KR20200079086A - Chemical Vapor Deposition Instrument for Forming Ultra wide bandgap Semiconductor Film Using Semipolar Sapphire Substrate - Google Patents
Chemical Vapor Deposition Instrument for Forming Ultra wide bandgap Semiconductor Film Using Semipolar Sapphire Substrate Download PDFInfo
- Publication number
- KR20200079086A KR20200079086A KR1020180168636A KR20180168636A KR20200079086A KR 20200079086 A KR20200079086 A KR 20200079086A KR 1020180168636 A KR1020180168636 A KR 1020180168636A KR 20180168636 A KR20180168636 A KR 20180168636A KR 20200079086 A KR20200079086 A KR 20200079086A
- Authority
- KR
- South Korea
- Prior art keywords
- mist
- vapor deposition
- chemical vapor
- thin film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 26
- 238000005229 chemical vapour deposition Methods 0.000 title claims abstract description 18
- 229910052594 sapphire Inorganic materials 0.000 title abstract description 14
- 239000010980 sapphire Substances 0.000 title abstract description 14
- 239000004065 semiconductor Substances 0.000 title description 14
- 239000003595 mist Substances 0.000 claims abstract description 62
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910001195 gallium oxide Inorganic materials 0.000 claims abstract description 17
- 239000010409 thin film Substances 0.000 claims abstract description 17
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 claims abstract description 11
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052733 gallium Inorganic materials 0.000 claims abstract description 8
- 239000007864 aqueous solution Substances 0.000 claims description 5
- 239000012159 carrier gas Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000010453 quartz Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/20—Aluminium oxides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/16—Oxides
- C30B29/22—Complex oxides
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명은 미스트 화학기상증착법(Mist-CVD)으로 반극성 사파이어 기판 상에 미스트를 공급하여 결정성 및 전자이동도가 향상된 α-pahse 갈륨 옥사이드(α-Ga2O3) 박막을 성장시킬 수 있는 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치에 관한 것으로, 본 발명에 따른 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치는, 갈륨(Ga) 수용액에 초음파 진동을 가하여 미스트(mist)를 생성하는 미스트 생성및공급부; 상기 미스트 생성및공급부에서 생성된 미스트가 유입되는 유입구가 일측에 형성되고, 반대편 일측에 미스트가 배출되는 배출구가 형성되어 있는 공급관; 및, 상기 공급관의 내측에 설치되어 미스트에 의해 α-pahse 갈륨 옥사이드(α-Ga2O3) 박막이 증착되는 기판; 을 포함하며, 상기 기판은 사파이어의 반극성면인 r-면 (11-02) 또는 다른 반극성면인 것을 특징으로 한다. The present invention is to supply a mist on a semi-polar sapphire substrate by mist chemical vapor deposition (Mist-CVD) to grow a thin film of α-pahse gallium oxide (α-Ga 2 O 3 ) with improved crystallinity and electron mobility. A mist chemical vapor deposition (Mist-CVD) device for growing a gallium oxide thin film, and a mist chemical vapor deposition (Mist-CVD) device for growing a gallium oxide thin film, applies ultrasonic vibration to an aqueous gallium (Ga) solution. Mist generation and supply unit for generating a mist (mist); A supply pipe in which an inlet through which mist generated in the mist generation and supply unit flows is formed on one side, and an outlet through which mist is discharged is formed on the opposite side; And, the substrate is installed on the inside of the supply pipe is a α-pahse gallium oxide (α-Ga 2 O 3 ) thin film deposited by mist; It includes, the substrate is characterized in that the r-plane (11-02) or other semi-polar surface of the sapphire semi-polar surface.
Description
본 발명은 미스트 화학기상증착(Mist-CVD) 장치에 관한 것으로, 더욱 상세하게는 갈륨(Ga) 수용액을 초음파 진동을 이용하여 미스트(mist)를 생성하고, 생성된 미스트를 석영관 내측으로 공급하여 반극성(semipolar) 사파이어 기판에 갈륨 옥사이드(Ga2O3)를 균일하게 성장시킬 수 있도록 한 반극성 사파이어 기판을 이용한 초광대역 전력반도체 에피박막 화학기상증착 장치에 관한 것이다. The present invention relates to a mist chemical vapor deposition (Mist-CVD) apparatus, and more specifically, an aqueous gallium (Ga) solution is used to generate mist using ultrasonic vibration, and the generated mist is supplied into a quartz tube. The present invention relates to an apparatus for chemical vapor deposition of an ultra-wide-band power semiconductor epitaxial thin film using a semi-polar sapphire substrate that enables uniform growth of gallium oxide (Ga 2 O 3 ) on a semi-polar sapphire substrate.
고전력, 고주파 특성을 갖는 반도체 소자를 구현하기 위해서는 높은 항복 전압과 동시에 높은 전자이동도를 갖는 반도체 소재가 필요한데, 이러한 점에서 SiC, GaN, Ga2O3 등이 유리하다. 전력 반도체(power semiconductor) 소재 기반 반도체 소자는 소형화, 고전압, 고속 스위칭의 결과로 고효율, 저손실을 실현할 수 있는 차세대 전력 소자로 다양한 고성능 전력 기기에 활발히 응용되고 있다.In order to realize a semiconductor device having high power and high frequency characteristics, a semiconductor material having a high breakdown voltage and high electron mobility is required. In this regard, SiC, GaN, Ga 2 O 3 and the like are advantageous. A semiconductor device based on a power semiconductor material is a next-generation power device capable of realizing high efficiency and low loss as a result of miniaturization, high voltage, and high-speed switching, and is actively applied to various high-performance power devices.
SiC 전력 반도체 소재는 약 900 V 이상의 인버터, HEV·EV의 모터 구동 등에 사용되며, 실리콘 전력 반도체의 공정 과정이 유사하여 일부 주요 공정 및 장비의 추가로 제조가 가능하여 실리콘을 대체할 만한 소재로 각광을 받고 있다. 하지만, 단결정 성장이 어렵고 생산 단가가 비싸고 에피층 증착 시 많은 결함이 발생한다는 문제를 안고 있다. GaN 전력 반도체 소재는 SiC와 비교하여 상대적으로 낮은 전력의 인버터, 전력 변환 소자로 이용되며 고속 스위칭 소자로 활용된다. 일반적으로, 전력 반도체 소자는 상시불통(normally off) 동작을 해야 하는 특성이 있다. GaN의 경우 SiC보다 고속 스위칭 특성은 우수하나, normally off 동작이 어려워 고전력용 스위칭 소자로 사용하기에 치명적인 단점과 단결정 성장이 어렵다는 점이 문제로 남아 있다.SiC power semiconductor materials are used for inverters of about 900 V or higher, motor driving of HEVs, EVs, etc.Since the process process of silicon power semiconductors is similar, it is possible to additionally manufacture some major processes and equipment, so it is spotlighted as a material to replace silicon. Is getting However, there is a problem that single crystal growth is difficult, production cost is high, and many defects occur when depositing an epi layer. GaN power semiconductor materials are used as inverters and power converters with relatively low power compared to SiC, and are used as high-speed switching devices. In general, a power semiconductor device has a characteristic that must be operated off normally. In the case of GaN, the high-speed switching characteristics are superior to SiC, but the normally off operation is difficult, so it is a fatal disadvantage to use as a high-power switching device and the difficulty of single crystal growth remains.
갈륨 옥사이드는 SiC와 GaN에 비해 더 넓은 에너지 밴드갭을 가지는 소재로서 융액 성장을 통한 단결정 기판 제작이 가능하여 최근 활발하게 연구 개발이 진행되고 있다. Gallium oxide is a material having a wider energy band gap than SiC and GaN, and thus, a single crystal substrate can be produced through melt growth, and research and development have been actively conducted recently.
갈륨 옥사이드(Ga2O3)는 47 ~ 49 eV의 넓은 에너지 밴드갭을 갖기 때문에 고내압, 저손실 전력 반도체용 소재로 유용하고 SiC, GaN보다 3배 더 큰 8 MV/㎝의 breakdown field를 갖는 산화물 반도체로서 전력 반도체 시장에서 주목받고 있는 소재이다. 갈륨 옥사이드(Ga2O3)는 총 5개의 결정 구조(α, β, γ, δ, ε 형)으로 구성될 수 있다. 그 중 β-phase의 갈륨 옥사이드(β-Ga2O3)는 단사정계 구조를 가지며 열역학적으로 가장 안정한 상으로서 단결정 호모 에피텍셜 성장에 유리하다고 보고되었다. 그리고 α-pahse의 갈륨 옥사이드(α-Ga2O3)는 밴드갭이 가장 커서 전력반도체로서 유리한 특성을 가지고 있다. Gallium oxide (Ga 2 O 3 ) has a wide energy band gap of 47 to 49 eV, so it is useful as a material for high-voltage and low-loss power semiconductors and has an 8 MV/cm breakdown field 3 times larger than SiC and GaN. As a semiconductor, it is a material attracting attention in the power semiconductor market. Gallium oxide (Ga 2 O 3 ) may be composed of a total of five crystal structures (α, β, γ, δ, ε type). Among them, β-phase gallium oxide (β-Ga 2 O 3 ) has a monoclinic structure and is reported to be advantageous for single crystal homoepitaxial growth as the most stable thermodynamic phase. In addition, the gallium oxide (α-Ga 2 O 3 ) of α-pahse has the largest bandgap and has advantageous properties as a power semiconductor.
α-Ga2O3를 성장시키기 위해서 분자빔 에피택시(Molecular Beam Epitaxy; MPE), 할로겐화물 기상 에피택시 (Halide Vapor Phase Epitaxy), 미스트 화학기상증착법(Mist Chemical Vapor Deposition: Mist-CVD)이 활용되고 있다. To grow α-Ga 2 O 3 , molecular beam epitaxy (MPE), halide vapor phase epitaxy, and mist chemical vapor deposition (Mist-CVD) are utilized. Is becoming.
이 중 미스트 화학기상증착법(Mist-CVD)은 무진공 상태로 진행되며 성장용액을 분무화(mist)시켜서 성장시키는 방법으로, 저가형 시스템 구축이 가능하지만, 박막의 균일도를 확보하기 어려운 문제가 있다. Among them, the mist chemical vapor deposition method (Mist-CVD) proceeds in a vacuum-free state, and is a method of growing by growing the growth solution by atomizing (mist), but it is possible to construct a low-cost system, but it is difficult to secure uniformity of the thin film.
미스트 화학기상증착법을 수행하는 미스트 화학기상증착 장비에서는 갈륨(Ga) 수용액에 초음파 진동을 전파하여 미스트를 발생시키고, 미스트를 석영으로 된 공급관 내부로 주입하여 공급관 내의 사파이어 기판 상에 α-Ga2O3를 성장시키게 되는데, 이 때 사파이어의 극성면인 c-면 (00-01)면(도 2 (A) 도면에서 붉은색으로 표시된 부분)을 활용하면 기판의 표면에서 원자단위에서 일어나는 성장이 균일하지 못하여 표면의 모폴로지가 악화되고, 성장 박막의 품질과 전자이동도가 저하되는 문제가 발생한다. In the mist chemical vapor deposition equipment that performs the mist chemical vapor deposition method, ultrasonic vibration is propagated to a gallium (Ga) aqueous solution to generate mist, and the mist is injected into a supply tube made of quartz to inject α-Ga 2 O onto a sapphire substrate in the supply pipe. When 3 is grown, using the c-plane (00-01) plane (the portion indicated in red in FIG. 2(A)), which is the polar plane of sapphire, the growth occurring in atomic units on the surface of the substrate is not uniform. As a result, the surface morphology is deteriorated, and the quality and electron mobility of the growing thin film are lowered.
본 발명은 상기한 문제를 해결하기 위한 것으로, 본 발명의 목적은 미스트 화학기상증착법(Mist-CVD)으로 반극성 사파이어 기판 상에 미스트를 공급하여 결정성 및 전자이동도가 향상된 α-pahse 갈륨 옥사이드(α-Ga2O3) 박막을 성장시킬 수 있는 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치를 제공함에 있다.The present invention is to solve the above problems, the object of the present invention is to supply the mist on the semi-polar sapphire substrate by mist chemical vapor deposition (Mist-CVD) α-pahse gallium oxide with improved crystallinity and electron mobility It is to provide a mist chemical vapor deposition (Mist-CVD) apparatus for growing a gallium oxide thin film capable of growing (α-Ga 2 O 3 ) thin film.
상기한 목적을 달성하기 위한 본 발명에 따른 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치는, 갈륨(Ga) 수용액에 초음파 진동을 가하여 미스트(mist)를 생성하는 미스트 생성및공급부; 상기 미스트 생성및공급부에서 생성된 미스트가 유입되는 유입구가 일측에 형성되고, 반대편 일측에 미스트가 배출되는 배출구가 형성되어 있는 공급관; 및, 상기 공급관의 내측에 설치되어 미스트에 의해 α-pahse 갈륨 옥사이드(α-Ga2O3) 박막이 증착되는 기판; 을 포함하며, 상기 기판은 사파이어의 반극성면인 r-면 (11-02) 또는 다른 반극성면인 것을 특징으로 한다. A mist chemical vapor deposition (Mist-CVD) apparatus for growing a gallium oxide thin film according to the present invention for achieving the above object includes: a mist generating and supplying unit that generates mist by applying ultrasonic vibration to a gallium (Ga) aqueous solution; A supply pipe in which an inlet through which mist generated in the mist generation and supply unit flows is formed on one side, and an outlet through which mist is discharged is formed on the opposite side; And, the substrate is installed on the inside of the supply pipe is a α-pahse gallium oxide (α-Ga 2 O 3 ) thin film deposited by mist; It includes, the substrate is characterized in that the r-plane (11-02) or other semi-polar surface of the sapphire semi-polar surface.
본 발명에 따르면, 극성면 대신 반극성면 기판을 이용하고, 이 때 성장되는 조건의 최적화를 통해 결정성 및 전자이동도를 향상시킬 수 있는 효과가 있다. According to the present invention, instead of a polar surface, a semi-polar surface substrate is used, and at this time, there is an effect of improving crystallinity and electron mobility through optimization of growing conditions.
도 1은 본 발명의 일 실시예에 따른 미스트 화학기상증착(Mist-CVD) 장치의 전체 구성을 개략적으로 나타낸 구성도이다.
도 2는 사파이어의 극성면(polar plane)과 반극성면(semipolar plane), 비극성면(nonpolar plane)을 나타낸 도면이다.
도 3은 사파이어의 극성면과 반극성면에서의 off-axis 성장을 모사한 도면이다.
도 4는 사파이어 기판의 극성면(polar plane)과 반극성면(semipolar plane), 비극성면(nonpolar plane)에 대한 이동도(mobility) 시험 결과를 나타낸 그래프이다.1 is a configuration diagram schematically showing the overall configuration of a mist chemical vapor deposition (Mist-CVD) apparatus according to an embodiment of the present invention.
2 is a view showing a polar plane, a semipolar plane, and a nonpolar plane of sapphire.
3 is a diagram simulating off-axis growth in the polar and semi-polar surfaces of sapphire.
4 is a graph showing the results of mobility tests for polar planes, semipolar planes, and nonpolar planes of a sapphire substrate.
본 명세서에 기재된 실시예와 도면에 도시된 구성은 개시된 발명의 바람직한 일 예에 불과할 뿐이며, 본 출원의 출원시점에 있어서 본 명세서의 실시예와 도면을 대체할 수 있는 다양한 변형 예들이 있을 수 있다.The configurations shown in the embodiments and drawings described in this specification are only preferred examples of the disclosed invention, and there may be various modifications that can replace the embodiments and drawings of the present specification at the time of filing this application.
이하에서는 첨부된 도면을 참조하여 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치를 후술된 실시예들에 따라 구체적으로 설명하도록 한다. 도면에서 동일한 부호는 동일한 구성 요소를 나타낸다. Hereinafter, a mist chemical vapor deposition (Mist-CVD) apparatus for growing a gallium oxide thin film will be described in detail with reference to the accompanying drawings with reference to the accompanying drawings. The same reference numerals in the drawings indicate the same components.
도 1은 본 발명의 일 실시예에 따른 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치를 나타낸 것으로, 본 발명에 따른 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치는 갈륨(Ga) 수용액에 초음파 진동을 가하여 미스트(mist)를 생성하는 미스트 생성및공급부와, 상기 미스트 생성및공급부에서 생성된 미스트가 유입되는 유입구(101)와 미스트가 배출되는 유출구(102)가 형성되어 있는 공급관(100), 상기 공급관(100)의 내측에 설치되는 기판 홀더인 서셉터(110)(susceptor), 상기 서셉터(110) 상에 설치되어 미스트에 의해 α-pahse 갈륨 옥사이드(α-Ga2O3) 박막이 증착되는 기판(120)을 포함한다. 1 shows a mist chemical vapor deposition (Mist-CVD) device for growing a gallium oxide thin film according to an embodiment of the present invention, a mist chemical vapor deposition (Mist-CVD) device for growing a gallium oxide thin film according to the present invention A mist generation and supply unit for generating mist by applying ultrasonic vibration to a gallium (Ga) aqueous solution, an inlet port 101 through which mist generated in the mist generation and supply unit is introduced, and an outlet port 102 through which mist is discharged are formed. The
상기 미스트 생성및공급부는 캐리어 가스(N2 또는 O2)를 공급하는 캐리어가스 탱크(11), 캐리어가스 탱크(11)로부터 송출되는 캐리어 가스의 유량을 조절하기 위한 유량조절밸브(12), 상기 캐리어가스 탱크(11)로부터 송출되는 캐리어 가스를 공급받으며 갈륨(Ga) 수용액이 수용되는 미스트발생챔버(13), 상기 미스트발생챔버(13)가 잠겨지는 물이 수용되는 물저장용기(15), 상기 물저장용기(15)의 저면에 설치되어 초음파 진동을 발생시키는 초음파발생기(16)를 포함하며, 상기 미스트발생챔버(13)는 미스트공급라인(14)을 통해 상기 공급관(100)의 유입구(101)에 연결되어 미스트를 공급한다. The mist generation and supply unit is a
따라서, 상기 초음파발생기(16)가 작동하여 물에 초음파 진동이 발생하면, 초음파 진동이 미스트발생챔버(13)로 전파되어 미스트발생챔버(13) 내의 갈륨 수용액이 초음파 진동에 의해 무화되어 미스트(mist)가 발생하게 되고, 미스트는 캐리어 가스와 함께 미스트발생챔버(13)의 배출구를 통해 배출된 후 미스트공급라인(14)에 의해 공급관(100)으로 송출된다. Therefore, when the ultrasonic generator 16 is operated and ultrasonic vibration occurs in water, ultrasonic vibration is propagated to the
상기 공급관(100)은 대략 100㎜의 내경을 갖는 중공의 석영관(quartz tube)로 되어 가열로(furnace)(20) 내에 설치되며, 공급관(100)의 외측에는 히터(21)가 설치된다. 그리고 공급관(100)의 유출구(102)는 배기펌프(31)와 연결되며, 유출구(102)와 배기펌프(31)를 연결하는 배기라인(32)에는 배기량조절밸브(33)가 설치된다. The
상기 서셉터(110)는 공급관(100)의 내부에 설치되며, 석영(quartz)으로 이루어진다. 상기 서셉터(110)의 면 중 유입구(101)를 향한 면에 기판(120)이 놓여지며, 이 기판(120)이 놓여지는 면은 지면(地面)에 대해 일정한 각도(예를 들어 45°)로 경사지게 형성된다. The
상기 기판(120)은 서셉터(110) 상에 지지되며, 기판(120)으로서 사파이어의 반극성면인 r-면 (11-02) 또는 다른 반극성면(도 2의 (B), (C), (D), (E) 도면 참조)을 적용한다. The
이와 같이 기판(120)의 반극성 사파이어 기판을 적용하게 되면, 도 3에 도시한 것과 같이 기판(120)의 표면에서 원자단위에서 일어나는 α-Ga2O3의 성장이 균일하게 되어 결정성 및 전자이동도가 향상되는 것으로 확인되었다(도 4의 그래프 참조). When the semi-polar sapphire substrate of the
이상에서 본 발명은 실시예를 참조하여 상세히 설명되었으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 상기에서 설명된 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 부가 및 변형이 가능할 것임은 당연하며, 이와 같은 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호 범위에 속하는 것으로 이해되어야 할 것이다.In the above, the present invention has been described in detail with reference to examples, but those skilled in the art to which the present invention pertains will be capable of various substitutions, additions, and modifications without departing from the technical spirit described above. Of course, it should be understood that these modified embodiments also belong to the protection scope of the present invention as defined by the appended claims.
11 : 캐리어가스 탱크
12 : 유량조절밸브
13 : 미스트발생챔버
14 : 미스트공급라인
15 : 물저장용기
16 : 초음파발생기
20 : 가열로(furnace)
21 : 히터
31 : 배기펌프
32 : 배기라인
33 : 배기량조절밸브
100 : 공급관
101 : 유입관
102 : 유출관
110 : 서셉터
120 : 기판11: Carrier gas tank 12: Flow control valve
13: mist generating chamber 14: mist supply line
15: water storage container 16: ultrasonic generator
20: furnace (furnace) 21: heater
31: exhaust pump 32: exhaust line
33: displacement control valve 100: supply pipe
101: inlet pipe 102: outlet pipe
110: susceptor 120: substrate
Claims (1)
상기 미스트 생성및공급부에서 생성된 미스트가 유입되는 유입구가 일측에 형성되고, 반대편 일측에 미스트가 배출되는 배출구가 형성되어 있는 공급관; 및,
상기 공급관의 내측에 설치되어 미스트에 의해 α-pahse 갈륨 옥사이드(α-Ga2O3) 박막이 증착되는 기판; 을 포함하며,
상기 기판은 사파이어의 반극성면인 r-면 (11-02) 또는 다른 반극성면인 갈륨옥사이드 박막 성장용 미스트 화학기상증착(Mist-CVD) 장치.
A mist generating and supplying unit that generates mist by applying ultrasonic vibration to the gallium (Ga) aqueous solution;
A supply pipe in which an inlet through which mist generated in the mist generation and supply unit flows is formed on one side, and an outlet through which mist is discharged is formed on the opposite side; And,
A substrate on which the thin film of α-pahse gallium oxide (α-Ga 2 O 3 ) is deposited by mist installed on the inside of the supply pipe; It includes,
The substrate is a mist chemical vapor deposition (Mist-CVD) device for growing a semi-polar surface of r-plane (11-02) or another semi-polar surface of gallium oxide thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180168636A KR20200079086A (en) | 2018-12-24 | 2018-12-24 | Chemical Vapor Deposition Instrument for Forming Ultra wide bandgap Semiconductor Film Using Semipolar Sapphire Substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180168636A KR20200079086A (en) | 2018-12-24 | 2018-12-24 | Chemical Vapor Deposition Instrument for Forming Ultra wide bandgap Semiconductor Film Using Semipolar Sapphire Substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20200079086A true KR20200079086A (en) | 2020-07-02 |
Family
ID=71599731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180168636A Ceased KR20200079086A (en) | 2018-12-24 | 2018-12-24 | Chemical Vapor Deposition Instrument for Forming Ultra wide bandgap Semiconductor Film Using Semipolar Sapphire Substrate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20200079086A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113088925A (en) * | 2021-03-12 | 2021-07-09 | 江苏师范大学 | Preparation of ZnS doped alpha-Ga by Mist-CVD chemical vapor deposition method2O3Method for making thin film |
CN113969423A (en) * | 2021-10-26 | 2022-01-25 | 西安电子科技大学 | Preparation method of transferable large-scale gallium oxide thin films |
CN115862750A (en) * | 2022-12-23 | 2023-03-28 | 南京邮电大学 | A spray chemical deposition system and its construction method for studying the growth of α-Ga2O3 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150019623A (en) | 2013-08-14 | 2015-02-25 | 코닝정밀소재 주식회사 | Method of depositing zinc oxide based thin film |
KR101708283B1 (en) | 2015-01-29 | 2017-02-20 | 가부시키가이샤 플로스피아 | Apparatus and method for forming film |
KR20180080295A (en) | 2015-12-11 | 2018-07-11 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | Mist coating film forming apparatus and mist coating film forming method |
-
2018
- 2018-12-24 KR KR1020180168636A patent/KR20200079086A/en not_active Ceased
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150019623A (en) | 2013-08-14 | 2015-02-25 | 코닝정밀소재 주식회사 | Method of depositing zinc oxide based thin film |
KR101708283B1 (en) | 2015-01-29 | 2017-02-20 | 가부시키가이샤 플로스피아 | Apparatus and method for forming film |
KR20180080295A (en) | 2015-12-11 | 2018-07-11 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | Mist coating film forming apparatus and mist coating film forming method |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113088925A (en) * | 2021-03-12 | 2021-07-09 | 江苏师范大学 | Preparation of ZnS doped alpha-Ga by Mist-CVD chemical vapor deposition method2O3Method for making thin film |
CN113088925B (en) * | 2021-03-12 | 2022-03-25 | 江苏师范大学 | Preparation of ZnS doped alpha-Ga by Mist-CVD chemical vapor deposition method2O3Method for making thin film |
CN113969423A (en) * | 2021-10-26 | 2022-01-25 | 西安电子科技大学 | Preparation method of transferable large-scale gallium oxide thin films |
CN115862750A (en) * | 2022-12-23 | 2023-03-28 | 南京邮电大学 | A spray chemical deposition system and its construction method for studying the growth of α-Ga2O3 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW593800B (en) | Oxygen doping method to gallium nitride single crystal substrate and oxygen-doped N-type gallium nitride freestanding single crystal substrate | |
JP6481706B2 (en) | Gallium nitride substrate, semiconductor device manufacturing method, and gallium nitride layer bonded substrate manufacturing method | |
JP5528612B1 (en) | Semiconductor device | |
CN110071037A (en) | Semiconductor device or crystallization | |
KR20200128658A (en) | Method for manufacturing graphene transistors and devices | |
KR20200079086A (en) | Chemical Vapor Deposition Instrument for Forming Ultra wide bandgap Semiconductor Film Using Semipolar Sapphire Substrate | |
KR102330144B1 (en) | Apparatus and method for producing group iii nitride semiconductor device and method for producing semiconductor wafer | |
CN103370454A (en) | Epitaxial silicon carbide single-crystal substrate and process for producing same | |
JPS63188938A (en) | Method for vapor growth of gallium nitride compound semiconductor | |
CN113206003A (en) | Method for growing single crystal gallium nitride film on random self-supporting substrate | |
KR102489127B1 (en) | Hydride vapor phase epitaxy apparatus for growth of Gallium Nitride single crystalline | |
KR20200079084A (en) | Mist Chemical Vapor Deposition Instrument for Forming Gallium Oxide Film Using Non-polar Sapphire Substrate | |
US9711353B2 (en) | Method for manufacturing compound semiconductor epitaxial substrates including heating of carrier gas | |
KR20200079167A (en) | Mist Chemical Vapor Deposition Instrument for Forming Gallium Oxide Film | |
CN205711042U (en) | A kind of Device for epitaxial growth of silicon carbide | |
JP2014027028A (en) | SiC EPITAXIAL SUBSTRATE MANUFACTURING DEVICE, METHOD FOR MANUFACTURING SiC EPITAXIAL SUBSTRATE, AND SiC EPITAXIAL SUBSTRATE | |
CN103572248A (en) | Diamond producing method and DC plasma enhanced CVD apparatus | |
JP6516482B2 (en) | Apparatus and method for manufacturing group III nitride semiconductor device, and method for manufacturing semiconductor wafer | |
Sun et al. | A-plane GaN growth on (11-20) 4H-SiC substrate with an ultrathin interlayer | |
JPH10182282A (en) | Vapor phase growth apparatus and crystal growth method | |
JP7315927B2 (en) | Semiconductor device and its manufacturing method | |
WO2014038634A1 (en) | Epitaxial wafer and method for producing same | |
JP4120435B2 (en) | Method for growing wurtzite group III nitride semiconductor crystal | |
US20150240358A1 (en) | Susceptor and chemical vapor deposition apparatus having the same | |
CN112447498A (en) | SiC epitaxial layer growth method and structure for reducing forward conduction SFs expansion of bipolar device and growth method gas supply pipeline |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20181224 |
|
PG1501 | Laying open of application | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20211222 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20181224 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20231023 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20240215 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20231023 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |