KR20200033398A - Manufacturing method of electrode for redox flow battery - Google Patents
Manufacturing method of electrode for redox flow battery Download PDFInfo
- Publication number
- KR20200033398A KR20200033398A KR1020180112573A KR20180112573A KR20200033398A KR 20200033398 A KR20200033398 A KR 20200033398A KR 1020180112573 A KR1020180112573 A KR 1020180112573A KR 20180112573 A KR20180112573 A KR 20180112573A KR 20200033398 A KR20200033398 A KR 20200033398A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- resin
- redox flow
- flow battery
- manufacturing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 229920005989 resin Polymers 0.000 claims abstract description 45
- 239000011347 resin Substances 0.000 claims abstract description 45
- 239000002245 particle Substances 0.000 claims abstract description 8
- 238000010000 carbonizing Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 21
- 238000003763 carbonization Methods 0.000 claims description 10
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 6
- 229920003987 resole Polymers 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000012153 distilled water Substances 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000003756 stirring Methods 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 abstract description 23
- 239000011148 porous material Substances 0.000 abstract description 3
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000005011 phenolic resin Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 3
- 238000004146 energy storage Methods 0.000 description 3
- 229920001568 phenolic resin Polymers 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical compound [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- -1 first Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011134 resol-type phenolic resin Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
본 발명은 레독스 흐름 전지용 전극의 제조방법에 관한 것으로, 보다 구체적으로는 구형 수지를 탄화시켜 입자의 형태를 구형으로 유지되게 함으로써 입자들 사이의 기공을 통해 전해액의 접촉면적을 늘릴 수 있고 전해액이 전극 전체에 균일하고 원할하게 흐를 수 있게 하여 효율을 향상시킬 수 있는 레독스 흐름 전지용 전극의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing an electrode for a redox flow battery, and more specifically, by carbonizing a spherical resin to maintain the shape of the particles in a spherical shape, the contact area of the electrolyte can be increased through pores between the particles and the electrolyte It relates to a method of manufacturing an electrode for a redox flow battery that can improve efficiency by allowing a uniform and smooth flow to the entire electrode.
에너지 저장 장치는 친환경 에너지 생산 환경에서 매우 중요한 요소이다.The energy storage device is a very important factor in an environment-friendly energy production environment.
특히 갈수록 심화되는 환경오염과 화석연료의 고갈은 전반적으로 친환경 에너지 생산을 부추기고 있다. 이러한 추세에 따라 태양광 발전, 풍력 발전, 조력 발전 등 많은 분야에서 친환경 에너지 생산이 장려되고 있다.In particular, the increasing environmental pollution and the depletion of fossil fuels are generally promoting eco-friendly energy production. In accordance with this trend, eco-friendly energy production is being encouraged in many fields such as solar power, wind power, and tidal power.
그러나 이러한 친환경 발전 시스템들은 환경의 변화에 따라 특정 시간대에 전기가 생산되는 단점을 가지고 있다. 예를 들어 태양광 발전은 낮 시간대에만 발전이 가능하고 풍력발전은 바람이 부는 시간대만 발전이 가능하여 전력의 생산 시점과 사용 시점의 불균일 때문에 에너지 저장 장치의 필요성이 대두되고 있다.However, these eco-friendly power generation systems have a disadvantage in that electricity is produced at a specific time according to changes in the environment. For example, the photovoltaic power generation can only be generated during the daytime, and the wind power generation can only be generated during the windy time, so the necessity of an energy storage device is emerging due to the unevenness of the power generation and use time.
에너지 저장 장치는 납축전지, 리튬이온전지, 황나트륨전지 등 종류가 다양한데 2차 전지로써 최근 레독스 흐름 전지(redox flow battery)가 주목받고 있다.There are various types of energy storage devices, such as lead acid batteries, lithium ion batteries, and sodium sodium batteries. Recently, redox flow batteries have attracted attention as secondary batteries.
