[go: up one dir, main page]

KR20180136655A - Electrolyte for secondary battery and secondary battery comprising same - Google Patents

Electrolyte for secondary battery and secondary battery comprising same Download PDF

Info

Publication number
KR20180136655A
KR20180136655A KR1020170075633A KR20170075633A KR20180136655A KR 20180136655 A KR20180136655 A KR 20180136655A KR 1020170075633 A KR1020170075633 A KR 1020170075633A KR 20170075633 A KR20170075633 A KR 20170075633A KR 20180136655 A KR20180136655 A KR 20180136655A
Authority
KR
South Korea
Prior art keywords
carbonate
secondary battery
electrolyte
chemical formula
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020170075633A
Other languages
Korean (ko)
Other versions
KR102492766B1 (en
Inventor
방지민
신정주
고종관
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Priority to KR1020170075633A priority Critical patent/KR102492766B1/en
Publication of KR20180136655A publication Critical patent/KR20180136655A/en
Application granted granted Critical
Publication of KR102492766B1 publication Critical patent/KR102492766B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/122

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 이차전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로, 상기 이차전지용 전해액은 저온 및 고온의 조건에서 장기간 용량 저하와 저항 증가가 작아서 전체적으로 안정적인 특성을 나타낼 수 있으므로, 저온 및 고온에서 사용되는 이차전지의 전해액으로 유용하게 사용될 수 있다. The present invention relates to an electrolyte solution for a secondary battery and a secondary battery comprising the electrolyte solution. The electrolyte solution for the secondary battery can exhibit stable characteristics over a long period of time under a low temperature and a high temperature, It can be effectively used as an electrolytic solution of a battery.

Description

이차전지용 전해액 및 이를 포함하는 이차전지{ELECTROLYTE FOR SECONDARY BATTERY AND SECONDARY BATTERY COMPRISING SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an electrolyte for a secondary battery,

본 발명은 이차전지용 전해액 및 이를 포함하는 이차전지에 관한 것이다. The present invention relates to an electrolyte solution for a secondary battery and a secondary battery comprising the same.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지에 대해 수요가 급격히 증가하고 있다. 이차전지 중에서도 높은 에너지 밀도, 우수한 수명 특성 및 자기 방전율이 낮은 리튬이차전지가 상용화되어 널리 사용되고 있다. As technology development and demand for mobile devices increase, the demand for secondary batteries as energy sources is rapidly increasing. Among secondary batteries, lithium secondary batteries having high energy density, excellent lifetime characteristics, and low self discharge rate are commercially available and widely used.

최근에는 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차 등에 대한 연구가 많이 진행되고 있다. 예컨대, 전기자동차, 하이브리드 전기자동차 등의 동력원으로 리튬이차전지를 사용하고자 하는 연구가 진행되고 있으며, 구체적으로, 높은 에너지 밀도, 높은 방전 전압, 출력 안정성 등의 물성을 갖춘 전지 개발을 위한 연구가 활발히 진행되고 있고, 일부 상용화되어 있다. In recent years, interest in environmental problems has led to a great deal of research on electric vehicles and hybrid electric vehicles that can replace fossil-fueled vehicles such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution . For example, studies are underway to use lithium secondary batteries as a power source for electric vehicles and hybrid electric vehicles. Specifically, researches for development of batteries having properties such as high energy density, high discharge voltage, and output stability are actively conducted And some are commercialized.

상기 리튬이차전지는 리튬 이온을 흡장 및 방출하는 탄소재 등의 음극, 리튬 함유 산화물 등으로 이루어진 양극, 및 혼합 유기용매에 리튬염이 적당량 용해된 비수계 전해액으로 구성되어 있다. 이때, 상기 비수계 전해액은 전지의 성능 향상을 위해 첨가제를 더 포함할 수도 있으며, 이러한 첨가제를 포함하는 전해액 조성물에 대한 기술은 다수 공지되어 있다. The lithium secondary battery is composed of a negative electrode made of a carbonaceous material or the like, which stores and releases lithium ions, a positive electrode made of a lithium-containing oxide, or the like, and a nonaqueous electrolyte solution in which a suitable amount of lithium salt is dissolved in a mixed organic solvent. At this time, the non-aqueous liquid electrolyte may further include an additive for improving the performance of the battery, and a lot of techniques for an electrolyte composition including such an additive are well known.

일례로, 일본 특허 제3760540호는 에틸렌 설페이트를 전해액에 첨가하여 리튬전지의 음극에 리튬 이온 투과성이 높은 피막을 형성하여 전해액의 분해를 억제함으로써 수명 특성을 개선시키고 있다. 나아가, 미국 특허 제2011/0223476호는 리튬 디플루오로비스(옥살라토) 인산염과 리튬 테트라플루오로(옥살라토) 인산염이 포함된 포스페이트 화합물을 포함하는 전해액을 사용하여 전지 고온 성능을 개선시킨다. 또한, 국제 특허 제2013-031551호는 전해질 용액에 의해 고온과 저온에서의 전지 수명과 성능을 개선시키고 있다. 또한, 일본 특허 제3439085호는 플루오로 인산리튬 또는 디플루오로 인산리튬을 포함하는 이차전지용 첨가제가 리튬과 반응하여 양극 및 음극의 계면에 양질의 피막을 형성하고 그 피막이 비수계 전해액의 분해를 억제하므로, 이차전지 충전 후 일정 기간 보존 시 전지의 자기방전을 억제하여 보존 특성이 향상될 수 있음을 개시하고 있다. 나아가, 일본 공개특허 제2003-151623호, 한국 공개특허 제2013-0043221호 등은 사이클릭 설페이트를 이용하여 음극상에 치밀한 피막을 형성하여 전지의 저장 특성을 높이는 기술을 개시하고 있다.For example, in Japanese Patent No. 3760540, ethylene sulfate is added to an electrolytic solution to form a coating having a high lithium ion permeability on a negative electrode of a lithium battery, thereby suppressing decomposition of the electrolyte, thereby improving lifetime characteristics. Further, U.S. Patent No. 2011/0223476 improves battery high temperature performance by using an electrolyte solution containing a phosphate compound containing lithium difluorobis (oxalato) phosphate and lithium tetrafluoro (oxalato) phosphate . In addition, International Patent No. 2013-031551 improves battery life and performance at high and low temperatures by an electrolyte solution. Japanese Patent No. 3439085 discloses that a secondary battery additive comprising lithium fluorophosphate or lithium difluorophosphate reacts with lithium to form a high-quality coating on the interface between the positive and negative electrodes, and the coating inhibits decomposition of the non-aqueous electrolyte It is disclosed that the self-discharge of the battery can be suppressed during storage for a certain period of time after the secondary battery is charged to improve the storage characteristics. Furthermore, Japanese Laid-Open Patent Application No. 2003-151623 and Korean Laid-Open Patent Application No. 2013-0043221 disclose techniques for increasing the storage characteristics of a battery by forming a dense coating film on a cathode using cyclic sulfate.

하지만 위의 첨가제들은 모두 상온 및 저온에서의 전지의 수명 특성 향상 효과는 보여주었지만, 고온 및/또는 장기간 사용하는 경우에 대한 전지의 수명 특성, 용량 및 저항에 관한 효과는 명시되지 않았거나 개선이 필요한 수준이었다. However, all of the above additives have shown an improvement in the lifetime characteristics of the battery at room temperature and low temperature, but the effect on battery life characteristics, capacity and resistance for high temperature and / or long term use is not specified or improved It was necessary level.

따라서, 저온 및 고온에서 전지의 특성을 개선, 특히, 고출력 및 고전압에서 이차전지의 특성을 개선할 수 있는 전해액의 연구개발이 필요하게 되었다. Therefore, it is necessary to research and develop an electrolyte capable of improving the characteristics of the battery at low temperature and high temperature, particularly, improving the characteristics of the secondary battery at high output and high voltage.

이에, 본 발명자는 저온뿐만 아니라 고온의 환경에서 장기간 안정적인 특성을 갖는 이차전지용 전해액의 조성을 발견하고, 본 발명을 완성하게 되었다.Thus, the present inventors have found a composition of an electrolyte solution for a secondary battery having stable characteristics for a long period of time in an environment of not only low temperature but also high temperature, and completed the present invention.

일본 특허 제3760540호Japanese Patent No. 3760540 미국 특허 제2011/0223476호US Patent No. 2011/0223476 국제 특허 제2013-031551호International Patent No. 2013-031551 일본 특허 제3439085호Japanese Patent No. 3439085 일본 공개특허 제2003-151623호Japanese Patent Laid-Open No. 2003-151623 한국 공개특허 제2013-0043221호Korean Patent Publication No. 2013-0043221

본 발명의 목적은 저온과 고온에서 장기간 사용하여도 안정적으로 작동하는 이차전지용 전해액을 제공하는 것이다.An object of the present invention is to provide an electrolyte solution for a secondary battery that stably operates even at a low temperature and at a high temperature for a long period of time.

상기 목적을 달성하기 위해 본 발명은,In order to achieve the above object,

(a-1) 하기 화학식 1 내지 4로 표시되는 화합물 중에서 선택된 1종 이상의 화합물 및 (a-2) 하기 화학식 5 내지 9로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 이차전지용 전해액 첨가제, (b) 비수계 용매 및 (c) 리튬염을 포함하는 이차전지용 전해액을 제공한다:(a-1) an electrolyte additive for a secondary battery comprising at least one compound selected from compounds represented by the following general formulas (1) to (4) and (a-2) (b) a non-aqueous solvent and (c) a lithium salt.

[화학식 1] [화학식 2] [화학식 3] [화학식 4] [Chemical Formula 1] < EMI ID =

Figure pat00001
Figure pat00002
Figure pat00003
Figure pat00004
Figure pat00001
Figure pat00002
Figure pat00003
Figure pat00004

[화학식 5] [화학식 6] [화학식 7] [화학식 8] [화학식 9][Chemical Formula 6] [Chemical Formula 7] [Chemical Formula 8] [Chemical Formula 9]

Figure pat00005
Figure pat00006
Figure pat00007
Figure pat00008
Figure pat00009
Figure pat00005
Figure pat00006
Figure pat00007
Figure pat00008
Figure pat00009

또한, 본 발명은 상기 이차전지용 전해액을 포함하는 이차전지를 제공한다.The present invention also provides a secondary battery comprising the electrolyte for the secondary battery.

본 발명의 이차전지용 전해액은 저온 및 고온 조건에서 장기간 용량 저하와 저항 증가가 작아서 전체적으로 안정적인 특성을 나타낼 수 있으므로, 저온 및 고온에서 사용되는 이차전지의 전해액으로 유용하게 사용될 수 있다. The electrolyte for a secondary battery of the present invention can be used as an electrolyte of a secondary battery used at a low temperature and at a high temperature because the electrolyte for a secondary battery can exhibit stable characteristics over a long period of time under a low temperature and a high temperature.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 이차전지용 전해액은The electrolyte for a secondary battery according to the present invention comprises

(a-1) 하기 화학식 1 내지 4로 표시되는 화합물 중에서 선택된 1종 이상의 화합물 및 (a-2) 하기 화학식 5 내지 9로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 이차전지용 전해액 첨가제, (b) 비수계 용매 및 (c) 리튬염을 포함하는 이차전지용 전해액을 제공한다:(a-1) an electrolyte additive for a secondary battery comprising at least one compound selected from compounds represented by the following general formulas (1) to (4) and (a-2) (b) a non-aqueous solvent and (c) a lithium salt.

[화학식 1] [화학식 2] [화학식 3] [화학식 4] [Chemical Formula 1] < EMI ID =

Figure pat00010
Figure pat00011
Figure pat00012
Figure pat00013
Figure pat00010
Figure pat00011
Figure pat00012
Figure pat00013

[화학식 5] [화학식 6] [화학식 7] [화학식 8] [화학식 9][Chemical Formula 6] [Chemical Formula 7] [Chemical Formula 8] [Chemical Formula 9]

Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
Figure pat00018
Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
Figure pat00018

상기 이차전지용 전해액은 첨가제로서 상기 1 내지 4의 화합물 및 상기 5 내지 9의 화합물 중 선택된 1종 이상의 화합물을 혼합하여 포함함으로써 음극과 양극 표면에서 이온 전도도를 높게 유지할 수 있고, 각각의 전극(음극, 양극)에 안정적인 피막을 형성할 수 있도록 한다. The electrolytic solution for the secondary battery can maintain a high ionic conductivity at the surfaces of the negative electrode and the positive electrode by mixing the compounds 1 to 4 and the at least one selected from the compounds 5 to 9 as an additive. Thereby forming a stable film on the positive electrode.

특히, 상기 화학식 1 내지 4의 화합물은 저온에서 수명특성, 용량 및 저항 특성(낮은 저항 유지)을 향상시킬 수 있는데, 이와 함께 상기 화학식 5 내지 9의 화합물 중 1종 이상을 혼합하여 사용함으로써 저온뿐만 아니라 고온에서도 장기간 우수한 수명특성, 용량유지율 및 낮은 저항을 유지할 수 있도록 한다. In particular, the compounds of the formulas (1) to (4) can improve lifetime characteristics, capacity and resistance characteristics (low resistance maintenance) at low temperature. In addition, by using one or more compounds of the above formulas But also maintain excellent long life characteristics, capacity retention rate and low resistance even at high temperature.

상기 화학식 1 내지 9의 화합물은 공지의 화합물로서 시중에서 구매할 수 있고, 또는 공지의 합성법으로 제조될 수 있다.The compounds of the above formulas (1) to (9) are commercially available as known compounds or can be prepared by a known synthesis method.

구체적으로, 화학식 1의 화합물은 에틸렌 설페이트, 화학식 2의 화합물은 리튬 디플루오로 비스(옥살라토) 인산염, 화학식 3의 화합물은 리튬 테트라플루오로(옥살라토) 인산염, 화학식 4의 화합물은 디플루오로인산리튬 및 화학식 5 내지 9의 화합물은 사이클릭 설페이트 또는 사이클릭 설파이트일 수 있다.Specifically, the compound of Formula 1 is selected from the group consisting of ethylene sulfate, the compound of Formula 2 is lithium difluorobis (oxalato) phosphate, the compound of Formula 3 is lithium tetrafluoro (oxalato) phosphate, the compound of Formula 4 is di Lithium fluorophosphate and the compounds of formulas 5 to 9 may be cyclic sulfates or cyclic sulfites.

보다 구체적으로 화학식 1의 화합물은 CAS No. 1072-53-3, 화학식 2의 화합물은 CAS No. 678966-16-0, 화학식 3의 화합물은 CAS No. 521065-36-1, 화학식 4의 화합물은 CAS No. 845910-47-6, 화학식 5의 화합물은 Cas No. 201419-80-9, 화학식 6의 화합물은 CAS No. 1591626-61-7, 화학식 7의 화합물은 CAS No. 1431298-10-0, 화학식 8의 화합물은 CAS No. 3670-93-7 및 화학식 9의 화합물은 CAS No. 92175-74-1의 공지의 화합물일 수 있다.More specifically, the compound of Chemical Formula 1 is CAS No. 1. 1072-53-3, the compound of formula (2) is CAS No. 1. 678966-16-0, the compound of Formula 3 is CAS No. 1. 521065-36-1, the compound of formula (IV) is CAS No. < RTI ID = 0.0 > 845910-47-6, the compound of the formula (5) is Cas No. 2. 201419-80-9, the compound of the formula (6) is CAS No. 1. 1591626-61-7, the compound of formula (7) is CAS No. < / RTI > 1431298-10-0, the compound of formula 8 is CAS No. < RTI ID = 0.0 > 3670-93-7 and the compound of formula (9) are CAS No. < / RTI > 92175-74-1. ≪ / RTI >

상기 화학식 1 내지 4의 화합물 중에서 선택된 1종 이상의 화합물 및 상기 화학식 5 내지 9의 화합물 중에서 선택된 1종 이상의 화합물은 5:1, 3:1 또는 2:1의 중량비로 혼합될 수 있다. 상기 범위 내일 때, 두 화합물을 함께 사용함으로써 얻을 수 있는 동반 상승효과가 극대화되는 장점이 있다At least one compound selected from the compounds of the formulas 1 to 4 and at least one compound selected from the compounds of the formulas 5 to 9 may be mixed at a weight ratio of 5: 1, 3: 1 or 2: 1. Within the above range, there is an advantage that the synergistic effect obtained by using both compounds together is maximized

상기 전해액은 상기 전해액 첨가제를 상기 전해액 총 중량을 기준으로 0.1 내지 10 중량%, 0.1 내지 8중량%, 0.5 내지 8중량%, 1 내지 5중량% 또는 1 내지 3중량% 포함할 수 있다. 상기 함량 범위로 포함할 경우, 고온환경에서 전지의 저항 증가를 억제할 수 있으며, 상온 초기 저항의 과도한 증가를 방지할 수 있을 뿐만 아니라, 전극 표면에서 이온전도도가 높은 피막을 적절한 두께로 형성할 수 있으며, 전해액의 점도를 적절한 수준으로 유지할 수 있다.The electrolytic solution may contain 0.1 to 10% by weight, 0.1 to 8% by weight, 0.5 to 8% by weight, 1 to 5% by weight or 1 to 3% by weight of the electrolyte additive based on the total weight of the electrolytic solution. When it is included in the above content range, it is possible to suppress the increase of the resistance of the battery in a high temperature environment, to prevent an excessive increase in initial resistance at room temperature, and to form a film having a high ionic conductivity , And the viscosity of the electrolytic solution can be maintained at an appropriate level.

상기 비수계 용매는 상기 리튬염 및 화학식 1 내지 9의 화합물에 대한 용해도가 높은 것이 바람직하다. The non-aqueous solvent preferably has a high solubility in the lithium salt and the compounds of the formulas (1) to (9).

구체적으로, 상기 비수계 용매는 디에틸 카보네이트(diethyl carbonate; DEC), 에틸메틸 카보네이트(ethylmethyl carbonate; EMC), 디메틸 카보네이트(dimethyl carbonate; DMC), 디프로필 카보네이트(dipropyl carbonate; DPC), 메틸프로필 카보네이트(methylpropyl carbonate; MPC), 에틸프로필 카보네이트(ethylpropyl carbonate; EPC), 에틸렌 카보네이트(ethylene carbonate; EC), 프로필렌 카보네이트(propylene carbonate; PC), 부틸렌 카보네이트(butylene carbonate; BC), 및 감마-부티로락톤(gamma-butyrolactone)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.Specifically, the non-aqueous solvent may be selected from the group consisting of diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), dipropyl carbonate (DPC) (MPC), ethylpropyl carbonate (EPC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and gamma- Gamma-butyrolactone, and the like.

보다 구체적으로, 상기 비수계 용매가 디에틸 카보네이트, 에틸메틸 카보네이트, 디메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 선형 카보네이트계 용매, 및 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 및 감마-부티로락톤으로 이루어진 군으로부터 선택된 1종 이상의 환형 카보네이트계 용매를 포함할 수 있다.More specifically, the non-aqueous solvent is at least one linear carbonate solvent selected from the group consisting of diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate and ethylpropyl carbonate, and at least one solvent selected from the group consisting of ethylene carbonate, propylene carbonate , Butylene carbonate, and gamma-butyrolactone. These solvents may be used alone or in combination of two or more.

상기 리튬염은 이차전지용 전해액에 통상 사용되는 것이라면 특별히 한정하지 않는다. The lithium salt is not particularly limited as long as it is usually used for an electrolyte solution for a secondary battery.

구체적으로, 상기 리튬염은 LiPF6, LiBF4, LiBF6, LiSO3CF3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, LiSbF6, LiAsF6, LiClO4, LiN(SO2F)2 및 LiC(CF3SO2)3 으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. Specifically, the lithium salt is LiPF 6, LiBF 4, LiBF 6 , LiSO 3 CF 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (SO 2 F) 2, LiSbF 6 , LiAsF 6 , LiClO 4 , LiN (SO 2 F) 2 and LiC (CF 3 SO 2 ) 3 , And the like.

상기 전해액은 상기 리튬염을 상기 비수계 용매 1 리터를 기준으로 0.05 내지 5.0 몰, 0.05 내지 3.0 몰, 또는 0.05 내지 2.5 몰 포함할 수 있다. 상기 함량 범위로 리튬염을 포함할 경우, 전해액의 이온 전도도가 적절하게 확보되며, 첨가한 리튬염의 농도대비 수득할 수 있는 전해액의 이온 전도도 향상 효과가 높아 경제적이다. The electrolytic solution may contain 0.05 to 5.0 moles, 0.05 to 3.0 moles, or 0.05 to 2.5 moles of the lithium salt based on 1 liter of the non-aqueous solvent. When the lithium salt is contained in the above content range, ionic conductivity of the electrolytic solution is appropriately secured, and the ionic conductivity of the electrolytic solution, which can be obtained with respect to the concentration of the added lithium salt, is high, which is economical.

본 발명에 따른 이차전지용 전해액은 상기 화학식 1 내지 4의 화합물 및 상기 화학식 5 내지 9의 화합물 중 선택된 1종 이상의 화합물과 비수계 용매 및 리튬염을 단순히 혼합하고 교반함으로서 제조될 수 있다.The electrolyte for a secondary battery according to the present invention can be prepared by simply mixing and stirring at least one compound selected from the compounds represented by Chemical Formulas 1 to 4 and the compounds represented by Chemical Formulas 5 to 9 with a non-aqueous solvent and a lithium salt.

본 발명은 상기 이차전지용 전해액을 포함하는 이차전지를 제공한다. 구체적으로, 상기 이차전지는 양극 활물질을 포함하는 양극; 음극 활물질을 포함하는 음극; 상기 양극과 음극 사이에 배치되는 분리막; 및 상기 이차전지용 전해액을 포함할 수 있다.The present invention provides a secondary battery comprising the electrolyte for the secondary battery. Specifically, the secondary battery includes: a positive electrode including a positive electrode active material; A negative electrode comprising a negative electrode active material; A separation membrane disposed between the anode and the cathode; And an electrolyte for the secondary battery.

상기 양극은 리튬 이온을 가역적으로 흡장 및 탈리할 수 있는 양극 활물질을 포함한다. 상기 양극 활물질은 코발트, 망간 및 니켈로 이루어진 군으로부터 선택된 1 종 이상의 금속; 및 리튬을 포함하는 복합 금속 산화물을 포함할 수 있다. 금속 사이의 고용율은 다양하게 이루어질 수 있으며, 상기 양극 활물질은 상술한 금속 외에 마그네슘(Mg), 알루미늄(Al), 코발트(Co), 칼륨(K), 나트륨(Na), 칼슘(Ca), 실리콘(Si), 티탄(Ti), 주석(Sn), 바나듐(V), 게르마늄(Ge), 갈륨(Ga), 붕소(B), 비소(As), 지르코늄(Zr), 망간(Mn), 크롬(Cr), 철(Fe), 스트론튬(Sr) 및 희토류 원소로 이루어진 군에서 선택되는 1종 이상의 원소를 더 포함할 수 있다.The positive electrode includes a positive electrode active material capable of reversibly intercalating and deintercalating lithium ions. Wherein the cathode active material comprises at least one metal selected from the group consisting of cobalt, manganese, and nickel; And a composite metal oxide including lithium. The positive electrode active material may be composed of at least one metal selected from the group consisting of magnesium (Mg), aluminum (Al), cobalt (Co), potassium (K), sodium (Na) (Ti), tin (Sn), vanadium (V), germanium (Ge), gallium (Ga), boron (B), arsenic (As), zirconium (Zr) (Cr), iron (Fe), strontium (Sr), and rare earth elements.

상기 음극은 리튬 이온을 흡장 및 탈리할 수 있는 음극 활물질을 포함한다. 상기 음극 활물질은 결정질 또는 비정질의 탄소, 또는 탄소 복합체의 탄소계 음극 활물질(열적으로 분해된 탄소, 코크, 흑연); 연소된 유기 중합체 화합물; 탄소 섬유; 산화 주석 화합물; 리튬 금속; 또는 리튬 합금일 수 있다. The negative electrode includes a negative electrode active material capable of intercalating and deintercalating lithium ions. The negative electrode active material may be a carbonaceous anode active material (thermally decomposed carbon, coke, graphite) of a crystalline or amorphous carbon or carbon composite; Burned organic polymer compounds; Carbon fiber; Tin oxide compounds; Lithium metal; Or a lithium alloy.

예를 들어, 상기 비정질 탄소는 하드 카본, 코크스, 1500℃ 이하에서 소성한 메조카본 마이크로비드(mesocarbon microbead; MCMB), 메조페이스 피치계 탄소 섬유(mesophase pitch-based carbon fiber; MPCF) 등일 수 있다. 상기 결정질 탄소는 흑연계 재료일 수 있으며, 예를 들어, 천연흑연, 인조흑연, 흑연화 코크스, 흑연화 MCMB, 흑연화 MPCF 등을 들 수 있다. 상기 리튬 합금 중 리튬과 합금을 이루는 다른 원소는 알루미늄(Al), 아연(Zn), 비스무스(Bi), 카드뮴(Cd), 안티몬(Sb), 실리콘(Si), 납(Pb), 주석(Sn), 갈륨(Ga) 또는 인듐(In)일 수 있다.For example, the amorphous carbon may be hard carbon, coke, mesocarbon microbead (MCMB) calcined at 1500 ° C. or lower, mesophase pitch-based carbon fiber (MPCF), or the like. The crystalline carbon may be a graphite based material, for example, natural graphite, artificial graphite, graphitized coke, graphitized MCMB, graphitized MPCF, and the like. Among the lithium alloys, other elements constituting the lithium and the alloy include aluminum (Al), zinc (Zn), bismuth (Bi), cadmium (Cd), antimony (Sb), silicon (Si), lead (Pb) ), Gallium (Ga), or indium (In).

상기 분리막은 양극과 음극 사이의 직접적인 접촉으로 인한 단락을 방지하기 위한 것으로, 예를 들어, 폴리올레핀, 폴리프로필렌, 폴리에틸렌 등의 고분자막 또는 이들의 다중막; 미세다공성 필름; 직포; 및 부직포 등을 들 수 있다. 상기 분리막은 단면 혹은 양면에 금속 산화물 등이 코팅된 것일 수 있다.The separator is for preventing a short circuit due to a direct contact between the anode and the cathode. For example, the separator may be a polymer membrane such as polyolefin, polypropylene, or polyethylene, or a multi-layer thereof; Microporous film; web; And nonwoven fabrics. The separation membrane may have a metal oxide or the like coated on one or both sides thereof.

이하, 구체적인 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of specific examples and comparative examples. The following examples are intended to further illustrate the present invention and are not intended to limit the scope of the present invention.

[[ 실시예Example ]]

이하의 실시예 및 비교예에서 사용되는 화학식 1 및 2의 화합물들은 모두 공지의 화합물로서, 이들의 구조식, 화학명 및 CAS No.는 아래와 같다.The compounds of formulas (1) and (2) used in the following examples and comparative examples are all known compounds, and their structural formulas, chemical names and CAS No. are as follows.

구조식constitutional formula 화학명Chemical name CAS No.CAS No. 화학식 1의
화합물
(1)
compound

Figure pat00019
Figure pat00019
에틸렌 설페이트Ethylene sulfate 1072-53-31072-53-3 화학식 2의
화합물
2
compound
Figure pat00020
Figure pat00020
리튬 디플루오로 비스 (옥살라토) 인산염Lithium difluorobis (oxalato) phosphate 678966-16-0678966-16-0
화학식 3의
화합물
(3)
compound
Figure pat00021
Figure pat00021
리튬 테트라플루오로
(옥살라토) 인산염
Lithium tetrafluoro
(Oxalato) phosphate
521065-36-1521065-36-1
화학식 4의
화합물
4
compound
Figure pat00022
Figure pat00022
디플루오로인산리튬Lithium difluorophosphate 845910-47-6845910-47-6
화학식 5의
화합물
5
compound
Figure pat00023
Figure pat00023
싸이클릭 설페이트Cyclic sulfate 201419-80-9201419-80-9
화학식 6의
화합물
6
compound
Figure pat00024
Figure pat00024
1591626-61-71591626-61-7
화학식 7의
화합물
(7)
compound
Figure pat00025
Figure pat00025
1431298-10-01431298-10-0
화학식 8의 화합물The compound of formula 8
Figure pat00026
Figure pat00026
싸이클릭 설파이트Cyclic sulfite 3670-93-73670-93-7
화학식 9의
화합물
9
compound
Figure pat00027
Figure pat00027
92175-74-192175-74-1

실시예Example 1. 전해액의 제조 1. Preparation of electrolytic solution

에틸렌 카보네이트(EC), 에틸메틸 카보네이트(EMC), 및 디에틸 카보네이트(DEC)를 30:40:30의 부피비로 혼합하여 혼합액을 제조하고, 상기 혼합액에 LiPF6을 1몰/ℓ의 농도로 용해하고, 전해액 총 중량에 대하여 상기 화학식 1의 화합물 0.5중량%, 화학식 2의 화합물 0.2중량%, 화학식 3의 화합물 0.3중량%, 화학식 4의 화합물을 1중량% 및 화학식 5의 화합물 1중량%를 첨가하고 혼합하여, 이차전지용 전해액(전해질 용액)을 제조하였다. Ethylene carbonate (EC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC) were mixed at a volume ratio of 30:40:30 to prepare a mixed solution. LiPF 6 was dissolved in the mixed solution at a concentration of 1 mol / 0.5% by weight of the compound of Formula 1, 0.2% by weight of the compound of Formula 2, 0.3% by weight of the compound of Formula 3, 1% by weight of the compound of Formula 4 and 1% by weight of the compound of Formula 5 were added to the total weight of the electrolytic solution And mixed to prepare an electrolyte solution (electrolyte solution) for a secondary battery.

실시예Example 2 내지 20 및  2 to 20 and 비교예Comparative Example 1 내지 2. 전해액의 제조 1 to 2. Preparation of electrolytic solution

전해액 첨가제로서 하기 화학식 1 내지 4의 화합물 중 선택된 1종 이상의 화합물 및 화학식 5 내지 9의 화합물 중 선택된 1종 이상의 화합물의 조성 및 함량을 하기 화학식 2에 나타낸 바와 같이 사용하는 것을 제외하고는, 실시예 1과 동일한 방법으로 전해액을 제조하였다.Except that the composition and the content of at least one selected from the compounds of the following formulas (1) to (4) and the compounds of the formulas (5) to (9) were used as the electrolyte additive as shown in the following formula The electrolyte solution was prepared in the same manner as in Example 1.

전해액 첨가제Electrolyte additive 화학식1Formula 1 화학식2(2) 화학식3(3) 화학식4Formula 4 화학식5Formula 5 화학식66 화학식7Formula 7 화학식88 화학식9Formula 9 실시예 1Example 1 0.5%0.5% 0.2%0.2% 0.3%0.3% 1%One% 1%One% -- -- -- -- 실시예 2Example 2 0.5%0.5% 0.2%0.2% 0.3%0.3% 1%One% -- 1%One% -- -- -- 실시예 3Example 3 0.5%0.5% 0.2%0.2% 0.3%0.3% 1%One% -- -- 1%One% -- -- 실시예 4Example 4 0.5%0.5% 0.2%0.2% 0.3%0.3% 1%One% -- -- -- 1%One% -- 실시예 5Example 5 0.5%0.5% 0.2%0.2% 0.3%0.3% 1%One% -- -- -- -- 1%One% 실시예 6Example 6 2%2% -- -- -- 1%One% -- -- -- -- 실시예 7Example 7 -- 1%One% 1%One% -- 1%One% -- -- -- -- 실시예 8Example 8 -- -- -- 2%2% 1%One% -- -- -- -- 실시예 9Example 9 2%2% -- -- -- -- 1%One% -- -- -- 실시예 10Example 10 -- 1%One% 1%One% -- -- 1%One% -- -- -- 실시예 11Example 11 -- -- -- 2%2% -- 1%One% -- -- -- 실시예 12Example 12 2%2% -- -- -- -- -- 1%One% -- -- 실시예 13Example 13 -- 1%One% 1%One% -- -- -- 1%One% -- -- 실시예 14Example 14 -- -- -- 2%2% -- -- 1%One% -- -- 실시예 15Example 15 2%2% -- -- -- -- -- -- 1%One% -- 실시예 16Example 16 -- 1%One% 1%One% -- -- -- -- 1%One% -- 실시예 17Example 17 -- -- -- 2%2% -- -- -- 1%One% -- 실시예 18Example 18 2%2% -- -- -- -- -- -- -- 1%One% 실시예 19Example 19 -- 1%One% 1%One% -- -- -- -- -- 1%One% 실시예 20Example 20 -- -- -- 2%2% -- -- -- -- 1%One% 비교예 1Comparative Example 1 -- -- -- -- -- -- -- -- -- 비교예 2Comparative Example 2 1%One% 0.5%0.5% 0.5%0.5% 1%One% -- -- -- -- --

실험예Experimental Example 1. 리튬 이차전지의 저온 특성 1. Low temperature characteristics of lithium secondary battery

양극 활물질인 LiNi1 / 3Co1 / 3Mn1 /3을 사용한 양극재와 음극 활물질인 인조흑연 및 천연흑연을 1:1 중량비로 사용한 음극재를 사용하여 통상의 방법으로 1Ah 파우치 전지를 조립하고, 실시예 1 내지 20 및 비교예 1 내지 2에서 제조한 전해액을 각각 6g씩 주입하여 이차전지를 완성하였다. And assembling the 1Ah pouch cell by an ordinary method using the anode material used to 1 weight ratio of positive electrode active material of LiNi 1/3 Co 1/3 Mn 1 / with 3 positive electrode material and negative electrode active material of artificial graphite and natural graphite 1 , Each of the electrolytic solutions prepared in Examples 1 to 20 and Comparative Examples 1 and 2 was injected in an amount of 6 g each, to complete a secondary battery.

상기 전지 화성 공정을 통해 얻은 1Ah 파우치 전지를 25℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/140mA까지 1C(C-rate)으로 충전한 다음, 정전류(CC) 조건에서 3V까지 1C로 방전시키면서 PNE-0506 충방전기(제조사: (주) PNE 솔루션)로 초기 용량을 측정하였다. 또한 동일 전지를 -10℃에서 정전류/정전압(CC/CV) 조건에서 4.2V/100mA까지 1C로 충전한 다음, 정전류(CC) 조건에서 3V까지 1C로 방전시키고, 이때 방전 용량과 출력값을 측정하였다. 이 과정을 10회 반복하였다. 이렇게 측정한 방전 용량과 출력값으로 초기 값 대비 용량 유지율과 출력 유지율을 계산하여 하기 표 3에 나타내었다(사용장비: PNE-0506 충방전기).The 1Ah pouch battery obtained through the above described battery charging process was charged at a constant current (C-rate) of 4.2 V / 140 mA at a constant current / constant voltage (CC / CV) condition at 25 ° C, The initial capacity was measured with a PNE-0506 charge / discharge device (manufacturer: PNE solution, Inc.) while discharging. The same cell was charged at 1 C to 4.2 V / 100 mA at a constant current / constant voltage (CC / CV) condition at -10 ° C. and then discharged at 1 C up to 3 V under a constant current (CC) condition at which discharge capacity and output value were measured . This procedure was repeated 10 times. The capacity retention ratio and the output retention ratio with respect to the initial value were calculated from the measured discharge capacity and the output value, and the results are shown in Table 3 below (equipment: PNE-0506 charge / discharge unit).

실험예Experimental Example 2. 리튬 이차전지의 고온 수명 특성 2. High Temperature Life Characteristics of Lithium Secondary Battery

실험예 1에서 제조한 이차전지에 대하여 45℃에서 500회 반복하여 방전 용량 및 출력값을 측정하는 것을 제외하고는 실험예 1과 동일한 방법으로 초기 용량 및 고온에서의 방전 용량 및 출력값을 측정하고, 상기 값들을 기초로 초기 값 대비 용량 유지율과 출력 유지율을 계산하여 하기 표 3에 나타내었다.The discharge capacity and the output value at the initial capacity and the high temperature were measured in the same manner as in Experimental Example 1, except that the discharge capacity and the output value were measured by repeating the secondary battery manufactured in Experimental Example 1 at 45 ° C for 500 times, Based on the values, the capacity retention ratio and the output retention ratio with respect to the initial value are calculated and shown in Table 3 below.

실험예Experimental Example 3. 리튬 이차전지의 고온 저장 특성 3. High Temperature Storage Characteristics of Lithium Secondary Battery

실험예 1과 동일한 방법으로 이차전지를 완성하였다. A secondary battery was completed in the same manner as in Experimental Example 1. [

상기 이차전지에 대하여 실험예 1과 동일한 방법으로 초기 용량을 측정하였다. 이후, 상기 이차전지를 SOC(충전 심도) 100%으로 충전한 후, 60℃ 고온의 오븐에서 8주 동안 저장하고, 8주 경과 후의 용량과 출력값을 측정하였다. 이렇게 측정한 용량으로 전지의 초기 값(초기 설계 용량 1Ah) 대비 용량 유지율 및 출력 유지율을 계산하여 하기 표 3에 나타내었다(사용장비: PNE-0506 충방전기).The initial capacity of the secondary battery was measured in the same manner as in Experimental Example 1. Then, the secondary battery was charged with SOC (charge depth) of 100%, and stored in an oven at 60 캜 for 8 weeks. The capacity and output value after 8 weeks were measured. The capacity maintenance rate and the output retention rate in relation to the initial value of the battery (initial design capacity of 1 Ah) were calculated from the measured capacities and are shown in Table 3 below (equipment: PNE-0506 charge / discharge unit).

실험예1.
(-10℃/10회 반복)
Experimental Example 1
(-10 [deg.] C / 10 times)
실험예2
(45℃/ 500회 반복)
Experimental Example 2
(45 DEG C / 500 times repeated)
실험예3
(60℃/ 8주 경과)
Experimental Example 3
(60 占 폚 / 8 weeks)
용량유지율 Capacity retention rate 출력유지율Output retention rate 용량유지율Capacity retention rate 출력유지율Output retention rate 용량유지율Capacity retention rate 출력유지율Output retention rate 실시예 1Example 1 78%78% 66%66% 93%93% 84%84% 87%87% 80%80% 실시예 2Example 2 78%78% 65%65% 91%91% 82%82% 84%84% 77%77% 실시예 3Example 3 79%79% 66%66% 92%92% 82%82% 85%85% 77%77% 실시예 4Example 4 77%77% 65%65% 88%88% 79%79% 80%80% 72%72% 실시예 5Example 5 77%77% 64%64% 90%90% 80%80% 83%83% 74%74% 실시예 6Example 6 75%75% 62%62% 86%86% 80%80% 76%76% 71%71% 실시예 7Example 7 73%73% 62%62% 86%86% 78%78% 78%78% 72%72% 실시예 8Example 8 76%76% 60%60% 84%84% 73%73% 78%78% 70%70% 실시예 9Example 9 73%73% 61%61% 84%84% 75%75% 74%74% 69%69% 실시예 10Example 10 74%74% 60%60% 83%83% 74%74% 75%75% 68%68% 실시예 11Example 11 74%74% 61%61% 83%83% 75%75% 73%73% 69%69% 실시예 12Example 12 76%76% 63%63% 86%86% 80%80% 77%77% 71%71% 실시예 13Example 13 75%75% 63%63% 86%86% 79%79% 76%76% 70%70% 실시예 14Example 14 75%75% 63%63% 85%85% 80%80% 77%77% 70%70% 실시예 15Example 15 75%75% 62%62% 84%84% 76%76% 77%77% 72%72% 실시예 16Example 16 74%74% 61%61% 82%82% 77%77% 75%75% 69%69% 실시예 17Example 17 76%76% 62%62% 83%83% 77%77% 77%77% 71%71% 실시예 18Example 18 74%74% 60%60% 83%83% 76%76% 75%75% 67%67% 실시예 19Example 19 73%73% 60%60% 84%84% 76%76% 74%74% 66%66% 실시예 20Example 20 75%75% 61%61% 84%84% 77%77% 76%76% 68%68% 비교예 1Comparative Example 1 60%60% 63%63% 53%53% 44%44% 45%45% 39%39% 비교예 2Comparative Example 2 69%69% 63%63% 83%83% 77%77% 72%72% 66%66%

상기 표 3을 살펴보면, 실시예 1 내지 20의 전해액 첨가제를 포함하는 이차전지는 비교예 1 및 2의 전해액 첨가제를 포함하는 경우와 비교하여, 저온 및 고온에서의 용량 및 출력 유지율이 우수하게 나타났고, 고온에서 8주 경과 후에도 용량 및 출력 유지율이 우수하게 유지된 것을 확인할 수 있었다. 특히, 화학식 1 내지 4의 화합물을 모두 포함하는 경우는 모두 포함하지 않는 경우에 비해 보다 우수한 결과를 나타내었다. As shown in Table 3, the secondary batteries including the electrolyte additives of Examples 1 to 20 exhibited excellent capacity and output retention at low temperature and high temperature as compared with the case of containing the electrolyte additives of Comparative Examples 1 and 2 , It was confirmed that the capacity and the output retention ratio remained excellent even after 8 weeks at high temperature. In particular, the case where all of the compounds represented by the formulas (1) to (4) were included was more excellent than the case where all of them were not included.

또한, 화학식 1 내지 4의 화합물 중 1종 이상의 화합물과 화학식 5 내지 9의 화합물 중 1종 이상의 화합물을 적정 비율로 혼합하여 사용하는 경우 전지의 저온 및 고온에서의 특성이 동시에 개선된 것을 확인할 수 있었다. Further, it was confirmed that the characteristics of the battery at low temperature and high temperature were simultaneously improved when one or more compounds of the general formulas (1) to (4) and one or more compounds of the general formulas (5) to (9) .

특히, 실시예 1 내지 5(화학식 1 내지 4의 화합물을 모두 포함하고, 사이클릭 설페이트 또는 사이클릭 설파이트가 첨가된 경우)와 비교예 2(화학식 1 내지 4의 화합물을 모두 포함하고, 사이클릭 설페이트 및 사이클릭 설파이트가 첨가되지 않은 경우)를 비교해보면, 실시예 1 내지 5의 경우 저온 및 고온에서 모든 성능이 우수하게 나타났다. 이에, 사이클릭 설페이트 또는 사이클릭 설파이트는 화학식 1 내지 4의 화합물들의 특성을 저하시키지 않으면서 저온 및 고온에서의 성능을 향상시킬 수 있음을 알 수 있다. In particular, Examples 1 to 5 (when all the compounds of Formulas 1 to 4 were included and cyclic sulfate or cyclic sulfite was added) and Comparative Example 2 (including all the compounds of Formulas 1 to 4, Sulfate and cyclic sulfite were not added), the performance of Examples 1 to 5 was excellent at low temperature and high temperature. Thus, it can be seen that cyclic sulfates or cyclic sulfites can improve performance at low and high temperatures without deteriorating the properties of the compounds of formulas (1) to (4).

Claims (7)

(a-1) 하기 화학식 1 내지 4로 표시되는 화합물 중에서 선택된 1종 이상의 화합물; 및
(a-2) 하기 화학식 5 내지 9로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 이차전지용 전해액 첨가제;
(b) 비수계 용매; 및
(c) 리튬염을 포함하는, 이차전지용 전해액:
[화학식 1] [화학식 2] [화학식 3] [화학식 4]
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031

[화학식 5] [화학식 6] [화학식 7] [화학식 8] [화학식 9]
Figure pat00032
Figure pat00033
Figure pat00034
Figure pat00035
Figure pat00036
(a-1) at least one compound selected from compounds represented by the following general formulas (1) to (4); And
(a-2) an electrolyte additive for a secondary battery comprising at least one compound selected from compounds represented by the following formulas (5) to (9);
(b) non-aqueous solvent; And
(c) an electrolytic solution for a secondary battery comprising a lithium salt:
[Chemical Formula 1] < EMI ID =
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031

[Chemical Formula 6] [Chemical Formula 7] [Chemical Formula 8] [Chemical Formula 9]
Figure pat00032
Figure pat00033
Figure pat00034
Figure pat00035
Figure pat00036
제1항에 있어서,
상기 비수계 용매는 디에틸 카보네이트(diethyl carbonate; DEC), 에틸메틸 카보네이트(ethylmethyl carbonate; EMC), 디메틸 카보네이트(dimethyl carbonate; DMC), 디프로필 카보네이트(dipropyl carbonate; DPC), 메틸프로필 카보네이트(methylpropyl carbonate; MPC), 에틸프로필 카보네이트(ethylpropyl carbonate; EPC), 에틸렌 카보네이트(ethylene carbonate; EC), 프로필렌 카보네이트(propylene carbonate; PC), 부틸렌 카보네이트(butylene carbonate; BC), 및 감마-부티로락톤(gamma-butyrolactone)으로 이루어진 군으로부터 선택된 1종 이상인, 이차전지용 전해액.
The method according to claim 1,
The non-aqueous solvent may be selected from the group consisting of diethyl carbonate (DEC), ethylmethyl carbonate (EMC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and gamma-butyrolactone -butyrolactone). < / RTI >
제2항에 있어서,
상기 비수계 용매가 디에틸 카보네이트, 에틸메틸 카보네이트, 디메틸 카보네이트, 디프로필 카보네이트, 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택된 1종 이상의 선형 카보네이트계 용매, 및
에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 및 감마-부티로락톤으로 이루어진 군으로부터 선택된 1종 이상의 환형 카보네이트계 용매를 포함하는, 이차전지용 전해액.
3. The method of claim 2,
Wherein the non-aqueous solvent is at least one linear carbonate solvent selected from the group consisting of diethyl carbonate, ethyl methyl carbonate, dimethyl carbonate, dipropyl carbonate, methylpropyl carbonate and ethylpropyl carbonate, and
And at least one cyclic carbonate-based solvent selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, and gamma-butyrolactone.
제1항에 있어서,
상기 리튬염이 LiPF6, LiBF4, LiBF6, LiSO3CF3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiN(SO2F)2, LiSbF6, LiAsF6, LiClO4, LiN(SO2F)2 및 LiC(CF3SO2)3으로 이루어진 군으로부터 선택된 1종 이상을 포함하는, 이차전지용 전해액.
The method according to claim 1,
The lithium salt LiPF 6, LiBF 4, LiBF 6 , LiSO 3 CF 3, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, LiN (SO 2 F) 2, LiSbF 6, LiAsF 6 , LiClO 4 , LiN (SO 2 F) 2, and LiC (CF 3 SO 2 ) 3 .
제1항에 있어서,
상기 전해액이 상기 전해액 첨가제를 상기 전해액 총 중량을 기준으로 0.1 내지 10 중량% 포함하는, 이차전지용 전해액.
The method according to claim 1,
Wherein the electrolytic solution contains the electrolyte additive in an amount of 0.1 to 10 wt% based on the total weight of the electrolytic solution.
제1항에 있어서,
상기 전해액이 상기 리튬염을 상기 비수계 용매 1 리터를 기준으로 0.05 내지 5.0 몰 포함하는, 이차전지용 전해액.
The method according to claim 1,
Wherein the electrolyte contains 0.05 to 5.0 moles of the lithium salt based on 1 liter of the non-aqueous solvent.
제1항 내지 제6항 중 어느 한 항의 이차전지용 전해액을 포함하는, 이차전지.A secondary battery comprising an electrolyte solution for a secondary battery according to any one of claims 1 to 6.
KR1020170075633A 2017-06-15 2017-06-15 Electrolyte for secondary battery and secondary battery comprising same Active KR102492766B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170075633A KR102492766B1 (en) 2017-06-15 2017-06-15 Electrolyte for secondary battery and secondary battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170075633A KR102492766B1 (en) 2017-06-15 2017-06-15 Electrolyte for secondary battery and secondary battery comprising same

Publications (2)

Publication Number Publication Date
KR20180136655A true KR20180136655A (en) 2018-12-26
KR102492766B1 KR102492766B1 (en) 2023-01-26

Family

ID=65006520

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170075633A Active KR102492766B1 (en) 2017-06-15 2017-06-15 Electrolyte for secondary battery and secondary battery comprising same

Country Status (1)

Country Link
KR (1) KR102492766B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190329A (en) * 2019-05-20 2019-08-30 惠州市豪鹏科技有限公司 The application of the bis- -1,3,2- dioxazole thiophene -2,2- dioxide of 4,4- and electrolyte, lithium ion battery
CN112400249A (en) * 2020-03-24 2021-02-23 宁德新能源科技有限公司 Electrolyte and electrochemical device
WO2022042372A1 (en) * 2020-08-31 2022-03-03 深圳新宙邦科技股份有限公司 Lithium ion battery
WO2022042373A1 (en) * 2020-08-31 2022-03-03 深圳新宙邦科技股份有限公司 Lithium ion battery
US20220158242A1 (en) * 2019-08-06 2022-05-19 Zhuhai Cosmx Battery Co., Ltd. Electrolyte and preparation method thereof and lithium ion battery
WO2022158749A1 (en) * 2021-01-21 2022-07-28 삼성에스디아이주식회사 Additive for electrolyte of lithium battery, organic electrolyte comprising same and lithium battery comprising electrolyte
WO2022158715A1 (en) * 2021-01-25 2022-07-28 삼성에스디아이주식회사 Electrolyte for lithium battery and lithium battery comprising same
CN115692842A (en) * 2021-07-31 2023-02-03 宁德时代新能源科技股份有限公司 Secondary batteries, battery modules, battery packs and electrical devices
WO2024109206A1 (en) * 2022-11-21 2024-05-30 广州天赐高新材料股份有限公司 Non-aqueous electrolyte solution and secondary battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151623A (en) 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Nonaqueous secondary battery
JP3439085B2 (en) 1997-08-21 2003-08-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP3760540B2 (en) 1996-12-25 2006-03-29 三菱化学株式会社 Electrolyte for lithium secondary battery
US20110223476A1 (en) 2010-03-11 2011-09-15 Hitachi, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
KR20130031551A (en) 2011-09-21 2013-03-29 동국대학교 산학협력단 Flavonoids inhibiting sars-corona virus activity, pharmaceutically acceptable derivatives and salts thereof, composition and health functional food for treating or preventing sars containing the same
KR20130043221A (en) 2010-10-22 2013-04-29 미쓰이 가가쿠 가부시키가이샤 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
WO2014068805A1 (en) * 2012-10-29 2014-05-08 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
KR20170039369A (en) * 2015-10-01 2017-04-11 에스케이케미칼주식회사 Electrolyte additives for secondary battery and secondary battery comprising same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760540B2 (en) 1996-12-25 2006-03-29 三菱化学株式会社 Electrolyte for lithium secondary battery
JP3439085B2 (en) 1997-08-21 2003-08-25 三洋電機株式会社 Non-aqueous electrolyte secondary battery
JP2003151623A (en) 2001-11-14 2003-05-23 Japan Storage Battery Co Ltd Nonaqueous secondary battery
US20110223476A1 (en) 2010-03-11 2011-09-15 Hitachi, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
KR20130043221A (en) 2010-10-22 2013-04-29 미쓰이 가가쿠 가부시키가이샤 Cyclic sulfate compound, non-aqueous electrolyte solution containing same, and lithium secondary battery
KR20130031551A (en) 2011-09-21 2013-03-29 동국대학교 산학협력단 Flavonoids inhibiting sars-corona virus activity, pharmaceutically acceptable derivatives and salts thereof, composition and health functional food for treating or preventing sars containing the same
WO2014068805A1 (en) * 2012-10-29 2014-05-08 株式会社Gsユアサ Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
KR20170039369A (en) * 2015-10-01 2017-04-11 에스케이케미칼주식회사 Electrolyte additives for secondary battery and secondary battery comprising same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190329A (en) * 2019-05-20 2019-08-30 惠州市豪鹏科技有限公司 The application of the bis- -1,3,2- dioxazole thiophene -2,2- dioxide of 4,4- and electrolyte, lithium ion battery
US20220158242A1 (en) * 2019-08-06 2022-05-19 Zhuhai Cosmx Battery Co., Ltd. Electrolyte and preparation method thereof and lithium ion battery
CN112400249A (en) * 2020-03-24 2021-02-23 宁德新能源科技有限公司 Electrolyte and electrochemical device
WO2022042372A1 (en) * 2020-08-31 2022-03-03 深圳新宙邦科技股份有限公司 Lithium ion battery
WO2022042373A1 (en) * 2020-08-31 2022-03-03 深圳新宙邦科技股份有限公司 Lithium ion battery
WO2022158749A1 (en) * 2021-01-21 2022-07-28 삼성에스디아이주식회사 Additive for electrolyte of lithium battery, organic electrolyte comprising same and lithium battery comprising electrolyte
WO2022158715A1 (en) * 2021-01-25 2022-07-28 삼성에스디아이주식회사 Electrolyte for lithium battery and lithium battery comprising same
JP2024503912A (en) * 2021-01-25 2024-01-29 三星エスディアイ株式会社 Electrolyte for lithium batteries and lithium batteries containing the same
CN115692842A (en) * 2021-07-31 2023-02-03 宁德时代新能源科技股份有限公司 Secondary batteries, battery modules, battery packs and electrical devices
WO2023010927A1 (en) * 2021-07-31 2023-02-09 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack, and power-consuming apparatus
CN115692842B (en) * 2021-07-31 2023-11-14 宁德时代新能源科技股份有限公司 Secondary battery, battery module, battery pack, and power consumption device
WO2024109206A1 (en) * 2022-11-21 2024-05-30 广州天赐高新材料股份有限公司 Non-aqueous electrolyte solution and secondary battery

Also Published As

Publication number Publication date
KR102492766B1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
KR102492766B1 (en) Electrolyte for secondary battery and secondary battery comprising same
KR102661978B1 (en) Electrolyte for secondary battery and secondary battery comprising same
KR102510110B1 (en) Electrolyte additive for secondary battery, and electrolyte and secondary battery comprising same
KR101537142B1 (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
KR101212203B1 (en) Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
KR101608844B1 (en) Non-aqueous electrolyte secondary battery and method for producing a non-aqueous electrolyte secondary battery
JP2019536239A (en) Electrolyte additive and non-aqueous electrolyte for lithium secondary battery containing the same
KR102684992B1 (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR101581780B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
KR101901886B1 (en) Electrolyte for secondary battery and secondary battery containing the same
KR102582754B1 (en) Electrolyte additives for secondary battery, electrolyte and secondary battery comprising same
KR20210001837A (en) Electrolyte Solution Additive, Electrolyte Solution For Battery And Secondary Battery Comprising The Same
KR20180020226A (en) Lithium-ion battery electrolyte with reduced impedance increase
US20220328878A1 (en) Non-Aqueous Electrolyte Solution and Energy Device
KR102276403B1 (en) Electrolyte for secondary battery and secondary battery comprising same
KR20180057944A (en) Electrolyte for secondary battery and secondary battery comprising same
KR101736771B1 (en) Nonaqueous Electrolyte for secondary battery and secondary battery containing the same
KR20180049341A (en) Electrolyte and lithium secondary battery comprising the same
KR20220000784A (en) Electrolyte Solution Additive, Electrolyte Solution For Battery And Secondary Battery Comprising The Same
KR20220077394A (en) Electrolyte for Secondary Battery and Lithium Secondary Battery Containing the Same
KR102537722B1 (en) Electrolyte Solution And Secondary Battery Comprising The Same
KR20150030853A (en) Electrolytes having a Excellent Charge-Discharge Characteristics at low-temperature and Lithium Secondary Battery using the Same
KR20200095190A (en) Electrolyte Composition and Secondary Battery Using the Same
KR20190003015A (en) Electrolyte for secondary battery and secondary battery comprising the same
KR20180075996A (en) Electrolyte for secondary battery and secondary battery comprising same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170615

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20171219

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200423

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20170615

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20220127

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20220728

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20221230

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20230120

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20230120

End annual number: 3

Start annual number: 1

PG1601 Publication of registration