[go: up one dir, main page]

KR20190118963A - Water repellent film-forming composition and water repellent film - Google Patents

Water repellent film-forming composition and water repellent film Download PDF

Info

Publication number
KR20190118963A
KR20190118963A KR1020190040589A KR20190040589A KR20190118963A KR 20190118963 A KR20190118963 A KR 20190118963A KR 1020190040589 A KR1020190040589 A KR 1020190040589A KR 20190040589 A KR20190040589 A KR 20190040589A KR 20190118963 A KR20190118963 A KR 20190118963A
Authority
KR
South Korea
Prior art keywords
water
group
composition
metal oxide
repellent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020190040589A
Other languages
Korean (ko)
Other versions
KR102765456B1 (en
Inventor
아유무 기요모리
쇼타로 아오키
마사토 가와카미
도루 구보타
Original Assignee
신에쓰 가가꾸 고교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쓰 가가꾸 고교 가부시끼가이샤 filed Critical 신에쓰 가가꾸 고교 가부시끼가이샤
Publication of KR20190118963A publication Critical patent/KR20190118963A/en
Application granted granted Critical
Publication of KR102765456B1 publication Critical patent/KR102765456B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/18Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

Provided is a water repellent film forming composition which is chemically stable, has good storage stability, can be repeatedly used, and can form a water repellent film, particularly a super water repellent film, simply and reproducibly. The water-repellent film forming composition comprises: (a) polysilazane in which a monovalent hydrocarbon group having 3 to 20 carbon atoms substituted with fluorine is bonded to a silicon atom; (b) surface-untreated metal oxide nanoparticles, metal oxide nanoparticles having a monovalent hydrocarbon group having 1 to 20 carbon atoms which is fluorine-substituted on a surface or metal oxide nanoparticles having an alkylsilyl group or an alkoxysilyl group on a surface thereof; and (c) an aprotic solvent.

Description

발수성 피막 형성용 조성물 및 발수성 피막{WATER REPELLENT FILM-FORMING COMPOSITION AND WATER REPELLENT FILM}WATER REPELLENT FILM-FORMING COMPOSITION AND WATER REPELLENT FILM}

본 발명은 기재 상에 발수성의 피막을 형성하기 위한 발수성 피막 형성용 조성물 및 발수성 피막에 관한 것이다.The present invention relates to a composition for forming a water repellent coating and a water repellent coating for forming a water repellent coating on a substrate.

건물의 외벽이나 유리, 자동차의 바디, 욕실의 거울 등에는 일상적으로 빗물이나 수돗물이 덮이고, 그 표면에는 물방울이 남는다. 빗물이나 수돗물 등에는 다양한 무기염이나 미생물 등이 용존하고 있기 때문에, 물방울이 건조되면 물 얼룩이나 곰팡이 등의 원인이 되어 미관을 손상시킨다. 또한, 물방울이 유리나 거울의 표면에 부착되는 것 자체, 광의 투과율이나 반사율에 영향을 미쳐, 시인성을 저하시킨다.Rain and tap water are routinely covered on the exterior walls and glass of buildings, the body of automobiles, and the mirrors of bathrooms, and water droplets remain on the surfaces. Since various inorganic salts and microorganisms are dissolved in rain water and tap water, when the water droplets are dried, they cause water stains and molds, which damage the aesthetics. In addition, the water droplets affect the glass itself or the surface of the mirror itself, affect the transmittance and reflectance of the light, thereby reducing the visibility.

그래서, 금속, 세라믹스, 유리, 수지 등의 고체 재료 표면에 발수성의 막을 형성함으로써, 물방울의 부착을 억제하는 검토가 행해져 왔다. 이와 같이 표면에 발수성을 부여한 재료는, 예를 들어 건물이나 탈것의 유리나, 자동차나 열차의 바디, 태양 전지 패널의 커버 유리, 욕실의 거울이나 부엌 주위의 패널 등, 여러 분야에서 사용함으로써 미관을 향상시킬 수 있고, 메인터넌스의 수고를 경감하거나, 혹은 불필요하게 할 수 있다.Thus, studies have been conducted to suppress the adhesion of water droplets by forming a water-repellent film on the surface of solid materials such as metals, ceramics, glass, and resins. Thus, the material which imparted water repellency to the surface is improved in aesthetics by being used in various fields such as glass of a building or a vehicle, a body of a car or a train, a cover glass of a solar panel, a mirror of a bathroom or a panel around a kitchen. The maintenance work can be reduced or unnecessary.

고체 표면의 물에 대한 접촉각이 90°를 초과하면 발수성이라고 칭해지지만, 발수성을 나타내도 물방울이 잔존하면 상기한 문제는 해결되지 않는다. 그래서, 발수성에 더하여 물방울의 전락성을 향상시키는 것이 중요하다.When the contact angle with respect to water of a solid surface exceeds 90 degrees, it is called water repellency. However, if water droplets remain, even if it shows water repellency, the said problem is not solved. Therefore, it is important to improve the fallability of water droplets in addition to water repellency.

물에 대한 고체 표면의 접촉각이 150° 이상이 되면 「초발수성」이라고 불리고, 연꽃이나 토란 등의 식물의 잎에 보이는 바와 같이, 물방울의 튕김(발수성)과 구름(전락성)이 모두 양호해져 방오성이 우수한 표면이 된다. 이들 식물을 모방하여, 미소한 요철과 표면 자유 에너지의 저감을 조합함으로써, 초발수성을 나타내는 피막을 형성하는 방법이 다양하게 제안되어 있다.When the contact angle of the solid surface with water reaches 150 ° or more, it is called "super water-repellent". As shown in the leaves of plants such as lotus and taro, both water repellency (water repellency) and cloud (tumble) become good and antifouling properties. This is an excellent surface. Various methods have been proposed to imitate these plants and to form a film exhibiting super water repellency by combining minute unevenness and reduction of surface free energy.

예를 들어, 특허문헌 1에는 금속 알콕시드의 중축합물, 금속 산화물 미립자 및 플루오로알킬기 또는 알킬기를 갖는 실란 화합물을 포함하는 처리액을 기재의 표면에 도포하고, 건조시키고, 가열하는 기재의 표면 개질 방법이 제안되어 있다. 구체적으로는, 금속 산화물 매트릭스에 금속 산화물 미립자의 응집체가 고정화되고, 발수성을 나타내는 플루오로알킬기 또는 알킬기가 노출된 미세한 요철 구조를 표면에 갖고, 표면에 개구한 다수의 구멍부를 갖는 다공질의 금속 산화물층을 기재의 표면에 형성하는 방법이다.For example, Patent Document 1 describes a surface modification of a substrate to which a treatment liquid containing a polycondensate of metal alkoxides, metal oxide fine particles and a silane compound having a fluoroalkyl group or an alkyl group is applied to the surface of the substrate, dried and heated. A method is proposed. Specifically, a porous metal oxide layer having a fine concavo-convex structure in which agglomerates of metal oxide fine particles are immobilized on a metal oxide matrix, and having a fluoroalkyl group or an alkyl group exhibiting water repellency on the surface and having a plurality of pores opened on the surface. It is a method of forming in the surface of a base material.

특허문헌 2에는, 기재 표면에 초발수성 피막을 피복한 초발수성 피막 피복 물품에 있어서, 초발수성 피막이 미립자 집합체를 포함하는 돌기체를 구비하고, 피막의 피복 영역에 돌기체가 존재하는 부분과 존재하지 않는 부분이 혼재하고, 또한 돌기체가 존재하는 부분의 피막 표면에 돌기체에 의한 요철이 형성되어 있는 초발수성 피막 피복 물품이 제안되어 있다.Patent Literature 2 discloses a superhydrophobic film-coated article in which a superhydrophobic film is coated on a surface of a substrate, wherein the superhydrophobic film is provided with a projection including a particulate aggregate, and a portion in which the projection is present in the coating area of the coating does not exist. A super water-repellent film-coated article has been proposed in which portions are mixed and irregularities due to protrusions are formed on the coating surface of the portion where the protrusions are present.

구체적으로는, 삼차원으로 결합한 콜로이달 실리카와 알킬알콕시실란과 불소를 함유하는 알킬알콕시실란을 혼합하고, 물을 포함하는 산 촉매를 첨가하여, 발수 재료와 규소 산화물 미립자의 공가수분해·축중합물을 제조하고, 이것을 발수 처리용 분산액으로서 사용하여, 플로우 코팅법으로 유리에 도포하고, 자연 건조시킴으로써 초발수 처리 유리 기판을 제조한다.Specifically, a colloidal silica bonded in three dimensions, an alkylalkoxysilane, and an alkylalkoxysilane containing fluorine are mixed, and an acid catalyst containing water is added to co-hydrolyze and condensate the water-repellent material and the silicon oxide fine particles. It manufactures, using this as a dispersion liquid for water repellent treatment, apply | coats to glass by a flow-coating method, and air-drys to manufacture a super water-repellent glass substrate.

특허문헌 3에는, 기체와, 해당 기체의 표면에 형성된 미소 요철을 갖는 하지막과, 해당 하지막의 미소 요철 상에 형성된 발수성 피막을 포함하는 초발수성 기체이며, 발수성 피막의 표면 형상이, 입자상 돌기물과, 해당 입자상 돌기물보다도 기판의 표면으로부터 측정한 높이가 높은 주상 돌기물에 의해 구성된 초발수성 기체가 제안되어 있다.Patent Document 3 is a super water-repellent gas comprising a base, a base film having minute irregularities formed on the surface of the base, and a water repellent coating formed on the minute unevenness of the base film, wherein the surface shape of the water repellent coating is a particulate protrusion. And a super water-repellent gas composed of columnar projections having a height measured from the surface of the substrate rather than the particulate projections has been proposed.

구체적으로는, 실리카를 주성분으로 하는 하지막인 요철 하지막 형성용 도포액으로서, 테트라클로로실란의 데카메틸시클로펜타실록산 용액을 제조하고, 별도로 헵타데카플루오로데실트리클로로실란의 데카메틸시클로펜타실록산 용액을 발수 처리제로서 제조한다. 그리고, 자동차용 윈드 실드 유리의 표면에 요철 하지막 형성용 도포액을 플로우 코팅법에 의해 도포하고, 다시 발수 처리제를 도포하여 정치하고, 에탄올로 세정하여 표면의 발수 처리제를 완전히 씻어 버린 후에 자연 건조시켜, 발수 처리된 윈드 실드 유리를 제조하고 있다.Specifically, a decamethylcyclopentasiloxane solution of tetrachlorosilane is prepared as a coating liquid for forming an uneven base film, which is a base film mainly composed of silica, and separately decamethylcyclopentasiloxane of heptadecafluorodecyltrichlorosilane. The solution is prepared as a water repellent agent. Then, the coating liquid for forming the uneven underlayer film on the surface of the windshield glass for automobiles is applied by a flow coating method, and again by applying a water repellent agent, and standing still, washing with ethanol to completely wash the surface of the water repellent agent, and then drying it naturally. To produce a water-shielded windshield glass.

특허문헌 4에는, 표면에 미소 요철을 가진 규소 산화물을 주성분으로 하는 피막이 피복된 물품이며, 미소 요철은 미소 돌기 및 주상 돌기에 의해 구성된 피막 피복 물품이 제안되어 있다. 그의 제조 방법으로서, 실리콘 오일을 주성분으로 하는 용매에 테트라클로로실란을 용해한 도포 용액을 도포함으로써, 상기 미소 요철 구조를 갖는 피막을 형성할 수 있는 것이 보고되어 있다. 또한, 응용예로서, 상기 미소 요철 구조를 갖는 피막 상에 헵타데카플루오로옥틸트리클로로실란의 데카메틸시클로펜타실록산 용액을 플로우 코팅법으로 도포하여 정치하고, 에탄올로 세정하여 잉여의 실란 용액을 완전히 씻어 버린 후에 자연 건조시켜, 발수 처리된 유리를 얻고 있다.In patent document 4, the film | membrane which the film | membrane which has the silicon oxide which has micro unevenness | corrugation as a main component on the surface is coat | covered, and the coating | cover coating article comprised by micro protrusions and columnar protrusions is proposed. As a manufacturing method thereof, it has been reported that a coating film having the above-mentioned uneven structure can be formed by applying a coating solution in which tetrachlorosilane is dissolved in a solvent containing silicone oil as a main component. In addition, as an application example, a decamethylcyclopentasiloxane solution of heptadecafluorooctyltrichlorosilane is applied by a flow coating method on a film having a fine concavo-convex structure and allowed to stand, and washed with ethanol to completely remove the excess silane solution. After washing, it is dried naturally and the water-repellent glass is obtained.

특허문헌 5에는, 기재 및 해당 기재 표면의 발수성 투명 피막을 포함하고, 해당 발수성 투명 피막이, 무기 산화물 미립자를 포함하는 무기 산화물 미립자층과 해당 무기 산화물 미립자층 상의 오버코트층으로 이루어지고, 발수성 투명 피막 표면이 요철 구조를 갖고, 해당 볼록부의 평균 높이, 평균 볼록부간 거리(피치 폭), 평균 높이와 상기 평균 볼록부간 거리의 비가 특정한 범위로 규정되고, 상기 요철 구조의 볼록부의 표면이 추가로 미세 요철을 갖는 발수성 투명 피막을 구비한 기재가 제안되어 있다.Patent Document 5 includes a base material and a water repellent transparent film on the surface of the base material, wherein the water repellent transparent film consists of an inorganic oxide fine particle layer containing inorganic oxide fine particles and an overcoat layer on the inorganic oxide fine particle layer, and the surface of the water repellent transparent film. It has this uneven structure, the ratio of the average height of the said convex part, the distance between average convex parts (pitch width), the average height, and the said distance between the said average convex parts is prescribed | regulated to a specific range, and the surface of the convex part of the said uneven structure further removes fine unevenness | corrugation. The base material provided with the water-repellent transparent film which has is proposed.

특허문헌 5에 있어서의 기재의 제조 방법으로서는, 예를 들어, (A) 특정한 평균 입자 길이와 평균 입자 폭을 갖는 알루미나 미립자의 메탄올 분산액에, 테트라에톡시실란과 물을 가하여 이들을 반응시킴으로써 알루미나 미립자의 표면 처리를 행하고, 용제로 희석함으로써 표면 처리 알루미나 미립자 분산액을 얻고, 이 표면 처리 알루미나 미립자 분산액을 기재 상에 도포하여 경화시킴으로써 무기 산화물 미립자층을 형성하는 공정과, (B) 트리데카플루오로옥틸트리메톡시실란을 알코올 중에서 산 촉매를 사용하여 물과 반응시킴으로써 가수분해하고, 용제로 희석하여 농도를 조정한 오버코트층 형성용 도포액을 무기 산화물 미립자층 상에 도포하고, 가열하여 경화시킴으로써, 발수성 투명 피막을 구비한 기재를 얻는 공정을 포함하는 제조 방법이 제안되어 있다. 또한, 공정 (A) 전에 프라이머층을 기재 상에 형성하는 것 및 공정 (A)와 공정 (B) 사이에 결합재층을 무기 산화물 미립자층 상에 형성하는 것이 바람직한 것이 제안되어 있다.As a manufacturing method of the base material in patent document 5, for example, (A) Tetraethoxysilane and water are added to the methanol dispersion liquid of the alumina microparticles which have a specific average particle length and average particle width, and these are made to react, Surface-treating and diluting with a solvent to obtain a surface-treated alumina fine particle dispersion, and applying the surface-treated alumina fine particle dispersion onto a substrate to cure it to form an inorganic oxide fine particle layer; (B) tridecafluorooctyl The remethoxysilane is hydrolyzed by reacting with water using an acid catalyst in alcohol, hydrolyzed, and coated with an inorganic oxide fine particle layer by applying a coating liquid for forming an overcoat layer, which is diluted with a solvent and adjusted in concentration, and heated and cured. The manufacturing method including the process of obtaining the base material with a film is made It is. Moreover, it is proposed to form a primer layer on a base material before a process (A), and to form a binder layer on an inorganic oxide fine particle layer between a process (A) and a process (B).

일본 특허 공개 평11-172455호 공보Japanese Patent Laid-Open No. 11-172455 일본 특허 공개 제2005-343016호 공보Japanese Patent Laid-Open No. 2005-343016 국제 공개 제2003/039856호International Publication No. 2003/039856 일본 특허 공개 제2004-137137호 공보Japanese Patent Laid-Open No. 2004-137137 일본 특허 공개 제2014-124913호 공보Japanese Patent Publication No. 2014-124913

그러나, 특허문헌 1의 방법에서는, 발수성 피막을 형성하기 위해 사용되고 있는 실란 화합물의 분자량이 작기 때문에, 알콕시실란과 같이 반응성이 낮은 화합물의 경우는, 발수성 피막 형성용 처리액이나 발수성 피막으로부터 실란 화합물이 휘발하여 상실되는 경우가 있다.However, in the method of patent document 1, since the molecular weight of the silane compound used for forming a water repellent film is small, when a compound with low reactivity like an alkoxysilane, a silane compound is removed from the process liquid for water repellent film formation, or a water repellent film. It may volatilize and lose.

특허문헌 2나 특허문헌 5의 경우, 발수성 피막을 형성하는 재료로서 알콕시실란류가 사용되어 있지만, 그 상태로는 반응성이 낮기 때문에, 물 및 질산이나 염산 등의 가수분해용 촉매가 첨가되어 있다. 질산이나 염산 등의 가수분해용 촉매는 동시에 축합 촉매이기 때문에, 도포액 중에서 알콕시실란류의 가수분해와 축합이 동시에 진행된다. 따라서, 도포액은 반드시 안정되지는 않고, 보존 중에 불용성의 고체가 석출되는 경우가 있다.In the case of patent document 2 and patent document 5, although the alkoxysilanes are used as a material which forms a water repellent film, since the reactivity is low in that state, the catalyst for hydrolysis, such as water and nitric acid, hydrochloric acid, is added. Since hydrolysis catalysts such as nitric acid and hydrochloric acid are condensation catalysts simultaneously, hydrolysis and condensation of alkoxysilanes in the coating liquid proceed simultaneously. Therefore, the coating liquid is not necessarily stable, and insoluble solids may sometimes precipitate during storage.

특허문헌 3이나 특허문헌 4의 경우도, 발수성 피막을 형성하는 공정에 있어서, 재료로서 수분이나 기재에 대한 반응성이 매우 높은 클로로실란류를 사용하고 있기 때문에, 도포액의 보존에 있어서의 안정성이 낮다.In the case of Patent Literature 3 and Patent Literature 4, in the step of forming a water repellent coating, chlorosilanes having very high reactivity with respect to moisture and the substrate are used as materials, so stability in storage of the coating liquid is low. .

본 발명은, 상기 사정을 감안하여 이루어진 것으로, 화학적으로 안정적이며, 보존 안정성이 양호해, 반복해서 사용할 수 있는 데다가 간편하고 재현성 좋게 발수성의 피막, 특히 초발수성의 피막을 형성할 수 있는 발수성 피막 형성용 조성물을 제공하는 것을 목적으로 한다.The present invention has been made in view of the above circumstances, and is chemically stable, has a good storage stability, can be repeatedly used, and can form a water-repellent film that can be easily and reproducibly formed, particularly a super water-repellent film. It is an object to provide a composition for.

본 발명자들은 상기 목적을 달성하기 위해 예의 검토를 행한 결과, 특정한 구조를 갖는 폴리실라잔을 사용함으로써 상기 과제를 해결하는 것이 가능한 것을 발견하고, 본 발명에 이르렀다.MEANS TO SOLVE THE PROBLEM As a result of earnestly examining in order to achieve the said objective, the present inventors discovered that it is possible to solve the said subject by using polysilazane which has a specific structure, and came to this invention.

즉, 본 발명은 하기의 발수성 피막 형성용 조성물 및 발수성 피막을 제공한다.That is, the present invention provides the composition for water repellent coating and the water repellent coating described below.

〔1〕〔One〕

하기의 (a), (b) 및 (c) 성분을 함유하는 것을 특징으로 하는 발수성 피막 형성용 조성물.The composition for water repellent film formation containing the following (a), (b) and (c) component.

(a) 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기가 규소 원자에 결합된 폴리실라잔,(a) a polysilazane in which a C 3 to C 20 monovalent hydrocarbon group which may be substituted with fluorine is bonded to a silicon atom,

(b) 표면 미처리된 금속 산화물 나노 입자, 표면에 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 갖는 금속 산화물 나노 입자 또는 표면에 알킬실릴기 혹은 알콕시실릴기를 갖는 금속 산화물 나노 입자, 및(b) untreated metal oxide nanoparticles, metal oxide nanoparticles having a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be fluorine-substituted on the surface, or metal oxide nanoparticles having an alkylsilyl group or an alkoxysilyl group on the surface thereof, and

(c) 비프로톤성 용제(c) aprotic solvents

〔2〕〔2〕

(a) 성분이, 하기 일반식 (1)로 표시되는 폴리실라잔인 〔1〕에 기재된 발수성 피막 형성용 조성물.The composition for water repellent film formation as described in [1] whose (a) component is polysilazane represented by following General formula (1).

Figure pat00001
Figure pat00001

(식 중, R은 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기를 나타낸다. Ra 및 Rb는 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 나타낸다. m은 1 내지 100의 정수이고, n 및 p는 각각 0 내지 100의 정수이다. 단, m, n 및 p의 합은 4 내지 300의 정수이다.)(In formula, R may be same or different, respectively, and represents the C3-C20 monovalent hydrocarbon group which may be substituted. R a and R b may be same, different, respectively, and C1-C may be fluorine-substituted. A monovalent hydrocarbon group of 20. m is an integer from 1 to 100, and n and p are each an integer from 0 to 100, provided that the sum of m, n and p is an integer from 4 to 300.)

〔3〕[3]

(b) 금속 산화물 나노 입자가, 상기 일반식 (1)로 표시되는 폴리실라잔에 의해 표면 처리되어 있음으로써 규소 원자를 통해 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기를 표면에 갖는 것인 〔2〕에 기재된 발수성 피막 형성용 조성물.(b) The metal oxide nanoparticles having a C3-C20 monovalent hydrocarbon group which may be fluorine-substituted through a silicon atom by being surface-treated with polysilazane represented by the general formula (1). The composition for water repellent film formation as described in phosphorus [2].

〔4〕〔4〕

(b) 금속 산화물 나노 입자가 실리카인 〔1〕 내지 〔3〕 중 어느 하나에 기재된 발수성 피막 형성용 조성물.(b) The composition for water-repellent film formation in any one of [1]-[3] whose metal oxide nanoparticle is silica.

〔5〕[5]

(a) 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기가 규소 원자에 결합된 폴리실라잔, 및(a) polysilazane in which a C3-C20 monovalent hydrocarbon group optionally substituted with fluorine is bonded to a silicon atom, and

(b) 표면 미처리된 금속 산화물 나노 입자, 표면에 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 갖는 금속 산화물 나노 입자 또는 표면에 알킬실릴기 혹은 알콕시실릴기를 갖는 금속 산화물 나노 입자(b) untreated metal oxide nanoparticles, metal oxide nanoparticles having a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be fluorine-substituted on the surface, or metal oxide nanoparticles having an alkylsilyl group or an alkoxysilyl group on the surface thereof

를 포함하는 발수성 피막.Water repellent coating comprising a.

본 발명에 따르면, 보존 안정성이 양호해, 반복해서 사용할 수 있고, 간편하고 재현성 좋게 발수성의 피막, 특히 초발수성의 피막을 형성할 수 있는 발수성 피막 형성용 조성물을 얻을 수 있다. 또한, 본 발명의 조성물을 사용함으로써, 발수성 및 물방울 전락성이 우수하고, 내구성을 갖는 피막을 얻을 수 있다.According to the present invention, a composition for forming a water repellent coating which has good storage stability, can be used repeatedly, and which can form a water repellent coating, particularly a super water repellent coating, easily and reproducibly can be obtained. Moreover, by using the composition of this invention, the film excellent in water repellency and water droplet fall property, and durable can be obtained.

본 발명의 발수성 피막 형성용 조성물은,The composition for water repellent film formation of this invention,

(a) 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기가 규소 원자에 결합된 폴리실라잔,(a) a polysilazane in which a C 3 to C 20 monovalent hydrocarbon group which may be substituted with fluorine is bonded to a silicon atom,

(b) 표면 미처리된 금속 산화물 나노 입자, 표면에 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 갖는 금속 산화물 나노 입자 또는 표면에 알킬실릴기 혹은 알콕시실릴기를 갖는 금속 산화물 나노 입자, 및(b) untreated metal oxide nanoparticles, metal oxide nanoparticles having a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be fluorine-substituted on the surface, or metal oxide nanoparticles having an alkylsilyl group or an alkoxysilyl group on the surface thereof, and

(c) 비프로톤성 용제(c) aprotic solvents

를 함유한다.It contains.

이하, 각 성분에 대하여 상세하게 설명한다.Hereinafter, each component is demonstrated in detail.

<(a) 폴리실라잔><(a) polysilazane>

폴리실라잔이란, 규소 원자와 질소 원자가 교대로 배열된 구조를 갖는 고분자 화합물이다. 예를 들어, 시판되고 있는 퍼히드로폴리실라잔은, 규소 원자 상에 유기 치환기가 없고 수소 원자가 결합된 폴리실라잔이고, 피막을 형성하면 친수성을 나타내는 재료이다. 이에 비해, 본 발명에서 사용되는 폴리실라잔에는 탄소수 3 내지 20의 1가 탄화수소기가 규소 원자에 결합하고 있기 때문에, 표면 자유 에너지가 낮은 피막을 형성할 수 있고, 발수성을 나타낸다. 또한, 상기 1가 탄화수소기를 불소 치환함으로써, 피막의 표면 자유 에너지를 더육 저하시킬 수 있다.Polysilazane is a high molecular compound which has a structure in which a silicon atom and a nitrogen atom are alternately arranged. For example, commercially available perhydropolysilazane is a polysilazane in which a hydrogen atom is bonded without an organic substituent on a silicon atom, and is a material exhibiting hydrophilicity when a film is formed. In contrast, in the polysilazane used in the present invention, since a monovalent hydrocarbon group having 3 to 20 carbon atoms is bonded to the silicon atom, a film having a low surface free energy can be formed and exhibits water repellency. Moreover, the surface free energy of a film can be further reduced by fluorine substitution of the said monovalent hydrocarbon group.

본 발명에 있어서 사용되는 폴리실라잔은, 하기 일반식 (1)로 표시되는 폴리실라잔인 것이 바람직하다.It is preferable that the polysilazane used in this invention is polysilazane represented by following General formula (1).

Figure pat00002
Figure pat00002

(식 중, R은 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기를 나타낸다. Ra 및 Rb는 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 나타낸다. m은 1 내지 100의 정수이고, n 및 p는 각각 0 내지 100의 정수이다. 단, m, n 및 p의 합은 4 내지 300의 정수이다.)(In formula, R may be same or different, respectively, and represents the C3-C20 monovalent hydrocarbon group which may be substituted. R a and R b may be same, different, respectively, and C1-C may be fluorine-substituted. A monovalent hydrocarbon group of 20. m is an integer from 1 to 100, and n and p are each an integer from 0 to 100, provided that the sum of m, n and p is an integer from 4 to 300.)

상기 일반식 (1)에 있어서, R은 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 3 내지 20, 바람직하게는 탄소수 3 내지 16, 보다 바람직하게는 탄소수 6 내지 16의 1가 탄화수소기를 나타낸다. 치환기 R로서는, 프로필기, 부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 운데실기, 도데실기, 트리데실기, 테트라데실기, 펜타데실기, 헥사데실기, 헵타데실기, 옥타데실기, 노나데실기, 에이코실기 등의 직쇄 지방족 포화 탄화수소기; 이소프로필기, 이소부틸기, 2-부틸기, tert-부틸기, 이소펜틸기, 2-펜틸기, 3-펜틸기, tert-펜틸기, 이소헥실기, 2-에틸헥실기, 이소옥틸기 등의 분지쇄 지방족 포화 탄화수소기; 알릴기, 부테닐기, 메탈릴기, 펜테닐기, 헥세닐기, 옥테닐기, 데세닐기 등의 지방족 불포화 탄화수소기; 페닐기, 톨릴기, 크실릴기, 메시틸기 등의 방향족 탄화수소기; 벤질기, 페닐에틸기, 페닐프로필기, 페닐부틸기 등의 아르알킬기; 3,3,3-트리플루오로프로필기, 노나플루오로헥실기, 트리데카플루오로옥틸기, 헵타데카플루오로데실기 등의 불소 치환 지방족 탄화수소기; 펜타플루오로페닐기, 3,5-디플루오로페닐기, 3-플루오로페닐기, 4-플루오로페닐기, 3-트리플루오로메틸페닐기, 3,5-비스(트리플루오로메틸)페닐기 등의 불소 치환 방향족 탄화수소기; 펜타플루오로페닐에틸기, 펜타플루오로페닐프로필기, 펜타플루오로페닐부틸기, 3,4,5-트리플루오로페닐프로필기, 2,4-디플루오로페닐프로필기, 3,4-디플루오로페닐프로필기, 3,5-디플루오로페닐프로필기, 2-플루오로페닐에틸기, 2-플루오로페닐프로필기, 3-플루오로페닐에틸기, 3-플루오로페닐프로필기, 4-플루오로페닐에틸기, 4-플루오로페닐프로필기, 4-(트리플루오로메틸)페닐프로필기, 3,5-비스(트리플루오로메틸)페닐프로필기 등의 불소 치환 아르알킬기 등을 들 수 있다. 이들 중, 피막의 표면 자유 에너지를 저하시키는 관점에서, 직쇄 혹은 분지쇄의 지방족 포화 1가 탄화수소기, 지방족 불포화 1가 탄화수소기, 불소 치환 지방족 포화 1가 탄화수소기가 바람직하다.In the said General formula (1), R may be same or different, respectively, and may represent C3-C20, Preferably C3-C16, More preferably, C1-C16 monovalent hydrocarbon group may be substituted by fluorine. . Examples of the substituent R include propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, Straight-chain aliphatic saturated hydrocarbon groups such as heptadecyl group, octadecyl group, nonadecyl group and eicosyl group; Isopropyl group, isobutyl group, 2-butyl group, tert-butyl group, isopentyl group, 2-pentyl group, 3-pentyl group, tert-pentyl group, isohexyl group, 2-ethylhexyl group, isooctyl group, etc. Branched aliphatic saturated hydrocarbon groups; Aliphatic unsaturated hydrocarbon groups such as allyl group, butenyl group, metalyl group, pentenyl group, hexenyl group, octenyl group, decenyl group; Aromatic hydrocarbon groups such as phenyl group, tolyl group, xylyl group and mesityl group; Aralkyl groups such as benzyl, phenylethyl, phenylpropyl and phenylbutyl; Fluorine-substituted aliphatic hydrocarbon groups such as 3,3,3-trifluoropropyl group, nonafluorohexyl group, tridecafluorooctyl group, and heptadecafluorodecyl group; Fluorine substitution such as pentafluorophenyl group, 3,5-difluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 3-trifluoromethylphenyl group, 3,5-bis (trifluoromethyl) phenyl group Aromatic hydrocarbon groups; Pentafluorophenylethyl group, pentafluorophenylpropyl group, pentafluorophenylbutyl group, 3,4,5-trifluorophenylpropyl group, 2,4-difluorophenylpropyl group, 3,4-difluoro Rophenylpropyl group, 3,5-difluorophenylpropyl group, 2-fluorophenylethyl group, 2-fluorophenylpropyl group, 3-fluorophenylethyl group, 3-fluorophenylpropyl group, 4-fluoro And fluorine-substituted aralkyl groups such as phenylethyl group, 4-fluorophenylpropyl group, 4- (trifluoromethyl) phenylpropyl group, and 3,5-bis (trifluoromethyl) phenylpropyl group. Among these, a linear or branched aliphatic saturated monovalent hydrocarbon group, an aliphatic unsaturated monovalent hydrocarbon group, or a fluorine-substituted aliphatic saturated monovalent hydrocarbon group is preferable from the viewpoint of lowering the surface free energy of the film.

상기 일반식 (1)에 있어서, Ra 및 Rb는 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 1 내지 20, 바람직하게는 탄소수 1 내지 10, 보다 바람직하게는 탄소수 1 내지 5의 1가 탄화수소기를 나타낸다. 치환기 Ra 및 Rb의 예로서는, 치환기 R의 예로서 든 치환기에 더하여, 메틸기, 에틸기 등의 알킬기, 비닐기 등의 지방족 불포화 1가 탄화수소기 등을 들 수 있다. 이들 탄소수가 적은 치환기를 갖는 경우에는 피막의 표면 자유 에너지는 상승하지만, 필요에 따라 이들 치환기를 도입함으로써, 폴리실라잔의 가용성 및 점도를 적절한 범위로 조절할 수 있다.In said general formula (1), R <a> and R <b> may be same or different, respectively, and may be C1-C20 which may be substituted by fluorine, Preferably C1-C10, More preferably, C1-C5 1 Represents a hydrocarbon group. Examples of the substituents R a and R b include aliphatic unsaturated monovalent hydrocarbon groups such as alkyl groups such as methyl groups and ethyl groups, and vinyl groups, in addition to the substituents exemplified as substituents R. When these carbon number has a substituent, the surface free energy of a film rises, but if these substituents are introduce | transduced as needed, the solubility and viscosity of polysilazane can be adjusted to an appropriate range.

일반식 (1)로 표시되는 폴리실라잔에는, 치환기 Ra 및 Rb를 갖는 반복 단위는 반드시 포함되지 않아도 된다. 그러나, 이들 반복 단위를 가짐으로써, 폴리실라잔의 분자량, 가용성, 점도 등의 물성을 적절한 범위로 조절할 수 있다.The polysilazane represented by General formula (1) does not necessarily need to contain the repeating unit which has substituents R a and R b . However, by having these repeating units, physical properties, such as molecular weight, solubility, and viscosity of polysilazane, can be adjusted to an appropriate range.

상기 일반식 (1)에 있어서, m은 1 내지 100, 바람직하게는 4 내지 50의 정수이고, n 및 p는 각각 0 내지 100, 바람직하게는 0 내지 50의 정수이다. 단, m, n 및 p의 합은 4 내지 300, 바람직하게는 4 내지 100, 보다 바람직하게는 4 내지 50이다. 즉, 일반식 (1)로 표시되는 폴리실라잔에는 치환기 R을 갖는 반복 단위가 반드시 포함된다. 이에 의해, 본 발명의 조성물을 사용하여 피막을 형성했을 때에, 표면 자유 에너지를 저하시킬 수 있다.In the said General formula (1), m is an integer of 1-100, Preferably it is 4-50, n and p are 0-100, respectively, Preferably it is an integer of 0-50. Provided that the sum of m, n and p is 4 to 300, preferably 4 to 100, and more preferably 4 to 50. That is, the polysilazane represented by General formula (1) necessarily contains the repeating unit which has a substituent R. Thereby, when forming a film using the composition of this invention, surface free energy can be reduced.

m, n 및 p의 비율은 한정되지는 않지만, m/(m+n+p)의 비율이 바람직하게는 0.01 내지 1, 보다 바람직하게는 0.1 내지 1, 더욱 바람직하게는 0.25 내지 1이다. 이 비율이 0.01 미만이면, 치환기 R이 피막의 표면 자유 에너지에 미치는 영향이 작아져, 발수성의 피막이 얻어지지 않는 경우가 있거나, 폴리실라잔의 분자량이 저하되어 휘발 성분이 되고, 피막의 성질이 안정되지 않는 경우가 있다.Although the ratio of m, n, and p is not limited, The ratio of m / (m + n + p) becomes like this. Preferably it is 0.01-1, More preferably, it is 0.1-1, More preferably, it is 0.25-1. When this ratio is less than 0.01, the influence of the substituent R on the surface free energy of the film is small, and a water repellent film may not be obtained, or the molecular weight of the polysilazane is lowered to become a volatile component, and the film properties are stable. It may not be.

또한, 폴리실라잔의 겔 투과 크로마토그래피(이하, 「GPC」라고 기재함)에 의한 폴리스티렌 환산의 중량 평균 분자량은, 바람직하게는 300 내지 30,000, 보다 바람직하게는 500 내지 10,000이다. 또한, GPC의 측정 조건은 후술하는 바와 같다.Moreover, the weight average molecular weight of polystyrene conversion by the gel permeation chromatography of polysilazane (it describes as "GPC" hereafter) becomes like this. Preferably it is 300-30,000, More preferably, it is 500-10,000. In addition, the measurement conditions of GPC are as mentioned later.

본 발명의 조성물에 있어서의 (a) 성분의 배합량은, 바람직하게는 조성물 전체의 0.001 내지 50질량%이고, 보다 바람직하게는 0.01 내지 30질량%, 더욱 바람직하게는 0.01 내지 10질량%이다. 0.001질량% 미만이면 피막이 지나치게 얇아져 충분한 발수성이 얻어지지 않는 경우가 있고, 50질량%를 초과하면 조성물의 점도가 지나치게 높아지는 경우가 있다. 또한, 후술하는 바와 같이, (a) 성분으로 (b) 성분의 표면 처리를 하면서 본 조성물을 제조하는 경우, (a) 성분의 이론 첨가량은 (b) 성분의 비표면적 및 첨가량에 기초하여 산출되지만, 그 경우도 상기 범위 내인 것이 바람직하다.The compounding quantity of (a) component in the composition of this invention becomes like this. Preferably it is 0.001-50 mass% of the whole composition, More preferably, it is 0.01-30 mass%, More preferably, it is 0.01-10 mass%. If it is less than 0.001 mass%, a film may become too thin and sufficient water repellency may not be obtained, and when it exceeds 50 mass%, the viscosity of a composition may become high too much. As described later, when the present composition is prepared while the surface treatment of the component (b) is carried out with the component (a), the theoretical addition amount of the component (a) is calculated based on the specific surface area and the addition amount of the component (b). In that case, it is preferable to exist in the said range.

<(b) 금속 산화물 나노 입자><(b) Metal Oxide Nanoparticles>

본 발명에서 사용되는 금속 산화물 나노 입자로서는, 실리카, 알루미나, 티타니아, 지르코니아, 산화아연, 산화주석, 산화세륨, 산화구리, 산화크롬, 산화코발트, 산화철, 산화망간, 산화니켈 등에서 선택되는 1종 이상의 금속 산화물을 포함하는 나노 입자를 들 수 있다. 이들 중에서도 특히, 실리카, 알루미나, 티타니아, 지르코니아, 산화아연, 산화주석, 산화세륨에서 선택되는 1종 이상의 금속 산화물을 포함하는 나노 입자인 것이 바람직하고, 실리카, 알루미나, 티타니아, 지르코니아를 포함하는 미립자인 것이 특히 바람직하다. 실질적으로 실리카만으로 이루어지는 미립자인 퓸드 실리카를 사용하는 것이 가장 바람직하다.As the metal oxide nanoparticles used in the present invention, at least one selected from silica, alumina, titania, zirconia, zinc oxide, tin oxide, cerium oxide, copper oxide, chromium oxide, cobalt oxide, iron oxide, manganese oxide, nickel oxide and the like Nanoparticles containing a metal oxide are mentioned. Among these, nanoparticles containing at least one metal oxide selected from silica, alumina, titania, zirconia, zinc oxide, tin oxide, and cerium oxide are preferable, and fine particles containing silica, alumina, titania, zirconia Is particularly preferred. It is most preferable to use fumed silica, which is a fine particle consisting substantially of silica.

상기 금속 산화물 나노 입자의 평균 1차 입자 직경은, 바람직하게는 직경 5 내지 200㎚, 보다 바람직하게는 직경 10 내지 150㎚의 범위, 더욱 바람직하게는 직경 10 내지 50㎚이다. 입자 직경이 직경 5㎚ 미만이면, 피막에 유효한 요철이 얻어지지 않는 경우가 있고, 한편, 입자 직경이 200㎚를 초과하면, 피막의 투명성이 손상되는 경우가 있다. 또한, 본 발명에 있어서, 평균 1차 입자 직경의 값은 주사 전자 현미경(SEM)에 의해 측정한 값이다.The average primary particle diameter of the said metal oxide nanoparticles becomes like this. Preferably it is 5-200 nm in diameter, More preferably, it is the range of 10-150 nm in diameter, More preferably, it is 10-50 nm in diameter. If the particle diameter is less than 5 nm in diameter, unevenness effective for the film may not be obtained. On the other hand, if the particle diameter exceeds 200 nm, the transparency of the film may be impaired. In addition, in this invention, the value of an average primary particle diameter is the value measured by the scanning electron microscope (SEM).

퓸드 실리카의 경우, 평균 1차 입자 직경은 BET법으로 측정할 수 있는 비표면적의 값과 상관이 있다. 예를 들어, 비표면적이 50㎡/g이면 평균 1차 입자 직경이 약 30㎚, 비표면적이 200㎡/g이면 평균 1차 입자 직경이 약 12㎚, 비표면적이 300㎡/g이면 평균 1차 입자 직경이 약 7㎚이다. 퓸드 실리카를 사용하는 경우, 그의 비표면적은 30 내지 500㎡/g인 것이 바람직하고, 보다 바람직하게는 50 내지 350㎡/g이다.In the case of fumed silica, the average primary particle diameter correlates with the value of the specific surface area which can be measured by the BET method. For example, if the specific surface area is 50 m 2 / g, the average primary particle diameter is about 30 nm, if the specific surface area is 200 m 2 / g, the average primary particle diameter is about 12 nm, and if the specific surface area is 300 m 2 / g, the average 1 The primary particle diameter is about 7 nm. When using fumed silica, it is preferable that the specific surface area is 30-500 m <2> / g, More preferably, it is 50-350 m <2> / g.

(b) 성분은, 표면 미처리된 금속 산화물 나노 입자 외에, 미리 소수화 처리되고, 그의 표면에 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 갖는 금속 산화물 나노 입자를 사용해도 된다. 미리 소수화 처리된 금속 산화물 나노 입자로서는, 예를 들어 상품명 에어로실 R805, 에어록시드 T805, 에어록시드 NKT90, 에어록시드 AluC805(닛폰 에어로실사제) 등으로서 시판되고 있는 금속 산화물 나노 입자와 같이 표면에, 메틸기, 에틸기, 프로필기, 부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기, 노닐기, 데실기, 도데실기, 테트라데실기, 헥사데실기, 옥타데실기, 에이코실기 등의 탄소수 1 내지 20, 바람직하게는 1 내지 10의 알킬기나, 식 (1)의 화합물의 Ra 및 Rb에 대하여 설명한 것과 동일한 치환기가 도입된 것이나, 상품명 에어로실 R972, 에어로실 R974, 에어로실 R976, 에어로실 RX50, 에어로실 RX200, 에어로실 RX300, 에어로실 R812(닛폰 에어로실사제), HDKH15, HDKH20, HDKH30(아사히 가세이 바커 실리콘제) 등의 디메틸실릴기 등의 디알킬실릴기나, 트리메틸실릴기, 트리에틸실릴기, tert-부틸디메틸실릴기, 트리이소부틸실릴기, 트리이소프로필실릴기 등의 탄소수가 바람직하게는 1 내지 6, 보다 바람직하게는 1 내지 3인 트리알킬실릴기로 표면 처리된 것을 사용할 수 있다.As the component (b), in addition to the surface untreated metal oxide nanoparticles, metal oxide nanoparticles having a C1-C20 monovalent hydrocarbon group which may be hydrophobized in advance and may be fluorine-substituted on its surface may be used. Examples of the metal oxide nanoparticles which have been hydrophobized in advance are the surfaces of the metal oxide nanoparticles which are commercially available, for example, under the trade names Aerosil R805, Airoxide T805, Airoxide NKT90, and Airoxide AluC805 (manufactured by Nippon Aerosil). Carbon number such as methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl An alkyl group of 1 to 20, preferably 1 to 10, or the same substituent as described for R a and R b of the compound of formula (1) is introduced; trade names Aerosil R972, Aerosil R974, Aerosil R976, Dialkyl silyl groups, such as a dimethyl silyl group, such as aerosil RX50, aerosil RX200, aerosil RX300, aerosil R812 (made by Nippon Aerosil Co., Ltd.), HDKH15, HDKH20, HDKH30 (made by Asahi Kasei Barker Silicone), trimethylsilyl group, tree The surface-treated trialkylsilyl group having preferably 1 to 6, more preferably 1 to 3 carbon atoms, such as a silyl group, tert-butyldimethylsilyl group, triisobutylsilyl group, and triisopropylsilyl group, may be used. Can be.

또한, (b) 성분으로서는, 금속 산화물 나노 입자의 표면에 알콕시실릴기가 존재하는 금속 산화물 나노 입자를 사용해도 된다. 금속 산화물 나노 입자의 표면에 알콕시실릴기가 존재하는 경우, 금속 산화물 나노 입자 표면의 알콕시실릴기와 상기 (a) 성분의 폴리실라잔이 가수분해 축합 반응을 거쳐서 공유 결합을 형성하기 때문에, 피막의 내구성이 높아진다.As the component (b), metal oxide nanoparticles in which an alkoxysilyl group exists on the surface of the metal oxide nanoparticles may be used. When an alkoxysilyl group exists on the surface of the metal oxide nanoparticles, since the alkoxysilyl group on the surface of the metal oxide nanoparticles and the polysilazane of the component (a) undergo a hydrolysis condensation reaction to form a covalent bond, the durability of the film Increases.

알콕시실릴기로서는, 알콕시기의 알킬기의 탄소수가 바람직하게는 1 내지 6, 보다 바람직하게는 1 내지 3의 것을 들 수 있고, 구체적으로는, 트리메톡시실릴기, 트리에톡시실릴기, 트리프로폭시실릴기, 트리이소프로폭시실릴기, 디이소프로폭시메톡시실릴기, 디메톡시이소프로폭시실릴기 등의 트리알콕시실릴기; 디메톡시메틸실릴기, 디에톡시메틸실릴기 등의 디알콕시실릴기; 메톡시디메틸실릴기, 에톡시디메틸실릴기, 이소프로폭시디메틸실릴기, 메톡시디에틸실릴기, 메톡시디프로필실릴기, 메톡시디이소프로필실릴기 등의 모노알콕시실릴기 등을 들 수 있다.The alkoxysilyl group preferably has 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms of the alkyl group of the alkoxy group, and specifically, trimethoxysilyl group, triethoxysilyl group, and tripro Trialkoxy silyl groups, such as a foxy silyl group, a triisopropoxy silyl group, a diisopropoxy methoxy silyl group, a dimethoxy isopropoxy silyl group; Dialkoxysilyl groups such as dimethoxymethylsilyl group and diethoxymethylsilyl group; Monoalkoxy silyl groups, such as a methoxy dimethyl silyl group, an ethoxy dimethyl silyl group, an isopropoxy dimethyl silyl group, a methoxy diethyl silyl group, a methoxy dipropyl silyl group, a methoxy diisopropyl silyl group, etc. are mentioned.

금속 산화물 나노 입자의 표면에 알콕시실릴기를 도입하는 방법으로서는 다양한 방법이 있지만, 표면 미처리된 금속 산화물 나노 입자 표면의 수산기를 알콕시실릴화제와 반응시키는 방법이 바람직하다. 알콕시실릴화제로서는, 테트라메톡시실란, 테트라에톡시실란, 메틸트리메톡시실란, 메틸트리에톡시실란 등의 알콕시실란이나, 테트라메톡시실란 올리고머, 테트라에톡시실란 올리고머, 메틸트리메톡시실란 올리고머 등의 알콕시실란 올리고머; 클로로트리메톡시실란, 클로로트리에톡시실란, 클로로디메톡시메틸실란, 클로로디에톡시메틸실란 등의 알콕시할로실란; 트리메톡시실릴디메틸아민, 트리메톡시실릴디에틸아민 등의 알콕시실라잔; 1-트리메톡시실릴옥시-1-메톡시프로펜, 1-트리메톡시실릴옥시-1-에톡시프로펜, 1-트리메톡시실릴옥시-1-부톡시프로펜, 1-트리메톡시실릴옥시-1-메톡시-2-메틸프로펜, 1-트리에톡시실릴옥시-1-에톡시프로펜, 1-디메톡시메틸실릴옥시-1-메톡시프로펜, 1-디메톡시메틸실릴옥시-1-에톡시프로펜, 1-디메톡시메틸실릴옥시-1-옥틸옥시프로펜, 1-디에톡시메틸실릴옥시-1-메톡시프로펜, 1-디에톡시메틸실릴옥시-1-에톡시프로펜, 1-메톡시디메틸실릴옥시-1-메톡시프로펜, 1-메톡시디메틸실릴옥시-1-에톡시프로펜 등의 알콕시실릴케텐아세탈 등을 들 수 있다. 그 중에서도, 알콕시실릴케텐아세탈은 중성의 알콕시실릴화제이고, 부생성물의 제거가 용이한 점에서 바람직하다.There are various methods for introducing an alkoxysilyl group to the surface of the metal oxide nanoparticles, but a method of reacting a hydroxyl group on the surface of the surface-treated metal oxide nanoparticles with an alkoxysilylating agent is preferable. Examples of the alkoxysilylating agent include alkoxysilanes such as tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane and methyltriethoxysilane, tetramethoxysilane oligomer, tetraethoxysilane oligomer and methyltrimethoxysilane oligomer. Alkoxysilane oligomers, such as these; Alkoxy halosilanes such as chlorotrimethoxysilane, chlorotriethoxysilane, chlorodimethoxymethylsilane and chlorodiethoxymethylsilane; Alkoxy silazanes such as trimethoxysilyldimethylamine and trimethoxysilyldiethylamine; 1-trimethoxysilyloxy-1-methoxypropene, 1-trimethoxysilyloxy-1-ethoxypropene, 1-trimethoxysilyloxy-1-butoxypropene, 1-trimethoxy Silyloxy-1-methoxy-2-methylpropene, 1-triethoxysilyloxy-1-ethoxypropene, 1-dimethoxymethylsilyloxy-1-methoxypropene, 1-dimethoxymethylsilyl To oxy-1-ethoxypropene, 1-dimethoxymethylsilyloxy-1-octyloxypropene, 1-diethoxymethylsilyloxy-1-methoxypropene, 1-diethoxymethylsilyloxy-1- Alkoxy silyl keten acetals, such as a methoxy propene, 1-methoxy dimethyl silyloxy- 1-methoxy propene, and 1-methoxy dimethyl silyloxy- 1- ethoxy propene, etc. are mentioned. Among them, the alkoxysilylketenacetal is a neutral alkoxysilylating agent, and is preferable in view of easy removal of byproducts.

알콕시실릴기의 도입량은, 금속 산화물 나노 입자의 분산성의 관점에서, (b) 성분으로서 사용되는 금속 산화물 나노 입자에 대한 포화 도입량을 1로 한 경우, 바람직하게는 0.1 내지 1, 보다 바람직하게는 0.3 내지 1, 더욱 바람직하게는 0.5 내지 1의 범위이다.The introduction amount of the alkoxysilyl group is preferably 0.1 to 1, more preferably 0.3 when the saturation introduction amount of the metal oxide nanoparticles used as the component (b) is 1 from the viewpoint of the dispersibility of the metal oxide nanoparticles. To 1, more preferably from 0.5 to 1.

알콕시실릴기의 포화 도입량을 구하기 위해서는, 예를 들어 표면 미처리된 금속 산화물 나노 입자와, 상기한 알콕시실릴화제를 일정한 비율로 혼합하고, 알콕시실릴화제의 소비량(또는 잔존량)을 가스 크로마토그래피에 의해 구함으로써 결정할 수 있다. 알콕시실릴화제가 금속 산화물 나노 입자와 접촉하고 있음에도 소비되지 않게 된 상태에 있어서의 알콕시실릴기의 도입량이 포화 도입량이다.In order to determine the saturated introduction amount of the alkoxysilyl group, for example, the surface-untreated metal oxide nanoparticles and the above-mentioned alkoxysilylating agent are mixed at a constant ratio, and the consumption amount (or remaining amount) of the alkoxysilylating agent is determined by gas chromatography. It can be determined by obtaining. Although the alkoxy silylating agent is in contact with the metal oxide nanoparticles, the amount of the alkoxysilyl group introduced in the state in which it is not consumed is a saturated introduction amount.

상기한 알콕시실릴화제를 사용하여 금속 산화물 나노 입자 표면을 알콕시실릴화할 때에는, 용제의 존재 하 혹은 비존재 하에 알콕시실릴화제와 금속 산화물 나노 입자를 접촉시키면 된다.When alkoxysilylating the surface of the metal oxide nanoparticles using the alkoxysilylating agent described above, the alkoxysilylating agent and the metal oxide nanoparticles may be contacted in the presence or absence of a solvent.

사용할 수 있는 용매로서는, 알콕시실릴화제와 반응하지 않는 비프로톤성 용매라면 특별히 제한은 없고, 예를 들어 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 톨루엔, 크실렌, 메시틸렌 등의 탄화수소 용제; 이소파라핀계 용제, 나프텐계 용제 등의 탄화수소 혼합 용제: 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤; 아세토니트릴, 프로피오니트릴, 벤조니트릴 등의 니트릴; 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈 등의 아미드; 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 테트라히드로푸란, 시클로펜틸메틸에테르, 디부틸에테르, 에틸렌글리콜디메틸에테르, 프로필렌글리콜디메틸에테르, 디에틸렌글리콜디메틸에테르, 디프로필렌글리콜디메틸에테르 등의 에테르 용제; 아세트산에틸, 아세트산프로필, 아세트산이소프로필, 아세트산부틸, 아세트산이소부틸, 아세트산메톡시에틸, 아세트산헥실 등의 에스테르 용제 등을 들 수 있다. 이들 용제는 1종을 단독으로 사용할 수도 있고, 2종 이상의 복수를 조합하여 사용할 수도 있다. 또한, 액상의 알콕시실릴화제를 과잉으로 사용함으로써, 무용제로 알콕시실릴화를 행할 수도 있다.As a solvent which can be used, if it is an aprotic solvent which does not react with an alkoxy silylating agent, there will be no restriction | limiting in particular, For example, Hydrocarbon solvent, such as hexane, heptane, octane, isooctane, nonan, decane, toluene, xylene, mesitylene; Hydrocarbon mixed solvents, such as an isoparaffinic solvent and a naphthenic solvent: Ketones, such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; Nitriles such as acetonitrile, propionitrile and benzonitrile; Amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; Ethers such as diethyl ether, dipropyl ether, diisopropyl ether, tetrahydrofuran, cyclopentylmethyl ether, dibutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether and dipropylene glycol dimethyl ether solvent; Ester solvents such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, methoxyethyl acetate, and hexyl acetate. These solvents may be used individually by 1 type, and may be used in combination of 2 or more type. Moreover, alkoxy silylation can also be performed by using a liquid alkoxy silylating agent excessively, without a solvent.

또한, 미처리된 금속 산화물 나노 입자나 상기한 1가 탄화수소기, 알킬실릴기 또는 알콕시실릴기를 갖는 금속 산화물 나노 입자에 잔존하는 실란올을 (a) 성분의 폴리실라잔을 사용하여 표면 처리함으로써, 규소 원자를 통해 표면에 치환기 R이나, Ra, Rb를 도입한 것을 사용할 수 있다. 이에 의해, (a) 성분의 폴리실라잔과의 상용성이 양호해진다.In addition, the silanol remaining in the untreated metal oxide nanoparticles or the metal oxide nanoparticles having the monovalent hydrocarbon group, the alkylsilyl group or the alkoxysilyl group described above is subjected to surface treatment using polysilazane of component (a) to obtain silicon. What substituted substituent R and R <a> , R <b> on the surface through an atom can be used. Thereby, compatibility with the polysilazane of (a) component becomes favorable.

미처리된 금속 산화물 나노 입자를 (a) 성분의 폴리실라잔을 사용하여 표면 처리하는 경우의 폴리실라잔의 배합량으로서는, 하기 수식 (I)에 의해 폴리실라잔의 최소 피복 면적(폴리실라잔의 반복 단위 1g으로 피복되는 최소 면적)을 산출하고, 하기 수식 (II)에 의해 산출되는 폴리실라잔의 최소 첨가량을 목표로 할 수 있다. 그러나, 특히 폴리실라잔의 치환기가 부피가 큰 경우에는, 산출한 최소 첨가량보다 적은 첨가량이라도 표면 처리가 완결되는 경우가 있다. 본 발명에 있어서는, 양호한 발수성 및 물방울 전락성을 얻는 점에서, 폴리실라잔으로 금속 산화물 나노 입자의 표면 처리를 하는 경우의 폴리실라잔의 배합량은 최소 첨가량 이상으로 하는 것이 바람직하고, 보다 바람직하게는 1.3배 이상이고, 더욱 바람직하게는 2배 이상이다.As a compounding quantity of polysilazane when surface-treating untreated metal oxide nanoparticles using polysilazane of (a) component, the minimum coating area of polysilazane (the repetition of polysilazane) by following formula (I) Minimum area covered by 1 g of units) can be calculated, and the minimum amount of polysilazane calculated by the following formula (II) can be aimed at. However, especially when the substituent of polysilazane is large, surface treatment may be completed even if it is addition amount less than the calculated minimum addition amount. In the present invention, from the viewpoint of obtaining good water repellency and water droplet decay, the blending amount of polysilazane in the case of surface treatment of the metal oxide nanoparticles with polysilazane is preferably at least the minimum amount, more preferably. 1.3 times or more, More preferably, it is 2 times or more.

Figure pat00003
Figure pat00003

금속 산화물 나노 입자를 폴리실라잔으로 표면 처리하는 방법은 특별히 제한되지 않고, 금속 산화물 나노 입자를 폴리실라잔과 혼합하여 공지의 방법에 의해 표면 처리해도 되지만, 본 조성물을 제조할 때에, 금속 산화물 나노 입자를 후술하는 (c) 용제에 분산시킨 후, 폴리실라잔을 첨가하여 혼합하는 방법에 의해 행하는 것이 바람직하다.The method of surface-treating the metal oxide nanoparticles with polysilazane is not particularly limited, and the metal oxide nanoparticles may be mixed with the polysilazane and surface-treated by a known method. It is preferable to carry out by the method of adding and mixing polysilazane, after disperse | distributing a particle | grain in the (c) solvent mentioned later.

본 발명의 조성물에 있어서의 (b) 성분의 배합량은, (a) 성분의 폴리실라잔의 종류에 따라 변경하는 것이 바람직하지만, 바람직하게는 조성물 전체의 0.001 내지 30질량%이고, 보다 바람직하게는 0.01 내지 10질량%, 더욱 바람직하게는 0.01 내지 5질량%이다. 30질량%를 초과하면 조성물의 점도가 지나치게 높아지는 것 외에, 조성물이 균일하게 되지 않는 경우가 있다. 0.001질량% 미만이면 피막이 지나치게 얇아져 충분한 발수성이 얻어지지 않는 경우가 있다.Although it is preferable to change the compounding quantity of (b) component in the composition of this invention according to the kind of polysilazane of (a) component, Preferably it is 0.001-30 mass% of the whole composition, More preferably, 0.01-10 mass%, More preferably, it is 0.01-5 mass%. When it exceeds 30 mass%, the viscosity of a composition will become high too much and a composition may not become uniform. If it is less than 0.001 mass%, a film may become too thin and sufficient water repellency may not be obtained.

<(c) 비프로톤성 용제><(c) Aprotic Solvent>

후술하는 바와 같이, 본 발명의 발수성 피막 형성용 조성물을 사용하여 다양한 도포 방법에 의해 기재 상에 피막을 형성할 수 있지만, 도포 방법에 따라 점도를 조정하기 때문에, 본 발명의 조성물에는 용제를 첨가한다.As described later, the film can be formed on the substrate by various coating methods using the composition for water repellent coating of the present invention, but the solvent is added to the composition of the present invention because the viscosity is adjusted according to the coating method. .

사용할 수 있는 용제로서는, 일반식 (1)로 표시되는 폴리실라잔과 반응하지 않는 비프로톤성 용제라면 특별히 제한은 없지만, 예를 들어 헥산, 헵탄, 옥탄, 이소옥탄, 노난, 데칸, 톨루엔, 크실렌, 메시틸렌 등의 탄화수소 용제; 이소파라핀계 용제, 나프텐계 용제 등의 탄화수소 혼합 용제: 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤; 아세토니트릴, 프로피오니트릴, 벤조니트릴 등의 니트릴; 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈 등의 아미드; 디에틸에테르, 디프로필에테르, 디이소프로필에테르, 테트라히드로푸란, 시클로펜틸메틸에테르, 디부틸에테르, 에틸렌글리콜디메틸에테르, 프로필렌글리콜디메틸에테르, 디에틸렌글리콜디메틸에테르, 디프로필렌글리콜디메틸에테르 등의 에테르 용제; 아세트산에틸, 아세트산프로필, 아세트산이소프로필, 아세트산부틸, 아세트산이소부틸, 아세트산메톡시에틸, 아세트산헥실 등의 에스테르 용제 등을 들 수 있다. 이들 용제는 1종 단독으로 사용할 수도 있고, 2종 이상의 복수를 조합하여 사용할 수도 있다.As a solvent which can be used, if it is an aprotic solvent which does not react with the polysilazane represented by General formula (1), there will be no restriction | limiting in particular, For example, hexane, heptane, octane, isooctane, nonane, decane, toluene, xylene, Hydrocarbon solvents such as mesitylene; Hydrocarbon mixed solvents, such as an isoparaffinic solvent and a naphthenic solvent: Ketones, such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; Nitriles such as acetonitrile, propionitrile and benzonitrile; Amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; Ethers such as diethyl ether, dipropyl ether, diisopropyl ether, tetrahydrofuran, cyclopentylmethyl ether, dibutyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether and dipropylene glycol dimethyl ether solvent; Ester solvents such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, methoxyethyl acetate, and hexyl acetate. These solvents may be used alone or in combination of two or more kinds thereof.

본 발명의 발수성 피막 형성용 조성물에 있어서의 (c) 성분의 용제의 배합량은, (a) 성분인 폴리실라잔의 점도에 따라, 또한 도포 방법이나 필요한 막 두께에 따라 임의로 변화시킬 수 있지만, 바람직하게는 조성물 전체의 10 내지 99.9질량%, 보다 바람직하게는 30 내지 99.5질량%, 더욱 바람직하게는 50 내지 99.5질량%이다. 10질량% 미만이면 조성물의 점도가 지나치게 높아지는 것 외에, (a) 성분이나 (b) 성분의 용해성(분산성)이 불충분해지는 경우가 있다. 99.9질량%를 초과하면, 피막이 지나치게 얇아져 충분한 발수성이 얻어지지 않는 경우가 있다.Although the compounding quantity of the solvent of (c) component in the composition for water-repellent film formation of this invention can change arbitrarily according to the viscosity of the polysilazane which is (a) component, and also according to a coating method or a required film thickness, it is preferable. Preferably it is 10-99.9 mass% of the whole composition, More preferably, it is 30-99.5 mass%, More preferably, it is 50-99.5 mass%. If it is less than 10 mass%, the viscosity of a composition becomes high too much and the solubility (dispersibility) of (a) component and (b) component may become inadequate. When it exceeds 99.9 mass%, the film may become too thin and sufficient water repellency may not be obtained.

<그 밖의 성분><Other ingredients>

본 발명의 조성물에는, 본 발명의 효과를 손상시키지 않을 정도의 소량이라면, 그 밖의 성분으로서, 안료, 염료, 분산제, 점도 조정제, 레벨링제 등의 첨가물이나, (b) 성분 이외의 표면에 유기기를 갖지 않는 금속 산화물 나노 입자를 함유해도 된다.In the composition of the present invention, as long as it does not impair the effects of the present invention, as other components, additives such as pigments, dyes, dispersants, viscosity modifiers, leveling agents, and organic groups on surfaces other than the component (b) You may contain the metal oxide nanoparticles which do not have.

<발수성 피막 형성용 조성물><Composition for Water Repellent Film Formation>

본 발명의 발수성 피막 형성용 조성물은, (a) 성분, (b) 성분, (c) 성분 및 필요에 따라 그 밖의 성분을 혼합하고, (a) 성분 및 (b) 성분을 (c) 성분의 용제 중에 용해 또는 분산시킴으로써 얻어진다. 혼합의 방법은 임의이고, 예를 들어 교반기나 각종 믹서 등의 혼합 장치를 사용할 수 있다. 또한, 초음파 조사하는 방법도 유효하다.The composition for water repellent film formation of this invention mixes (a) component, (b) component, (c) component, and other components as needed, and (a) component and (b) component of (c) component It is obtained by dissolving or dispersing in a solvent. The method of mixing is arbitrary, For example, mixing apparatuses, such as a stirrer and various mixers, can be used. Moreover, the method of ultrasonic irradiation is also effective.

미처리된 금속 산화물 나노 입자 또는 표면에 1가 탄화수소기, 알킬실릴기 혹은 알콕시실릴기를 갖는 금속 산화물 나노 입자를 (a) 성분의 폴리실라잔을 사용하여 표면 처리하여 사용하는 경우에는, 미리 표면 처리를 행하고 나서, 나머지의 (a) 성분, 표면 처리한 금속 산화물 나노 입자 및 (c) 성분을 혼합해도 되고, 충분한 양의 (a) 성분과, 미처리된 또는 표면에 1가 탄화수소기, 알킬실릴기 혹은 알콕시실릴기를 갖는 금속 산화물 나노 입자를 (c) 성분과 혼합하고, 혼합·분산시키면서 표면 처리를 행하여 본 조성물을 얻도록 해도 된다.When untreated metal oxide nanoparticles or metal oxide nanoparticles having a monovalent hydrocarbon group, an alkylsilyl group or an alkoxysilyl group on the surface are subjected to surface treatment using polysilazane of component (a), the surface treatment is previously performed. After performing, the remaining (a) component, the surface-treated metal oxide nanoparticles, and (c) component may be mixed, and a monovalent hydrocarbon group, an alkylsilyl group, The metal oxide nanoparticles having an alkoxysilyl group may be mixed with the component (c) and subjected to surface treatment while mixing and dispersing to obtain the present composition.

이와 같이 하여 얻어지는 본 발명의 발수성 피막 형성용 조성물은 침전이나 겔을 포함하지 않고 균일한 용액 또는 분산액이고, 화학적으로 안정되기 때문에, 물이나 메탄올 등의 폴리실라잔을 분해하는 프로톤성 화합물이 혼입되지 않는 한, 불가역적으로 불용물이 생성되어 불균일한 혼합물이 되는 일이 없다. 따라서 장기간에 걸쳐서 성능이 변화되지 않고 사용할 수 있다. 또한, 폴리실라잔이 흡습제로서 작용하기 때문에, 소량의 수분이 혼입된 경우에도 조성물의 열화를 방지할 수 있다.The water-repellent film-forming composition of the present invention thus obtained is a homogeneous solution or dispersion without containing precipitates or gels and is chemically stable, so that protonic compounds that decompose polysilazane, such as water or methanol, are not mixed. Unless irreversible, an insoluble matter will not be formed, unless it becomes a non-uniform mixture. Therefore, it can be used without changing performance over a long period of time. Moreover, since polysilazane acts as a moisture absorbing agent, even when a small amount of moisture is mixed, deterioration of a composition can be prevented.

<기재><Base material>

본 발명의 발수성 피막 형성용 조성물은, (a) 성분의 폴리실라잔이 기재 표면에 대한 밀착성이 우수하기 때문에, 다양한 기재에 대하여 사용할 수 있다. 예를 들어, 금속, 수지, 유리, 세라믹스, 이들 복합 재료 등의 기재에 도포하여, 본 발명의 발수성 피막을 형성하는 것이 가능하다.Since the polysilazane of (a) component is excellent in adhesiveness with respect to the surface of a base material, the composition for water repellent film formation of this invention can be used with respect to various base materials. For example, it is possible to apply | coat to base materials, such as a metal, resin, glass, ceramics, these composite materials, and to form the water repellent film of this invention.

<도포 방법><Application method>

본 발명의 발수성 피막 형성용 조성물의 도포 방법으로서는, 조성물이 기재 표면에 균일하게 젖는 방법이 필요하다. 구체적 방법으로서는, 예를 들어 플로우 코팅법, 딥 코팅법, 커튼 코팅법, 스핀 코팅법, 스프레이 코팅법, 바 코팅법 등을 들 수 있다. 기재의 종류나 형상, 필요한 막 두께에 따라 적절한 도포 방법을 선택하면 된다.As a coating method of the composition for water repellent film formation of this invention, the method of wetting a composition uniformly on the surface of a base material is required. As a specific method, a flow coating method, the dip coating method, the curtain coating method, the spin coating method, the spray coating method, the bar coating method, etc. are mentioned, for example. What is necessary is just to select the appropriate coating method according to the kind and shape of a base material, and the required film thickness.

<발수성 피막><Water repellent film>

본 발명의 발수성 피막 형성용 조성물을 기재의 표면에 도포한 후, (c) 성분인 비프로톤성 용제를 제거함으로써, 본 발명의 발수성 피막을 간편한 방법으로 얻을 수 있다. 용제를 제거하는 방법으로서는 상압 혹은 감압으로 휘발시키는 방법이 일반적이다. 이때, 가열하여 시간을 단축하는 것도 가능하다.After apply | coating the composition for water repellent film formation of this invention to the surface of a base material, the water repellent film of this invention can be obtained by a simple method by removing the aprotic solvent which is (c) component. As a method of removing a solvent, the method of volatilizing by normal pressure or a reduced pressure is common. At this time, it is also possible to shorten the time by heating.

비프로톤성 용제를 제거할 때에, 혹은 비프로톤성 용제를 제거한 후에, 피막 표면에 물을 작용시킴으로써, 폴리실라잔의 일부 혹은 전부를 폴리실록산으로 전화시킬 수 있다. 이 조작에 의해 피막의 내구성이 향상되기 때문에 바람직하다. 물을 작용시키는 방법으로서는, 10 내지 95%RH 정도의 수증기가 존재하는 환경에서 정치하거나, 물에 침지시키는 등, 임의의 방법으로 행할 수 있다.When the aprotic solvent is removed or after the aprotic solvent is removed, part or all of the polysilazane can be converted into polysiloxane by acting water on the surface of the coating. This operation is preferable because the durability of the film is improved. As a method of making water act, it can be performed by arbitrary methods, such as standing still in the environment in which water vapor of about 10 to 95% RH exists, or immersing in water.

본 발명의 발수성 피막의 두께는 임의이지만, 일반적으로는, 평균 두께가 10㎚ 내지 50㎛가 바람직하고, 보다 바람직하게는 50㎚ 내지 10㎛이다. 10㎚ 미만이면, 피막이 지나치게 얇아져 충분한 발수성이 얻어지지 않는 경우가 있다. 50㎛를 초과하면, 용제를 제거할 때에 크랙이 발생하는 경우가 있다.Although the thickness of the water repellent film of this invention is arbitrary, Generally, average thickness is 10 nm-50 micrometers, More preferably, it is 50 nm-10 micrometers. If it is less than 10 nm, a film may become too thin and sufficient water repellency may not be obtained. When it exceeds 50 micrometers, a crack may arise at the time of removing a solvent.

본 발명의 발수성 피막은, 높은 발수성과 물방울의 전락성을 겸비하고 있다. 피막의 발수성의 지표인 물에 대한 접촉각은, 전형적으로는 150° 이상이 되어, 초발수성을 나타내지만, 바람직하게는 160° 이상이다. 또한, 물방울의 전락성의 지표인 물의 전락각(액적이 전락을 개시하는 각도)은, 물방울의 크기에 따라 변화되지만, 전형적으로는 5° 이하이고, 바람직하게는 3° 이하, 보다 바람직하게는 1° 이하이다. 또한, 160° 이상의 접촉각을 나타내는 피막 상에서는 물의 전락 속도도 커서, 바람직하다.The water repellent coating of the present invention has high water repellency and water droplet decay. Although the contact angle with respect to water which is an index of water repellency of a film becomes 150 degree or more typically, and shows super water repellency, Preferably it is 160 degree or more. In addition, although the fall angle of the water (the angle at which the droplet starts to fall), which is an index of the dropping property of the drop, varies depending on the size of the drop, it is typically 5 ° or less, preferably 3 ° or less, more preferably 1 It is below °. Moreover, the fall rate of water is also large on the film which shows the contact angle of 160 degrees or more, and is preferable.

[실시예]EXAMPLE

이하, 합성예, 본 발명의 실시예 및 비교예를 설명하지만, 본 발명은 이들 실시예에 전혀 한정되는 것은 아니다.Hereinafter, although a synthesis example, the Example of this invention, and a comparative example are described, this invention is not limited to these Examples at all.

[합성예 1] 옥틸폴리실라잔의 합성Synthesis Example 1 Synthesis of Octyl Polysilazane

교반기, 가스 피드관, 온도계, 환류 냉각기를 구비한 1L의 4구 유리 플라스크의 내부를 질소로 치환하고, 환류 냉각기 상부의 개방단에 질소 가스를 통기시켜 외기가 혼입되지 않도록 하면서, 옥틸트리클로로실란 309.6g(1.25몰)과 톨루엔 500mL를 투입하고 교반하여, 균일한 용액을 얻었다. 실온에서 내용물을 교반하면서, 피드관을 통해 암모니아 가스를 용액 중에 약 0.62몰/시의 속도로 피드했다. 내용물의 온도가 40℃를 초과하지 않도록 냉각하면서, 7.1시간 암모니아의 피드를 계속했다. 그 후, 암모니아의 피드를 정지하고, 피드관을 통해 질소 가스를 0.5L/분의 속도로 6시간 불어 넣고, 잉여의 암모니아 가스를 퍼지했다. 발생한 백색의 고체를 멤브레인 필터로 여과 분별하여, 무색 투명한 용액을 얻었다. 이 용액을 감압 농축하고, 실온에서 진공 건조함으로써, 백탁된 유상의 옥틸폴리실라잔 142.8g을 얻었다.Octyltrichlorosilane is substituted with nitrogen in the 1 L four-necked glass flask equipped with a stirrer, a gas feed tube, a thermometer, and a reflux cooler, and a nitrogen gas is blown through the open end of the reflux cooler to prevent mixing of outside air. 309.6 g (1.25 mol) and 500 mL of toluene were added and stirred to obtain a uniform solution. While stirring the contents at room temperature, ammonia gas was fed through the feed tube at a rate of about 0.62 mol / hr in solution. The feed of ammonia was continued for 7.1 hours while cooling so that the temperature of the content might not exceed 40 degreeC. Thereafter, the feed of ammonia was stopped, nitrogen gas was blown through the feed tube at a rate of 0.5 L / min for 6 hours, and excess ammonia gas was purged. The white solid which generate | occur | produced was separated by filtration by the membrane filter, and the colorless transparent solution was obtained. The solution was concentrated under reduced pressure and vacuum dried at room temperature to obtain 142.8 g of a cloudy oily octyl polysilazane.

GPC에 의한 폴리스티렌 환산 분자량은, 중량 평균 분자량이 2420, 수 평균 분자량이 1900이었다. 또한, GPC의 측정 조건은 이하와 같다.The weight average molecular weight of the polystyrene conversion molecular weight by GPC was 2420, and the number average molecular weight was 1900. In addition, the measurement conditions of GPC are as follows.

[GPC 조건][GPC Terms]

장치: Prominence GPC 시스템((주)시마즈 세이사쿠쇼제)Device: Prominence GPC system (manufactured by Shimadzu Seisakusho Co., Ltd.)

칼럼: LF-404(4.6㎜×250㎜)(Shodex사제)×2Column: LF-404 (4.6 mm x 250 mm) (manufactured by Shodex) x 2

용리액: 테트라히드로푸란(THF)Eluent: tetrahydrofuran (THF)

유속: 0.35ml/minFlow rate: 0.35ml / min

검출기: RI Detector: RI

칼럼 항온조 온도: 40℃Column thermostat temperature: 40 ℃

표준 물질: 폴리스티렌Standard material: polystyrene

적외 흡수 스펙트럼(FT-IR)을 측정한바, 893㎝-1(Si-N-Si), 1152㎝-1(N-H), 2853㎝-1, 2920㎝-1(C-H), 3384㎝-1(N-H)에 흡수가 관찰되고, 목적의 옥틸폴리실라잔이 생성되어 있는 것이 지지되었다.Infrared absorption spectra (FT-IR) were measured, 893 cm -1 (Si-N-Si), 1152 cm -1 (NH), 2853 cm -1 , 2920 cm -1 (CH), 3384 cm -1 ( Absorption was observed in NH), and it was supported that the target octyl polysilazane was produced.

[합성예 2] 데실폴리실라잔의 합성Synthesis Example 2 Synthesis of Decyl Polysilazane

옥틸트리클로로실란 대신에 데실트리클로로실란 344.6g(1.25몰)을 사용한 것 이외는 합성예 1과 마찬가지로 하여, 데실폴리실라잔을 백색 유상물로서 얻었다.Decylpolysilazane was obtained as a white oily substance in the same manner as in Synthesis Example 1 except that 344.6 g (1.25 mol) of decyltrichlorosilane was used instead of octyl trichlorosilane.

GPC에 의한 중량 평균 분자량은 2970, 수 평균 분자량은 2230이었다.The weight average molecular weight by GPC was 2970, and the number average molecular weight was 2230.

[합성예 3] 헥실폴리실라잔의 합성Synthesis Example 3 Synthesis of Hexyl Polysilazane

옥틸트리클로로실란 대신에 헥실트리클로로실란 272.5g(1.25몰)을 사용하여, 톨루엔을 750mL로 한 것 이외는 합성예 1과 마찬가지로 하여, 헥실폴리실라잔을 백색 유상물로서 얻었다.Hexyl polysilazane was obtained as a white oily substance in the same manner as in Synthesis example 1 except that 272.5 g (1.25 mol) of hexyltrichlorosilane was used instead of octyl trichlorosilane.

GPC에 의한 중량 평균 분자량은 1250, 수 평균 분자량은 1130이었다.The weight average molecular weight by GPC was 1250, and the number average molecular weight was 1130.

[합성예 4] 프로필폴리실라잔의 합성Synthesis Example 4 Synthesis of Propyl Polysilazane

옥틸트리클로로실란 대신에 프로필트리클로로실란 221.9g(1.25몰)을 사용하고, 톨루엔 대신에 시클로펜틸메틸에테르 1125mL를 사용한 것 이외는 합성예 1과 마찬가지로 하여, 프로필폴리실라잔을 백색 유상물로서 얻었다.Propylene polychlorosilane was obtained in the same manner as in Synthesis Example 1 except that 221.9 g (1.25 mol) of propyltrichlorosilane was used instead of octyl trichlorosilane, and 1125 mL of cyclopentylmethyl ether was used instead of toluene. .

GPC에 의한 중량 평균 분자량은 890, 수 평균 분자량은 770이었다.The weight average molecular weight by GPC was 890, and the number average molecular weight was 770.

[합성예 5] (트리데카플루오로옥틸)(트리플루오로프로필)폴리실라잔의 합성Synthesis Example 5 Synthesis of (tridecafluorooctyl) (trifluoropropyl) polysilazane

교반기, 가스 피드관, 온도계, 환류 냉각기를 구비한 300mL의 4구 유리 플라스크의 내부를 질소로 치환하고, 환류 냉각기 상부의 개방단에 질소 가스를 통기시켜 외기가 혼입되지 않도록 하면서, 3,3,4,4,5,5,6,6,7,7,8,8,8-트리데카플루오로옥틸트리클로로실란 54.2g(112.5밀리몰) 및 3,3,3-트리플루오로프로필트리클로로실란 8.68g(37.5밀리몰)과, 시클로펜틸메틸에테르 135mL를 투입하고 교반하여, 균일한 용액을 얻었다. 실온에서 내용물을 교반하면서, 피드관을 통해 암모니아 가스를 용액 중에 약 124밀리몰/시의 속도로 피드했다. 내용물의 온도가 40℃를 초과하지 않도록 냉각하면서, 4.8시간 암모니아의 피드를 계속했다. 그 후, 암모니아의 피드를 정지하고, 피드관을 통해 질소 가스를 0.15L/분의 속도로 6시간 불어 넣어, 잉여의 암모니아 가스를 퍼지했다. 발생한 백색의 고체를 멤브레인 필터로 여과 분별하여, 무색 투명한 용액을 얻었다. 이 용액을 감압 농축하고, 실온에서 진공 건조함으로써, 백탁된 유상물 39.3g을 얻었다.The inside of a 300 mL four-necked glass flask equipped with a stirrer, a gas feed tube, a thermometer, and a reflux condenser was replaced with nitrogen, and a nitrogen gas was passed through the open end of the reflux condenser to prevent mixing of outside air. 4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyltrichlorosilane 54.2 g (112.5 mmol) and 3,3,3-trifluoropropyltrichlorosilane 8.68 g (37.5 mmol) and 135 mL of cyclopentylmethyl ether were added and stirred to obtain a uniform solution. While stirring the contents at room temperature, ammonia gas was fed through the feed tube at a rate of about 124 mmol / hr in solution. The feed of ammonia was continued for 4.8 hours while cooling so that the temperature of the content might not exceed 40 degreeC. Thereafter, the feed of ammonia was stopped, and nitrogen gas was blown through the feed pipe at a rate of 0.15 L / min for 6 hours to purge the excess ammonia gas. The white solid which generate | occur | produced was separated by filtration by the membrane filter, and the colorless transparent solution was obtained. The solution was concentrated under reduced pressure and vacuum dried at room temperature to obtain 39.3 g of a cloudy oil.

GPC에 의한 폴리스티렌 환산 분자량은 중량 평균 분자량이 2750, 수 평균 분자량이 2500이었다.The weight average molecular weight of the polystyrene conversion molecular weight by GPC was 2750, and the number average molecular weight was 2500.

적외 흡수 스펙트럼(FT-IR)을 측정한바, 898㎝-1(Si-N-Si), 1141㎝-1(C-F), 1183㎝-1(N-H), 2946㎝-1(C-H), 3394㎝-1(N-H)에 흡수가 관찰되고, 목적의 (트리데카플루오로옥틸)(트리플루오로프로필)폴리실라잔이 생성되어 있는 것이 지지되었다.Infrared absorption spectrum (FT-IR) was measured, 898 cm -1 (Si-N-Si), 1141 cm -1 (CF), 1183 cm -1 (NH), 2946 cm -1 (CH), 3394 cm Absorption was observed in -1 (NH), and it was supported that the target (tridecafluorooctyl) (trifluoropropyl) polysilazane was produced.

[합성예 6] 트리데카플루오로옥틸폴리실라잔의 합성Synthesis Example 6 Synthesis of Tridecafluorooctylpolysilazane

교반기, 가스 피드관, 온도계, 환류 냉각기를 구비한 200mL의 4구 유리 플라스크의 내부를 질소로 치환하고, 환류 냉각기 상부의 개방단에 질소 가스를 통기시켜 외기가 혼입되지 않도록 하면서, 3,3,4,4,5,5,6,6,7,7,8,8,8-트리데카플루오로옥틸트리클로로실란 48.2g(100밀리몰)과 메타크실렌헥사플루오라이드 90mL를 투입하고 교반하여, 균일한 용액을 얻었다. 실온에서 내용물을 교반하면서, 피드관을 통해 암모니아 가스를 용액 중에 약 79밀리몰/시의 속도로 피드했다. 내용물의 온도가 40℃를 초과하지 않도록 냉각하면서, 5.5시간 암모니아의 피드를 계속했다. 그 후, 암모니아의 피드를 정지하고, 피드관을 통해 질소 가스를 0.15L/분의 속도로 2시간 불어 넣어, 잉여의 암모니아 가스를 퍼지했다. 발생한 백색의 고체를 멤브레인 필터로 여과 분별하여, 무색 투명한 용액을 얻었다. 이 용액을 감압 농축하고, 실온에서 진공 건조함으로써, 백탁된 유상물 25.4g을 얻었다.The inside of a 200 mL four-necked glass flask equipped with a stirrer, a gas feed tube, a thermometer, and a reflux condenser was replaced with nitrogen, and a nitrogen gas was passed through the open end of the reflux condenser to prevent mixing of outside air. 4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyltrichlorosilane 48.2 g (100 mmol) and 90 mL of metha xylene hexafluoride were added and stirred One solution was obtained. While stirring the contents at room temperature, ammonia gas was fed through the feed tube at a rate of about 79 mmol / hr in solution. The feed of ammonia was continued for 5.5 hours while cooling so that the temperature of the content might not exceed 40 degreeC. Thereafter, the feed of ammonia was stopped, and nitrogen gas was blown through the feed pipe at a rate of 0.15 L / min for 2 hours to purge the excess ammonia gas. The white solid which generate | occur | produced was separated by filtration by the membrane filter, and the colorless transparent solution was obtained. The solution was concentrated under reduced pressure and dried in vacuo at room temperature to give 25.4 g of a cloudy oil.

GPC에 의한 폴리스티렌 환산 분자량은, 중량 평균 분자량이 2840, 수 평균 분자량이 2680이었다.The weight average molecular weight of the polystyrene conversion molecular weight by GPC was 2840, and the number average molecular weight was 2680.

적외 흡수 스펙트럼(FT-IR)을 측정한바, 932㎝-1(Si-N-Si), 1141㎝-1(C-F), 1182㎝-1(N-H), 2945㎝-1(C-H), 3394㎝-1(N-H)에 흡수가 관찰되고, 목적의 트리데카플루오로옥틸폴리실라잔이 생성되어 있는 것이 지지되었다.Infrared absorption spectrum (FT-IR) was measured, 932 cm -1 (Si-N-Si), 1141 cm -1 (CF), 1182 cm -1 (NH), 2945 cm -1 (CH), 3394 cm Absorption was observed in -1 (NH), and it was supported that the target tridecafluorooctylpolysilazane was produced.

[합성예 7] 헥실(디메틸)폴리실라잔의 합성Synthesis Example 7 Synthesis of Hexyl (Dimethyl) Polysilazane

교반기, 가스 피드관, 온도계, 환류 냉각기를 구비한 500mL의 4구 유리 플라스크의 내부를 질소로 치환하고, 환류 냉각기 상부의 개방단에 질소 가스를 통기시켜 외기가 혼입되지 않도록 하면서, 헥실트리클로로실란 32.9g(150밀리몰), 디메틸디클로로실란 6.5g(50밀리몰) 및 톨루엔을 용매로 하여 165mL를 투입하고 교반하여, 균일한 용액을 얻었다. 실온에서 내용물을 교반하면서, 피드관을 통해 암모니아 가스를 용액 중에 약 150밀리몰/시의 속도로 피드했다. 내용물의 온도가 40℃를 초과하지 않도록 냉각하면서, 6시간 암모니아의 피드를 계속했다. 그 후, 암모니아의 피드를 정지하고, 피드관을 통해 질소 가스를 0.15L/분의 속도로 2시간 불어 넣어, 잉여의 암모니아 가스를 퍼지했다. 발생한 백색의 고체를 멤브레인 필터로 여과 분별하여, 무색 투명한 용액을 얻었다. 이 용액을 감압 농축하고, 실온에서 진공 건조함으로써, 무색의 유상물 18.9g을 얻었다.A 500 mL four-necked glass flask equipped with a stirrer, a gas feed tube, a thermometer, and a reflux condenser is replaced with nitrogen, and a hexyltrichlorosilane is introduced into the open end of the reflux condenser to prevent outside air from entering. 165 mL was added and stirred with 32.9 g (150 mmol), dimethyldichlorosilane 6.5g (50 mmol), and toluene as a solvent, and the uniform solution was obtained. While stirring the contents at room temperature, ammonia gas was fed through the feed tube at a rate of about 150 mmol / hr in solution. The feed of ammonia was continued for 6 hours while cooling so that the temperature of the content might not exceed 40 degreeC. Thereafter, the feed of ammonia was stopped, and nitrogen gas was blown through the feed pipe at a rate of 0.15 L / min for 2 hours to purge the excess ammonia gas. The white solid which generate | occur | produced was separated by filtration by the membrane filter, and the colorless transparent solution was obtained. The solution was concentrated under reduced pressure and 18.9 g of a colorless oil was obtained by vacuum drying at room temperature.

GPC에 의한 폴리스티렌 환산 분자량은, 중량 평균 분자량이 1574, 수 평균 분자량이 1144였다.The weight average molecular weight of the polystyrene conversion molecular weight by GPC was 1574, and the number average molecular weight was 1144.

적외 흡수 스펙트럼(FT-IR)을 측정한바, 900㎝-1, 1153㎝-1(Si-N-Si), 1459㎝-1, 2853㎝-1(C-H), 3389㎝-1(N-H)에 흡수가 관찰되고, 목적의 폴리실라잔이 생성되어 있는 것이 지지되었다.In an infrared absorption spectrum 900㎝ -1, 1153㎝ -1 (Si- N-Si), 1459㎝ -1, 2853㎝ -1 (FT-IR) hanba measured, (CH), 3389㎝ -1 ( NH) Absorption was observed and it was supported that the target polysilazane was produced.

[합성예 8] 표면에 트리메톡시실릴기를 갖는 실리카 입자 분산액의 제조Synthesis Example 8 Preparation of Silica Particle Dispersion Having Trimethoxysilyl Group on Surface

수지제 캡이 부착된 유리제 용기에 퓸드 실리카(비표면적 205㎡/g, 상품명 레올로실 QS-102, 도소제) 5.00g을 칭량하고, 시클로펜틸메틸에테르 56.25g, 1-트리메톡시실릴옥시-1-에톡시프로펜 1.25g을 더하고 때때로 요동시키면서 1시간 초음파 조사하여, 퓸드 실리카를 균일하게 분산시켰다. 백색 반투명이고 안정된 분산액이 얻어지고, 분산액의 GC 측정에 의해, 1-트리메톡시실릴옥시-1-에톡시프로펜이 소실된 것 및 트리메톡시실릴기를 갖는 휘발성의 화합물이 생성되어 있지 않은 것을 알 수 있고, 실리카 표면에 트리메톡시실릴기가 도입되었다고 판단했다.In a glass container with a resin cap, 5.00 g of fumed silica (specific surface area 205 m 2 / g, trade name Rheolosyl QS-102, a dosing agent) was weighed, and 56.25 g of cyclopentylmethyl ether and 1-trimethoxysilyloxy 1.25 g of -1-ethoxypropene was added and ultrasonic irradiation was carried out for 1 hour while occasionally shaking to disperse the fumed silica uniformly. A white translucent and stable dispersion was obtained, and by the GC measurement of the dispersion, 1-trimethoxysilyloxy-1-ethoxypropene was lost and no volatile compound having a trimethoxysilyl group was produced. It turned out that it was judged that the trimethoxysilyl group was introduce | transduced into the silica surface.

[실시예 1]Example 1

수지제 캡이 부착된 유리제 용기에 퓸드 실리카(비표면적 205㎡/g, 상품명 레올로실 QS-102, 도소제) 2g을 칭량하고, 시클로펜틸메틸에테르 77g, 디프로필렌글리콜디메틸에테르 20g을 가하여 30분간 초음파 조사하여, 퓸드 실리카를 분산시켰다. 합성예 1에 있어서 얻어진 옥틸폴리실라잔 1g을 첨가하고 다시 15분간 초음파 조사함으로써, 백색 반투명의 발수성 피막 형성용 조성물을 얻었다. 이 조성물은 밀폐 하, 실온에서 1개월 이상 안정되었다.2 g of fumed silica (specific surface area 205 m 2 / g, trade name Rheolosyl QS-102, a dosing agent) was weighed into a glass container with a resin cap, and 77 g of cyclopentylmethyl ether and 20 g of dipropylene glycol dimethyl ether were added thereto. Ultrasonic irradiation was carried out for a minute to disperse the fumed silica. 1 g of octyl polysilazane obtained in Synthesis Example 1 was added, followed by ultrasonic irradiation again for 15 minutes to obtain a composition for forming a white semitransparent water repellent film. The composition was stable for at least 1 month at room temperature under airtight.

이어서, 이 조성물을 도포액으로 하고, 소다 유리 기판(마츠나미 글래스제) 상에, 바 코터를 사용하여 건조 후 막 두께가 약 1㎛가 되도록 도포했다. 그 후, 도막을 25℃, 50%RH의 환경 하에서 용제를 휘발시킴으로써, 유리 기판 상에 발수성 피막을 형성했다.Subsequently, this composition was used as a coating liquid, and it applied on the soda glass substrate (made by Matsunami Glass) so that the film thickness might be about 1 micrometer after drying using a bar coater. Then, the water-repellent film was formed on the glass substrate by volatilizing a solvent in 25 degreeC and 50% RH environment of a coating film.

<발수성 피막의 평가><Evaluation of the water repellent coating>

형성한 발수성 피막에 대하여, 교와 가이멘 가가쿠제 접촉각계(DMs-401)를 사용하여, 25℃, 50%RH의 조건에서 막 표면에 대한 순수의 접촉각(10μL) 및 전락각(20μL)을 측정한바, 접촉각은 163°, 전락각은 1°였다. 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성된 것을 알 수 있었다.For the formed water repellent coating, contact angle (10 μL) and drop angle (20 μL) of pure water on the surface of the film were measured using a contact angle meter (DMs-401) made by Kyowa Kaimen Kagaku Co., Ltd. at 25 ° C and 50% RH. As a result, the contact angle was 163 ° and the tumble angle was 1 °. It was found that a water-repellent coating was obtained, which exhibited super water repellency and was very satisfactory in water droplets.

이어서, 상기와 같이 발수성 피막을 형성한 소다 유리 기판을 25℃의 순수에 1시간 침지한 후, 접촉각과 전락각을 측정한바, 접촉각은 163°, 전락각은 1°였다.Subsequently, after immersing the soda glass substrate in which the water-repellent film was formed as mentioned above in 25 degreeC pure water for 1 hour, the contact angle and tumble angle were measured, The contact angle was 163 degree and the tumble angle was 1 degree.

또한, 이 유리 기판을 식기 세척 건조기 NP-TCM4(파나소닉제)를 사용하여 온수로 1시간 세정한 후, 접촉각과 전락각을 측정한바, 접촉각은 163°, 전락각은 1°였다. 수세에 의한 성능 저하는 보이지 않고, 내구성이 있는 발수성 피막이 형성되어 있다고 판단되었다.Moreover, after this glass substrate was wash | cleaned with warm water for 1 hour using dishwashing dryer NP-TCM4 (made by Panasonic), the contact angle and tumble angle were measured, The contact angle was 163 degree and the tumble angle was 1 degree. The performance decline by water washing was not seen, and it was judged that the durable water-repellent film was formed.

조성물의 배합량, 안정성, 막 두께, 접촉각 및 전락각의 측정 결과를 표 1에 나타낸다.Table 1 shows the measurement results of the compounding amount, stability, film thickness, contact angle, and tumble angle of the composition.

[실시예 2]Example 2

바 코터에 의한 도포 막 두께를 표 1에 나타내는 막 두께로 변경한 것 이외는 실시예 1과 마찬가지로 하여, 발수성 피막 형성용 조성물을 얻었다.Except having changed the coating film thickness by the bar coater into the film thickness shown in Table 1, it carried out similarly to Example 1, and obtained the composition for water-repellent film formation.

얻어진 조성물을 사용하여 실시예 1과 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다. 조성물의 배합량, 안정성, 막 두께, 접촉각 및 전락각의 측정 결과를 표 1에 기재했다.When the obtained composition was formed on the glass substrate similar to Example 1, the water-repellent film was shown, and super water-repellent property and the water fall of the water droplet were very favorable. Table 1 shows the results of measurement of the compounding amount, stability, film thickness, contact angle, and tumble angle of the composition.

[실시예 3]Example 3

퓸드 실리카와 옥틸폴리실라잔의 첨가량을 각각 1.5g으로 한 것 이외는 실시예 1과 마찬가지로 하여, 발수성 피막 형성용 조성물을 얻었다.Except having made the addition amount of fumed silica and octyl polysilazane 1.5g each, it carried out similarly to Example 1, and obtained the composition for water-repellent film formation.

얻어진 조성물을 사용하여 실시예 1과 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다. 조성물의 배합량, 안정성, 막 두께, 접촉각 및 전락각의 측정 결과를 표 1에 기재했다.When the obtained composition was formed on the glass substrate similar to Example 1, the water-repellent film was shown, and super water-repellent property and the water fall of the water droplet were very favorable. Table 1 shows the results of measurement of the compounding amount, stability, film thickness, contact angle, and tumble angle of the composition.

[비교예 1]Comparative Example 1

퓸드 실리카와 옥틸폴리실라잔의 첨가량을 표 1에 기재한 바와 같이 변경한 것 이외는 실시예 1과 마찬가지로 하여, 발수성 피막 형성용 조성물을 얻었다.Except having changed the addition amount of fumed silica and octyl polysilazane as shown in Table 1, it carried out similarly to Example 1, and obtained the composition for water-repellent film formation.

얻어진 조성물을 사용하여 실시예 1과 동일한 유리 기판 상에 발수성 피막을 형성했다. 조성물의 배합량, 안정성, 막 두께, 접촉각 및 전락각의 측정 결과를 표 1에 기재했다.The water repellent film was formed on the glass substrate similar to Example 1 using the obtained composition. Table 1 shows the results of measurement of the compounding amount, stability, film thickness, contact angle, and tumble angle of the composition.

퓸드 실리카를 첨가하지 않은 비교예 1에서 얻어지는 도막은 초발수성이 되지 않는다.The coating film obtained by the comparative example 1 which does not add fumed silica does not become super water-repellent.

Figure pat00004
Figure pat00004

[실시예 4 내지 6][Examples 4 to 6]

첨가하는 폴리실라잔의 종류를 표 2에 나타내는 것으로 각각 변경한 것 이외는 실시예 1과 마찬가지로 하여, 발수성 피막 형성용 조성물을 얻었다.Except having changed the kind of polysilazane to add to what is shown in Table 2, it carried out similarly to Example 1, and obtained the composition for water-repellent film formation.

얻어진 조성물을 사용하여 실시예 1과 동일한 유리 기판 상에 발수성 피막을 형성한바, 모두 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다. 조성물의 배합량, 안정성, 막 두께, 접촉각 및 전락각의 측정 결과를 표 2에 기재했다.When the water-repellent film was formed on the glass substrate similar to Example 1 using the obtained composition, all showed super water-repellent property and the water-repellent film with the very good fall property of the water droplet was formed. Table 2 shows the measurement results of the compounding amount, stability, film thickness, contact angle, and falling angle of the composition.

Figure pat00005
Figure pat00005

[실시예 7] Example 7

수지제 캡이 부착된 유리제 용기에, 트리메틸실릴기로 표면 수식된 소수성 퓸드 실리카(비표면적 145㎡/g, 상품명 에어로실 RX200, 닛폰 에어로실사제) 0.9g을 칭량하고, 시클로펜틸메틸에테르 30.8g, 디프로필렌글리콜디메틸에테르 8.0g을 가하여 자전 공전 믹서로 1분간 혼합하고, 표면 수식된 퓸드 실리카를 분산시켰다. 합성예 1에 있어서 얻어진 옥틸폴리실라잔 0.3g을 첨가하고, 자전 공전 믹서를 사용하여 다시 5분간 혼합함으로써, 백색 반투명의 발수성 피막 형성용 조성물을 얻었다. 이 조성물은 밀폐 하, 실온에서 1개월 이상 안정되었다.In a glass container with a resin cap, 0.9 g of hydrophobic fumed silica (specific surface area 145 m 2 / g, trade name Aerosil RX200, manufactured by Nippon Aerosil Co., Ltd.) surface-modified with trimethylsilyl group was weighed, and cyclopentylmethyl ether 30.8 g, 8.0 g of dipropylene glycol dimethyl ether was added, mixed for 1 minute with a rotating revolution mixer, and the surface-modified fumed silica was dispersed. 0.3 g of octyl polysilazane obtained in Synthesis Example 1 was added and mixed again using a rotating revolution mixer for 5 minutes to obtain a composition for forming a white translucent water repellent coating. The composition was stable for at least 1 month at room temperature under airtight.

이어서, 이 조성물을 도포액으로 하고, 소다 유리 기판(마츠나미 글래스제) 상에, 바 코터를 사용하여 건조 후 막 두께가 약 1㎛가 되도록 도포했다. 그 후, 도막을 25℃, 50%RH의 환경 하에서 용제를 휘발시킴으로써, 유리 기판 상에 발수성 피막을 형성했다.Subsequently, this composition was used as a coating liquid, and it applied on the soda glass substrate (made by Matsunami Glass) so that the film thickness might be about 1 micrometer after drying using a bar coater. Then, the water-repellent film was formed on the glass substrate by volatilizing a solvent in 25 degreeC and 50% RH environment of a coating film.

<발수성 피막의 평가><Evaluation of the water repellent coating>

형성한 발수성 피막에 대하여, 교와 가이멘 가가쿠제 접촉각계(DMs-401)를 사용하여, 25℃, 50%RH의 조건에서 막 표면에 대한 순수의 접촉각(10μL) 및 전락각(20μL)을 측정한바, 접촉각은 163°, 전락각은 1°였다. 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성된 것을 알 수 있었다.For the formed water repellent coating, contact angle (10 μL) and drop angle (20 μL) of pure water on the surface of the film were measured using a contact angle meter (DMs-401) made by Kyowa Kaimen Kagaku Co., Ltd. at 25 ° C and 50% RH. As a result, the contact angle was 163 ° and the tumble angle was 1 °. It was found that a water-repellent coating was obtained, which exhibited super water repellency and was very satisfactory in water droplets.

[실시예 8]Example 8

첨가하는 폴리실라잔을 합성예 5에서 얻어진 (트리데카플루오로옥틸)(트리플루오로프로필)폴리실라잔으로 변경한 것 이외는 실시예 7과 마찬가지로 하여, 발수성 피막 형성용 조성물을 얻었다.Except having changed the polysilazane to add into (tridecafluorooctyl) (trifluoropropyl) polysilazane obtained by the synthesis example 5, it carried out similarly to Example 7, and obtained the composition for water-repellent film formation.

얻어진 조성물을 사용하여 실시예 7과 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다.When the obtained composition was used, the water-repellent film was formed on the glass substrate similar to Example 7, and the water-repellent film which showed super water repellency and was very favorable for the water fall of the water droplet was formed.

[실시예 9]Example 9

첨가하는 폴리실라잔을 합성예 6에서 얻어진 트리데카플루오로옥틸폴리실라잔으로 변경하고, 용매로서 메타크실렌헥사플루오라이드 38.8g을 사용한 것 이외는 실시예 7과 마찬가지로 하여, 발수성 피막 형성용 조성물을 얻었다.The polysilazane to be added was changed to tridecafluorooctylpolysilazane obtained in Synthesis Example 6, and 38.8 g of metha xylene hexafluoride was used as the solvent, except that the composition for water repellent coating was formed. Got it.

얻어진 조성물을 사용하여 실시예 7과 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다.When the obtained composition was used, the water-repellent film was formed on the glass substrate similar to Example 7, and the water-repellent film which showed super water repellency and was very favorable for the water fall of the water droplet was formed.

실시예 7 내지 9의 조성물의 배합량, 안정성, 막 두께, 접촉각 및 전락각의 측정 결과를 표 3에 기재했다.Table 3 shows the results of measurement of the compounding amount, stability, film thickness, contact angle, and falling angle of the compositions of Examples 7 to 9.

Figure pat00006
Figure pat00006

[실시예 10] Example 10

수지제 캡이 부착된 유리제 용기에 퓸드 실리카(비표면적 205㎡/g, 상품명 레올로실 QS-102, 도소제) 0.18g을 칭량하고, 시클로펜틸메틸에테르 6.10g, 디프로필렌글리콜디메틸에테르 1.60g, 1-트리메톡시실릴옥시-1-에톡시프로펜 0.036g을 가하여 30분간 초음파 조사하고, 실리카 표면에 트리메톡시실릴기를 도입하여 퓸드 실리카를 용매 중에 균일하게 분산시켰다. 계속해서, 합성예 1에 있어서 얻어진 옥틸폴리실라잔을 0.06g 포함하는 50질량% 시클로펜틸메틸에테르 용액을 첨가하고 다시 15분간 초음파 조사함으로써, 백색 반투명의 발수성 피막 형성용 조성물을 얻었다. 이 조성물은 밀폐 하, 실온에서 1개월 이상 안정되었다. 본 실시예의 조성물의 제조 방법을 방법 A라고 기재한다.0.18 g of fumed silica (specific surface area 205 m 2 / g, trade name Rheolosyl QS-102, a dosing agent) was weighed into a glass container with a resin cap, and 6.10 g of cyclopentylmethyl ether and 1.60 g of dipropylene glycol dimethyl ether And 0.036 g of 1-trimethoxysilyloxy-1-ethoxypropene were added and ultrasonically irradiated for 30 minutes. A trimethoxysilyl group was introduced onto the silica surface to uniformly disperse the fumed silica in the solvent. Subsequently, a 50 mass% cyclopentylmethyl ether solution containing 0.06 g of octyl polysilazane obtained in Synthesis Example 1 was added and ultrasonically irradiated for another 15 minutes to obtain a composition for forming a white semitransparent water repellent film. The composition was stable for at least 1 month at room temperature under airtight. The manufacturing method of the composition of this Example is described as method A.

이어서, 이 조성물을 도포액으로 하고, 소다 유리 기판(마츠나미 글래스제) 상에, 바 코터를 사용하여 건조 후 막 두께가 약 1㎛가 되도록 도포했다. 그 후, 도막을 25℃, 50%RH의 환경 하에서 용제를 휘발시킴으로써, 유리 기판 상에 발수성 피막을 형성했다.Subsequently, this composition was used as a coating liquid, and it applied on the soda glass substrate (made by Matsunami Glass) so that the film thickness might be about 1 micrometer after drying using a bar coater. Then, the water-repellent film was formed on the glass substrate by volatilizing a solvent in 25 degreeC and 50% RH environment of a coating film.

<발수성 피막의 평가><Evaluation of the water repellent coating>

형성한 발수성 피막에 대하여, 교와 가이멘 가가쿠제 접촉각계(DMs-401)를 사용하여, 25℃, 50%RH의 조건에서 막 표면에 대한 순수의 접촉각(10μL) 및 전락각(20μL)을 측정한바, 접촉각은 161°, 전락각은 1°였다. 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성된 것을 알 수 있었다.For the formed water-repellent coating, contact angle (10 μL) and drop angle (20 μL) of pure water on the surface of the membrane under conditions of 25 ° C. and 50% RH were measured using Kyowa Kaimen Kagaku Contact Angle System (DMs-401). As a result, the contact angle was 161 ° and the tumble angle was 1 °. It was found that a water-repellent coating was obtained, which exhibited super water repellency and was very satisfactory in water droplets.

또한, 이 유리 기판을 식기 세척 건조기 NP-TCM4(파나소닉제)를 사용하여 온수로 1시간 세정한 후, 접촉각과 전락각을 측정한바, 접촉각은 162°, 전락각은 1°였다. 수세에 의한 성능 저하는 보이지 않고, 내구성이 있는 발수성 피막이 형성되어 있다고 판단되었다.Moreover, after this glass substrate was wash | cleaned with hot water for 1 hour using dishwashing dryer NP-TCM4 (made by Panasonic), the contact angle and tumble angle were measured, The contact angle was 162 degrees and the tumble angle was 1 degree. The performance decline by water washing was not seen, and it was judged that the durable water-repellent film was formed.

또한, 상기한 방법으로 발수성 피막을 형성한 소다 유리 기판의 전체 광선 투과율 및 헤이즈를 스가 시켄키제 헤이즈 미터(HZ-V3)를 사용하여 측정한바, 전체 광선 투과율은 92.7%, 헤이즈는 0.8%이고, 투명성이 높은 피막인 것이 나타났다.In addition, the total light transmittance and haze of the soda glass substrate which formed the water repellent film by the above-mentioned method were measured using the Suga Shikenki Haze Meter (HZ-V3), The total light transmittance is 92.7% and haze is 0.8%, It appeared to be a film with high transparency.

조성물의 배합량 및 접촉각, 전락각, 전체 광선 투과율, 헤이즈의 측정 결과를 표 4에 기재했다.The compounding quantity of a composition, the contact angle, the fall angle, the total light transmittance, and the measurement result of haze are shown in Table 4.

[실시예 11 내지 13][Examples 11 to 13]

조성물의 배합량을 표 4에 나타낸 바와 같이 변경한 것 이외는 실시예 10과 마찬가지로 하여, 방법 A에 의해 발수성 피막 형성용 조성물을 얻었다.Except having changed the compounding quantity of a composition as shown in Table 4, it carried out similarly to Example 10, and obtained the composition for water repellent film formation by the method A.

얻어진 조성물을 사용하여 실시예 10과 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다. 조성물의 배합량 및 접촉각, 전락각, 전체 광선 투과율, 헤이즈의 측정 결과를 표 4에 기재했다.When the water-repellent film was formed on the glass substrate similar to Example 10 using the obtained composition, the water-repellent film which showed super water repellency and was excellent in the fall property of the water droplet was formed. The compounding quantity of a composition, the contact angle, the fall angle, the total light transmittance, and the measurement result of haze are shown in Table 4.

[비교예 2]Comparative Example 2

퓸드 실리카 및 1-트리메톡시실릴옥시-1-에톡시프로펜을 첨가하지 않고, 표 4에 기재한 조성으로, 발수성 피막 형성용 조성물을 얻었다.The composition for water-repellent film formation was obtained by the composition shown in Table 4 without adding fumed silica and 1-trimethoxysilyloxy-1-ethoxypropene.

얻어진 조성물을 사용하여 실시예 10과 동일한 유리 기판 상에 발수성 피막을 형성했다. 조성물의 배합량, 접촉각 및 전락각의 측정 결과를 표 4에 기재했다.The water repellent film was formed on the glass substrate similar to Example 10 using the obtained composition. Table 4 shows the measurement results of the compounding amount, the contact angle, and the drop angle of the composition.

퓸드 실리카를 첨가하지 않은 비교예 2에서는, 발수성의 도막이 얻어졌지만, 도막은 초발수성이 되지는 않았다.In Comparative Example 2 in which fumed silica was not added, a water repellent coating film was obtained, but the coating film did not become super water repellent.

Figure pat00007
Figure pat00007

※1 조성물 중의 시클로펜틸메틸에테르 전량* 1 total amount of cyclopentylmethyl ether in the composition

[실시예 14]Example 14

수지제 캡이 부착된 유리제 용기에 합성예 8에서 얻어진 트리메톡시실릴기를 갖는 실리카 입자 분산액 1.50g을 칭량하고, 시클로펜틸메틸에테르 4.62g, 디프로필렌글리콜디메틸에테르 1.02g, 합성예 1에 있어서 얻어진 옥틸폴리실라잔을 0.06g 포함하는 25질량% 디프로필렌글리콜디메틸에테르 용액을 첨가하여 1분간 혼합함으로써, 백색 반투명의 발수성 피막 형성용 조성물을 얻었다. 이 조성물은 밀폐 하, 실온에서 1개월 이상 안정되었다. 본 실시예의 조성물의 제조 방법을 방법 B라고 기재한다.1.50 g of silica particle dispersions having a trimethoxysilyl group obtained in Synthesis Example 8 were weighed into a glass container with a resin cap, and 4.62 g of cyclopentylmethyl ether, 1.02 g of dipropylene glycol dimethyl ether, and obtained in Synthesis Example 1 were obtained. A 25 mass% dipropylene glycol dimethyl ether solution containing 0.06 g of octyl polysilazane was added and mixed for 1 minute to obtain a composition for forming a white translucent water repellent coating. The composition was stable for at least 1 month at room temperature under airtight. The method for producing a composition of this example is described as Method B.

얻어진 조성물을 사용하여 실시예 10과 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다. 조성물의 배합량 및 접촉각, 전락각, 전체 광선 투과율, 헤이즈의 측정 결과를 표 5에 기재했다.When the water-repellent film was formed on the glass substrate similar to Example 10 using the obtained composition, the water-repellent film which showed super water repellency and was excellent in the fall property of the water droplet was formed. The compounding quantity of a composition, the contact angle, the fall angle, the total light transmittance, and the measurement result of haze are shown in Table 5.

[실시예 15]Example 15

조성물의 배합량을 표 5에 나타낸 바와 같이 변경한 것 이외는 실시예 14와 마찬가지로 하여, 방법 B에 의해 발수성 피막 형성용 조성물을 얻었다.Except having changed the compounding quantity of a composition as shown in Table 5, it carried out similarly to Example 14, and obtained the composition for water repellent film formation by the method B.

얻어진 조성물을 사용하여 실시예 14와 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다. 조성물의 배합량 및 접촉각, 전락각, 전체 광선 투과율, 헤이즈의 측정 결과를 표 5에 기재했다.When the water-repellent film was formed on the glass substrate similar to Example 14 using the obtained composition, the water-repellent film which showed super water repellency and was excellent in the fall property of the water droplet was formed. The compounding quantity of a composition, the contact angle, the fall angle, the total light transmittance, and the measurement result of haze are shown in Table 5.

Figure pat00008
Figure pat00008

※2 합성예 8에서 사용한 퓸드 실리카와 1-트리메톡시실릴옥시-1-에톡시프로펜으로서의 배합량* 2 Compounding amount as fumed silica and 1-trimethoxysilyloxy-1-ethoxypropene used in Synthesis Example 8

※3 조성물 중의 디프로필렌글리콜디메틸에테르 전량* 3 The total amount of dipropylene glycol dimethyl ether in the composition

[실시예 16 내지 18][Examples 16 to 18]

첨가하는 폴리실라잔의 종류 및 조성물의 배합량을 표 6에 나타낸 바와 같이 변경한 것 이외는 실시예 10 또는 실시예 14와 마찬가지로 하여, 방법 A 또는 방법 B에 의해 발수성 피막 형성용 조성물을 얻었다.Except having changed the kind of polysilazane added and the compounding quantity of a composition as shown in Table 6, it carried out similarly to Example 10 or Example 14, and obtained the composition for water-repellent film formation by the method A or the method B.

얻어진 조성물을 사용하여 실시예 1과 동일한 유리 기판 상에 발수성 피막을 형성한바, 초발수성을 나타내고, 물방울의 전락성이 매우 양호한 발수성 피막이 형성되었다. 조성물의 배합량 및 접촉각, 전락각, 전체 광선 투과율, 헤이즈의 측정 결과를 표 6에 기재했다.When the obtained composition was formed on the glass substrate similar to Example 1, the water-repellent film was shown, and super water-repellent property and the water fall of the water droplet were very favorable. The compounding quantity of a composition, the contact angle, the fall angle, the total light transmittance, and the measurement result of haze are shown in Table 6.

Figure pat00009
Figure pat00009

※1 조성물 중의 시클로펜틸메틸에테르 전량* 1 total amount of cyclopentylmethyl ether in the composition

※3 조성물 중의 디프로필렌글리콜디메틸에테르 전량* 3 The total amount of dipropylene glycol dimethyl ether in the composition

Claims (5)

하기의 (a), (b) 및 (c) 성분을 함유하는 것을 특징으로 하는 발수성 피막 형성용 조성물.
(a) 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기가 규소 원자에 결합된 폴리실라잔,
(b) 표면 미처리된 금속 산화물 나노 입자, 표면에 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 갖는 금속 산화물 나노 입자 또는 표면에 알킬실릴기 혹은 알콕시실릴기를 갖는 금속 산화물 나노 입자, 및
(c) 비프로톤성 용제
The composition for water repellent film formation containing the following (a), (b) and (c) component.
(a) a polysilazane in which a C 3 to C 20 monovalent hydrocarbon group which may be substituted with fluorine is bonded to a silicon atom,
(b) untreated metal oxide nanoparticles, metal oxide nanoparticles having a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be fluorine-substituted on the surface, or metal oxide nanoparticles having an alkylsilyl group or an alkoxysilyl group on the surface thereof, and
(c) aprotic solvents
제1항에 있어서, (a) 성분이, 하기 일반식 (1)로 표시되는 폴리실라잔인 발수성 피막 형성용 조성물.
Figure pat00010

(식 중, R은 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기를 나타낸다. Ra 및 Rb는 각각 동일해도 상이해도 되며, 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 나타낸다. m은 1 내지 100의 정수이고, n 및 p는 각각 0 내지 100의 정수이다. 단, m, n 및 p의 합은 4 내지 300의 정수이다.)
The composition for water-repellent film formation of Claim 1 whose (a) component is polysilazane represented by following General formula (1).
Figure pat00010

(In formula, R may be same or different, respectively, and represents the C3-C20 monovalent hydrocarbon group which may be substituted. R a and R b may be same, different, respectively, and C1-C may be fluorine-substituted. A monovalent hydrocarbon group of 20. m is an integer from 1 to 100, and n and p are each an integer from 0 to 100, provided that the sum of m, n and p is an integer from 4 to 300.)
제2항에 있어서, (b) 금속 산화물 나노 입자가, 상기 일반식 (1)로 표시되는 폴리실라잔에 의해 표면 처리되어 있음으로써, 규소 원자를 통해 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기를 표면에 갖는 것인 발수성 피막 형성용 조성물.(B) 3 to 20 carbon atoms which may be fluorine-substituted via a silicon atom because the (b) metal oxide nanoparticle is surface-treated with the polysilazane represented by the said General formula (1). The composition for water repellent film formation which has a valent hydrocarbon group on the surface. 제1항 내지 제3항 중 어느 한 항에 있어서, (b) 금속 산화물 나노 입자가 실리카인 발수성 피막 형성용 조성물.The composition for forming a water repellent coating according to any one of claims 1 to 3, wherein (b) the metal oxide nanoparticles are silica. (a) 불소 치환되어 있어도 되는 탄소수 3 내지 20의 1가 탄화수소기가 규소 원자에 결합된 폴리실라잔, 및
(b) 표면 미처리된 금속 산화물 나노 입자, 표면에 불소 치환되어 있어도 되는 탄소수 1 내지 20의 1가 탄화수소기를 갖는 금속 산화물 나노 입자 또는 표면에 알킬실릴기 혹은 알콕시실릴기를 갖는 금속 산화물 나노 입자
를 포함하는 발수성 피막.
(a) polysilazane in which a C3-C20 monovalent hydrocarbon group optionally substituted with fluorine is bonded to a silicon atom, and
(b) untreated metal oxide nanoparticles, metal oxide nanoparticles having a monovalent hydrocarbon group having 1 to 20 carbon atoms which may be fluorine-substituted on the surface, or metal oxide nanoparticles having an alkylsilyl group or an alkoxysilyl group on the surface thereof
Water repellent coating comprising a.
KR1020190040589A 2018-04-11 2019-04-08 Water repellent film-forming composition and water repellent film Active KR102765456B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2018-075839 2018-04-11
JP2018075839 2018-04-11

Publications (2)

Publication Number Publication Date
KR20190118963A true KR20190118963A (en) 2019-10-21
KR102765456B1 KR102765456B1 (en) 2025-02-12

Family

ID=68339837

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190040589A Active KR102765456B1 (en) 2018-04-11 2019-04-08 Water repellent film-forming composition and water repellent film

Country Status (3)

Country Link
JP (1) JP7135851B2 (en)
KR (1) KR102765456B1 (en)
TW (1) TWI798414B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122032B1 (en) * 2019-12-23 2020-06-11 주식회사 도프 Organic-inorganic hybrid polysilazane and manufacturing method thereof
KR20220109277A (en) * 2021-01-28 2022-08-04 정찬영 Crosslinking type PDMS composition mixing process technology for improving water-repellent and oil-repellent properties

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102581814B1 (en) * 2021-02-04 2023-09-25 한국기계연구원 A composition of a waterproof coating agent and method for waterproof coating using the same
CN113135685B (en) * 2021-04-30 2023-03-21 中海建筑有限公司 Waterproof material, cement and concrete

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311121A (en) * 1992-05-14 1993-11-22 Shin Etsu Chem Co Ltd Coating film forming agent composition
JPH11172455A (en) 1997-12-03 1999-06-29 Kansai Shingijutsu Kenkyusho:Kk Substrate surface modification method
WO2003039856A1 (en) 2001-11-08 2003-05-15 Nippon Sheet Glass Company, Limited Ultra-water-repellent substrate
KR20040012782A (en) * 2001-05-07 2004-02-11 키온 코포레이션 Thermally Stable, Moisture Curable Polysilazanes And Polysiloxazanes
JP2004137137A (en) 2001-11-08 2004-05-13 Nippon Sheet Glass Co Ltd Article covered with coating, method of producing the same, and coating solution used in the same
JP2005343016A (en) 2004-06-03 2005-12-15 Nippon Sheet Glass Co Ltd Water super-repellent film-coated article
JP2009040991A (en) * 2007-03-28 2009-02-26 Hitachi Chem Co Ltd Coating liquid composition, heat-resistant coating film and method for forming the film
JP2012066223A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Method for forming antifouling coating film, and antifouling component
JP2014124913A (en) 2012-12-27 2014-07-07 Jgc Catalysts & Chemicals Ltd Water-repellent transparent coating film-fitted substrate and method for manufacturing the same
CN106189832A (en) * 2016-07-13 2016-12-07 华南理工大学 Organopolysilazane/inorganic nano material super-hydrophobic coat and preparation method thereof
CN107022269A (en) * 2017-04-10 2017-08-08 北京易净星科技有限公司 The superhard polysilazane hydrophobic coating of automatically cleaning and its preparation and application
KR101830949B1 (en) * 2016-12-09 2018-02-22 한국생산기술연구원 Preparing method for producing an organic-inorganic particle, organic-inorganic coating solution and organic-inorganic film having water repellency

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62156135A (en) * 1985-12-28 1987-07-11 Toa Nenryo Kogyo Kk Polyorgano (hydro) silazane
JPH0689253B2 (en) * 1988-12-28 1994-11-09 信越化学工業株式会社 Organopolysiloxane composition and method for producing the same
JPH0686583B2 (en) * 1991-03-22 1994-11-02 信越化学工業株式会社 Film-forming agent composition
JP3599358B2 (en) * 1993-08-06 2004-12-08 ジーイー東芝シリコーン株式会社 Composition for coating
DE10231757A1 (en) 2002-07-13 2004-01-22 Creavis Gesellschaft Für Technologie Und Innovation Mbh Process for the preparation of a surfactant-free suspension on an aqueous basis of nanostructured, hydrophobic particles and their use
DE102005042944A1 (en) 2005-09-08 2007-03-22 Clariant International Limited Polysilazane-containing coatings for metal and polymer surfaces
JP5037040B2 (en) 2006-06-21 2012-09-26 株式会社小糸製作所 Composition for preventing snow accretion and use thereof, and liquid ejecting apparatus
JP5344361B2 (en) 2007-08-20 2013-11-20 Toto株式会社 Method for producing composite material and coating liquid
US8431220B2 (en) 2009-06-05 2013-04-30 Xerox Corporation Hydrophobic coatings and their processes
WO2016016260A1 (en) 2014-07-29 2016-02-04 AZ Electronic Materials (Luxembourg) S.à.r.l. Hybrid material for use as coating means in optoelectronic components
CN105647290B (en) 2016-01-14 2018-05-15 北京易净星科技有限公司 The super hydrophobic coating and its preparation and application that can be used under water
KR102370256B1 (en) * 2016-04-28 2022-03-04 스미또모 가가꾸 가부시키가이샤 composition
CN106675398B (en) 2016-12-08 2019-01-25 国家电网公司 An improved type 3 slow-release long-acting super-hydrophobic anti-pollution flashover coating
CN106752908B (en) 2016-12-08 2019-05-07 国家电网公司 A processing technology of an improved type 1 slow-release long-acting super-hydrophobic anti-pollution flashover coating

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311121A (en) * 1992-05-14 1993-11-22 Shin Etsu Chem Co Ltd Coating film forming agent composition
JPH11172455A (en) 1997-12-03 1999-06-29 Kansai Shingijutsu Kenkyusho:Kk Substrate surface modification method
KR20040012782A (en) * 2001-05-07 2004-02-11 키온 코포레이션 Thermally Stable, Moisture Curable Polysilazanes And Polysiloxazanes
WO2003039856A1 (en) 2001-11-08 2003-05-15 Nippon Sheet Glass Company, Limited Ultra-water-repellent substrate
JP2004137137A (en) 2001-11-08 2004-05-13 Nippon Sheet Glass Co Ltd Article covered with coating, method of producing the same, and coating solution used in the same
JP2005343016A (en) 2004-06-03 2005-12-15 Nippon Sheet Glass Co Ltd Water super-repellent film-coated article
JP2009040991A (en) * 2007-03-28 2009-02-26 Hitachi Chem Co Ltd Coating liquid composition, heat-resistant coating film and method for forming the film
JP2012066223A (en) * 2010-09-27 2012-04-05 Mitsubishi Electric Corp Method for forming antifouling coating film, and antifouling component
JP2014124913A (en) 2012-12-27 2014-07-07 Jgc Catalysts & Chemicals Ltd Water-repellent transparent coating film-fitted substrate and method for manufacturing the same
CN106189832A (en) * 2016-07-13 2016-12-07 华南理工大学 Organopolysilazane/inorganic nano material super-hydrophobic coat and preparation method thereof
KR101830949B1 (en) * 2016-12-09 2018-02-22 한국생산기술연구원 Preparing method for producing an organic-inorganic particle, organic-inorganic coating solution and organic-inorganic film having water repellency
CN107022269A (en) * 2017-04-10 2017-08-08 北京易净星科技有限公司 The superhard polysilazane hydrophobic coating of automatically cleaning and its preparation and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102122032B1 (en) * 2019-12-23 2020-06-11 주식회사 도프 Organic-inorganic hybrid polysilazane and manufacturing method thereof
KR20220109277A (en) * 2021-01-28 2022-08-04 정찬영 Crosslinking type PDMS composition mixing process technology for improving water-repellent and oil-repellent properties

Also Published As

Publication number Publication date
TW202003778A (en) 2020-01-16
TWI798414B (en) 2023-04-11
KR102765456B1 (en) 2025-02-12
JP2019183110A (en) 2019-10-24
JP7135851B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
CN103596701B (en) Hydrophobic hydrocarbon coating
KR102765456B1 (en) Water repellent film-forming composition and water repellent film
US6635735B1 (en) Coating composition
CN109071817B (en) Composition comprising a metal oxide and a metal oxide
CN110358445B (en) Composition for forming water-repellent film and water-repellent film
CN103874654B (en) Through the inorganic powder of surface coverage process
EP3328946A1 (en) Anti-soiling compositions comprising silica nanopaticles and functional silane compounds and coated articles thereof
CN106170521A (en) The forming method of liquid composition, glass article and tunicle
KR102693352B1 (en) Mixed composition
Topcu et al. Preparation of stable, transparent superhydrophobic film via one step one pot sol-gel method
US20100075057A1 (en) Hydrophobic and scratch-resistant paints for metal surfaces and brake dust-repelling wheel coatings
TWI784014B (en) The composition and the film formed by hardening it
JP2014234506A (en) New compound, composition for forming water repellent film and substrate with water repellent film and article for transportation equipment
CN112608676B (en) Nano-silver-doped silicone-based antibacterial antifouling agent and preparation method and application thereof
WO2015166863A1 (en) Liquid composition, and glass article
WO2019189791A1 (en) Mixed composition
US20220185993A1 (en) Mixed composition
JP7550049B2 (en) Surface treatment agents and functional materials
JP7267343B2 (en) laminate
JP7446840B2 (en) mixed composition
JP6942849B1 (en) Laminate
JPWO2019022093A1 (en) Film forming composition
KR20120091704A (en) Synthesis of amphiphobic surface using pna/fluorosilica hybrids
WO2018067960A1 (en) Nanoparticle enhanced coating for transparent uv-resistant films and related methods and components
US20180030288A1 (en) Nanoparticle enhanced coating for transparent uv-resistant films and related methods and components

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20190408

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20220111

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20190408

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240328

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20250123

PG1601 Publication of registration