[go: up one dir, main page]

KR20200073452A - A Method of Silicon Insulating Film Deposition at Low Temperature - Google Patents

A Method of Silicon Insulating Film Deposition at Low Temperature Download PDF

Info

Publication number
KR20200073452A
KR20200073452A KR1020180161612A KR20180161612A KR20200073452A KR 20200073452 A KR20200073452 A KR 20200073452A KR 1020180161612 A KR1020180161612 A KR 1020180161612A KR 20180161612 A KR20180161612 A KR 20180161612A KR 20200073452 A KR20200073452 A KR 20200073452A
Authority
KR
South Korea
Prior art keywords
gas
silicon
containing gas
insulating film
germanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020180161612A
Other languages
Korean (ko)
Inventor
황철주
구분회
Original Assignee
주성엔지니어링(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주성엔지니어링(주) filed Critical 주성엔지니어링(주)
Priority to KR1020180161612A priority Critical patent/KR20200073452A/en
Publication of KR20200073452A publication Critical patent/KR20200073452A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45534Use of auxiliary reactants other than used for contributing to the composition of the main film, e.g. catalysts, activators or scavengers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

본 발명은 실리콘 절연막을 형성하는 공정에서 실리콘 함유 가스에 게르마늄 함유 가스를 혼합하여 공급하거나, 실리콘 함유 가스를 공급하기 전에 게르마늄 함유 가스를 먼저 공급하여 저온에서 실리콘 절연막을 증착할 수 있도록 한 저온 실리콘 절연막 증착 방법에 관한 것이다.In the present invention, a silicon-containing gas is mixed with a germanium-containing gas in a process of forming a silicon insulating film, or a germanium-containing gas is first supplied before supplying a silicon-containing gas to allow the silicon insulating film to be deposited at a low temperature. It relates to a deposition method.

Description

저온 실리콘 절연막 증착 방법{A Method of Silicon Insulating Film Deposition at Low Temperature}A method of Silicon Insulating Film Deposition at Low Temperature}

본 발명은 실리콘 절연막 증착 방법에 관한 것으로서, 더욱 상세하게는 실리콘 절연막을 형성하는 공정에서 실리콘 함유 가스에 게르마늄 함유 가스를 혼합하여 기판이 있는 반응공간에 유입시키거나, 실리콘 함유 가스를 유입시키기 전에 게르마늄 함유 가스를 먼저 유입시켜 실리콘 절연막 증착 과정에서 공정 온도를 낮출 수 있도록 한 저온 실리콘 절연막 증착 방법에 관한 것이다.The present invention relates to a method for depositing a silicon insulating film, and more specifically, in a process of forming a silicon insulating film, a germanium-containing gas is mixed with a silicon-containing gas and introduced into a reaction space with a substrate, or a germanium before introducing a silicon-containing gas. It relates to a method for depositing a low-temperature silicon insulating film by allowing a containing gas to flow first so that a process temperature can be lowered during a silicon insulating film deposition process.

절연막은 도체들 사이를 절연시키는 막으로서 반도체 소자 및 디스플레이 장치 등에 필수적으로 이용되고 있으며, 이러한 절연막으로는 실리콘 절연막이 널리 사용되고 있다. 특히 실리콘 질화물 또는 실리콘 산화물 등의 절연물질로 이루어진 실리콘 산화막 또는 실리콘 질화막은 실리콘과의 계면이 우수하고 유전 특성이 우수하여 반도체에서 가장 보편적으로 사용되는 박막 중의 하나이다. The insulating film is an insulating film between conductors, and is essentially used for semiconductor devices and display devices, and a silicon insulating film is widely used as the insulating film. In particular, a silicon oxide film or a silicon nitride film made of an insulating material such as silicon nitride or silicon oxide is one of the most commonly used thin films in semiconductors because of its excellent interface with silicon and excellent dielectric properties.

이러한 실리콘 절연막은 실리콘 질화물 또는 실리콘 산화물 등의 절연물질로 이루어지는데, 일반적으로 실리콘 소스와 질화물 또는 산화물 소스를 반응시켜 형성한다. 최근 반도체 소자의 경량화, 소형화, 박막화의 추세에 따라 실리콘 절연막을 증착하는 다양한 기술이 개발되고 있다. 특히 박막 증착 공정에서 균일한 증착 특성과 우수한 단차피복성(step coverage)을 갖는 박막 증착 기술로 화학기상증착(Chemical Vapor Deposition, CVD)방법이 이용되고 있다.The silicon insulating film is made of an insulating material such as silicon nitride or silicon oxide, and is generally formed by reacting a silicon source with a nitride or oxide source. Recently, various technologies for depositing a silicon insulating film have been developed in accordance with the trend of weight reduction, downsizing, and thinning of semiconductor devices. In particular, in the thin film deposition process, a chemical vapor deposition (CVD) method is used as a thin film deposition technique having uniform deposition characteristics and excellent step coverage.

종래의 화학기상증착 공정을 통한 실리콘 절연막은 실리콘 소스로서 실란(Silane) 가스를 이용하고 질화물 또는 산화물 소스로서 질소 또는 산소 가스를 이용하여 보통 750℃ 이상의 고온 증착 공정을 통해 형성하였다.The silicon insulating film through a conventional chemical vapor deposition process is usually formed through a high temperature deposition process of 750°C or higher using silane gas as a silicon source and nitrogen or oxygen gas as a nitride or oxide source.