일반적으로 2차 전지는 셀안에 전극, 전해질, 분리막이 함께 존재하여 충방전을 수행하나 레독스 흐름 전지는 이 중, 전해질이 외부 탱크에 별도로 저장되어 순환시키는 구조를 취하므로 일반적인 2차 전지에 비해 대용량으로 제작이 가능하고 전해액으로 수용성 전해물질을 사용할 수 있어 폭발 위험도 매우 낮은 장점이 있다.In general, a secondary battery has an electrode, an electrolyte, and a separator in a cell to perform charging and discharging. However, a redox flow battery has a structure in which electrolyte is stored and circulated separately in an external tank, so it is compared to a normal secondary battery. It has the advantage that it can be manufactured in a large capacity and can use a water-soluble electrolytic material as an electrolyte, so the risk of explosion is very low.
전술한 바와 같이 레독스 흐름 전지는 전해액이 외부 탱크에 저장되고 이를 펌프를 통해 전지 내부 스택에 순환시키는 구조로 되어 있다보니 전해액이 스택 내부에서 전극에 얼마나 원활히 순환되고 전자의 주고받음이 활발히 일어나느냐에 따라 성능이 좌우된다.As described above, the redox flow battery has a structure in which the electrolyte is stored in an outer tank and circulated to the inner stack of the battery through a pump. As a result, how smoothly the electrolyte is circulated to the electrodes inside the stack and the exchange of electrons occurs actively Performance depends.
현재까지 레독스 흐름 전지는 개발 초기 단계이기 때문에 전극도 다양하지 못하다. 현재까지는 전극에 전해액이 잘 흐를 수 있고 전자를 잘 주고 받을 수 있는 소재로 카본 펠트(Carbon Felt, 탄소 섬유로 만든 부직포) 전극이 이용되고 있는데 이 카본 펠트는 전기 전도성이 우수하고, 섬유조직의 모세관 특성에 의해 전해액이 잘 스며드는 장점이 있으나 펠트라는 구조가 섬유조직이 뭉쳐있고 이를 압착하여 장착하다보니 전해액이 균일하게 흐름을 유지하는 것이 쉽지 않다.To date, redox flow cells are in the early stages of development, so the electrodes are not diverse. Up to now, carbon felt (non-woven fabric made of carbon fiber) electrode has been used as a material that allows electrolyte to flow well and transfer electrons to and from the electrode. This carbon felt has excellent electrical conductivity and capillaries in the fiber structure. Due to the characteristics, it has the advantage of permeating the electrolyte well, but since the structure of felt is a fibrous structure, and it is mounted by pressing it, it is not easy for the electrolyte to maintain a uniform flow.
즉, 전해질이 카본펠트 전극에 균일하게 흘러 충방전이 이루어져야 하나 대게는 전체 면적 중, 일정 부분만을 물길을 따라 흘러가듯 부분적으로 전해액의 흐름이 나타난다는 것이다.That is, the electrolyte must flow uniformly to the carbon felt electrode to charge and discharge, but usually, the flow of the electrolyte appears partially as if only a certain portion of the entire area flows along the waterway.
따라서, 전극의 전체 면적 중, 일부분은 전혀 전해액이 흐르지 않은 부분이 생기고 전해액이 흐르더라도 흐름이 낮은 현상이 생겨 효율을 저감시키는 원인이 된다.Therefore, a portion of the total area of the electrode is a part in which no electrolyte solution flows at all, and even when the electrolyte solution flows, a phenomenon in which the flow is low occurs, thereby reducing efficiency.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로 본 발명의 목적은 전극 전체에 전해액이 고루 원활하게 흐르고 전해액의 접촉면적을 증가시켜 효율을 매우 향상시킬 수 있는 레독스 흐름 전지용 전극을 제조하는 것이다.The present invention has been devised to solve the above-mentioned problems, and an object of the present invention is to manufacture an electrode for a redox flow battery that can smoothly improve the efficiency by smoothly flowing an electrolyte solution over the entire electrode and increasing the contact area of the electrolyte solution. .
상기의 목적을 달성하기 위하여 본 발명은 구형 수지 입자로 이루어지는 수지(이하, '구형 수지'라 함)를 제조하는 제1단계; 상기 구형 수지에 바인더용 수지를 혼합한 후, 판재를 성형하는 제2단계; 상기 판재를 특정 온도에서 경화하는 제3단계; 경화된 판재를 특정 온도에서 탄화하는 제4단계; 및 탄화된 판재를 재단하여 레독스 흐름 전지의 전극으로 수득하는 제5단계;를 포함하는 것을 특징으로 하는 레독스 흐름 전지용 전극의 제조방법을 제공한다.In order to achieve the above object, the present invention is a first step of producing a resin (hereinafter referred to as 'spherical resin') made of spherical resin particles; A second step of forming a plate material after mixing the resin for a binder with the spherical resin; A third step of curing the plate material at a specific temperature; A fourth step of carbonizing the cured sheet at a specific temperature; And a fifth step of cutting the carbonized plate material to obtain an electrode of a redox flow battery.
바람직한 실시예에 있어서, 상기 제1 단계:는, 알콜이 혼합된 증류수에 폴리 비닐 알콜(polyvinyl alcohol)을 용해하고, 경화재인 헥사메틸렌디아민(hexamethylenediamine)을 첨가한 후, 레졸형 수지를 혼합하는 제1-1단계; 및 상기 레졸형 수지를 반응기에서 교반하여 상기 구형 수지를 제조하는 제1-2단계;를 포함한다.In a preferred embodiment, the first step is: dissolving polyvinyl alcohol (polyvinyl alcohol) in distilled water mixed with alcohol, adding a cured material hexamethylenediamine (hexamethylenediamine), and then mixing the resol type resin Step 1-1; And steps 1-2 of preparing the spherical resin by stirring the resol type resin in a reactor.
바람직한 실시예에 있어서, 상기 바인더용 수지는 상기 구형 수지 대비 5% 내지 15% 사이의 일정 중량비로 첨가되며, 상기 판재는 상기 구형수지는 성형틀에 부어 프레스를 이용하여 일정한 압력을 가함으로써 제작된다.In a preferred embodiment, the resin for the binder is added at a constant weight ratio between 5% and 15% compared to the spherical resin, and the plate material is produced by pouring the spherical resin into a molding frame and applying a constant pressure using a press. .
바람직한 실시예에 있어서, 상기 제3단계는 상기 판재를 150도 내지 200도 사이의 특정 온도에서 1시간 내지 2시간 베이킹함으로써 경화한다.In a preferred embodiment, the third step is cured by baking the plate at a specific temperature between 150 and 200 degrees for 1 to 2 hours.
바람직한 실시예에 있어서, 상기 제4단계:는, 상기 경화된 판재를 탄화로 내에 투입하여 800도까지 분당 0.5도 내지 1도로 승온하여 800도에서 1시간 유지하여 수분과 휘발성 성분을 제거하여 1차 탄화하는 제4-1단계; 및 상기 1차 탄화된 판재를 자연냉각한 후, 1400도 내지 1800도 사이의 특정 온도까지 분당 0.5도 내지 1도로 승온하여 2차 탄화하는 제4-2단계;를 포함한다.In a preferred embodiment, in the fourth step, the cured sheet material is introduced into a carbonization furnace and heated to 0.5 ° C to 1 ° C per minute to 800 ° C and maintained at 800 ° C for 1 hour to remove moisture and volatile components. Carbonization step 4-1; And a 4-2 step of secondary cooling by naturally cooling the primary carbonized plate material and then raising the temperature to 0.5 ° to 1 ° per minute to a specific temperature between 1400 ° and 1800 °.
또한, 본 발명은 상기 제조방법으로 제조된 레독스 흐름 전지용 전극을 더 제공한다.In addition, the present invention further provides an electrode for a redox flow battery manufactured by the above manufacturing method.
본 발명은 다음과 같은 우수한 효과를 가진다.The present invention has the following excellent effects.
본 발명의 레독스 흐름 전지용 전극의 제조방법에 의하면, 구형 수지를 탄화시켜 판재로 성형한 후, 전극을 제작하므로 종래의 카본 펠트 전극과 비교하여 전극 전체에 전해액이 고루 원활하게 흐르고 전해액의 접촉면적을 증가시킬 수 있어 효율을 매우 향상시킬 수 있는 장점이 있다.According to the method of manufacturing an electrode for a redox flow battery of the present invention, after the spherical resin is carbonized and molded into a plate material, an electrode is produced, so that the electrolyte flows smoothly and the contact area of the electrolyte compared to the conventional carbon felt electrode. It has the advantage of being able to increase the efficiency.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극의 제조방법을 설명하기 위한 흐름도,
도 2는 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극의 제조방법에서 구형 수지를 확대하여 보여주는 사진,
도 3은 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극의 제조방법으로 제조된 전극을 확대하여 보여주는 도면,
도 4는 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극의 제조방법으로 제조된 전극의 실물 사진,
도 5는 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극의 제조방법으로 제조된 전극의 단위면적당 전해액 공급유량을 실험한 실험결과를 보여주는 도면이다.1 is a flow chart for explaining a method of manufacturing an electrode for a redox flow battery according to an embodiment of the present invention,
Figure 2 is a photograph showing an enlarged spherical resin in a method of manufacturing an electrode for a redox flow battery according to an embodiment of the present invention,
3 is an enlarged view showing an electrode manufactured by a method of manufacturing an electrode for a redox flow battery according to an embodiment of the present invention,
Figure 4 is a physical picture of the electrode produced by the method of manufacturing an electrode for a redox flow battery according to an embodiment of the present invention,
5 is a view showing the experimental results of the electrolyte flow rate per unit area of the electrode produced by the method of manufacturing an electrode for a redox flow battery according to an embodiment of the present invention.
본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.The terminology used in the present invention is selected from the general terms that are currently widely used, but in certain cases, there are also terms that are arbitrarily selected by the applicant. In this case, the meanings described or used in the detailed description of the invention are not considered as simple term names. Therefore, the meaning should be grasped.
이하, 첨부한 도면에 도시된 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to preferred embodiments illustrated in the accompanying drawings.
그러나 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 명세서 전체에 걸쳐 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Throughout the specification, the same reference numerals denote the same components.
도 1은 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극의 제조방법을 설명하기 위한 흐름도로써, 도 1을 참조하면, 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극은 펠트형태가 아닌 다공성 판재 형상으로 제조되는데 특징이 있다.1 is a flow chart for explaining a method of manufacturing an electrode for a redox flow battery according to an embodiment of the present invention. Referring to FIG. 1, an electrode for a redox flow battery according to an embodiment of the present invention is not in a felt form. It is characterized by being manufactured in the form of a porous plate.
본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극은 먼저, 구형 수지 입자로 이루어지는 수지(이하, '구형 수지'라 함)을 제조한다(S1000).Redox flow battery electrode according to an embodiment of the present invention, first, to prepare a resin (hereinafter referred to as 'spherical resin') made of spherical resin particles (S1000).
또한, 상기 구형 수지를 제조하기 위해서는 먼저, 페놀수지, 요소수지와 같은 경화성 수지를 준비하고, 상기 경화성 수지를 레졸형 수지로 제조한다(S1100).In addition, in order to prepare the spherical resin, first, a curable resin such as a phenolic resin or urea resin is prepared, and the curable resin is prepared as a resol type resin (S1100).
또한, 상기 경화성 수지가 페놀수지인 경우를 예로 들면, 먼저,폴리비닐알콜(polyvinyl alcohol)을 알콜이 혼합된 증류수에 용해하고, 경화제인 헥사메틸렌디아민(hexamethylenediamine)을 첨가한 후, 액상인 레졸형 페놀수지를 혼합한다.In addition, for example, in the case where the curable resin is a phenol resin, first, polyvinyl alcohol is dissolved in distilled water mixed with alcohol, and after adding a curing agent hexamethylenediamine, a liquid resol type Mix phenolic resin.
다음, 이 레졸형 페놀수지를 가온하면서 반응기에서 교반하여 레졸형 수지를 구형 수지로 제조한다(S1200).Next, the resol-type phenolic resin is stirred in a reactor while heating to prepare a resol-type resin as a spherical resin (S1200).
또한, 도 2는 상기 구형 수지를 확대하여 보여주는 사진으로, 상기 구형 수지는 구형의 수지 입자로 이루어져있다.In addition, Figure 2 is a photograph showing the enlarged spherical resin, the spherical resin is composed of spherical resin particles.
다음, 상기 구형 수지가 불용성 수지가 되도록 200 내지 300도에서 일정 시간 경화한다.Next, it is cured for a certain time at 200 to 300 degrees so that the spherical resin becomes an insoluble resin.
다음, 상기 구형 수지를 경화시켜 일정한 강도를 갖는 판재로 성형한다(S2000).Next, the spherical resin is cured and molded into a plate material having a certain strength (S2000).
자세하게는 먼저, 상기 구형 수지에 바인더용 수지(페놀 수지일 수 있음)를 상기 구형 수지 대비 5% 내지 15% 사이의 일정 중량비로 첨가하고(S2100), 성형틀에 부어 프레스를 이용하여 가압한 후 판재로 성형한다(S2200).In detail, first, a resin for a binder (which may be a phenolic resin) is added to the spherical resin at a constant weight ratio between 5% and 15% compared to the spherical resin (S2100), poured into a molding mold and pressed using a press. It is molded from a plate material (S2200).
다음, 성형된 판재를 150도 내지 200도 사이의 특정온도에서 1시간 내지 2시간 베이킹함으로써 경화시키고(S3000), 경화된 판재를 냉각하여 일정한 강도를 갖는 판재로 제작한다.Next, the molded plate is cured by baking for 1 hour to 2 hours at a specific temperature between 150 degrees and 200 degrees (S3000), and the cured plate is cooled to prepare a plate having a certain strength.
다음, 상기 판재를 질소 분위기 하에서 탄화시켜 공극이 형성되게 한다(S4000).Next, the plate material is carbonized under a nitrogen atmosphere to form voids (S4000).
또한, 탄화과정은 크랙이 발생하는 등의 문제점을 해결하기 위해 2차에 걸쳐 이루어지며, 1차 탄화는 탈지공정으로 분당 0.5도 에서 1도로 800도까지 승온하여 1시간 정도 유지함으로써 수분이나 휘발성 성분을 제거하고(S4100), 상온에서 냉각한 후, 탄화 공정인 2차 탄화를 수행한다(S4200).In addition, the carbonization process is carried out over a second time to solve problems such as cracking, and the primary carbonization is a degreasing process that raises the temperature from 0.5 ° C to 1 ° C to 800 ° C for 1 hour to maintain moisture for 1 hour. After removing (S4100), and cooling at room temperature, a second carbonization, which is a carbonization process, is performed (S4200).
또한, 2차 탄화는 1차 탄화된 판재를 소결로에 투입하여 분당 0.5도 에서 1도로 1400도 내지 1800도 사이의 특정온도로 승온하여 탄소성분을 제외한 거의 모든 성분들이 휘발시킨다.In addition, in the second carbonization, almost all the components except the carbon component volatilize by heating the primary carbonized plate material to the sintering furnace at a specific temperature between 0.5 ° C and 1 ° C per minute and between 1400 ° C and 1800 ° C.
이렇게 2차 탄화를 거친 판재는 일부 비휘발성 금속원자나 고온에서 견디는 일부 원소들이 남아있을 수 있는데 순도를 더욱 높이기 위해서는 더 높은 온도에서 염소가스의 처리로 초고순도 판재를 얻을 수 있다.The second carbonized sheet may have some non-volatile metal atoms or some elements that can withstand high temperatures. To further increase the purity, ultra-high-purity sheet can be obtained by treating chlorine gas at a higher temperature.
그러나 일반적으로 레독스 흐름 전지의 전극은 고순도를 요구하지 않으며, 그 이유는 레독스 흐름 전지의 전해액이 충방전 반응을 할 때 때로는 수산기 등이 효율을 높일 수 있기 때문이다.However, in general, the electrode of the redox flow battery does not require high purity, because when the electrolyte of the redox flow battery undergoes a charge / discharge reaction, sometimes a hydroxyl group or the like can increase efficiency.
다음, 탄화된 판재를 레독스 흐름 전지의 전극 사이즈로 가공하고, 세척하여 최종적으로 전극을 수득한다(S5000).Next, the carbonized plate material is processed to the electrode size of the redox flow battery, and washed to finally obtain an electrode (S5000).
도 3은 탄화된 판재를 확대하여 보여주는 사진이고, 도 4는 가공된 전극을 보여주는 사진으로 탄화된 구형 입자들 사이에 공극이 존재함을 알 수 있으며, 이 공극에 의해 전해액의 접촉면적이 늘어나므로 전해액의 공급유량이 증가하여 효율을 향상시킬 수 있다.3 is a photograph showing an enlarged carbonized plate, and FIG. 4 is a photograph showing a processed electrode, and it can be seen that voids exist between the carbonized spherical particles, and the contact area of the electrolyte is increased by the pores. It is possible to improve the efficiency by increasing the flow rate of the electrolyte.
도 5는 본 발명의 일 실시예에 따른 레독스 흐름 전지용 전극의 제조방법으로 제조된 전극의 단위면적당 전해액 공급유량을 실험한 실험결과로써 왼쪽 그래프는 전해액의 공급압력이 0.56bar인 경우이고 오른쪽 그래프는 0.90bar인 경우이다.5 is an experiment result of testing the flow rate of the electrolyte solution per unit area of the electrode manufactured by the method of manufacturing an electrode for a redox flow battery according to an embodiment of the present invention. The graph on the left is a case where the supply pressure of the electrolyte is 0.56 bar and the graph on the right Is 0.90bar.
전해액의 공급압력이 0.56bar인 경우 종래의 카본펠트 전극과 비교하여 본 발명의 전극을 (+)전극으로 이용할 때, 전해액 공급유량이 60% 증가하였고, (-)전극으로 이용할 때, 104%가 증가함을 할 수 있다.When the supply pressure of the electrolyte is 0.56 bar, when the electrode of the present invention is used as a (+) electrode compared to a conventional carbon felt electrode, the electrolyte supply flow rate is increased by 60%, and when used as a (-) electrode, 104% It can be increased.
또한, 전해액의 공급압력이 0.90bar인 경우 종래의 카본펠트 전극과 비교하여 본 발명의 전극의 (+)전극으로 이용할 때, 전해액 공급유량이 68% 증가하였고, (-)전극으로 이용할 때, 76%가 증가하여 효율을 매우 향상시킬 수 있음을 확인하였다.In addition, when the supply pressure of the electrolytic solution is 0.90 bar, when used as the (+) electrode of the electrode of the present invention compared to the conventional carbon felt electrode, the electrolytic solution supply flow rate increased by 68%, and when used as the (-) electrode, 76 It was confirmed that efficiency can be greatly improved by increasing%.
이상에서 살펴본 바와 같이 본 발명은 바람직한 실시예를 들어 도시하고 설명하였으나, 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.As described above, the present invention has been illustrated and described with reference to preferred embodiments, but is not limited to the above-described embodiments and is within the scope of the present invention without departing from the spirit of the present invention. By this, various changes and modifications will be possible.
Claims (6)
상기 구형 수지에 바인더용 수지를 혼합한 후, 판재를 성형하는 제2단계;
상기 판재를 특정 온도에서 경화하는 제3단계;
경화된 판재를 특정 온도에서 탄화하는 제4단계; 및
탄화된 판재를 재단하여 레독스 흐름 전지의 전극으로 수득하는 제5단계;를 포함하는 것을 특징으로 하는 레독스 흐름 전지용 전극의 제조방법.
A first step of manufacturing a resin (hereinafter referred to as a 'spherical resin') made of spherical resin particles;
A second step of forming a plate material after mixing the resin for a binder with the spherical resin;
A third step of curing the plate material at a specific temperature;
A fourth step of carbonizing the cured sheet at a specific temperature; And
A method of manufacturing an electrode for a redox flow battery, comprising: a fifth step of cutting a carbonized plate to obtain an electrode of a redox flow battery.
상기 제1 단계:는,
알콜이 혼합된 증류수에 폴리비닐알콜(polyvinyl alcohol)을 용해하고, 경화재인 헥사메틸렌디아민(hexamethylenediamine)을 첨가한 후, 레졸형 수지를 혼합하는 제1-1단계; 및
상기 레졸형 수지를 반응기에서 교반하여 상기 구형 수지를 제조하는 제1-2단계;를 포함하는 것을 특징으로 하는 레독스 흐름 전지용 전극의 제조방법.
According to claim 1,
The first step:
Step 1-1 of dissolving polyvinyl alcohol in distilled water mixed with alcohol, adding hexamethylenediamine as a curing material, and mixing the resol type resin; And
Method of manufacturing an electrode for a redox flow battery comprising the steps 1-2 of preparing the spherical resin by stirring the resol type resin in a reactor.
상기 바인더용 수지는 상기 구형 수지 대비 5% 내지 15% 사이의 일정 중량비로 첨가되며,
상기 판재는 상기 구형수지는 성형틀에 부어 프레스를 이용하여 일정한 압력을 가함으로써 제작되는 것을 특징으로 하는 레독스 흐름 전지용 전극의 제조방법.
According to claim 1,
The resin for the binder is added in a constant weight ratio between 5% and 15% compared to the spherical resin,
The plate material is a method of manufacturing an electrode for a redox flow battery, characterized in that the spherical resin is produced by pouring a constant pressure using a press by pouring it into a molding frame.
상기 제3단계는 상기 판재를 150도 내지 200도 사이의 특정 온도에서 1시간 내지 2시간 베이킹함으로써 경화하는 것을 특징으로 하는 레독스 흐름 전지용 전극의 제조방법.
According to claim 1,
The third step is a method of manufacturing an electrode for a redox flow battery, wherein the plate material is cured by baking for 1 hour to 2 hours at a specific temperature between 150 degrees and 200 degrees.
상기 제4단계:는,
상기 경화된 판재를 탄화로 내에 투입하여 800도까지 분당 0.5도 내지 1도로 승온하여 800도에서 1시간 유지하여 수분과 휘발성 성분을 제거하여 1차 탄화하는 제4-1단계; 및
상기 1차 탄화된 판재를 자연냉각한 후, 1400도 내지 1800도 사이의 특정 온도까지 분당 0.5도 내지 1도로 승온하여 2차 탄화하는 제4-2단계;를 포함하는 것을 특징으로 하는 레독스 흐름 전지용 전극의 제조방법.
According to claim 1,
The fourth step:
Step 4-1 of primary carbonization by removing the moisture and volatile components by putting the cured sheet material into a carbonization furnace and heating it up to 800 degrees to 0.5 degrees to 1 degree per minute for 1 hour at 800 degrees; And
After the natural cooling of the primary carbonized plate, the temperature is raised to 0.5 to 1 degree per minute to a specific temperature between 1400 and 1800 degrees, the second carbonization step 2-2; Method for manufacturing a battery electrode.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180112573A KR102179453B1 (en) | 2018-09-20 | 2018-09-20 | Manufacturing method of electrode for redox flow battery |
PCT/KR2018/013865 WO2020059950A1 (en) | 2018-09-20 | 2018-11-14 | Method for manufacturing electrode for redox flow battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180112573A KR102179453B1 (en) | 2018-09-20 | 2018-09-20 | Manufacturing method of electrode for redox flow battery |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200033398A true KR20200033398A (en) | 2020-03-30 |
KR102179453B1 KR102179453B1 (en) | 2020-11-16 |
Family
ID=69888533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180112573A Active KR102179453B1 (en) | 2018-09-20 | 2018-09-20 | Manufacturing method of electrode for redox flow battery |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102179453B1 (en) |
WO (1) | WO2020059950A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297280A (en) * | 1986-06-16 | 1987-12-24 | イビデン株式会社 | Carbon base foam heat insulating formed body and manufacture |
JP2008120856A (en) * | 2006-11-08 | 2008-05-29 | Lignyte Co Ltd | Phenol resin production method, phenol resin, resin coated sand, phenol resin carbonized material, conductive resin composition, secondary battery electrode, electrode carbon material, pharmaceutical adsorbent, electric double layer capacitor polarizable electrode |
KR20180099239A (en) * | 2017-02-28 | 2018-09-05 | 주식회사 엘지화학 | Electrode structure and redox flow battery comprising the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5133356A (en) * | 1974-09-14 | 1976-03-22 | Shinko Burain Kk | HAKEIKEISHABANNYORUCHINKOBUNRISOCHI |
JPS5947585B2 (en) * | 1978-02-13 | 1984-11-20 | 森永乳業株式会社 | Method for producing cutlet cheese-like food |
US6713034B2 (en) * | 2000-01-27 | 2004-03-30 | Mitsubishi Rayon Co., Ltd. | Porous carbon electrode material, method for manufacturing the same, and carbon fiber paper |
JP5957793B2 (en) * | 2011-01-19 | 2016-07-27 | マツダ株式会社 | Carbon material manufacturing method |
-
2018
- 2018-09-20 KR KR1020180112573A patent/KR102179453B1/en active Active
- 2018-11-14 WO PCT/KR2018/013865 patent/WO2020059950A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62297280A (en) * | 1986-06-16 | 1987-12-24 | イビデン株式会社 | Carbon base foam heat insulating formed body and manufacture |
JP2008120856A (en) * | 2006-11-08 | 2008-05-29 | Lignyte Co Ltd | Phenol resin production method, phenol resin, resin coated sand, phenol resin carbonized material, conductive resin composition, secondary battery electrode, electrode carbon material, pharmaceutical adsorbent, electric double layer capacitor polarizable electrode |
KR20180099239A (en) * | 2017-02-28 | 2018-09-05 | 주식회사 엘지화학 | Electrode structure and redox flow battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
KR102179453B1 (en) | 2020-11-16 |
WO2020059950A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101651236B (en) | Fast chargeable lithium iron phosphate polymer lithium ion battery with ultra-high magnifications and manufacturing method thereof | |
CN107565086A (en) | Preparation method of battery pole plate | |
CN110838576A (en) | A kind of doped coated sodium ion battery cathode material and preparation method and use thereof | |
CN107381563B (en) | A kind of graphite negative electrode material and fast charging lithium ion battery using the graphite | |
Jang et al. | Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries | |
CN107331851A (en) | Sodium-ion battery nano-chip arrays nickel phosphide/3D graphene composite materials and preparation method thereof | |
CN115172884B (en) | A method for improving the ionic conductivity of solid electrolyte LATP | |
CN106099180A (en) | The preparation method of composite polymer electrolyte and lithium secondary battery | |
CN102324529A (en) | A kind of preparation method of conductive plastic bipolar plate for vanadium battery | |
CN203367417U (en) | Metal foil provided with electric conduction protective coating | |
CN101794887A (en) | Vanadium battery bi-polar plate, preparation method and application thereof | |
CN112117436B (en) | A novel two-dimensional carbon composite flexible electrode for sodium ion battery and its preparation method | |
CN104485443A (en) | Preparation method for graphene polymer cladding niobium-doping cobalt and lithium aluminate composite anode material | |
KR102179453B1 (en) | Manufacturing method of electrode for redox flow battery | |
CN111786025A (en) | A kind of all-solid-state lithium battery and preparation method thereof | |
CN113078295B (en) | All-solid-state zinc-sulfur battery and manufacturing method thereof | |
KR20200033401A (en) | Manufacturing method of electrode for redox flow battery coated pyrocarbon | |
CN101332990B (en) | Method of preparing lithium ion battery negative pole carbon material | |
CN108963185A (en) | A kind of high security fast charging type lithium ion battery anode active material, cathode and lithium ion battery | |
TWI514654B (en) | Negative electrode material for lithium ion rechargeable battery and manufacturing method thereof | |
CN114976480B (en) | A kind of wooden diaphragm applied to lithium-oxygen battery and preparation method thereof | |
CN105070920A (en) | Long-life lead-acid battery with high temperature and low temperature resistance | |
KR101511843B1 (en) | Bipolar Plate and Method of manufacturing the same and secondary battery using the same | |
CN111969243B (en) | Sodium ion solid-state battery and preparation process thereof | |
CN109004211A (en) | A kind of zero strain liquid for power grid energy storage consolidates metal battery and production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20180920 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200303 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20201008 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20201110 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20201111 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |