KR20200041098A - 파워 트레인 부품 고장 진단 방법 - Google Patents
파워 트레인 부품 고장 진단 방법 Download PDFInfo
- Publication number
- KR20200041098A KR20200041098A KR1020180121109A KR20180121109A KR20200041098A KR 20200041098 A KR20200041098 A KR 20200041098A KR 1020180121109 A KR1020180121109 A KR 1020180121109A KR 20180121109 A KR20180121109 A KR 20180121109A KR 20200041098 A KR20200041098 A KR 20200041098A
- Authority
- KR
- South Korea
- Prior art keywords
- power train
- failure
- diagnosis
- train component
- vibration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07C—TIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
- G07C5/00—Registering or indicating the working of vehicles
- G07C5/02—Registering or indicating driving, working, idle, or waiting time only
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M17/00—Testing of vehicles
- G01M17/007—Wheeled or endless-tracked vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
- G05B23/0245—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a qualitative model, e.g. rule based; if-then decisions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/02—Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
- B60W50/0205—Diagnosing or detecting failures; Failure detection models
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/04—Monitoring the functioning of the control system
- B60W50/045—Monitoring control system parameters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
- F02D11/107—Safety-related aspects
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/005—Controlling exhaust gas recirculation [EGR] according to engine operating conditions
- F02D41/0052—Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0215—Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D41/1405—Neural network control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M13/00—Testing of machine parts
- G01M13/02—Gearings; Transmission mechanisms
- G01M13/028—Acoustic or vibration analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing internal-combustion engines
- G01M15/12—Testing internal-combustion engines by monitoring vibrations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0062—Adapting control system settings
- B60W2050/0075—Automatic parameter input, automatic initialising or calibrating means
- B60W2050/0083—Setting, resetting, calibration
- B60W2050/0088—Adaptive recalibration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/025—Engine noise, e.g. determined by using an acoustic sensor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/20—Pc systems
- G05B2219/24—Pc safety
- G05B2219/24065—Real time diagnostics
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37434—Measuring vibration of machine or workpiece or tool
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Theoretical Computer Science (AREA)
- Transportation (AREA)
- Human Computer Interaction (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Molecular Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Acoustics & Sound (AREA)
- Medical Informatics (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
도 2는 본 발명의 파워 트레인 부품 고장 진단 방법을 순차적으로 도시한 것이다.
도 3은 개발된 딥러닝 모델에 의한 특징벡터 추출의 예시를 나타낸 것이다.
도 4는 본 발명의 파워 트레인 부품 고장 진단 방법의 일 구성 중 모델 수립단계를 도시한 것이다.
도 5는 본 발명의 파워 트레인 부품 고장 진단 방법의 일 구성 중 고장 진단단계를 도시한 것이다.
도 6은 도 5에 의한 고장진단 결과의 예시를 나타낸 것이다.
도 7은 본 발명의 파워 트레인 부품 고장 진단 방법의 일 구성 중 연소 능동제어 단계를 도시한 것이다.
도 8은 도 7의 연소 능동제어의 결과 예시를 나타낸 것이다.
S12 : 고장진단 평가모드 안내
S13 : 진동신호 데이터 전처리
S14 : 딥러닝 기반 고장진단
S15 : 고장 여부 판단
S16 : 파워 트레인 고장 판별
S21 : 파워 트레인 고장 아님 판별
S22 : 연소제어 학습값 적용
S23 : 연소제어 변경
S24 : 운전자 평가 결과 반영
Claims (8)
- 파워 트레인 부품별 고장시 진동에 대한 빅데이터를 수집하여 진동에 대한 특징벡터별 고장 부품을 분류하여 모델링하는 진단 모델 수립단계;
운전자의 입력 명령 또는 설정에 의해 고장진단을 개시하는 단계; 및
주행중 측정된 파워 트레인 진동의 특징 벡터를 상기 진단 모델 수립단계에 의해 모델링된 데이터와 비교하여 고장부품을 진단하는 고장진단 단계를 포함하는,
파워 트레인 부품 고장 진단 방법. - 청구항 1에 있어서,
상기 고장진단 단계는 상기 주행중 측정된 파워 트레인 진동의 특징 벡터를 데이터 전처리한 후 딥러닝(deep learning)에 의해 파워 트레인 부품별 고장 확률을 도출하는 것을 특징으로 하는,
파워 트레인 부품 고장 진단 방법. - 청구항 2에 있어서,
상기 고장진단 단계에 의해 파워 트레인 부품 고장이 아닌 것으로 판별되면, 연소제어 학습값을 적용하여 NVH(Noise, Vibration, Harshness) 성능 평가를 수행하는 단계를 더 포함하는,
파워 트레인 부품 고장 진단 방법. - 청구항 3에 있어서,
상기 NVH 성능 평가를 수행하는 단계에 따라 연소제어 변수를 변경하는 연소 능동제어 단계를 더 포함하는,
파워 트레인 부품 고장 진단 방법. - 청구항 4에 있어서,
상기 연소 능동제어 단계 후 운전자의 평가결과를 수신하여 NVH 성능의 개선 여부를 판단하는 단계를 더 포함하는,
파워 트레인 부품 고장 진단 방법. - 청구항 5에 있어서,
상기 NVH 성능의 개선 여부를 판단하는 단계에 의한 운전자의 평가결과가 불만족 결과인 경우 파워 트레인 이외의 부품 고장일 가능성을 운전자에 안내하는 것을 특징으로 하는,
파워 트레인 부품 고장 진단 방법. - 청구항 1에 있어서,
상기 고장진단을 개시하는 단계는 일정 주행거리 주행 후 자동으로 개시하는 것을 특징으로 하는,
파워 트레인 부품 고장 진단 방법. - 청구항 7에 있어서,
상기 고장진단을 개시하는 단계 후 파워 트레인 고장진단을 위한 주행 모드로 전환됨을 운전자에 안내하는 것을 특징으로 하는,
파워 트레인 부품 고장 진단 방법.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180121109A KR20200041098A (ko) | 2018-10-11 | 2018-10-11 | 파워 트레인 부품 고장 진단 방법 |
US16/427,533 US20200118358A1 (en) | 2018-10-11 | 2019-05-31 | Failure diagnosis method for power train components |
CN201910557124.2A CN111045411A (zh) | 2018-10-11 | 2019-06-25 | 用于动力传动系组件的故障诊断方法 |
EP19183188.2A EP3637083A1 (en) | 2018-10-11 | 2019-06-28 | Failure diagnosis method for power train components |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180121109A KR20200041098A (ko) | 2018-10-11 | 2018-10-11 | 파워 트레인 부품 고장 진단 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20200041098A true KR20200041098A (ko) | 2020-04-21 |
Family
ID=67137599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180121109A Ceased KR20200041098A (ko) | 2018-10-11 | 2018-10-11 | 파워 트레인 부품 고장 진단 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200118358A1 (ko) |
EP (1) | EP3637083A1 (ko) |
KR (1) | KR20200041098A (ko) |
CN (1) | CN111045411A (ko) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102791604B1 (ko) * | 2018-12-12 | 2025-04-08 | 현대자동차주식회사 | 빅데이터 정보 기반 문제소음 발생원 진단 방법 및 장치 |
KR102681637B1 (ko) * | 2018-12-13 | 2024-07-05 | 현대자동차주식회사 | 문제소음 발음원 식별을 위한 소음데이터의 인공지능 장치 및 전처리 방법 |
KR102726697B1 (ko) * | 2019-12-11 | 2024-11-06 | 현대자동차주식회사 | 빅데이터 기반 운행 정보 제공 시스템 및 방법 |
DE102020204944A1 (de) | 2020-04-20 | 2021-10-21 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren und System zur Diagnose eines Zustands eines Bauteils |
CN111626144B (zh) * | 2020-05-08 | 2023-08-29 | 湖南挚新科技发展有限公司 | 冲击特征向量构建方法、装置、终端设备及存储介质 |
CN112083709B (zh) * | 2020-08-26 | 2022-05-10 | 深圳市元征科技股份有限公司 | 车辆诊断方法、系统、终端设备及存储介质 |
CN112162545B (zh) * | 2020-10-21 | 2021-12-14 | 长安大学 | 一种汽车故障诊断方法及系统 |
CN112365628B (zh) * | 2020-10-30 | 2021-12-28 | 北京理工大学 | 一种混合动力系统的故障诊断方法和装置 |
JP2022100163A (ja) | 2020-12-23 | 2022-07-05 | トヨタ自動車株式会社 | 音源推定サーバ、音源推定システム、音源推定装置、音源推定方法 |
US11711259B2 (en) * | 2021-02-12 | 2023-07-25 | Zebra Technologies Corporation | Method, system and apparatus for detecting device malfunctions |
KR20220121284A (ko) * | 2021-02-24 | 2022-09-01 | 현대자동차주식회사 | 차량의 구동계 하드웨어 손상 진단 장치 및 그 방법 |
WO2023035009A1 (en) * | 2021-09-03 | 2023-03-09 | Continental Automotive Systems, Inc. | Data driven explainable method and system for predictive maintenance |
CN115452392B (zh) * | 2021-11-30 | 2023-08-08 | 广州汽车集团股份有限公司 | 一种车辆发动机故障声学诊断方法及系统 |
CN115031994B (zh) * | 2022-06-08 | 2023-05-02 | 昆山市易泰汽车科技有限公司 | 一种车辆耐久试验方法和系统 |
US20230406330A1 (en) * | 2022-06-21 | 2023-12-21 | Rivian Ip Holdings, Llc | Vehicle diagnostic information communications |
DE102023108765A1 (de) | 2023-04-05 | 2024-10-10 | Audi Aktiengesellschaft | Verfahren und Überwachungssystem zum Überwachen eines Bauteils in einem Kraftfahrzeug |
CN118072416A (zh) * | 2024-04-24 | 2024-05-24 | 中汽研(天津)汽车工程研究院有限公司 | 基于深度学习的智能车载声振分析与诊断系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101889049B1 (ko) | 2017-08-11 | 2018-08-21 | (주)다이매틱스 | 딥러닝 기반의 인공지능을 이용한 자동차 진단 방법 및 장치 |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2717665B2 (ja) * | 1988-05-31 | 1998-02-18 | 株式会社豊田中央研究所 | 内燃機関の燃焼予測判別装置 |
US5041976A (en) * | 1989-05-18 | 1991-08-20 | Ford Motor Company | Diagnostic system using pattern recognition for electronic automotive control systems |
US5361628A (en) * | 1993-08-02 | 1994-11-08 | Ford Motor Company | System and method for processing test measurements collected from an internal combustion engine for diagnostic purposes |
US5566092A (en) * | 1993-12-30 | 1996-10-15 | Caterpillar Inc. | Machine fault diagnostics system and method |
JP3116826B2 (ja) * | 1996-07-15 | 2000-12-11 | トヨタ自動車株式会社 | プレイグニッション検出装置 |
US5732382A (en) * | 1996-11-06 | 1998-03-24 | Ford Global Technologies, Inc. | Method for identifying misfire events of an internal combustion engine |
US6131444A (en) * | 1998-09-15 | 2000-10-17 | Chrysler Corporation | Misfire detection using a dynamic neural network with output feedback |
US6240343B1 (en) * | 1998-12-28 | 2001-05-29 | Caterpillar Inc. | Apparatus and method for diagnosing an engine using computer based models in combination with a neural network |
US6351713B1 (en) * | 1999-12-15 | 2002-02-26 | Swantech, L.L.C. | Distributed stress wave analysis system |
US6481271B1 (en) * | 2000-03-16 | 2002-11-19 | Ford Motor Company | Method to correct vehicle vibration during an assembly process |
IL144010A (en) * | 2001-06-26 | 2006-04-10 | Engines Pdm Ltd | Universal diagnostic method and system for engines |
US20030088346A1 (en) * | 2001-10-27 | 2003-05-08 | Vetronix Corporation | Noise, vibration and harshness analyzer |
AU2002353097A1 (en) * | 2001-12-07 | 2003-07-09 | Battelle Memorial Institute | Methods and systems for analyzing the degradation and failure of mechanical systems |
US20040143398A1 (en) * | 2003-01-03 | 2004-07-22 | Nelson Mitchell C. | Method and system for monitoring vibration and/or mechanical waves in mechanical systems |
US7225108B2 (en) * | 2004-12-06 | 2007-05-29 | Caterpillar Inc | Cross correlation diagnostics tool for vibration analysis |
US7194383B2 (en) * | 2004-12-06 | 2007-03-20 | Caterpillar Inc | Vibration analysis system and method for a machine |
FR2898411B1 (fr) * | 2006-03-08 | 2008-05-16 | Inst Francais Du Petrole | Methode d'estimation en temps reel de parametres de combustion moteur a partir de signaux vibratoires |
US7593796B2 (en) * | 2006-11-27 | 2009-09-22 | Toyota Motor Engineering & Manufacturing North America, Inc. | Torque estimator for internal combustion engine |
US7785230B2 (en) * | 2007-05-18 | 2010-08-31 | Ford Global Technologies, Llc | Variable displacement engine powertrain fuel economy mode |
US7900509B2 (en) * | 2008-08-06 | 2011-03-08 | Ford Global Technologies, Llc | Methods for variable displacement engine diagnostics |
US8131484B2 (en) * | 2010-03-15 | 2012-03-06 | Sergey Kirillov | Method for preprocessing vibro-sensor signals for engine diagnostics and device for carrying out thereof |
CN101839805A (zh) * | 2010-03-19 | 2010-09-22 | 同济大学 | 发动机主动故障质检与智能故障诊断方法 |
WO2012009718A1 (en) * | 2010-07-16 | 2012-01-19 | Cummins Inc. | Fault detection and response techniques |
CN102539159A (zh) * | 2010-12-24 | 2012-07-04 | 中国船舶研究设计中心 | 一种柴油机气门机构故障诊断方法 |
JP5888033B2 (ja) * | 2012-03-16 | 2016-03-16 | トヨタ自動車株式会社 | ハイブリッド車両の制御装置 |
CN102661866A (zh) * | 2012-05-11 | 2012-09-12 | 天津工业大学 | 基于时域能量和支持向量机的发动机故障识别方法 |
US10253716B2 (en) * | 2013-03-15 | 2019-04-09 | Predictive Fleet Technologies, Inc. | Engine analysis and diagnostic system |
CN104832640B (zh) * | 2014-07-29 | 2017-10-10 | 北汽福田汽车股份有限公司 | 故障下的车辆换挡控制方法、系统及具有其的车辆 |
CN104568446A (zh) * | 2014-09-27 | 2015-04-29 | 芜湖扬宇机电技术开发有限公司 | 一种发动机故障诊断方法 |
US20160245209A1 (en) * | 2015-02-19 | 2016-08-25 | General Electric Company | Signal recording of knocking conditions using a knock sensor |
US10054043B2 (en) * | 2015-04-07 | 2018-08-21 | General Electric Company | Systems and methods for estimating a time of an engine event |
CN104949840A (zh) * | 2015-05-05 | 2015-09-30 | 天津大学 | 一种基于振动分析的柴油机故障诊断方法 |
US20160370255A1 (en) * | 2015-06-16 | 2016-12-22 | GM Global Technology Operations LLC | System and method for detecting engine events with an acoustic sensor |
CN105319071B (zh) * | 2015-09-21 | 2017-11-07 | 天津大学 | 基于最小二乘支持向量机的柴油机燃油系统故障诊断方法 |
US20170184043A1 (en) * | 2015-12-29 | 2017-06-29 | General Electric Company | System and method to verify installation of asymmetric piston |
WO2017116353A1 (en) * | 2015-12-30 | 2017-07-06 | Ford Otomotiv Sanayi A. S. | Vibration and noise mapping system and method |
CN107449613B (zh) * | 2016-05-30 | 2019-07-16 | 上海汽车集团股份有限公司 | 车辆起动故障原因的检测方法及装置 |
CN106408687B (zh) * | 2016-11-24 | 2019-04-05 | 沈阳航空航天大学 | 一种基于机器学习方法的汽车发动机故障预警方法 |
CN106778828B (zh) * | 2016-11-28 | 2020-05-15 | 哈尔滨工程大学 | 基于简化贝叶斯模型的柴油机燃油系统多故障识别方法 |
EP3327419B1 (en) * | 2016-11-29 | 2020-09-09 | STS Intellimon Limited | Engine health diagnostic apparatus and method |
CN106502238A (zh) * | 2016-11-30 | 2017-03-15 | 北京航空航天大学 | 一种固液动力飞行器故障诊断系统 |
CN108398271A (zh) * | 2017-02-07 | 2018-08-14 | 山东云舜智能科技有限公司 | 一种基于振动和神经网络技术的发动机状态监测方法 |
US20180293814A1 (en) * | 2017-04-05 | 2018-10-11 | GM Global Technology Operations LLC | Method to classify system performance and detect environmental information |
KR102324776B1 (ko) * | 2017-10-16 | 2021-11-10 | 현대자동차주식회사 | 차량의 소음원인 진단방법 |
KR102383461B1 (ko) * | 2017-10-17 | 2022-04-06 | 현대자동차주식회사 | 인공지능을 활용한 엔진동력특성 기반 엔진음색 제어방법 및 차량 |
KR102474355B1 (ko) * | 2017-10-30 | 2022-12-05 | 현대자동차 주식회사 | 차량 제어 통합 관리 시스템 및 이와 통신을 통해 연결된 중앙 인공지능 서버 |
WO2019099228A1 (en) * | 2017-11-14 | 2019-05-23 | Tula Technology, Inc. | Machine learning for misfire detection in a dynamic firing level modulation controlled engine of a vehicle |
KR102406182B1 (ko) * | 2018-01-30 | 2022-06-07 | 현대자동차주식회사 | 빅데이터 기반의 차량 예측 제어 시스템 및 방법 |
CN108445868B (zh) * | 2018-03-26 | 2020-12-29 | 安徽省爱夫卡电子科技有限公司 | 一种基于现代信号处理技术的汽车智能故障诊断系统及方法 |
-
2018
- 2018-10-11 KR KR1020180121109A patent/KR20200041098A/ko not_active Ceased
-
2019
- 2019-05-31 US US16/427,533 patent/US20200118358A1/en not_active Abandoned
- 2019-06-25 CN CN201910557124.2A patent/CN111045411A/zh active Pending
- 2019-06-28 EP EP19183188.2A patent/EP3637083A1/en not_active Ceased
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101889049B1 (ko) | 2017-08-11 | 2018-08-21 | (주)다이매틱스 | 딥러닝 기반의 인공지능을 이용한 자동차 진단 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
US20200118358A1 (en) | 2020-04-16 |
CN111045411A (zh) | 2020-04-21 |
EP3637083A1 (en) | 2020-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20200041098A (ko) | 파워 트레인 부품 고장 진단 방법 | |
KR102804886B1 (ko) | 엔진 상태 진단 방법 | |
US10677686B2 (en) | Method and apparatus for autonomous system performance and grading | |
US11151808B2 (en) | Vehicle fault root cause diagnosis | |
CN113886951A (zh) | 一种飞行器健康管理系统及方法 | |
KR20010108191A (ko) | 차량에 발생하는 에러를 인식하기 위한 인식 방법 | |
CN114662554A (zh) | 用于诊断设备的系统和方法以及诊断设备的组件的方法 | |
CN117542028A (zh) | 驾驶行为的检测方法、装置、车辆及存储介质 | |
CN119107978A (zh) | 发动机故障诊断方法、装置、电子设备和存储介质 | |
US11721141B2 (en) | Method of AI-based vehicle diagnosis using CAN data and device thereof | |
US20230236088A1 (en) | Computer-aided method and device for predicting speeds for vehicles on the basis of probability | |
CN114839960A (zh) | 一种基于人工智能算法进行车辆故障检测方法及系统 | |
CN118296370A (zh) | 基于神经网络的列车故障预测方法及系统 | |
KR102470520B1 (ko) | 국제표준(sae j1739) 기반의 잠재적 고장 영향 분석 방법 | |
CN115729200B (zh) | 一种无人机舵机故障检测模型的构建方法和装置、一种无人机舵机故障检测方法和装置 | |
JP2024109377A (ja) | 車両診断システム | |
Jaramillo et al. | Vehicle online monitoring system based on fuzzy classifier | |
Kordes et al. | Automatic Fault Detection using Cause and Effect Rules for In-vehicle Networks. | |
Mumcuoglu et al. | Air pressure system failures detection using LSTM-autoencoder | |
Patel et al. | Continuous Risk Assessment for Automated Driving Systems using Random Forest | |
CN112861930A (zh) | 基于机器学习的车辆故障分析及预测方法和装置 | |
JP2022081305A (ja) | 音源判定システム | |
CN116923100B (zh) | 一种动力电池包修复方法及系统 | |
Giovannardi et al. | Full vehicle NVH end-of-line testing and data-driven fault detection of a high-performance hybrid vehicle front e-axle | |
Dandare et al. | Multiple fault detection in a four stroke engine using single sensor system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20181011 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20210914 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20181011 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230324 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20230919 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20230324 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0601 | Decision of rejection after re-examination |
Comment text: Decision to Refuse Application Patent event code: PX06014S01D Patent event date: 20240126 Comment text: Amendment to Specification, etc. Patent event code: PX06012R01I Patent event date: 20231215 Comment text: Decision to Refuse Application Patent event code: PX06011S01I Patent event date: 20230919 Comment text: Amendment to Specification, etc. Patent event code: PX06012R01I Patent event date: 20230519 Comment text: Notification of reason for refusal Patent event code: PX06013S01I Patent event date: 20230324 |
|
X601 | Decision of rejection after re-examination |