styrene butadiene rubber Polymers 0.000 claims description 3
- 229920005992 thermoplastic resin Polymers 0.000 claims description 3
- 229920002857 polybutadiene Polymers 0.000 claims 1
- 229920002959 polymer blend Polymers 0.000 claims 1
- 238000007639 printing Methods 0.000 abstract description 21
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 16
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 15
- 239000000463 material Substances 0.000 description 8
- 229920001169 thermoplastic Polymers 0.000 description 5
- 229920001577 copolymer Polymers 0.000 description 4
- 238000001746 injection moulding Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 3
- 238000000110 selective laser sintering Methods 0.000 description 3
- 229920002725 thermoplastic elastomer Polymers 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000004416 thermosoftening plastic Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 1
- 241000220304 Prunus dulcis Species 0.000 description 1
- 235000020224 almond Nutrition 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229920006038 crystalline resin Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 229920005669 high impact polystyrene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 239000004797 high-impact polystyrene Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L55/00—Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
- C08L55/02—ABS [Acrylonitrile-Butadiene-Styrene] polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
- C08F279/04—Vinyl aromatic monomers and nitriles as the only monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
- C08L9/02—Copolymers with acrylonitrile
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
Abstract
본 발명은 3D 프린팅용 조성물 및 이를 이용한 3D 프린터용 필라멘트에 관한 것으로, 더욱 상세하게는 프린팅시 수축에 의한 출력물의 변형을 최소화하는 3D 프린팅용 조성물 및 이를 이용한 3D 프린터용 필라멘트에 관한 것이다.
상기 3D 프린팅용 조성물은 아크릴로니트릴-부타디엔-스티렌(ABS) 및 폴리메틸메타크릴레이트(PMMA)를 포함하는 것을 특징으로 한다.
본 발명에 따른 3D 프린터용 필라멘트는 프린팅 시 수축에 의한 출력물의 변형을 최소화할 수 있으므로 3D 프린팅에 유용하다.The present invention relates to a composition for 3D printing and a filament for a 3D printer using the same, and more particularly, to a composition for 3D printing that minimizes deformation of an output due to shrinkage during printing, and a filament for a 3D printer using the same.
The composition for 3D printing is characterized in that it comprises acrylonitrile-butadiene-styrene (ABS) and polymethyl methacrylate (PMMA).
The filament for a 3D printer according to the present invention is useful for 3D printing because it can minimize deformation of an output due to shrinkage during printing.
Description
본 발명은 3D 프린팅용 조성물 및 이를 이용한 3D 프린터용 필라멘트에 관한 것으로, 더욱 상세하게는 프린팅시 수축에 의한 출력물의 변형을 최소화하는 3D 프린팅용 조성물 및 이를 이용한 3D 프린터용 필라멘트에 관한 것이다.The present invention relates to a composition for 3D printing and a filament for a 3D printer using the same, and more particularly, to a composition for 3D printing that minimizes deformation of an output due to shrinkage during printing, and a filament for a 3D printer using the same.
3D(3-Dimension, 3 차원) 프린터는 활자나 그림을 인쇄하듯이 입력된 3차원 도면을 바탕으로 실제 입체 모양을 그대로 제작하는 장비이다. 최근 3D 프린팅 기술은 상당히 핫 이슈가 되고 있으며, 자동차, 의료, 예술, 교육분야로 확대되고 있으며, 다양한 모형을 만들기 위한 용도로 광범위하게 사용하고 있다. 3D 프린터의 원리는 가장 크게 절삭형과 적층형으로 나눌 수 있으며, 실제 적용되고 있는 3D 프린터의 대부분은 재료 손실이 없는 적층형에 해당된다.A 3D (3-Dimension) printer is an equipment that produces a real three-dimensional shape based on the input 3D drawing as it is to print a type or picture. Recently, 3D printing technology has become a very hot issue, and it is expanding to the fields of automobiles, medical care, arts, and education, and is widely used for making various models. The principle of 3D printers can be divided into cutting type and stacking type, and most of the 3D printers that are actually applied are stacked type without material loss.
적층형 원리를 이용하는 방식도 약 20가지가 존재하지만, 이 가운데 가장 많이 사용되는 방식은 SLA(Stereo Lithography Apparatus), FDM(Fused Deposition Modeling), FFF(Fused Filament Fabrication) 및 SLS(Selective Laser Sintering) 방식이다.There are about 20 methods that use the stacking principle, but the most used methods are SLA (Stereo Lithography Apparatus), FDM (Fused Deposition Modeling), FFF (Fused Filament Fabrication), and SLS (Selective Laser Sintering) methods. .
SLA의 경우 액체 상태의 광경화성 수지가 담긴 수조안에 레이저 빔을 투사하여 조형하는 방식으로서, 광경화성 수지인 에폭시 타입의 포토 폴리머가 주로 사용된다. 반면, 투입된 필라멘트상의 재료가 Z, Y, Z 축으로 움직이는 프린터의 노즐에서 용융상태로 토출되면서 3차원으로 조형되는 방식인 FDM(혹는 FFF)는 열가소성 플라스틱을 주 재료로 사용한다. 한편, SLS은 금속, 플라스틱, 세라믹 분말 등의 파우더 상 재료가 담긴 수조에 레이저를 쏘아 선택적으로 소결하는 방식으로 3D 프린팅을 구현한다.In the case of SLA, a laser beam is projected into a water tank containing a liquid photocurable resin to form a shape, and an epoxy-type photopolymer, which is a photocurable resin, is mainly used. On the other hand, FDM (or FFF), a method in which the injected filament-like material is ejected in a molten state from the printer's nozzle moving in the Z, Y, and Z axes, and is shaped in three dimensions, uses thermoplastic plastic as the main material. On the other hand, SLS implements 3D printing by selectively sintering a laser in a tank containing powdery materials such as metal, plastic, and ceramic powder.
상기 3가지 방식 중에서 열가소성 플라스틱을 필라멘트 형태로 제조하여 사용하는 FDM 방식이 3D 프린터의 가격이 비교적 저렴하고 타 방식보다 프린팅 속도가 빠르기 때문에 가장 널리 대중화되어 있다. FDM 방식에는 일반적으로 3D 조형물을 형상할 때 베드 접착력 및 층(layer)간 접착력이 우수하고, 형태안정성이 좋다는 이유로 폴리락트산(Polylactic acid, PLA), ABS(Acrylonitrile Butadiene Styrene), HDPE, 폴리카보네이트(Polycarbonate, PC) 등의 딱딱한 소재와 열가소성 탄성체와 같은 유연한 소재가 사용되고 있다.Among the three methods, the FDM method, which uses a thermoplastic plastic in the form of a filament, is the most widely popularized because the price of a 3D printer is relatively inexpensive and printing speed is faster than other methods. The FDM method generally has excellent bed adhesion and interlayer adhesion when forming 3D sculptures, and because of its good shape stability, polylactic acid (PLA), ABS (Acrylonitrile Butadiene Styrene), HDPE, and polycarbonate ( Hard materials such as polycarbonate, PC) and flexible materials such as thermoplastic elastomers are used.
특히, 아크릴로니트릴-부타디엔-스티렌(이하: ABS)의 경우 일반적인 사출 및 압출 성형 재료로 많이 사용되고 있으며, 동시에 압출 방식의 3D 프린터용 재료로 각광받고 있다. 하지만 일반적인 ABS의 경우 3D 프린터용 필라멘트로 제조는 쉽지만, 이를 이용하여 3D 조형물을 출력을 할 때 치수 변형으로 3D 프린터 베드에서 조형물이 떨어지거나, 조형물 밑 부분이 변형되어 각 모서리 밑 부분이 말려올라가는 문제가 발생한다. In particular, acrylonitrile-butadiene-styrene (hereinafter: ABS) is widely used as a general injection and extrusion molding material, and at the same time, it is in the spotlight as an extrusion-type 3D printer material. However, in the case of general ABS, it is easy to manufacture filaments for 3D printers, but when printing a 3D sculpture using this, the sculpture falls out of the 3D printer bed due to dimensional deformation, or the lower part of the sculpture is deformed, causing the lower part of each corner to roll up. Occurs.
이러한 문제점을 해결하기 위하여, ABS 분자 구조 내에서 스티렌계 또는 고무상의 함량을 조절하는 방법이 연구되었다.In order to solve this problem, a method of controlling the content of the styrene-based or rubber phase in the ABS molecular structure has been studied.
한국 등록특허 제1860388호는 전체 조성물 100 중량부에 대하여 ABS(Acrylonitrile butadienestyrene)수지 70 내지 95 중량부; 및 열가소성 탄성중합체 5 내지 30 중량부를 포함하는 3D 프린터 필라멘트용 ABS 조성물로서, 상기 열가소성 탄성중합체는 열가소성 우레탄계 공중합체(TPU) 및 열가소성 스티렌계 공중합체(TPE-S)가 90 내지 93 : 7 내지 10 중량% 또는 7 내지 10 : 90 내지 93 중량%로 혼합된 TPU 및 TPE-S의 혼합물인 것을 특징으로 하는 3D 프린터 필라멘트용 ABS 조성물을 개시하였고, 한국 등록특허 제1689304호는 열가소성 비결정성 수지 혼합물 100 중량부 및 열가소성 결정성 수지 혼합물 10 내지 25 중량부로 이루어지며, 상기 열가소성 비결정성 수지 혼합물은 범용 폴리스티렌 수지 100 중량부, 고충격 폴리스티렌 수지 60 내지 90 중량부 및 아크릴로니트릴부타디엔스티렌 공중합체 25 내지 50 중량부로 이루어지는 것을 특징으로 하는 3D 프린터용 필라멘트 조성물을 개시하였다. Korean Patent No. 1860388 describes 70 to 95 parts by weight of an ABS (Acrylonitrile butadienestyrene) resin based on 100 parts by weight of the total composition; And 5 to 30 parts by weight of a thermoplastic elastomer, wherein the thermoplastic elastomer is a thermoplastic urethane-based copolymer (TPU) and a thermoplastic styrene-based copolymer (TPE-S) from 90 to 93: 7 to 10 The ABS composition for a 3D printer filament, characterized in that it is a mixture of TPU and TPE-S mixed in a weight% or 7 to 10: 90 to 93% by weight, is disclosed. It consists of 10 to 25 parts by weight of the thermoplastic crystalline resin mixture, and the thermoplastic amorphous resin mixture includes 100 parts by weight of a general-purpose polystyrene resin, 60 to 90 parts by weight of a high-impact polystyrene resin, and an acrylonitrile butadiene styrene copolymer 25 to 50 Disclosed is a filament composition for a 3D printer, characterized in that it consists of parts by weight.
하지만, 이들은 프린팅시 수축률을 최소화시키는데 있어서 만족스러운 효과를 얻지 못하였다.However, they did not get a satisfactory effect in minimizing the shrinkage rate during printing.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 노력한 결과, 아크릴로니트릴-부타디엔-스티렌(ABS)에 폴리메틸메타크릴레이트(PMMA)을 함께 사용할 경우 수축에 의한 치수 변형을 최소화할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.Accordingly, the present inventors have made efforts to solve the above problem, and as a result, it has been confirmed that dimensional deformation due to shrinkage can be minimized when polymethyl methacrylate (PMMA) is used together with acrylonitrile-butadiene-styrene (ABS). , Has completed the present invention.
본 발명의 목적은 프린팅시 수축에 의한 치수 변형을 최소화할 수 있는 3D 프린팅용 조성물 및 이를 압출하여 제조한 3D 프린터용 필라멘트를 제공하는데 있다.An object of the present invention is to provide a 3D printing composition capable of minimizing dimensional deformation due to shrinkage during printing, and a filament for a 3D printer manufactured by extruding the same.
상기 목적을 달성하기 위하여, 본 발명은 아크릴로니트릴-부타디엔-스티렌(ABS) 및 폴리메틸메타크릴레이트(PMMA)를 포함하는 것을 특징으로 하는 3D 프린팅용 조성물을 제공한다.In order to achieve the above object, the present invention provides a composition for 3D printing comprising acrylonitrile-butadiene-styrene (ABS) and polymethyl methacrylate (PMMA).
본 발명에 있어서, 상기 폴리메틸메타크릴레이트(PMMA)는 아크릴로니트릴-부타디엔-스티렌(ABS) 100중량부에 대하여 10 내지 30 중량부 포함되는 것을 특징으로 한다.In the present invention, the polymethyl methacrylate (PMMA) is characterized in that it contains 10 to 30 parts by weight based on 100 parts by weight of acrylonitrile-butadiene-styrene (ABS).
본 발명에 있어서, 상기 아크릴로니트릴-부타디엔-스티렌(ABS)는 (a) 스티렌-아크릴로니트릴 공중합체와 아크릴로니트릴 부타디엔 고무 (acrylonitrile-butadiene rubber, NBR)의 폴리머 블렌드에 의한 블렌드형 (Butadiene Rubber, BR) 또는 (b) 스티렌-부타디엔 고무(styrene-butadiene rubber, SBR) 라텍스의 공존하에 스티렌과 아크릴로니트릴을 그래프트 공중합해서 얻어지는 그래프트형 또는 그래프트-블렌드형인 것을 특징으로 한다.In the present invention, the acrylonitrile-butadiene-styrene (ABS) is (a) a styrene-acrylonitrile copolymer and an acrylonitrile-butadiene rubber (NBR). Rubber, BR) or (b) styrene-butadiene rubber (SBR) It is characterized in that it is a graft type or graft-blend type obtained by graft copolymerization of styrene and acrylonitrile in the presence of latex.
본 발명에 있어서, 상기 아크릴로니트릴-부타디엔-스티렌(ABS)는 그래프트-블렌드형이며, 고무함량이 10~50중량%인 것을 특징으로 한다.In the present invention, the acrylonitrile-butadiene-styrene (ABS) is a graft-blend type, and the rubber content is 10 to 50% by weight.
본 발명에 있어서, 상기 아크릴로니트릴-부타디엔-스티렌(ABS)는 용융흐름지수(MFR)가 ASTM D 1238 규격으로 37g/10min 내지 50g/10min 인 것을 특징으로 한다.In the present invention, the acrylonitrile-butadiene-styrene (ABS) has a melt flow index (MFR) of 37g/10min to 50g/10min according to ASTM D 1238 standard.
본 발명에 있어서, 상기 폴리메틸메타크릴레이트(PMMA)는 메틸메타크릴레이트를 단량체로 하여 자유 라디칼중합에 의해 제조된 열가소성 수지인 것을 특징으로 한다.In the present invention, the polymethyl methacrylate (PMMA) is characterized in that it is a thermoplastic resin produced by free radical polymerization using methyl methacrylate as a monomer.
본 발명은 또한, 상기 3D 프린팅용 조성물을 압출시켜 제조한 3D 프린터용 필라멘트를 제공한다.The present invention also provides a filament for a 3D printer manufactured by extruding the composition for 3D printing.
본 발명에 있어서, 상기 3D 프린터용 필라멘트는 직경이 0.8~4.0㎜인 것을 특징으로 한다.In the present invention, the filament for the 3D printer is characterized in that the diameter is 0.8 ~ 4.0mm.
본 발명에 있어서, 상기 3D 프린터용 필라멘트는 조형물(가로 60㎜, 세로 60㎜, 높이 20㎜)로 출력될 경우 각 모서리 수축률의 평균이 5% 이하인 것을 특징으로 한다.In the present invention, the filament for the 3D printer is characterized in that the average of the shrinkage ratio of each corner is 5% or less when output as a sculpture (60 mm width, 60 mm length, 20 mm height).
본 발명에 따른 3D 프린터용 필라멘트는 프린팅 시 수축에 의한 출력물의 변형을 최소화할 수 있으므로 3D 프린팅에 유용하다.The filament for a 3D printer according to the present invention is useful for 3D printing because it can minimize deformation of an output due to shrinkage during printing.
도 1은 본 발명의 일 실시예에 따라 제조된 3D 프린팅 시편의 인장강도 시험을 위한 ASTM D638 출력방향을 나타낸 도면이다.
도 2는 본 발명의 비교예 1에 따라 제조된 조형물의 3차원 스캐닝 사진이다.
도 3은 본발명의 일 실시예에 따라 제조된 조형물의 3차원 스캐닝 사진이다.1 is a view showing the output direction of ASTM D638 for a tensile strength test of a 3D printed specimen manufactured according to an embodiment of the present invention.
2 is a three-dimensional scanning photograph of a sculpture manufactured according to Comparative Example 1 of the present invention.
3 is a three-dimensional scanning photograph of a sculpture manufactured according to an embodiment of the present invention.
본 발명에서는 아크릴로니트릴-부타디엔-스티렌(ABS)에 폴리메틸메타크릴레이트(PMMA)을 함께 사용할 경우 3D 프린팅시 수축에 의한 치수 변형을 최소화할 수 있다는 것을 확인하고자 하였다. In the present invention, when polymethyl methacrylate (PMMA) is used together with acrylonitrile-butadiene-styrene (ABS), it has been attempted to confirm that dimensional deformation due to shrinkage can be minimized during 3D printing.
본 발명에서는, 아크릴로니트릴-부타디엔-스티렌(ABS) 및 폴리메틸메타크릴레이트(PMMA)을 포함하는 조성물을 압출시켜 3D 프린터용 필라멘트를 제조한 다음, 이를 다시 3D 프린터에서 조형물과 시편으로 출력시켰다. 그 결과 제조된 시편의 인장강도 및 조형물의 모서리 수축률이 우수하여 3D 프린팅시 수축에 의한 치수 변형이 적다는 것을 확인할 수 있었다.In the present invention, a composition containing acrylonitrile-butadiene-styrene (ABS) and polymethyl methacrylate (PMMA) was extruded to prepare a filament for a 3D printer, and then it was again output as a sculpture and a specimen in a 3D printer. . As a result, it was confirmed that the tensile strength of the manufactured specimen and the shrinkage rate of the corners of the sculpture were excellent, so that dimensional deformation due to shrinkage during 3D printing was small.
따라서, 본 발명은 일 관점에서, 아크릴로니트릴-부타디엔-스티렌(ABS) 및 폴리메틸메타크릴레이트(PMMA)를 포함하는 것을 특징으로 하는 3D 프린팅용 조성물에 관한 것이다.Therefore, in one aspect, the present invention relates to a composition for 3D printing comprising acrylonitrile-butadiene-styrene (ABS) and polymethyl methacrylate (PMMA).
본 발명에 있어서, 상기 아크릴로니트릴-부타디엔-스티렌(ABS)는 (a) 스티렌-아크릴로니트릴 공중합체와 아크릴로니트릴 부타디엔 고무(acrylonitrile-butadiene rubber, NBR)의 폴리머 블렌드에 의한 블렌드형(Butadiene Rubber, BR) 또는 (b) 스티렌-부타디엔 고무(styrene-butadiene rubber, SBR) 라텍스의 공존하에 스티렌과 아크릴로니트릴을 그래프트 공중합해서 얻어지는 그래프트형 또는 그래프트-블렌드형인 것을 사용할 수 있으나, 고무함량이 10~50중량%인 그래프트-블렌드형을 사용하는 것이 바람직하다.In the present invention, the acrylonitrile-butadiene-styrene (ABS) is a blend of (a) a styrene-acrylonitrile copolymer and an acrylonitrile-butadiene rubber (NBR). Rubber, BR) or (b) graft type or graft-blend type obtained by graft copolymerization of styrene and acrylonitrile in the coexistence of styrene-butadiene rubber (SBR) latex can be used, but the rubber content is 10 It is preferable to use a graft-blend type of ~50% by weight.
상기 아크릴로니트릴-부타디엔-스티렌(ABS)에서 고무함량이 10중량% 미만인 경우에는 충격강도가 낮아 필라멘트 제조시 잘 부러지는 문제가 있고, 50중량%를 초과할 경우에는 흐름지수의 감소로 압출형 3D 프린팅에 불리할 수 있다.When the rubber content of the acrylonitrile-butadiene-styrene (ABS) is less than 10% by weight, the impact strength is low and there is a problem that the filament is easily broken, and when it exceeds 50% by weight, it is extruded due to a decrease in the flow index. It can be disadvantageous for 3D printing.
따라서, 상기 아크릴로니트릴-부타디엔-스티렌(ABS)는 용융흐름지수(MFR)가 ASTM D 1238 규격으로 37g/10min 내지 50g/10min 인 것이 바람직하다.Therefore, it is preferable that the acrylonitrile-butadiene-styrene (ABS) has a melt flow index (MFR) of 37g/10min to 50g/10min according to ASTM D 1238 standard.
본 발명에 있어서, 상기 폴리메틸메타크릴레이트(PMMA)는 메틸메타크릴레이트를 단량체로 하여 자유 라디칼중합에 의해 제조된 열가소성 수지로서, 메틸메타크릴레이트(MMA)의 단독중합체 또는 공중합체 또는 그 혼합물을 의미한다.In the present invention, the polymethyl methacrylate (PMMA) is a thermoplastic resin prepared by free radical polymerization using methyl methacrylate as a monomer, and a homopolymer or copolymer of methyl methacrylate (MMA) or a mixture thereof Means.
본 발명의 폴리메틸메타크릴레이트(PMMA)는 메틸메타크릴레이트(MMA)의 단독 또는 공중합체는 70중량% 이상, 바람직하게는 80중량% 이상, 유리하게는 90중량% 이상, 보다 유리하게는 95중량% 이상의 메틸메타크릴레이트를 포함할 수 있다.Polymethyl methacrylate (PMMA) of the present invention is a single or copolymer of methyl methacrylate (MMA) is 70% by weight or more, preferably 80% by weight or more, advantageously 90% by weight or more, more advantageously It may contain 95% by weight or more of methyl methacrylate.
본 발명의 3D 프린팅용 조성물에 있어서, 상기 폴리메틸메타크릴레이트(PMMA)는 아크릴로니트릴-부타디엔-스티렌(ABS) 100중량부에 대하여 10 내지 30중량부 포함되는 것이 바람직하다. In the composition for 3D printing of the present invention, the polymethyl methacrylate (PMMA) is preferably contained in an amount of 10 to 30 parts by weight based on 100 parts by weight of acrylonitrile-butadiene-styrene (ABS).
상기 폴리메틸메타크릴레이트(PMMA)가 10중량부 미만일 경우에는 ABS의 수축에 의해 프린팅 후 3D 조형물 밑바닥이 변형되는 문제가 있고, 30중량부를 초과할 경우 3D 조형물의 Z 방향으로 층간 접착력이 떨어져 3D 조형물의 강도가 약해지는 문제가 발생할 수 있다.If the polymethyl methacrylate (PMMA) is less than 10 parts by weight, the bottom of the 3D sculpture is deformed after printing due to the shrinkage of ABS, and if it exceeds 30 parts by weight, the interlayer adhesion of the 3D sculpture decreases in the Z direction. There may be a problem that the strength of the sculpture is weakened.
본 발명의 3D 프린팅용 조성물을 단축압출기에서 압출 후 냉각할 경우 3D 프린터용 필라멘트를 제조할 수 있는데, 제조된 3D 프린터용 필라멘트는 직경이 0.8~4.0㎜인 것이 바람직하며, 1.5~3㎜인 것이 더욱 바람직하다.When the composition for 3D printing of the present invention is extruded in a single-screw extruder and then cooled, a filament for a 3D printer can be prepared, and the filament for a 3D printer is preferably 0.8 to 4.0 mm in diameter, and 1.5 to 3 mm. More preferable.
상기 필라멘트의 직경이 0.8㎜ 미만이면 지나치게 가늘어 프린터 장치가 필라멘트를 용이하게 공급할 수 없거나 필라멘트가 눌려서 토출이 안되거나, 인쇄 속도가 느려질 수 있다. 또한 필라멘트 직경이 4㎜를 초과할 경우 고화 속도가 늦고 필라멘트를 녹이는데 어려움이 있으며 프린팅된 조형물의 정밀도가 떨어질 수 있다.If the diameter of the filament is less than 0.8 mm, the printer device may not be able to easily supply the filament because the filament is too thin, the filament may be pressed to prevent ejection, or the printing speed may be slow. In addition, when the filament diameter exceeds 4 mm, the solidification speed is slow, it is difficult to melt the filament, and the precision of the printed sculpture may be degraded.
본 발명에 따른 3D 프린터용 필라멘트는 아크릴로니트릴-부타디엔-스티렌(ABS)의 수축률을 개선시키는 폴리메틸메타크릴레이트(PMMA)를 포함하고 있으므로 조형물(가로 60㎜, 세로 60㎜, 높이 20㎜)로 출력될 경우 각 모서리 수축률의 평균이 5% 이하가 되도록 할 수 있다. The filament for a 3D printer according to the present invention contains polymethyl methacrylate (PMMA) that improves the shrinkage rate of acrylonitrile-butadiene-styrene (ABS), so the sculpture (width 60 mm, length 60 mm, height 20 mm) When output as, the average of each corner shrinkage can be less than 5%.
또한, 본 발명에 따른 3D 프린터용 필라멘트는 ASTM D 638 V type의 덤벨 모양의 시편을 도면 1의 (c) 방법으로 출력시, 사출성형을 통하여 제작한 시편의 인장강도(40MPa)를 기준으로 37.5%~50%(15~20MPa)에 해당되어, 인장강도가 양호한 특징이 있다.In addition, the filament for a 3D printer according to the present invention is 37.5 based on the tensile strength (40 MPa) of the specimen produced through injection molding when outputting a dumbbell-shaped specimen of ASTM D 638 V type by the method (c) of Fig. 1 It corresponds to %~50% (15~20MPa) and has good tensile strength.
[실시예][Example]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. Hereinafter, the present invention will be described in more detail through examples. These examples are for illustrative purposes only, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not construed as being limited by these examples.
실시예 1~3 및 비교예 1~4: 3D 프린터용 필라멘트 제조Examples 1 to 3 and Comparative Examples 1 to 4: Preparation of filaments for 3D printers
하기 표 1의 아크릴로니트릴-부타디엔-스티렌(ABS) 및 폴리메틸메타크릴레이트(PMMA)를 포함하는 조성물을 단축압출기(single screw extruder, 스크류 직경 30㎜, 스크류 길이 105㎜)로 압출한 후 길이 3m의 냉각수조에서 냉각하고 권취하여 직경 1.75㎜의 3D 프린터용 필라멘트로 제조하였다.The length after extruding the composition containing acrylonitrile-butadiene-styrene (ABS) and polymethyl methacrylate (PMMA) in Table 1 with a single screw extruder (screw diameter 30 mm, screw length 105 mm) It was cooled in a 3m cooling water bath and wound up to prepare a filament for a 3D printer having a diameter of 1.75 mm.
A: ABS LG화학 社 HF 380 (Melt Flow Index: 45g/10min (at.220℃/10kg))A: ABS LG Chem HF 380 (Melt Flow Index: 45g/10min (at.220℃/10kg))
A': ABS 스티롤루션 社 GP35 (Melt Flow Index: 35g/10min (at.220℃/10kg))A': ABS Styrolution's GP35 (Melt Flow Index: 35g/10min (at.220℃/10kg))
B: PMMA: LG MMA 社 IF870SB: PMMA: IF870S from LG MMA
실험예: 3D 프린터용 필라멘트를 이용한 3D 프린팅 조형물 및 시편 제조Experimental Example: 3D Printing Sculpture and Specimen Preparation Using Filament for 3D Printer
실시예 1~3 및 비교예 1~4의 3D 프린터용 필라멘트를 이용하여 3D 프린터(Opencreator 社 ALMOND)로 변형 평가를 위한 조형물(가로 60㎜, 세로 60㎜, 높이 20㎜)로 출력한 다음 모서리 수축률을 확인하고 그 결과를 표 2에 나타내었다. 조형물은 프린팅 속도: 70㎜/sec ~ 50㎜/sec, 노즐 온도: 245℃, 노즐 직경: 0.4㎜, Bed 온도: 80℃, 내부채움: 100% 조건으로 세팅하여 출력하였다.Using the filaments for 3D printers of Examples 1 to 3 and Comparative Examples 1 to 4, a 3D printer (ALMOND of Opencreator) was used to print out a sculpture (60 mm wide, 60 mm long, 20 mm high) for deformation evaluation. The shrinkage was checked and the results are shown in Table 2. The sculpture was printed by setting the conditions of printing speed: 70mm/sec ~ 50mm/sec, nozzle temperature: 245℃, nozzle diameter: 0.4mm, bed temperature: 80℃, and filling: 100%.
모서리 수축률은 출력된 조형물을 24시간 방치 후 각 모서리를 버니어캘리퍼스로 측정하여 높이 20㎜ 대비 실제 높이를 백분율로 환산하여 수축률이 5% 이하인 경우 양호, 5% 초과인 경우 미흡으로 판단하였다.The corner shrinkage rate was determined as good when the shrinkage rate was less than 5% and insufficient when the shrinkage rate was 5% or less by measuring the actual height as a percentage by measuring each corner with a vernier caliper after leaving the printed object for 24 hours.
또한, 인장강도 확인을 위하여, ASTM D 638 V type의 덤벨 모양의 시편을 도면 1의 (c) 방법으로 출력하였고, 동일한 규격의 시편을 사출성형을 통하여 제작하였다. Z 방향 인장강도가 사출성형을 통해 제작한 인장시편의 인장강도(40MPa) 대비 37.5%(15MPa)를 초과할 경우 양호, 37.5%(15MPa) 미만일 경우 미흡으로 평가하고, 그 결과를 표 2에 나타내었다. In addition, in order to check the tensile strength, a dumbbell-shaped specimen of ASTM D 638 V type was output by the method (c) of Fig. 1, and a specimen of the same standard was manufactured through injection molding. If the tensile strength in the Z direction exceeds 37.5% (15 MPa) of the tensile strength (40 MPa) of the tensile specimen produced through injection molding, it is evaluated as good, and if it is less than 37.5% (15 MPa), it is evaluated as insufficient, and the results are shown in Table 2. I got it.
또한, 아크릴로니트릴-부타디엔-스티렌(ABS)의 용융흐름지수(MFR)에 따라 프린팅 속도가 70㎜/sec 일때 시편 또는 조형물이 우수하게 출력되면 프린팅 속도를 양호, 50㎜/sec 일 때 시편 또는 조형물이 우수하게 출력되면 프린팅 속도를 미흡으로 판단하고, 그 결과를 표 2에 나타내었다.In addition, according to the melt flow index (MFR) of acrylonitrile-butadiene-styrene (ABS), when the printing speed is 70 mm/sec and the specimen or sculpture is excellently output, the printing speed is good, and when the printing speed is 50 mm/sec, the specimen or If the sculpture was excellently output, it was judged that the printing speed was insufficient, and the results are shown in Table 2.
인장강도Z direction
The tensile strength
양호18 MPa
Good
양호16MPa
Good
양호17MPa
Good
양호19 MPa
Good
미흡13 MPa
Inadequate
양호16MPa
Good
양호17MPa
Good
모서리
수축률Printout
edge
Shrinkage rate
양호4.8%
Good
양호4.0%
Good
양호4.3%
Good
미흡6%
Inadequate
양호3%
Good
양호4.3%
Good
미흡7%
Inadequate
표 2로부터, 용융흐름지수가 45g/10min 이상인 ABS(A) 100중량부에 대하여 PMMA 10~30중량부를 포함하는 필라멘트로 출력된 실시예 1~3 시편의 Z 방향 인장강도, 출력물 모서리 수축률 및 프린팅 속도가 모두 양호한 것으로 확인되었다.From Table 2, the Z-direction tensile strength of the specimens of Examples 1 to 3 output as a filament containing 10 to 30 parts by weight of PMMA per 100 parts by weight of ABS(A) having a melt flow index of 45 g/10 min or more, and printing All of the speeds were found to be good.
반면, PMMA를 포함하지 않은 비교예 1은 Z 방향 인장강도 및 프린팅 속도는 양호하였지만, 출력물 모서리 수축률은 미흡하였고, PMMA가 과량 포함된 비교예 2는 출력물 모서리 수축률 및 프린팅 속도는 양호하지만 Z 방향 인장강도는 미흡한 것으로 확인되었다.On the other hand, Comparative Example 1 without PMMA had good Z-direction tensile strength and printing speed, but the printout edge shrinkage was insufficient, and Comparative Example 2 containing an excessive amount of PMMA had good printout edge shrinkage and printing speed, but Z-direction tensile It was confirmed that the strength was insufficient.
또한, 용융흐름지수가 35g/10min 이하인 ABS(A')를 사용하고, PMMA 25중량부를 포함하는 필라멘트로 출력된 비교예 3은 Z 방향 인장강도 및 출력물 모서리 수축률은 양호하지만 프린팅 속도가 미흡한 것으로 확인되었다. In addition, Comparative Example 3, which was printed with a filament containing 25 parts by weight of PMMA, using ABS (A') having a melt flow index of 35 g/10 min or less, was confirmed to have good Z-direction tensile strength and edge shrinkage of the printed product, but the printing speed was insufficient. Became.
끝으로, 용융흐름지수가 35g/10min 이하인 ABS(A')만 사용하고, PMMA를 포함하지 않은 비교예 4는 Z 방향 인장강도는 양호하지만 출력물 모서리 수축률 및 프린팅 속도는 미흡한 것으로 확인 되었다.Finally, it was confirmed that in Comparative Example 4, only ABS (A') having a melt flow index of 35 g/10min or less and without PMMA was good, the tensile strength in the Z direction was good, but the shrinkage rate and printing speed of the printed material were insufficient.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it will be apparent to those of ordinary skill in the art that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
3D printing composition comprising acrylonitrile-butadiene-styrene (ABS) and polymethyl methacrylate (PMMA).
The composition for 3D printing according to claim 1, wherein the polymethyl methacrylate (PMMA) is contained in an amount of 10 to 30 parts by weight based on 100 parts by weight of acrylonitrile-butadiene-styrene (ABS).
The method of claim 1, wherein the acrylonitrile-butadiene-styrene (ABS) is a blended type of (a) a styrene-acrylonitrile copolymer and a polymer blend of acrylonitrile-butadiene rubber (NBR) ( A composition for 3D printing, characterized in that it is a graft type or a graft-blend type obtained by graft copolymerization of styrene and acrylonitrile in the presence of butadiene rubber, BR) or (b) styrene-butadiene rubber (SBR) latex. .
The composition for 3D printing according to claim 3, wherein the acrylonitrile-butadiene-styrene (ABS) is a graft-blend type and has a rubber content of 10 to 50% by weight.
The composition for 3D printing according to claim 3, wherein the acrylonitrile-butadiene-styrene (ABS) has a melt flow index (MFR) of 37g/10min to 50g/10min according to ASTM D 1238 standard.
The composition for 3D printing according to claim 1, wherein the polymethyl methacrylate (PMMA) is a thermoplastic resin prepared by free radical polymerization using methyl methacrylate as a monomer.
A filament for a 3D printer manufactured by extruding the composition for 3D printing of any one of claims 1 to 6.
The 3D printer filament according to claim 7, wherein the 3D printer filament has a diameter of 0.8 to 4.0 mm.
[8] The filament for a 3D printer according to claim 7, wherein the filament for a 3D printer has an average of 5% or less of shrinkage at each corner when the filament is output as a sculpture (60 mm wide, 60 mm long, and 20 mm high).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190119889A KR102473146B1 (en) | 2019-09-27 | 2019-09-27 | Composition for 3D Printing and Filament for 3D Printer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020190119889A KR102473146B1 (en) | 2019-09-27 | 2019-09-27 | Composition for 3D Printing and Filament for 3D Printer |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210037347A true KR20210037347A (en) | 2021-04-06 |
KR102473146B1 KR102473146B1 (en) | 2022-11-30 |
Family
ID=75472963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020190119889A Active KR102473146B1 (en) | 2019-09-27 | 2019-09-27 | Composition for 3D Printing and Filament for 3D Printer |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102473146B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN120082163A (en) * | 2025-05-06 | 2025-06-03 | 杭州聚丰新材料有限公司 | A low shrinkage ABS material for high-speed 3D printing and its preparation method and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140092471A (en) * | 2012-12-28 | 2014-07-24 | 코오롱플라스틱 주식회사 | Polyester Resin Composition |
CN108342050A (en) * | 2018-01-23 | 2018-07-31 | 复旦大学 | A kind of ABS modified materials that can be used for 3D printing |
-
2019
- 2019-09-27 KR KR1020190119889A patent/KR102473146B1/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140092471A (en) * | 2012-12-28 | 2014-07-24 | 코오롱플라스틱 주식회사 | Polyester Resin Composition |
CN108342050A (en) * | 2018-01-23 | 2018-07-31 | 复旦大学 | A kind of ABS modified materials that can be used for 3D printing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN120082163A (en) * | 2025-05-06 | 2025-06-03 | 杭州聚丰新材料有限公司 | A low shrinkage ABS material for high-speed 3D printing and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
KR102473146B1 (en) | 2022-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3067389A1 (en) | Polymer composition for three-dimensional printer | |
JP6820500B2 (en) | Wire resin molded body | |
JP7184079B2 (en) | Materials for polyamide-based 3D printers | |
KR20180002733A (en) | METHOD FOR MANUFACTURING 3-DIMENSIONAL ARRANGEMENTS AND FILAMENTS FOR PRODUCING 3D ARCHITECTURES | |
KR20180039682A (en) | Stacked product and process | |
KR20160125431A (en) | Polymers as support material for use in fused filament fabrication | |
KR101780475B1 (en) | Method of 3D Printing by Formation of Filaments | |
CN108357053A (en) | A kind of fibre reinforced plastics interior trim injection molding technique | |
KR102473146B1 (en) | Composition for 3D Printing and Filament for 3D Printer | |
KR102291562B1 (en) | Composition for 3D Printing and Filament for 3D Printer | |
KR20170142390A (en) | Composition of filament for 3D printer | |
KR102473147B1 (en) | Composition for 3D Printing and Filament for 3D Printer | |
JP4136904B2 (en) | Injection foam molding method | |
CN109294145B (en) | PS/ASA alloy composition, PS/ASA alloy material and application thereof | |
TW202444817A (en) | Resin composition for 3D printer, three-dimensional object and manufacturing method thereof | |
JP6920604B2 (en) | Foam molded product and its manufacturing method | |
CN110628149B (en) | 3D printing polyvinyl chloride polymer modified wire and preparation method thereof | |
US2502371A (en) | Polyvinyl chloride compositions | |
KR102291563B1 (en) | Composition for 3D Printing and Filament for 3D Printer | |
WO2004003065A1 (en) | Foamed injection molded item and method of foam injection molding | |
JPH1148317A (en) | Hollow molding made of synthetic resin | |
KR102124376B1 (en) | 3D printer filament | |
KR102124375B1 (en) | 3D printer filament | |
WO2021161586A1 (en) | Molded body, and method for producing molded body | |
JP7616059B2 (en) | Filament for 3D modeling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20190927 |
|
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20210305 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20190927 Comment text: Patent Application |
|
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20220614 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20221116 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20221128 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20221128 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |