[go: up one dir, main page]

KR20190009948A - Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst - Google Patents

Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst Download PDF

Info

Publication number
KR20190009948A
KR20190009948A KR1020170091952A KR20170091952A KR20190009948A KR 20190009948 A KR20190009948 A KR 20190009948A KR 1020170091952 A KR1020170091952 A KR 1020170091952A KR 20170091952 A KR20170091952 A KR 20170091952A KR 20190009948 A KR20190009948 A KR 20190009948A
Authority
KR
South Korea
Prior art keywords
polyalkylene glycol
zsm
catalyst
alkylating agent
alkylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020170091952A
Other languages
Korean (ko)
Other versions
KR101947724B1 (en
Inventor
이은호
고봉성
김태동
안범석
Original Assignee
엔에이치케미칼주식회사
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엔에이치케미칼주식회사, 한온시스템 주식회사 filed Critical 엔에이치케미칼주식회사
Priority to KR1020170091952A priority Critical patent/KR101947724B1/en
Publication of KR20190009948A publication Critical patent/KR20190009948A/en
Application granted granted Critical
Publication of KR101947724B1 publication Critical patent/KR101947724B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/46Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/10Saturated ethers of polyhydroxy compounds
    • C07C43/11Polyethers containing —O—(C—C—O—)n units with ≤ 2 n≤ 10

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 폴리알킬렌 글리콜의 알킬화 촉매 및 이를 이용한 폴리알킬렌 글리콜의 알킬화 방법에 관한 것으로, 보다 상세하게는 유해물질 발생 없이 폴리알킬렌 글리콜을 높은 전환율로 알킬화할 수 있는 ZSM-5형 제올라이트 촉매를 이용하여 폴리알킬렌 글리콜 말단을 알킬화함으로써, 간단한 공정으로 친환경적이면서 경제적으로 폴리알킬렌 글리콜의 말단을 알킬화시킬 수 있는 폴리알킬렌 글리콜의 알킬화 촉매 및 이를 이용한 폴리알킬렌 글리콜의 알킬화 방법에 관한 것이다.More particularly, the present invention relates to a ZSM-5 type zeolite catalyst capable of alkylating polyalkylene glycols at a high conversion rate without generating harmful substances. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyalkyleneglycol alkylation catalyst and a polyalkyleneglycol alkylation method using the same. To an alkylation catalyst of a polyalkylene glycol capable of alkylating the terminal of a polyalkylene glycol in an eco-friendly and economical manner by a simple process by alkylating the terminal of the polyalkylene glycol with an alkylating agent, and a method of alkylating a polyalkylene glycol using the same .

Description

ZSM-5형 제올라이트 촉매를 이용한 폴리알킬렌 글리콜의 말단 알킬화 방법{Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst}[0001] The present invention relates to a method for alkylation of polyalkylene glycols using ZSM-5 type zeolite catalysts,

본 발명은 폴리알킬렌 글리콜의 말단 수산기를 높은 전환율로 알킬화하는 촉매 및 이를 이용한 친환경적이면서 경제적인 폴리알킬렌 글리콜의 말단 알킬화 방법에 관한 것이다. The present invention relates to a catalyst for alkylation of the terminal hydroxyl groups of polyalkylene glycols at high conversion rates and a process for the end alkylation of environmentally friendly and economical polyalkylene glycols using the same.

폴리알킬렌 글리콜(polyalkylene glycol; PAG)은 알코올을 출발물질로 하여 에틸렌옥사이드(ethylene oxide)나, 프로필렌옥사이드(propylene oxide)를 부가하여 중합시키는 합성윤활유의 일종으로 말단이 수산기(-OH)나 알킬기로 이루어져 있다.Polyalkylene glycol (PAG) is a kind of synthetic lubricant which is produced by adding ethylene oxide or propylene oxide to alcohol as a starting material and has a terminal hydroxyl group (-OH) or alkyl group Lt; / RTI >

이러한 폴리알킬렌 글리콜은 오래전부터 일본의 이데미츠 고산사 등에서 자동차 에어콘용 냉동기유로 상용화하여 전 세계 자동차 OEM 업계 및 이차시장(Secondary market)을 대상으로 판매를 하고 있다.These polyalkylene glycols have long been commercially available from automobile air conditioner refrigerators in Idemitsu High Mountain in Japan and are selling to the automobile OEM industry and secondary market in the world.

그러나 말단 수산기(-OH)를 갖는 폴리알킬렌 글리콜은 에어컨의 냉동기유로 사용 도중에 수산기(-OH)에 의해 공기 중 수분을 흡습하게 되므로 냉동유에 흡입된 수분에 의하여 어는점이 높아지고 에어컨 부품의 발청 현상 등이 발생하는 등 문제점이 꾸준히 제기되어 왔으며, 상기 문제를 해결을 위하여 폴리알킬렌 글리콜의 말단의 수산기를 알킬기로 치환하고자 하는 시도가 있어왔다.However, the polyalkylene glycol having a terminal hydroxyl group (-OH) absorbs moisture in the air by the hydroxyl group (-OH) during use of the refrigerating machine of the air conditioner, so that freezing point is increased by the moisture sucked into the freezing oil, And there has been an attempt to replace the hydroxyl group at the terminal of the polyalkylene glycol with an alkyl group in order to solve the above problem.

폴리알킬렌 글리콜의 말단에 있는 수산기(-OH)를 메틸기로 알킬화하는 종래의 기술로는 CH3Cl, CH3I 등의 할로겐화 메틸(methyl halide)을 알킬화제로 사용하여 폴리알킬렌 글리콜의 말단을 메틸기로 알킬화시키는 방법이 알려져 있다(미국등록특허 제4587365호). 그러나 이 방법은 공정 중에 발생하는 산을 중화제로 중화하는 문제와 생성되는 염을 제거해야 하는 환경문제가 있고, 그 반응 자체가 느릴 뿐만 아니라 반응의 완결도에도 문제가 있었다. 또한, 알킬화제로 사용되는 CH3Cl, CH3I 등은 지구온난화지수가 높은 물질이거나 고가의 유독한 물질로 알려져 있어 실제 적용하는데 한계가 있었다.As a conventional technique for alkylating a hydroxyl group (-OH) at the terminal of a polyalkylene glycol with a methyl group, a method in which a methyl halide such as CH 3 Cl or CH 3 I is used as an alkylating agent, A method of alkylating with methyl group is known (U.S. Patent No. 4587365). However, this method has a problem of neutralizing an acid generated in the process with a neutralizing agent and an environmental problem in which a salt to be formed must be removed. In addition, the reaction itself is slow and the reaction is also complicated. In addition, CH 3 Cl and CH 3 I, which are used as alkylating agents, are known to be highly toxic or expensive materials because of their high global warming index.

또한, 유럽공개특허 제0302487호에서는 메틸설페이트(methylsulfate)을 알킬화제로 사용하여 폴리알킬렌 글리콜의 말단을 메틸기로 알킬화시키는 방법이 제시되었다. 상기 방법은 할로겐화 메틸(methyl halide)을 알킬화제로 사용하는 것보다 빠르나 메틸설페이트(methylsulfate) 또한 그 자체가 유독한 물질로 알려져 있어 친환경적이지 못하다는 문제점이 있었다.In addition, European Patent 0302487 discloses a method of alkylating the terminal of a polyalkylene glycol with a methyl group using methylsulfate as an alkylating agent. This method is faster than using methyl halide as an alkylating agent, and methylsulfate is also known as a toxic substance itself, which is not environmentally friendly.

그 외에도 폴리알킬렌 글리콜의 말단에 있는 수산기(-OH)에 아릴기(allyl group)를 도입하는 방법이 제시되었으나(미국등록특허 제3408321호 및 제3951888호), 비용이 많이 소요되며 반응속도가 느려 실제 적용하는데 있어 어려움이 있었다.In addition, there has been proposed a method of introducing an allyl group into the hydroxyl group (-OH) at the terminal of the polyalkylene glycol (US Pat. Nos. 3408321 and 3951888) Slowly, there was difficulty in actual application.

미국등록특허 제4587365호U.S. Patent No. 4587365 유럽공개특허 제0302487호European Patent No. 0302487 미국등록특허 제3408321호United States Patent No. 3408321 미국등록특허 제3951888호US Patent No. 3951888

본 발명의 주된 목적은 상술한 문제점을 해결하기 위한 것으로서 폴리알킬렌 글리콜을 높은 전환율로 알킬화시킬 수 있는 촉매로서 ZSM-5형 제올라이트 촉매를 이용하여 친환경적이면서 경제적으로 폴리알킬렌 글리콜을 높은 전환율로 알킬화할 수 있는 폴리알킬렌 글리콜의 말단 알킬화 방법을 제공하는데 있다.The main object of the present invention is to solve the above-mentioned problems and to provide a catalyst capable of alkylating polyalkylene glycol at a high conversion rate, using a ZSM-5 type zeolite catalyst to convert polyalkylene glycols to alkylation Terminal alkylation of a polyalkylene glycol.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일 구현 예는, ZSM-5 형 제올라이트 촉매 존재하에서 폴리알킬렌 글리콜과 알킬화제를 반응시켜 폴리알킬렌 글리콜의 말단을 알킬화하는 것을 특징으로 한다.In order to accomplish the above object, an embodiment of the present invention is characterized by reacting a polyalkylene glycol with an alkylating agent in the presence of a ZSM-5 type zeolite catalyst to alkylate the terminal of the polyalkylene glycol.

본 발명의 바람직한 일 구현예에서, 상기 ZSM-5형 제올라이트(Zeolite)는 SiO2와 Al2O3가 일정 비율로 합성된 ZSM-5형 제올라이트인 것을 특징으로 할 수 있다.In one preferred embodiment of the present invention, the ZSM-5 type zeolite is a ZSM-5 type zeolite synthesized with a certain ratio of SiO 2 and Al 2 O 3 .

본 발명의 바람직한 일 구현예에서, 상기 알킬화제는 디알킬카보네이트인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the alkylating agent is a dialkyl carbonate.

본 발명의 바람직한 일 구현예에서, 상기 폴리알킬렌글리콜의 말단 알킬화 반응용 촉매는 ZSM-5형 제올라이트 촉매인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the catalyst for terminal alkylation of the polyalkylene glycol is a ZSM-5 type zeolite catalyst.

본 발명의 바람직한 구현예에서, ZSM-5형 제올라이트는 SiO2/Al2O3 몰비가 10 내지 300 인 것을 특징으로 할 수 있다.In a preferred embodiment of the present invention, the ZSM-5 type zeolite may have a SiO 2 / Al 2 O 3 molar ratio of 10 to 300.

본 발명의 또 다른 구현예는, 상기 폴리알킬렌 글리콜의 말단 알킬화 촉매 존재 하에서 알킬화제와 폴리알킬렌 글리콜을 120 ~ 170℃ 온도, 상압 ~ 3kgf/cm2 압력으로 반응시키는 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 방법을 제공한다.Another embodiment of the present invention are polyalkylene, comprising a step of reacting an alkylating agent with a polyalkylene glycol under a terminal alkylation catalyst of the polyalkylene glycol to 120 ~ 170 ℃ temperature and normal pressure ~ 3kgf / cm 2 pressure A method for terminal alkylation of glycols is provided.

본 발명의 바람직한 또 다른 구현예에서, 상기 알킬화제는 폴리알킬렌 글리콜 1 몰에 대하여, 5 ~ 44몰로 반응시키는 것을 특징으로 할 수 있다.In another preferred embodiment of the present invention, the alkylating agent is reacted in an amount of 5 to 44 moles per mole of the polyalkylene glycol.

본 발명에 따르면, 유해물질 발생 없이 폴리알킬렌 글리콜의 말단을 높은 전환율로 알킬화할 수 있는 알킬화 촉매 및 이의 제조방법을 제공하고, 이를 이용하여 폴리알킬렌 글리콜 말단을 알킬화함으로써, 간단한 공정으로 친환경적이면서 경제적으로 폴리알킬렌 글리콜의 말단을 알킬화시킬 수 있어 자동차 에어컨용 냉동기유 등 다양한 분야에 유용하게 사용할 수 있다.According to the present invention, there is provided an alkylation catalyst capable of alkylating the end of a polyalkylene glycol at a high conversion rate without the generation of toxic substances, and a process for producing the alkylation catalyst, and by alkylating the polyalkylene glycol end using the alkylation catalyst, It is possible to economically alkylate the terminals of the polyalkylene glycol, and thus it can be usefully used in various fields such as refrigerator oil for automobile air conditioner.

도 1은 본 발명의 SiO2/Al2O3 몰비 25의 ZSM-5 제올라이트 촉매의 XRD 분석 결과 그래프이다.
도 2는 본 발명의 SiO2/Al2O3 몰비 38의 ZSM-5 제올라이트 촉매의 XRD 분석 결과 그래프이다.
1 is a graph showing XRD analysis results of a ZSM-5 zeolite catalyst having a SiO 2 / Al 2 O 3 molar ratio of 25 according to the present invention.
2 is a graph showing XRD analysis results of a ZSM-5 zeolite catalyst having a molar ratio SiO 2 / Al 2 O 3 of 38 according to the present invention.

다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.

본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when an element is referred to as "including " an element, it is understood that the element may include other elements as well, without departing from the other elements unless specifically stated otherwise.

본 발명은 일 관점에서, 폴리알킬렌글리콜과 알킬화제를 반응시켜 폴리알킬렌글리콜의 말단의 알킬화반응을 촉진시키는 촉매로서 ZSM-5형 제올라이트를 제공한다. 이 때, 상기 ZSM-5형 제올라이트의 SiO2/Al2O3 몰비는 10~300인 것을 특징으로 하며, 바람직하게는 25~50인 것이 촉매 성능면에서 더욱 유리하다.In one aspect, the present invention provides a ZSM-5 type zeolite as a catalyst for promoting the alkylation reaction of a polyalkylene glycol end with a polyalkylene glycol and an alkylating agent. In this case, the ZSM-5 type zeolite has a SiO 2 / Al 2 O 3 molar ratio of 10 to 300, preferably 25 to 50, in terms of catalyst performance.

SiO2/Al2O3 몰비는 10 미만인 경우는 과다하게 높은 활성으로 인하여 PAG 분해가 일어 날수 있고, SiO2/Al2O3 몰비가 300을 초과하면 촉매의 낮은 활성으로 인해 알킬화 반응성이 낮아 질수 있다.When the molar ratio of SiO 2 / Al 2 O 3 is less than 10, PAG decomposition may occur due to excessively high activity. When the molar ratio of SiO 2 / Al 2 O 3 is more than 300, alkylation reactivity is low due to low activity of the catalyst. have.

본 발명에 따른 ZSM-5형 제올라이트 촉매는 환경 친화적인 알킬화제인 디알킬카보네이트를 사용하여 높은 전환율로 폴리알킬렌 글리콜 말단을 알킬화 시킬 수 있어, 특히 친환경적인 자동차 에어콘형 냉동기유의 생산 등에 다양하게 사용될 수 있다.The ZSM-5 type zeolite catalyst according to the present invention can alkylate the polyalkylene glycol end with a high conversion rate using a dialkyl carbonate which is an environmentally friendly alkylating agent and can be used variously for production of environmentally friendly automobile air conditioner refrigerator oil have.

본 발명에 따른 알킬화 방법에 적용될 수 있는 폴리알킬렌 글리콜은 말단에 하이드록시기가 치환되어 있는 화합물이라면 모두 적용 가능하며, 양쪽이 모두 하이드록시기인 것외에 한쪽 말단이 이미 알킬기로 치환된 알킬렌글리콜도 적용가능하다.The polyalkylene glycol which can be applied to the alkylation method according to the present invention is not particularly limited as long as it is a compound having a hydroxy group substituted at the terminal. In addition to being a hydroxy group, both of the alkylene glycol having one end substituted with an alkyl group Applicable.

상기 알킬화제로는 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트 등의 디알킬 카보네이트(dialkyl carbonate)일 수 있으며, 바람직하게는 디메틸 카보네이트, 디에틸 카보네이트 등일 수 있다.The alkylating agent may be dialkyl carbonate such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate, etc., preferably dimethyl carbonate, diethyl carbonate and the like.

본 발명은 또 다른 관점에서, 전술된 SiO2/Al2O3 몰비가 10 내지 300 것을 특징으로 하는 ZSM-5형 제올라이트 존재 하에서 알킬화제와 폴리알킬렌 글리콜을 반응시키는 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 방법에 관한 것이다. In a further aspect the present invention provides a process for the preparation of polyalkylene glycols, characterized in that an alkylating agent is reacted with a polyalkylene glycol in the presence of a ZSM-5 type zeolite characterized in that the molar ratio SiO 2 / Al 2 O 3 is in the range from 10 to 300, ≪ / RTI >

본 발명에 따른 알킬화 방법에 적용될 수 있는 폴리알킬렌 글리콜은 말단에 하이드록시기가 치환되어 있는 화합물이라면 모두 적용 가능하며, 양쪽이 모두 하이드록시기인 것 외에 한쪽 말단이 이미 알킬기로 치환된 알킬렌글리콜도 적용가능하다.The polyalkylene glycol which can be applied to the alkylation method according to the present invention is not particularly limited as long as it is a compound having a hydroxy group substituted at the terminal. In addition to being a hydroxy group, both of the alkylene glycol having one end substituted with an alkyl group Applicable.

또한, 본 발명에 따른 알킬화 방법에 적용될 수 있는 알킬화제로는 환경 친화적인 디알킬 카보네이트(dialkyl carbonate)로, 일예로 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트 등일 수 있으며, 바람직하게는 디메틸 카보네이트, 디에틸 카보네이트 등일 수 있다.In addition, alkylating agents that can be applied to the alkylation method according to the present invention include eco-friendly dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, dipropyl carbonate, methyl propyl carbonate and the like , Preferably dimethyl carbonate, diethyl carbonate, and the like.

상기한 알킬화제는 폴리알킬렌 글리콜 1 몰에 대하여 5 ~ 44 몰로 사용될 수 있다. 만일 알킬화제가 폴리알킬렌 글리콜 1 몰에 대하여 5 몰 미만으로 사용될 경우, 폴리알킬렌 글리콜의 전환율이 저조하고, 44 몰을 초과하여 사용될 경우에는 폴리알킬렌 글리콜의 알킬화 전환율은 우수하나, 분해되는 알킬화제가 증가하여 의미없이 소모되는 반응물이 커질 수 있다.The alkylating agent may be used in an amount of 5 to 44 mol based on 1 mol of the polyalkylene glycol. If the alkylating agent is used in an amount of less than 5 moles relative to 1 mole of polyalkylene glycol, the conversion of the polyalkylene glycol is low. When the alkylating agent is used in excess of 44 moles, the alkylation conversion of the polyalkylene glycol is excellent, The amount of reactant consumed without meaning can be increased.

또한, 본 발명의 알킬화 반응은 상압 ~ 3 kg·f/cm2에서 120 ~ 170 ℃로 수행할 수 있다. 만일 압력이 상기 범위를 벗어난 경우 반응기내 고압 조건으로 인해 알킬화 반응성이 낮아질 수 있으며, 반응온도가 120 ℃ 미만이면 알킬화 반응성이 저하되거나, 부반응된 폴리알킬렌 글리콜이 더 많이 발생할 수 있고, 170℃를 초과할 경우에는 반응 원료인 폴리알킬렌 글리콜이 반응과정에서 분해될 수 있다.In addition, the alkylation reaction of the present invention can be carried out at normal pressure to 3 kgf / cm 2 and at 120 to 170 ° C. If the pressure is out of the above range, the alkylation reactivity may be lowered due to the high-pressure condition in the reactor. If the reaction temperature is lower than 120 ° C, the alkylation reactivity may be lowered or the polyalkylene glycol may be more adversely reacted. The polyalkylene glycol as the reaction raw material may be decomposed in the course of the reaction.

또한, 본 발명에 따른 알킬화 반응은 고정층 연속식(fixed-bed continuous type)으로 수행할 수 있다. 고정층 연속식 공정을 수행할 경우, 적당량의 촉매를 반응기에 충전하고, 반응물인 폴리알킬렌 글리콜과 알킬화제를 연속적으로 동시에 공급하여 원하는 반응온도, 압력으로 맞추어진 촉매 층을 통과하게 한다. 적정 반응온도와 압력의 반응기를 통과한 화합물중 생성물은 분리/정제하고, 반응하지 않은 미반응 폴리알킬렌 글리콜과 알킬화제는 재순환시킬 수 있도록 한다.In addition, the alkylation reaction according to the present invention can be carried out in a fixed-bed continuous type. When a fixed bed continuous process is carried out, a suitable amount of catalyst is charged into the reactor, and the polyalkylene glycol and the alkylating agent, which are the reactants, are continuously supplied at the same time to pass through the catalyst layer adjusted to the desired reaction temperature and pressure. The product in the compound passed through the reactor of the appropriate reaction temperature and pressure is separated / purified and the unreacted unreacted polyalkylene glycol and the alkylating agent can be recycled.

본 발명에 따른 폴리알킬렌 글리콜의 알킬화 방법은 환경 친화적인 알킬화제를 사용하여 높은 전환율로 폴리알킬렌 글리콜의 말단을 알킬화시킬 수 있어 자동차 에어컨용 냉동기유 등 다양한 분야에 유용하게 사용할 수 있다.The alkylation method of the polyalkylene glycol according to the present invention can alkylate the terminal of the polyalkylene glycol with a high conversion ratio using an environmentally friendly alkylating agent and thus can be usefully used in various fields such as refrigerator oil for automobile air conditioner.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석해서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to Examples. These embodiments are only for illustrating the present invention, and thus the scope of the present invention should not be construed as being limited by these embodiments.

<실시예 1>&Lt; Example 1 >

직경 1인치, 높이 30 cm 및 부피 200 cm3인 원통형 연속식 반응기 내에 ZSM-5(38)형 제올라이트 촉매를 100 cm3로 충전시키고, 상기 충전된 촉매 상부와 하부에 유리구슬로 채워 충전된 촉매가 외부로 빠져나가는 것을 방지하였다. 상기 원통형 연속식 반응기를 온도 조절기가 달린 원통형 전기로(furnace)내에 설치한 후, 원통형 연속식 반응기를 145 ℃까지 가열하여 유지하고, 점도(40℃)가 65 cSt이고, 중량평균분자량이 1,300 g/mol인 폴리알킬렌 글리콜(PAG P-65, 엔에이치케미칼)과 디메틸 카보네이트(KPX Green)을 하기 표 1의 함량과 속도로 72시간 동안 촉매층을 통과시켜 반응을 수행하였다. 이때, 생성물은 120 ℃, 30 torr의 분리기에서 최종 목적물과 미반응 디메틸 카보네이트, 메탄올, 이산화탄소 등으로 분리하였다. A cylindrical continuous reactor having a diameter of 1 inch, a height of 30 cm and a volume of 200 cm 3 was charged with 100 cm 3 of ZSM-5 (38) type zeolite catalyst, filled with glass beads on the filled catalyst, To the outside. The cylindrical continuous reactor was installed in a cylindrical electric furnace equipped with a temperature controller and then heated by a cylindrical continuous reactor to 145 ° C. and maintained at a viscosity (40 ° C.) of 65 cSt and a weight average molecular weight of 1,300 g (PAG P-65, manufactured by Nippon Chemical Co., Ltd.) and dimethyl carbonate (KPX Green) were passed through the catalyst layer for 72 hours at the contents and rates shown in Table 1 below. At this time, the product was separated into final product and unreacted dimethyl carbonate, methanol, carbon dioxide and the like in a separator at 120 ° C and 30 torr.

<실시예 2 내지 4>&Lt; Examples 2 to 4 >

실시예 1과 동일한 방법으로 반응을 수행하되 표1에 기재된 반응 조건 및 촉매로 반응을 수행하였다.The reaction was carried out in the same manner as in Example 1, and the reaction was carried out under the reaction conditions and catalysts shown in Table 1.

실시예 1 내지 4에서 사용된 ZSM-5(38), ZSM-5(50), ZSM-5(25) 촉매는 Pingxiang V-shion Packing co., Ltd로부터 구입하였다.The ZSM-5 (38), ZSM-5 (50) and ZSM-5 (25) catalysts used in Examples 1 to 4 were purchased from Pingxiang V-shion Packing co.

이 때 ZSM-5(xx)와 같이 괄호안에 기재된 수치는 SiO2/Al2O3 몰비를 의미한다. 예로서 ZSM-5(38)은 SiO2/Al2O3 몰비가 38인 ZSM-5 촉매를 의미한다.In this case, the numerical values written in parentheses as ZSM-5 (xx) mean SiO 2 / Al 2 O 3 molar ratio. For example, ZSM-5 (38) means a ZSM-5 catalyst with a molar ratio SiO 2 / Al 2 O 3 of 38.

<비교예 1 내지 5>&Lt; Comparative Examples 1 to 5 >

실시예 1과 동일한 방법으로 반응을 수행하되, 표1에 기재된 반응 조건 및 촉매로 반응을 수행하였다. 비교예 1,2,5에서 사용된 ZSM-5(38) 촉매는 Pingxiang V-shion Packing co., Ltd로부터 구입하였으며, Al MCM-41 촉매는 Nankai University Catalyst Co., Ltd로부터 구입하여 사용하였다.The reaction was carried out in the same manner as in Example 1, but the reaction was carried out under the reaction conditions shown in Table 1 and the catalyst. The ZSM-5 (38) catalyst used in Comparative Examples 1, 2, and 5 was purchased from Pingxiang V-shion Packing Co., Ltd., and the Al MCM-41 catalyst was purchased from Nankai University Catalyst Co., Ltd.

구분division PAG
(중량부)
PAG
(Parts by weight)
DMC
(중량부)
DMC
(Parts by weight)
DMC/PAG
몰비
DMC / PAG
Mole ratio
촉매종류Catalyst type 공간속도
(kg PAG/kg cat·hr)
Space velocity
(kg PAG / kg cat.hr)
반응온도
(℃)
Reaction temperature
(° C)
반응압력
(kgf/cm2)
Reaction pressure
(kgf / cm 2 )
전환율
(%)
Conversion Rate
(%)
메틸화율
(%)
Methylation rate
(%)
실시예 1Example 1 100100 300300 4444 ZSM-5 (38)ZSM-5 (38) 0.050.05 145145 상압Atmospheric pressure 93.293.2 86.886.8 실시예 2Example 2 100100 300300 4444 ZSM-5 (50)ZSM-5 (50) 0.050.05 145145 상압Atmospheric pressure 91.491.4 80.880.8 실시예 3Example 3 100100 300300 4444 ZSM-5 (25)ZSM-5 (25) 0.050.05 145145 상압Atmospheric pressure 93.193.1 85.485.4 실시예 4Example 4 100100 300300 4444 ZSM-5
(38)
ZSM-5
(38)
0.050.05 125125 상압Atmospheric pressure 85.385.3 81.281.2
비교예 1Comparative Example 1 100100 300300 4444 ZSM-5
(38)
ZSM-5
(38)
0.050.05 110110 상압Atmospheric pressure 1.41.4 0.00.0
비교예 2Comparative Example 2 100100 300300 4444 ZSM-5
(38)
ZSM-5
(38)
0.050.05 145145 55 83.083.0 50.550.5
비교예 3Comparative Example 3 100100 300300 4444 Al MCM 41*Al MCM 41 * 0.050.05 145145 상압Atmospheric pressure 65.565.5 18.318.3 비교예 4Comparative Example 4 100100 400400 5858 Al MCM 41*Al MCM 41 * 0.050.05 145145 상압Atmospheric pressure 75.075.0 32.532.5 비교예 5Comparative Example 5 100100 300300 4444 ZSM-5
(38)
ZSM-5
(38)
0.050.05 180180 상압Atmospheric pressure PAG 분해 발생PAG decomposition occurrence

PAG : 폴리알킬렌글리콜PAG: Polyalkylene glycol

DMC : 디메틸카보네이트DMC: Dimethyl carbonate

ZSM-5 (25) : Pingxiang V-shion Packing co., LtdZSM-5 (25): Pingxiang V-shion Packing co., Ltd

ZSM-5 (38) : Pingxiang V-shion Packing co., LtdZSM-5 (38): Pingxiang V-shion Packing co., Ltd

ZSM-5 (50) : Pingxiang V-shion Packing co., LtdZSM-5 (50): Pingxiang V-shion Packing co., Ltd

Al MCM 41* : Nankai University Catalyst Co., Ltd 제품Al MCM 41 *: Products of Nankai University Catalyst Co., Ltd

상기 반응의 전환율은 하기 식 1로 산출하여 표 1에 나타내었다. 이때, 상기 식 1의 폴리알킬렌 글리콜의 수산기값은 하기 분석법을 통하여 산출하였으며, 상기 폴리알킬렌 글리콜의 수산기값의 분석법은 다음과 같다.The conversion of the above reaction was calculated by the following formula 1 and is shown in Table 1. At this time, the hydroxyl value of the polyalkylene glycol of Formula 1 was calculated by the following analysis method, and the method of analyzing the hydroxyl value of the polyalkylene glycol is as follows.

블랭크 측정은 250 ml의 플라스크에 마그네틱바를 넣고 이미다졸 5 ml 및 1.95 N 무수프탈산 25 ml를 투입하고 잘 밀봉하여 약하게 교반시켰다. 다음으로 시료 측정은 250 ml의 플라스크에 마그네틱 바를 넣고, 시료 10 g을 투입한 다음 이미다졸 5 ml 및 1.95 N 무수프탈산 25 ml를 투입하고 잘 밀봉하여 약하게 교반시켰다. 5분간 교반 후, 블랭크 측정 플라스크와 시료 측정 플라스크를 동시에 오븐에서 100℃로 50분 동안 가열하여 반응시켰다. 반응 완료 후 상온에서 냉각시켰다. 이후 블랭크 측정 플라스크와 시료 측정 플라스크 모두 같은 방법으로 플라스크벽에 묻은 액체를 피리딘 25 ml로 닦아낸 다음 1 % 페놀프탈레인 피리딘 용액 0.5 ml을 첨가하고 교반하면서 0.5 N NaOH 수용액으로 색이 변할 때까지 적정하여 블랭크 적정값과 시료의 적정값을 측정하였다.Blank measurement was carried out by placing a magnetic bar in a 250 ml flask, adding 5 ml of imidazole and 25 ml of 1.95 N anhydrous phthalic acid, and gently stirring the mixture. Next, the magnetic bar was put into a 250 ml flask, and 10 g of the sample was added thereto. Then, 5 ml of imidazole and 25 ml of 1.95 N anhydrous phthalic acid were added thereto, followed by sealing well and stirring gently. After stirring for 5 minutes, the blank measurement flask and the sample measurement flask were simultaneously reacted by heating in an oven at 100 DEG C for 50 minutes. After completion of the reaction, the reaction mixture was cooled at room temperature. Thereafter, the liquid on the flask wall was wiped with 25 ml of pyridine in the same manner as in the blank measurement flask and the sample measurement flask, then 0.5 ml of 1% phenolphthalein pyridine solution was added, and the mixture was titrated with 0.5 N NaOH aqueous solution while stirring, The appropriate value and the appropriate value of the sample were measured.

상기 수산기 값은 하기 식 2로 산출하였다. 여기서 상기 이미다졸은 500 ml 플라스크에 99 % 이미다졸 56 g에 피리딘을 500 ml까지 첨가하고 교반하여 제조하였으며, 1.95 N 무수프탈산은 1L 플라스크에 무수프탈산 145 g 및 피리딘을 1L까지 첨가하고 교반하여 제조하였다. The hydroxyl value was calculated by the following formula (2). The imidazole was prepared by adding 500 ml of 99% imidazole to 500 ml of pyridine and adding thereto up to 500 ml of pyridine. The 1.95 N phthalic anhydride was prepared by adding 145 g of phthalic anhydride and 1 L of pyridine to a 1 L flask, Respectively.

[식 1][Formula 1]

Figure pat00001
Figure pat00001

[식 2][Formula 2]

Figure pat00002
Figure pat00002

메틸화율은 하기 식 3으로 산출하여 표 1에 나타내었으며, 식 3의 비누화값은 하기 분석법을 통하여 산출하였다. The methylation rate was calculated by the following formula 3 and shown in Table 1, and the saponification value of the formula 3 was calculated by the following method.

100 ml 플라스크에 마그네틱 바를 넣고, 시료 10 g 및 0.5 N KOH 수용액 25 ml을 넣고 교반하면서 투명해질 때까지 에탄올을 첨가하였다. 슬라이닥스, 환류냉각기 및 교반기를 이용해 30분간 리플럭스 시킨 후 상온에서 냉각하였다. 냉각 후 여기에 1 % 페놀프탈레인 에탄올 용액 2방울 첨가하고 교반하면서 0.5 N HCl 수용액으로 적정하여 하기 식 4로 비누화값을 산출하였다.A magnetic bar was placed in a 100 ml flask, and 10 g of a sample and 25 ml of a 0.5 N KOH aqueous solution were added thereto, and ethanol was added thereto while stirring until the mixture became transparent. Refluxed for 30 minutes using a stirrer, a reflux condenser and a stirrer, and then cooled at room temperature. After cooling, 2 drops of a 1% phenolphthalein ethanol solution was added thereto, and the solution was titrated with 0.5 N HCl aqueous solution while stirring, and the saponification value was calculated by the following formula (4).

[식 3][Formula 3]

Figure pat00003
Figure pat00003

[식 4][Formula 4]

Figure pat00004
Figure pat00004

상기 표 1에 나타난 바와 같이, 실시예 1 내지 4의 방법으로 SiO2/Al2O3 몰비가 25, 38, 50인 ZSM-5형 제올라이트를 이용하여 폴리알킬렌 글리콜을 알킬화할 경우, 수산기 전환율이 85% 이상이고, 메틸화율은 80 % 이상으로 나타난 반면, 비교예 1은 반응온도를 110℃로 낮춘 경우인데, 수산기 전환율은 겨우 1.4%이며 메틸화는 전혀 진행이 되지 않았으며, 180℃에서 반응을 실시한 결과(비교예 5) PAG의 분해가 발생한 것을 확인할 수 있었다. As shown in Table 1, when polyalkylene glycol was alkylated with ZSM-5 type zeolite having SiO 2 / Al 2 O 3 molar ratios of 25, 38 and 50 by the methods of Examples 1 to 4, The methylation rate was more than 80% and the methylation rate was 80% or more. On the other hand, in Comparative Example 1, the reaction temperature was lowered to 110 ° C, the hydroxyl conversion was only 1.4% (Comparative Example 5). As a result, it was confirmed that decomposition of PAG occurred.

비교예 2에서는 반응압력을 5kgf/cm2 으로 한 것을 제외하고는 실시예1과 동일한 조건에서 반응을 실시한 것인데, 전환율은 93.2%에서 83.0%으로, 메틸화율은 86.8%에서 50.5%로 떨어진 것을 볼 수 있다. In Comparative Example 2, the reaction was carried out under the same conditions as Example 1 except that the reaction pressure was 5 kgf / cm 2. The conversion rate was 93.0% to 83.0% and the methylation rate dropped from 86.8% to 50.5% .

상기 결과로 보아, 본원의 ZSM-5형 제올라이트 촉매하에서 디알킬카보네이트와 폴리알킬렌글리콜의 반응에 의한 폴리알킬렌글리콜의 말단 알킬화 반응에는 적정 압력과 온도 범위가 있는 것을 확인할 수 있다.As a result, it can be confirmed that the terminal alkylation reaction of the polyalkylene glycol by the reaction of the dialkyl carbonate with the polyalkylene glycol under the ZSM-5 type zeolite catalyst of the present invention has an appropriate pressure and temperature range.

또한, 비교예 3과 실시예 1을 대비하여 보면 다른 반응 조건은 동일한 상태에서 촉매의 종류가 ZSM-5형 제올라이트형 촉매에서 Al-MCM41로 변경된 것인데, 전환율은 93.2 %에서 65.5 %로, 메틸화율은 86.8 %에서 18.3 %로 저하되는 현상을 보이며, 비교예 4와 같이 Al-MCM41 촉매 조건에서 폴리알킬렌 글리콜 100 중량부에 대하여 디메틸 카보네이트를 400 중량부까지 증가시켜도, 전환율 75.0 % 메틸화율 32.5 %로 증가하는데 그치는 것으로 나타났다.In comparison with Comparative Example 3 and Example 1, the other reaction conditions were that the type of catalyst was changed to Al-MCM41 in the ZSM-5 type zeolite type catalyst, the conversion rate was 93.2% to 65.5%, the methylation rate The conversion rate was 75.0% and the methylation rate was 32.5%, even though the amount of dimethyl carbonate was increased up to 400 parts by weight with respect to 100 parts by weight of the polyalkylene glycol under the conditions of Al-MCM41 catalyst as in Comparative Example 4. [ In the first half of the year.

위 결과로부터 본원 발명의 촉매인 ZSM-5형 제올라이트가 폴리알킬렌 글리콜의 말단 OH기를 알킬카보네이트를 사용하여 알킬기로 치환하는 반응에 있어 매우 효과적인 촉매인 것을 확인할 수 있으며, 상기 촉매를 사용하면 기존의 알킬할라이드를 이용한 방식에 비하여 폐수나 염의 생성 없이 환경친화적인 반응을 통해 말단이 알킬기로 치환된 폴리알킬렌 글리콜을 생산할 수 있게 된다.From the above results, it can be confirmed that ZSM-5 type zeolite, which is the catalyst of the present invention, is a very effective catalyst in the reaction of replacing the terminal OH group of the polyalkylene glycol with an alkyl group using an alkylcarbonate. The polyalkylene glycol whose terminal is substituted with an alkyl group can be produced through an environmentally friendly reaction without generating wastewater or salt as compared with a method using an alkyl halide.

앞에서 설명된 본 발명의 일실시예는 본 발명의 기술적 사상을 한정하는 것으로 해석되어서는 안 된다. 본 발명의 보호범위는 청구범위에 기재된 사항에 의하여만 제한되고, 본 발명의 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 다양한 형태로 개량 변경하는 것이 가능하다. 따라서 이러한 개량 및 변경은 통상의 지식을 가진 자에게 자명한 것인 한 본 발명의 보호범위에 속하게 될 것이다.The embodiments of the present invention described above should not be construed as limiting the technical idea of the present invention. The scope of protection of the present invention is limited only by the matters described in the claims, and those skilled in the art will be able to modify the technical idea of the present invention in various forms. Accordingly, such improvements and modifications will fall within the scope of the present invention as long as they are obvious to those skilled in the art.

Claims (6)

폴리알킬렌글리콜과 알킬화제를 반응시켜 폴리알킬렌글리콜의 말단을 알킬화하는 촉매로, SiO2/Al2O3 몰비가 10~300 범위로 합성되어진 ZSM-5형 제올라이트인 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 촉매.
Characterized in that it is a ZSM-5 type zeolite synthesized by reacting a polyalkylene glycol with an alkylating agent to alkylate the end of the polyalkylene glycol and having a molar ratio SiO 2 / Al 2 O 3 of 10 to 300, Terminal alkylation catalysts of glycols.
제1항에 있어서,
상기 촉매의 SiO2/Al2O3의 몰비는 25~50인 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 촉매.
The method according to claim 1,
Wherein the catalyst has a molar ratio of SiO 2 / Al 2 O 3 of from 25 to 50.
제1항에 있어서,
상기 알킬화제는 디알킬카보네이트인 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 촉매.
The method according to claim 1,
Wherein said alkylating agent is a dialkyl carbonate.
제1항 내지 제3항 중 어느 한 항의 폴리알킬렌 글리콜의 말단 알킬화 촉매 하에서 알킬화제와 폴리알킬렌 글리콜을 120 ~ 170 ℃, 상압 ~ 3kgf/cm2 하에서 반응시키는 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 방법.
A process for producing a polyalkylene glycol, characterized in that an alkylating agent and a polyalkylene glycol are reacted at 120 to 170 ° C under atmospheric pressure to 3 kgf / cm 2 under the terminal alkylation catalyst of the polyalkylene glycol of any one of claims 1 to 3 Terminal alkylation.
제4항에 있어서,
상기 알킬화제는 디메틸 카보네이트(dimethyl carbonate) 또는 디에틸 카보네이트(diethyl carbonate)인 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 방법.
5. The method of claim 4,
Wherein said alkylating agent is dimethyl carbonate or diethyl carbonate. &Lt; RTI ID = 0.0 &gt; 11. &lt; / RTI &gt;
제4항에 있어서,
상기 알킬화제는 폴리알킬렌 글리콜 1몰에 대하여, 5 ~ 44몰로 반응시키는 것을 특징으로 하는 폴리알킬렌 글리콜의 말단 알킬화 방법.
5. The method of claim 4,
Wherein the alkylating agent is reacted in an amount of 5 to 44 moles per mole of the polyalkylene glycol.
KR1020170091952A 2017-07-20 2017-07-20 Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst Active KR101947724B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170091952A KR101947724B1 (en) 2017-07-20 2017-07-20 Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170091952A KR101947724B1 (en) 2017-07-20 2017-07-20 Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst

Publications (2)

Publication Number Publication Date
KR20190009948A true KR20190009948A (en) 2019-01-30
KR101947724B1 KR101947724B1 (en) 2019-02-13

Family

ID=65276839

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170091952A Active KR101947724B1 (en) 2017-07-20 2017-07-20 Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst

Country Status (1)

Country Link
KR (1) KR101947724B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408321A (en) 1965-06-14 1968-10-29 Gen Electric Moisture curable siloxy terminated polyethers
US3951888A (en) 1973-06-07 1976-04-20 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing polyoxyalkylene having allyl end-group
US4587365A (en) 1984-10-29 1986-05-06 Basf Corporation Preparing capped polyoxyalkylene polyols
EP0302487A1 (en) 1987-08-06 1989-02-08 BASF Aktiengesellschaft Etherification of polyoxyalkylene derivatives

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408321A (en) 1965-06-14 1968-10-29 Gen Electric Moisture curable siloxy terminated polyethers
US3951888A (en) 1973-06-07 1976-04-20 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for preparing polyoxyalkylene having allyl end-group
US4587365A (en) 1984-10-29 1986-05-06 Basf Corporation Preparing capped polyoxyalkylene polyols
EP0302487A1 (en) 1987-08-06 1989-02-08 BASF Aktiengesellschaft Etherification of polyoxyalkylene derivatives

Also Published As

Publication number Publication date
KR101947724B1 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
US4434105A (en) Process for the preparation of dialkyl carbonates
JP4471073B2 (en) Method for producing bifunctional phenylene ether oligomer
JP2017141362A (en) Composition comprising organic base compound, lewis acid and active hydrogen-containing compound
CA2703076A1 (en) Process for the preparation of polyether alcohols from unsaturated starters having active hydrogen atoms
CA2707719A1 (en) Process for the continuous production of high purity phenolic glycol ether
KR101947724B1 (en) Alkyation Method of Polyalkylene Glycol Using ZSM-5 type Zeolite Catalyst
KR101950930B1 (en) Porous catalyst containing zinc oxide and aluminium oxide for hydroxyl group alkylation, preparation method thereof using nonionic surfactant and alkylation method of polyalkylene glycol using the same
EP3363779B1 (en) Production method of asymmetric chain carbonate
WO2014077465A1 (en) Method for preparing glycidol
JP2016037560A (en) Process for producing polyalkylene glycol
JP6520013B2 (en) Alkylene oxide polymerization catalyst and method for producing polyalkylene oxide using the same
JP2016040345A (en) Alkylene oxide polymerization catalyst and method for producing polyalkylene oxide using the same
JP6484651B2 (en) Catalyst for terminal alkylation of polyalkylene glycol and method for terminal alkylation of polyalkylene glycol using the same
KR102476267B1 (en) Molded Catalyst for Alkylation of Polyalkylene Glycol and the Method of Producing the same
KR20170132967A (en) Catalyst for Alkyation of Polyalkylene Glycol and Alkylation Method Using Same
KR101684640B1 (en) A manufacturing method of glycidol using glycerol and glycidol manufactured by the method
JP4813894B2 (en) Process for producing aliphatic primary amine alkylene oxide adduct and emulsifier
CN113563189A (en) One-step method for efficiently catalyzing CO2Method for converting dimethyl carbonate catalyst
JP6083226B2 (en) Process for producing polyalkylene glycol
KR101152907B1 (en) Preparation Method For Glycerol Carbonate Using Calcium Alkoxide Complexes
JP2023007590A (en) Basic iminophosphazenium salt-containing composition, method for producing the same, and method for producing polyalkylene glycol using the composition
JP2017504584A (en) Process for liberating alkylene oxides to produce polyetherols
EP2493839B1 (en) Propylene oxide isomerization process
JP2017137430A (en) Alkylene oxide polymerization catalyst and manufacturing method of polyalkylene oxide using the same
JP4200971B2 (en) Production method of allyl ethers

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170720

PA0201 Request for examination
PN2301 Change of applicant

Patent event date: 20171106

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180712

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190109

PG1501 Laying open of application
GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190207

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20190208

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220128

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20230131

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20240131

Start annual number: 6

End annual number: 6