그러나, 이와 같은 종래의 화학기상증착 공정을 통한 실리콘계 절연막 형성 공정은 750℃ 이상의 높은 공정 온도로 인해 계면에서의 확산, 특히 웨이퍼 내의 도펀트의 확산을 유발하여 소자의 전기적 특성을 저하시키고, 증착된 박막의 열 예산(thermal budgets)을 증가시키는 문제가 있다. 또한, 저온 공정 진행이 어렵기 때문에 다양한 종류의 기판을 사용하는데 제약이 있었다.However, the silicon-based insulating film formation process through such a conventional chemical vapor deposition process causes diffusion at the interface due to a high process temperature of 750°C or higher, in particular, diffusion of dopants in the wafer, thereby lowering the electrical properties of the device and depositing the thin film. There is a problem of increasing the thermal budgets of. In addition, there are limitations in using various types of substrates because the low temperature process is difficult to proceed.

한편, 화학기상증착 방법에 따르면, 모든 공정가스가 동시에 공정 챔버 내에 존재하기 때문에 공정가스들이 기체 상태에서 화학반응을 일으켜, 오염원으로 작동할 수 있는 파우더가 생기고 단차피복성(Step coverage)이 나빠진다. 특히, 다성분계 박막을 증착하고자 하는 경우, 공정가스를 공급하는 운반기체의 유량을 조절하여 각각의 공정가스를 공정 챔버에 공급함과 동시에 이들을 반응시켜야 하므로 그 막의 조성을 제어하기 어려울 뿐 아니라 생성된 막내의 불순물 함량이 다소 높은 문제를 가지고 있다.On the other hand, according to the chemical vapor deposition method, since all the process gases exist in the process chamber at the same time, the process gases cause a chemical reaction in the gas state, resulting in a powder that can act as a contaminant, and the step coverage is deteriorated. . Particularly, when a multi-component thin film is to be deposited, it is difficult to control the composition of the film as well as to control the composition of the film, since each process gas must be supplied to the process chamber and reacted by controlling the flow rate of the carrier gas supplying the process gas. It has a problem that the content of impurities is rather high.

이와 같은 종래의 고온 공정의 문제를 극복하기 위해 실리콘 함유 가스와 질소 또는 산소 함유 가스 및 게르마늄 함유 가스를 동시에 공정 챔버로 공급하여 공정을 진행하는 방법이 개발되었다.In order to overcome the problems of the conventional high temperature process, a method has been developed in which a silicon-containing gas, a nitrogen or oxygen-containing gas, and a germanium-containing gas are simultaneously supplied to a process chamber to proceed.

게르마늄은 박막 표면으로부터 수소 분자의 이탈을 촉진시키며 박막의 성장률을 개선시킴으로써 저온 증착을 개선하고 전체적인 공정의 열처리를 감소시키는 효과가 있다.Germanium promotes the separation of hydrogen molecules from the thin film surface and improves the growth rate of the thin film, thereby improving low-temperature deposition and reducing the heat treatment of the entire process.

그러나 화학기상증착 공정에서는 게르마늄 함유 가스를 유입시키더라도 공정 온도를 개선시키는 것에는 한계가 있으며, 실리콘 절연막의 표면에 게르마늄이 과다하게 존재하는 경우 오히려 실리콘 절연막의 박막 특성이 저하되는 문제가 있다.However, in the chemical vapor deposition process, even if germanium-containing gas is introduced, there is a limit in improving the process temperature, and when there is excessive germanium on the surface of the silicon insulating film, there is a problem that the thin film properties of the silicon insulating film are deteriorated.

특허문헌 1: 한국공개특허 10-2008-0056287호 (공개일 : 2008년 06월 20일)Patent Document 1: Korean Patent Publication No. 10-2008-0056287 (Publication date: June 20, 2008)

본 발명은 상기한 문제를 해결하기 위한 것으로, 실리콘 절연막을 형성하는 공정에서 실리콘 함유 가스에 게르마늄 함유 가스를 혼합하여 공급하거나, 실리콘 함유 가스를 공급하기 전에 게르마늄 함유 가스를 먼저 공급하여 저온에서 실리콘 절연막을 증착할 수 있도록 한 저온 실리콘 절연막 증착 방법을 제공하는데 목적이 있다.The present invention is to solve the above problems, in a process of forming a silicon insulating film, a silicon-containing gas is mixed with germanium-containing gas, or a germanium-containing gas is supplied first before supplying the silicon-containing gas to the silicon insulating film at low temperature. An object of the present invention is to provide a method for depositing a low-temperature silicon insulating film to enable deposition.

상기 기술적 과제를 이루기 위한 본 발명의 일 실시예에 따른 저온 실리콘 절연막 증착 방법은, 소스가스로서 실리콘 함유 가스와 반응가스를 공급하여 기판 상에 실리콘 절연막을 증착하는 실리콘 절연막 증착 방법에 있어서, 상기 실리콘 함유 가스가 유입되기 전에 게르마늄 함유 가스를 상기 기판이 위치하고 있는 반응공간 내로 유입시키는 게르마늄 함유 가스 유입단계; 상기 실리콘 함유 가스를 상기 기판이 위치하고 있는 반응공간 내로 유입시키는 실리콘 함유 가스 유입단계; 퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 실리콘 함유 가스를 제거하는 제1 퍼지가스 유입단계; 상기 반응가스를 유입시키는 반응가스 유입단계; 및 퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 반응가스를 제거하는 제2 퍼지가스 유입단계;를 포함하는 것을 특징으로 한다.The method of depositing a low temperature silicon insulating film according to an embodiment of the present invention for achieving the above technical problem is a silicon insulating film deposition method of depositing a silicon insulating film on a substrate by supplying a silicon-containing gas and a reaction gas as a source gas, wherein the silicon A germanium-containing gas introduction step of introducing germanium-containing gas into the reaction space in which the substrate is located before the containing gas is introduced; A silicon-containing gas introduction step of introducing the silicon-containing gas into the reaction space in which the substrate is located; A first purge gas inflow step of removing the silicon-containing gas remaining in the reaction space by introducing a purge gas; A reaction gas introduction step for introducing the reaction gas; And a second purge gas introduction step of introducing the purge gas and removing the reaction gas remaining in the reaction space.

상기 기술적 과제를 이루기 위한 본 발명의 다른 일 실시예에 따른 저온 실리콘 절연막 증착 방법은, 소스가스로서 실리콘 함유 가스와 반응가스로서 산소 또는 질소가 함유된 가스를 공급하여 기판 상에 실리콘 절연막을 증착하는 실리콘 절연막 증착방법에 있어서, 상기 실리콘 함유 가스와 게르마늄 함유 가스의 혼합 가스를 상기 기판이 위치하고 있는 반응공간 내로 유입시키는 혼합 가스 유입단계; 퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 혼합 가스를 제거하는 제1 퍼지가스 유입단계; 상기 반응가스를 유입시키는 반응가스 유입단계; 및 퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 반응가스를 제거하는 제2 퍼지가스 유입단계; 를 포함하는 것을 특징으로 한다.A method of depositing a low-temperature silicon insulating film according to another embodiment of the present invention for achieving the above technical problem is to deposit a silicon insulating film on a substrate by supplying a gas containing silicon or a gas containing silicon as a source gas and oxygen or nitrogen as a reaction gas. A method for depositing a silicon insulating film, the method comprising: a mixed gas introduction step of introducing a mixed gas of the silicon-containing gas and a germanium-containing gas into a reaction space in which the substrate is located; A first purge gas inflow step of removing the mixed gas remaining in the reaction space by introducing a purge gas; A reaction gas introduction step for introducing the reaction gas; And a second purge gas introduction step of introducing the purge gas and removing the reaction gas remaining in the reaction space. It characterized in that it comprises.

본 발명에 따른 저온 실리콘 절연막 증착 방법에 의하면, 실리콘 절연막을 형성하는 공정에서 실리콘 함유 가스에 게르마늄 함유 가스를 혼합하여 기판이 있는 반응공간에 유입시키거나, 실리콘 함유 가스를 유입시키기 전에 게르마늄 함유 가스를 먼저 유입시켜 수소 분자 형태로 표면으로부터의 열 이탈을 위한 저 에너지 장벽 통로를 수소에 제공함으로써, 실리콘 절연막 증착 공정의 공정 온도를 낮출 수 있는 효과가 있다.According to the method for depositing a low-temperature silicon insulating film according to the present invention, in a process of forming a silicon insulating film, a germanium-containing gas is mixed into a silicon-containing gas and introduced into a reaction space where a substrate is contained, or a germanium-containing gas is introduced before introducing the silicon-containing gas. It is effective to lower the process temperature of the silicon insulating film deposition process by first supplying hydrogen with a low energy barrier passage for heat escape from the surface in the form of hydrogen molecules.

도 1은 본 발명의 일 실시예에 따른 저온 실리콘 절연막 증착 방법의 흐름도이다.
도 2는 본 발명의 다른 일 실시예에 따른 저온 실리콘 절연막 증착 방법의 흐름도이다.
도 3은 도 2에 따른 저온 실리콘 절연막 증착 방법 중 혼합가스 유입단계를 설명하기 위한 도면이다.
1 is a flowchart of a method for depositing a low temperature silicon insulating film according to an embodiment of the present invention.
2 is a flowchart of a method for depositing a low temperature silicon insulating film according to another embodiment of the present invention.
3 is a view for explaining a mixed gas inflow step of the low temperature silicon insulating film deposition method according to FIG. 2.

이하, 첨부한 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 저온 실리콘 절연막 증착 방법의 흐름도이다.1 is a flowchart of a method for depositing a low temperature silicon insulating film according to an embodiment of the present invention.

도 1을 참고하면 본 발명에 따른 저온 실리콘 절연막 증착 방법은 게르마늄 함유 가스 유입단계(S110), 실리콘 함유 가스 유입단계(S120), 퍼지가스 유입단계(S130), 반응가스 유입단계(S140) 및 퍼지가스 유입단계(S150)를 포함한다.Referring to FIG. 1, the low temperature silicon insulating film deposition method according to the present invention includes a germanium-containing gas inflow step (S110), a silicon-containing gas inflow step (S120), a purge gas inflow step (S130), a reaction gas inflow step (S140) and purge It includes a gas inflow step (S150).

도 1에 도시된 바와 같이 본 발명에 따른 저온 실리콘 절연막 증착 방법의 한 주기는 5단계로 구분된다.As shown in FIG. 1, one cycle of the low temperature silicon insulating film deposition method according to the present invention is divided into 5 steps.

게르마늄 함유 가스 유입단계(S110)는 공정가스의 하나인 소스가스가 유입되기 전에 게르마늄 함유 가스를 기판이 위치하고 있는 반응공간 내로 유입시키는 단계이다. 이때, 게르마늄 함유 가스로는 GeH4, GeCl4, Ge2H6 또는 이들의 조합 등이 사용될 수 있다.The germanium-containing gas introduction step (S110) is a step of introducing germanium-containing gas into the reaction space where the substrate is located before the source gas, which is one of the process gases, is introduced. At this time, as the germanium-containing gas, GeH 4 , GeCl 4 , Ge 2 H 6 or a combination thereof may be used.

게르마늄 함유가스는 박막의 표면에 존재하는 수소의 이탈을 개선하여 박막 내부의 수소 함량을 감소시킨다. 게르마늄은 수소 분자 형태로 표면으로부터의 열 이탈을 위한 저 에너지 장벽 통로를 수소에 제공함으로써, 실리콘 절연막 증착 공정의 온도를 낮출 수 있는 효과가 있다.The germanium-containing gas improves the escape of hydrogen present on the surface of the thin film, thereby reducing the hydrogen content in the thin film. Germanium has the effect of lowering the temperature of the silicon insulating film deposition process by providing hydrogen with a low energy barrier passage for heat escape from the surface in the form of hydrogen molecules.

이어서, 실리콘 함유 가스 유입단계(S120)는 공정가스의 하나인 소스가스로서 실리콘 함유 가스를 기판이 위치하고 있는 반응공간 내로 유입시키는 단계이다. 실리콘 함유 가스로는 SiH4, SiCl4, Si2H6, SiH2Cl2 또는 이들의 둘 이상의 조합 등이 주로 이용된다.Subsequently, the silicon-containing gas inflow step S120 is a step of introducing silicon-containing gas into the reaction space where the substrate is located as a source gas, which is one of the process gases. As the silicon-containing gas, SiH 4 , SiCl 4 , Si 2 H 6 , SiH 2 Cl 2 or a combination of two or more thereof is mainly used.

제1 퍼지가스 유입단계(S130)에서는 퍼지가스를 유입하여 반응공간 내에 잔존하는 실리콘 함유 가스를 제거한다.In the first purge gas inflow step S130, the purge gas is introduced to remove the silicon-containing gas remaining in the reaction space.

반응가스 유입단계(S140)에서는 기판 상에 흡착되어 있는 실리콘 함유 가스의 박막과 화학 반응을 하여 박막을 형성할 반응가스를 유입한다. 이때 절연막으로 실리콘 산화막을 형성하는 경우에는 반응가스로 산소 함유가스(O2,O3등)를 사용하고, 절연막으로 실리콘 질화막을 형성하는 경우에는 반응가스로 질소 함유 가스(N2, NH3, N2O, N2H4등)를 사용한다. 본 발명에 따른 실리콘 산화막의 예로는 SiO2박막이 있고, 실리콘 질화막의 예로는 SiNX박막이 있다. 또한 실리콘 산화막 또는 실리콘 질화막의두께는 0.1ㅕ 내지 10ㅕ 으로 형성하는 것이 바람직하다.In the reaction gas inflow step (S140), a reaction gas to form a thin film is introduced by chemically reacting with a thin film of silicon-containing gas adsorbed on the substrate. At this time, when forming a silicon oxide film as an insulating film, oxygen-containing gas (O 2 , O 3, etc.) is used as a reaction gas, and when forming a silicon nitride film as an insulating film, nitrogen-containing gas (N 2, NH 3 , as a reaction gas) N 2 O, N 2 H 4, etc.). An example of a silicon oxide film according to the present invention is a SiO 2 thin film, and an example of a silicon nitride film is a SiN X thin film. In addition, the thickness of the silicon oxide film or silicon nitride film is preferably 0.1 to 10 mm 2.

제2 퍼지가스 유입단계(S150)에서는 퍼지가스를 유입하여 반응공간 내에 잔존하는 반응가스를 제거한다.In the second purge gas inflow step S150, the purge gas is introduced to remove the residual reaction gas in the reaction space.

상기한 게르마늄 함유 가스 유입단계(S110)로부터 퍼지가스 유입단계(S150)까지 하나의 박막증착주기를 이루게 되는데, 원하는 두께의 박막이 구현될 때까지 상기 박막증착주기를 반복하여 공정을 완료한다.From the germanium-containing gas inflow step (S110) to the purge gas inflow step (S150), one thin film deposition cycle is formed, and the thin film deposition cycle is repeated until a desired thickness of the thin film is achieved.

이와 같이 본 발명에 따른 저온 실리콘 절연막 증착 방법에 의하면 소스가스인 실리콘 함유 가스를 반응공간에 유입시키기 전에 미리 게르마늄 함유 가스를 유입시켜 수소 분자 형태로 표면으로부터의 열 이탈을 위한 저 에너지 장벽 통로를 수소에 제공함으로써, 실리콘 절연막 증착 공정의 공정 온도를 300℃ 내지 450℃의 범위로 낮출 수 있다. As described above, according to the method for depositing a low temperature silicon insulating film according to the present invention, a germanium-containing gas is previously introduced before introducing a silicon-containing gas as a source gas into a reaction space to hydrogen a low energy barrier passage for heat escape from the surface in the form of hydrogen molecules. By providing to the process temperature of the silicon insulating film deposition process can be lowered in the range of 300 ℃ to 450 ℃.

도 2는 본 발명의 다른 일 실시예에 따른 저온 실리콘 절연막 증착 방법의 흐름도이다.2 is a flowchart of a method for depositing a low temperature silicon insulating film according to another embodiment of the present invention.

도 2를 참고하면 본 발명의 다른 일 실시예에 따른 저온 실리콘 절연막 증착 방법은 혼합 가스 유입단계(S210), 제1 퍼지가스 유입단계(S220), 반응가스 유입단계(S230) 및 제2 퍼지가스 유입단계(S240)를 포함한다.Referring to FIG. 2, a method for depositing a low temperature silicon insulating film according to another embodiment of the present invention includes a mixed gas inflow step (S210), a first purge gas inflow step (S220), a reaction gas inflow step (S230), and a second purge gas. Inflow step (S240).

도 2에 도시된 저온 실리콘 절연막 증착 방법의 한 주기는 4단계로 구분된다.One cycle of the low temperature silicon insulating film deposition method shown in FIG. 2 is divided into four steps.

혼합 가스 유입단계(S210)는 공정가스의 하나인 소스가스인 실리콘 함유 가스와 게르마늄 함유 가스의 혼합가스를 기판이 위치하고 있는 반응공간 내로 유입시키는 단계이다. The mixed gas inflow step S210 is a step of introducing a mixed gas of silicon-containing gas and germanium-containing gas, which is one of the process gases, into the reaction space where the substrate is located.

이때, 실리콘 함유 가스로는 SiH4, SiCl4, Si2H6, SiH2Cl2 또는 이들의 둘 이상의 조합 등이 주로 사용되며, 게르마늄 함유 가스로는 GeH4, GeCl4, Ge2H6 또는 이들의 조합 등이 사용될 수 있다.At this time, SiH 4 , SiCl 4 , Si 2 H 6 , SiH 2 Cl 2 or a combination of two or more thereof is mainly used as the silicon-containing gas, and GeH 4 , GeCl 4 , Ge 2 H 6 or their Combinations and the like can be used.

혼합 가스 유입단계(S210)에서는 실리콘 함유 가스와 게르마늄 함유 가스를 미리 혼합한 후 혼합가스를 유입시킬 수도 있고, 실리콘 함유 가스와 게르마늄 함유 가스를 동시에 유입시킬 수도 있으며, 실리콘 함유 가스를 유입시키는 도중에 게르마늄 함유 가스를 간헐적으로 유입시킬 수도 있다.In the mixed gas inflow step (S210), the silicon-containing gas and the germanium-containing gas may be pre-mixed, and then the mixed gas may be introduced, or the silicon-containing gas and the germanium-containing gas may be introduced at the same time, and the silicon-containing gas may be introduced during germanium. The containing gas may be introduced intermittently.

실리콘 함유 가스를 유입시키는 도중에 게르마늄 함유 가스를 간헐적으로 유입시키는 경우 실리콘 산화막 또는 실리콘 질화막에 원치 않는 게르마늄(Ge)이 포함되는 것을 방지할 수 있다.When the germanium-containing gas is intermittently introduced while the silicon-containing gas is introduced, unwanted germanium (Ge) is prevented from being included in the silicon oxide film or the silicon nitride film.

제1 퍼지가스 유입단계(S220)에서는 퍼지가스를 유입하여 반응공간 내에 잔존하는 실리콘 함유 가스와 게르마늄 함유 가스의 혼합 가스를 제거한다.In the first purge gas introduction step (S220 ), a mixed gas of silicon-containing gas and germanium-containing gas remaining in the reaction space is removed by introducing the purge gas.

반응가스 유입단계(S230)에서는 기판 상에 흡착되어 있는 실리콘 함유 가스의 박막과 화학 반응을 하여 박막을 형성할 반응가스를 유입한다. 이때 절연막으로 실리콘 산화막을 형성하는 경우에는 반응가스로 산소 함유가스를 사용하고, 절연막으로 실리콘 질화막을 형성하는 경우에는 반응가스로 산소 함유가스를 사용한다.In the reaction gas inflow step S230, a reaction gas to form a thin film is introduced by chemically reacting with a thin film of silicon-containing gas adsorbed on the substrate. At this time, when forming a silicon oxide film as an insulating film, an oxygen-containing gas is used as a reaction gas, and when forming a silicon nitride film as an insulating film, an oxygen-containing gas is used as a reaction gas.

제2 퍼지가스 유입단계(S240)에서는 퍼지가스를 유입하여 반응공간 내에 잔존하는 반응가스를 제거한다.In the second purge gas inflow step S240, the purge gas is introduced to remove the remaining reaction gas in the reaction space.

상기한 혼합 가스 유입단계(S210)로부터 제2 퍼지가스 유입단계(S240)까지 하나의 박막증착주기(T)를 이루게 되는데, 원하는 두께의 박막이 구현될 때까지 상기 박막증착주기(T)를 반복하여 공정을 완료한다.From the mixed gas inflow step (S210) to the second purge gas inflow step (S240), one thin film deposition cycle (T) is achieved, and the thin film deposition cycle (T) is repeated until a desired thickness of the thin film is realized. To complete the process.

이와 같이 본 발명의 다른 일 실시예에 따른 저온 실리콘 절연막 증착 방법에 의하면 소스가스인 실리콘 함유 가스와 게르마늄 함유 가스의 혼합가스를 반응공간에 유입시켜 수소 분자 형태로 표면으로부터의 열 이탈을 위한 저 에너지 장벽 통로를 수소에 제공함으로써, 실리콘 절연막 증착 공정의 공정 온도를 300℃ 내지 450℃의 범위로 낮출 수 있다.As described above, according to the method of depositing a low-temperature silicon insulating film according to another embodiment of the present invention, a mixed gas of a silicon-containing gas and a germanium-containing gas, which is a source gas, is introduced into a reaction space to generate low energy for heat escape from the surface in the form of hydrogen molecules. By providing the barrier passage to hydrogen, the process temperature of the silicon insulating film deposition process can be lowered in the range of 300°C to 450°C.

도 3은 도 2에 따른 저온 실리콘 절연막 증착 방법 중 혼합가스 유입단계를 설명하기 위한 도면이다.3 is a view for explaining a mixed gas inflow step of the low temperature silicon insulating film deposition method according to FIG. 2.

도 3을 참고하면 혼합 가스 유입단계(S210)인 제1구간(T1)은, 예를 들어, 제1시간(t1)내지 제100시간(t100)으로 구분될 수 있다. 이때 실리콘 함유 가스와 게르마늄 함유 가스를 제1시간(t1)으로부터 제100시간(t100)까지 지속적으로 유입시킬 수 있다. 한편, 실리콘 함유 가스를 제1시간(t1)으로부터 제100시간(t100)까지 지속적으로 유입시키는 동안 게르마늄 함유 가스를 제1시간(t1)으로부터 제2시간(t2)까지 그리고 제11시간(t11)으로부터 제12시간(t12)까지 등과 같이 간헐적으로 유입시킬 수도 있다.Referring to FIG. 3, the first section T1 which is the mixed gas inflow step S210 may be divided into, for example, a first time t 1 to a 100 time t 100 . At this time, the silicon-containing gas and the germanium-containing gas may be continuously introduced from the first time (t 1 ) to the 100th time (t 100 ). On the other hand, while continuously introducing the silicon-containing gas from the first time (t 1 ) to the 100th time (t 100 ), the germanium-containing gas is from the first time (t 1 ) to the second time (t 2 ) and the eleventh It can also be introduced intermittently, such as from time t 11 to the twelfth time t 12 .

즉, 실리콘 함유 가스가 제1시간(t1)으로부터 제10시간(t10)까지 유입되는 동안 게르마늄 함유 가스를 제1시간(t1)으로부터 제2시간(t2)까지 유입시키고, 실리콘 함유 가스가 제11시간(t11)으로부터 제20시간(t20)까지 유입되는 동안 게르마늄 함유 가스를 제11시간(t11)으로부터 제12시간(t12)까지 유입시킬 수 있다.That is, while the silicon-containing gas flows from the first time (t 1 ) to the tenth time (t 10 ), the germanium-containing gas flows from the first time (t 1 ) to the second time (t 2 ), and contains silicon The germanium-containing gas may be introduced from the eleventh hour (t 11 ) to the twelfth hour (t 12 ) while the gas flows from the eleventh hour (t 11 ) to the twentieth hour (t 20 ).

제1시간(t1)으로부터 제10시간(t10)까지 실리콘 함유가스가 유입되는 동안 게르마늄 함유 가스를 제1시간(t1)으로부터 제2시간(t2)까지만 유입시키더라도 실리콘 함유 가스가 유입되는 시간 내내 게르마늄 함유 가스가 실리콘 함유 가스에 영향을 미칠 수 있다. 따라서 실리콘 함유 가스가 유입되는 시간 내내 게르마늄 함유 가스를 유입시키지 않고 게르마늄 함유 가스를 간헐적으로 유입시키더라도 더 낮은 공정온도에서 원하는 증착 효과를 얻을 수 있게 된다. 또한 게르마늄 함유 가스를 간헐적으로 유입시킴으로써 게르마늄이 실리콘 박막에 불순물로 작용하는 문제를 방지할 수 있는 또 다른 장점이 있다.While the silicon-containing gas is introduced from the first time (t 1 ) to the tenth time (t 10 ), even if the germanium-containing gas is introduced only from the first time (t 1 ) to the second time (t 2 ), the silicon-containing gas is Germanium-containing gas can affect the silicon-containing gas throughout the inflow time. Therefore, even if the germanium-containing gas is intermittently introduced without introducing the germanium-containing gas throughout the time during which the silicon-containing gas is introduced, a desired deposition effect can be obtained at a lower process temperature. In addition, there is another advantage of preventing the problem of germanium as an impurity in the silicon thin film by intermittently introducing germanium-containing gas.

한편, 저온 공정의 효과를 달성하면서 게르마늄이 불순물로 작용하는 문제를 방지하기 위해서는, 상기 혼합 가스 유입단계에서 유입되는 상기 게르마늄 함유 가스의 유량을 상기 혼합 가스 유입단계에서 유입되는 상기 실리콘 함유가스 유량의 1 내지 10%로 조절하는 것이 바람직하다.On the other hand, in order to prevent the problem of germanium acting as an impurity while achieving the effect of the low temperature process, the flow rate of the germanium-containing gas flowing in the mixed gas inflow step is determined by the flow rate of the silicon-containing gas flowing in the mixed gas inflow step. It is preferable to adjust to 1 to 10%.

본 명세서에서는 원자층 증착(ALD) 공정을 이용하여 실리콘 절연막을 증착하는 것으로 설명하였으나 화학기상증착(CVD) 공정을 이용하여 실리콘 절연막을 증착할 수 있음은 당연하다.Although it has been described herein that a silicon insulating film is deposited using an atomic layer deposition (ALD) process, it is natural that a silicon insulating film may be deposited using a chemical vapor deposition (CVD) process.

이상에서 본 발명의 바람직한 실시예에 대하여 상세히 설명하였지만, 본 발명의 권리범위가 이에 한정되는 것이 아니라 다음의 청구범위에서 정의하는 본 발명의 기본 개념을 바탕으로 보다 다양한 실시예로 구현될 수 있으며, 이러한 실시예들 또한 본 발명의 권리범위에 속하는 것이다. Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and may be implemented in more various embodiments based on the basic concept of the present invention as defined in the following claims. These embodiments are also within the scope of the present invention.

Claims (8)

소스가스로서 실리콘 함유 가스와 반응가스를 공급하여 기판 상에 실리콘 절연막을 증착하는 실리콘 절연막 증착 방법에 있어서,
상기 실리콘 함유 가스가 유입되기 전에 게르마늄 함유 가스를 상기 기판이 위치하고 있는 반응공간 내로 유입시키는 게르마늄 함유 가스 유입단계;
상기 실리콘 함유 가스를 상기 기판이 위치하고 있는 반응공간 내로 유입시키는 실리콘 함유 가스 유입단계;
퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 실리콘 함유 가스를 제거하는 제1 퍼지가스 유입단계;
상기 반응가스를 유입시키는 반응가스 유입단계; 및
퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 반응가스를 제거하는 제2 퍼지가스 유입단계;를 포함하는 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
In the silicon insulating film deposition method for depositing a silicon insulating film on a substrate by supplying a silicon-containing gas and a reaction gas as a source gas,
A germanium-containing gas introduction step of introducing germanium-containing gas into the reaction space in which the substrate is located before the silicon-containing gas is introduced;
A silicon-containing gas introduction step of introducing the silicon-containing gas into the reaction space in which the substrate is located;
A first purge gas inflow step of removing the silicon-containing gas remaining in the reaction space by introducing a purge gas;
A reaction gas introduction step for introducing the reaction gas; And
And a second purge gas inlet step of removing the reaction gas remaining in the reaction space by introducing a purge gas.
소스가스로서 실리콘 함유 가스와 반응가스를 공급하여 기판 상에 실리콘 절연막을 증착하는 실리콘 절연막 증착방법에 있어서,
상기 실리콘 함유 가스와 게르마늄 함유 가스의 혼합 가스를 상기 기판이 위치하고 있는 반응공간 내로 유입시키는 혼합 가스 유입단계;
퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 혼합 가스를 제거하는 제1 퍼지가스 유입단계;
상기 반응가스를 유입시키는 반응가스 유입단계; 및
퍼지가스를 유입하여 상기 반응공간 내에 잔존하는 상기 반응가스를 제거하는 제2 퍼지가스 유입단계;를 포함하는 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
In the silicon insulating film deposition method of depositing a silicon insulating film on a substrate by supplying a silicon-containing gas and a reaction gas as a source gas,
A mixed gas introduction step of introducing a mixed gas of the silicon-containing gas and a germanium-containing gas into a reaction space in which the substrate is located;
A first purge gas inflow step of introducing the purge gas and removing the mixed gas remaining in the reaction space;
A reaction gas introduction step for introducing the reaction gas; And
And a second purge gas inlet step of removing the reaction gas remaining in the reaction space by introducing a purge gas.
제 1항 또는 제 2항에 있어서, 상기 실리콘 함유 가스는
SiH4, SiCl4, Si2H6, SiH2Cl2 또는 이들의 둘 이상의 조합인 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
The method of claim 1 or 2, wherein the silicon-containing gas
SiH 4 , SiCl 4 , Si 2 H 6 , SiH 2 Cl 2 or a method of depositing a low-temperature silicon insulating film, characterized in that a combination of two or more thereof.
제 1항 또는 제 2항에 있어서, 상기 게르마늄 함유 가스는
GeH4, GeCl4, Ge2H6 또는 이들의 조합인 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
The method of claim 1 or 2, wherein the germanium-containing gas
Low-temperature silicon insulating film deposition method characterized in that the GeH 4 , GeCl 4 , Ge 2 H 6 or a combination thereof.
제 1항 또는 제 2항에 있어서, 상기 반응가스는
O2 또는 O3를 포함하는 산소 함유 가스 이거나 N2, NH3, N2O 또는 N2H4를 포함하는 질소 함유 가스인 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
According to claim 1 or 2, wherein the reaction gas
A method for depositing a low temperature silicon insulating film, characterized in that it is an oxygen-containing gas containing O 2 or O 3 or a nitrogen-containing gas containing N 2, NH 3 , N 2 O or N 2 H 4 .
제 2항에 있어서, 상기 혼합 가스 유입단계는
상기 실리콘 함유가스와 상기 게르마늄 함유 가스를 동시에 유입시키는 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
According to claim 2, The mixed gas inlet step
A method for depositing a low-temperature silicon insulating film, wherein the silicon-containing gas and the germanium-containing gas are introduced at the same time.
제 2항에 있어서, 상기 혼합 가스 유입단계는
상기 실리콘 함유가스를 유입시키면서 상기 게르마늄 함유 가스를 간헐적으로 유입시키는 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
According to claim 2, The mixed gas inlet step
A method for depositing a low-temperature silicon insulating film, wherein the germanium-containing gas is intermittently introduced while introducing the silicon-containing gas.
제 2항에 있어서,
상기 혼합 가스 유입단계에서 유입되는 상기 게르마늄 함유 가스의 유량은,
상기 혼합 가스 유입단계에서 유입되는 상기 실리콘 함유가스 유량의 1 내지 10%인 것을 특징으로 하는 저온 실리콘 절연막 증착 방법.
According to claim 2,
The flow rate of the germanium-containing gas flowing in the mixed gas inflow step,
Low temperature silicon insulating film deposition method, characterized in that 1 to 10% of the flow rate of the silicon-containing gas flowing in the mixed gas inflow step.
KR1020180161612A 2018-12-14 2018-12-14 A Method of Silicon Insulating Film Deposition at Low Temperature Ceased KR20200073452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180161612A KR20200073452A (en) 2018-12-14 2018-12-14 A Method of Silicon Insulating Film Deposition at Low Temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180161612A KR20200073452A (en) 2018-12-14 2018-12-14 A Method of Silicon Insulating Film Deposition at Low Temperature

Publications (1)

Publication Number Publication Date
KR20200073452A true KR20200073452A (en) 2020-06-24

Family

ID=71407980

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180161612A Ceased KR20200073452A (en) 2018-12-14 2018-12-14 A Method of Silicon Insulating Film Deposition at Low Temperature

Country Status (1)

Country Link
KR (1) KR20200073452A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080056287A (en) 2005-10-06 2008-06-20 어플라이드 머티어리얼스, 인코포레이티드 Low Temperature Deposition Method and Apparatus of Doped Silicon Nitride Film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080056287A (en) 2005-10-06 2008-06-20 어플라이드 머티어리얼스, 인코포레이티드 Low Temperature Deposition Method and Apparatus of Doped Silicon Nitride Film

Similar Documents

Publication Publication Date Title
US9984868B2 (en) PEALD of films comprising silicon nitride
JP4906270B2 (en) New materials for contact and etch layers that improve device performance
KR100943113B1 (en) Method for silicon nitride chemical vapor deposition
US7473655B2 (en) Method for silicon based dielectric chemical vapor deposition
KR101630748B1 (en) Thin film forming method and film forming apparatus
EP1149934B1 (en) CVD synthesis of silicon nitride materials
US7972978B2 (en) Pretreatment processes within a batch ALD reactor
US20060019032A1 (en) Low thermal budget silicon nitride formation for advance transistor fabrication
TWI866642B (en) Method to enhance growth rate for selective epitaxial growth
KR20090094000A (en) Method of clustering sequential processing for a gate stack structure
CN101496153A (en) Methods of forming carbon-containing silicon epitaxial layers
EP1842231A2 (en) Micro-feature fill process and apparatus using hexachlorodisilane or other chlorine-containing silicon precursor
WO2004009861A2 (en) Method to form ultra high quality silicon-containing compound layers
WO2007078802A2 (en) Epitaxial deposition of doped semiconductor materials
WO2007140375A2 (en) Methods and systems for selectively depositing si-containing films using chloropolysilanes
US20140273524A1 (en) Plasma Doping Of Silicon-Containing Films
US7029995B2 (en) Methods for depositing amorphous materials and using them as templates for epitaxial films by solid phase epitaxy
KR100434698B1 (en) Method for growing epitaxial layer in semiconductor device
KR100871006B1 (en) Thin tungsten silicide layer deposition and gate metal integration
KR100938301B1 (en) Etchant treatment processes for substrate surfaces and chamber surfaces
US20080153266A1 (en) Method to improve the selective epitaxial growth (seg) process
US20200283896A1 (en) Methods for low temperature silicide formation
KR20200073452A (en) A Method of Silicon Insulating Film Deposition at Low Temperature
JP3068522B2 (en) Method for manufacturing semiconductor device
CN111527585A (en) Including a method of atomic layer deposition sequence

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20181214

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20211109

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20181214

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20230707

Patent event code: PE09021S01D

AMND Amendment
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20240129

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20230707

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I

AMND Amendment
PX0601 Decision of rejection after re-examination

Comment text: Decision to Refuse Application

Patent event code: PX06014S01D

Patent event date: 20240604

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20240426

Comment text: Decision to Refuse Application

Patent event code: PX06011S01I

Patent event date: 20240129

Comment text: Amendment to Specification, etc.

Patent event code: PX06012R01I

Patent event date: 20230905

Comment text: Notification of reason for refusal

Patent event code: PX06013S01I

Patent event date: 20230707

X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
PJ0201 Trial against decision of rejection

Patent event date: 20240905

Comment text: Request for Trial against Decision on Refusal

Patent event code: PJ02012R01D

Appeal kind category: Appeal against decision to decline refusal

Appeal identifier: 2024101001949

Request date: 20240905