[go: up one dir, main page]

KR20180129333A - catalysts for silylation, their preparation and their use for preparing silylated compounds - Google Patents

catalysts for silylation, their preparation and their use for preparing silylated compounds Download PDF

Info

Publication number
KR20180129333A
KR20180129333A KR1020170065203A KR20170065203A KR20180129333A KR 20180129333 A KR20180129333 A KR 20180129333A KR 1020170065203 A KR1020170065203 A KR 1020170065203A KR 20170065203 A KR20170065203 A KR 20170065203A KR 20180129333 A KR20180129333 A KR 20180129333A
Authority
KR
South Korea
Prior art keywords
compound
alkyl
formula
aryl
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020170065203A
Other languages
Korean (ko)
Inventor
장석복
박세훈
김동욱
Original Assignee
기초과학연구원
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기초과학연구원, 한국과학기술원 filed Critical 기초과학연구원
Priority to KR1020170065203A priority Critical patent/KR20180129333A/en
Publication of KR20180129333A publication Critical patent/KR20180129333A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • B01J31/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • B01J31/146Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron of boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1876Preparation; Treatments not provided for in C07F7/20 by reactions involving the formation of Si-C linkages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 다양한 작용기를 가지는 화합물의 실릴화에 사용되는 히이드로실릴화 촉매, 이의 제조방법 및 이를 이용하는 실릴화된 화합물의 제조방법에 관한 것으로, 보다 상세하게는 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및 유기붕소화합물을 포함하며, 상기 탄소구조체와 유기붕소화합물은 π-π결합으로 연결된 실릴화 촉매, 이의 제조방법 및 이를 이용하는 실릴화된 화합물의 제조방법을 제공한다.The present invention relates to a hydrosilylation catalyst used for silylation of compounds having various functional groups, a process for producing the same, and a process for producing a silylated compound using the same, and more particularly, to a process for producing a silylated compound using carbon nanotubes, Wherein the carbon structure is one or more selected from nanohair, fullerene, carbon nanocone, carbon nanohorn, carbon nanorod, activated carbon, graphite, artificial graphite, graphene, graphite, and graphene nanoplatelets. And an organoboron compound, wherein the carbon structure and the organoboron compound are connected in a π-π bond, a process for producing the silylation catalyst, and a process for producing a silylated compound using the same.

Description

실릴화 촉매, 이의 제조방법 및 이를 이용하는 실릴화된 화합물의 제조방법{catalysts for silylation, their preparation and their use for preparing silylated compounds}TECHNICAL FIELD The present invention relates to a silylation catalyst, a method for preparing the same, and a method for preparing a silylated compound using the silylation catalyst,

본 발명은 실릴화 촉매, 이의 제조방법 및 이를 이용하는 실릴화된 화합물의 제조방법에 관한 것으로, 상세하게는 다양한 작용기를 우수한 선택성 및 수율로 실릴화 시킬 수 있는 실릴화 촉매, 이의 제조방법 및 이를 이용하는 실릴화된 화합물의 제조방법에 관한 것이다.The present invention relates to a silylation catalyst, a method for producing the same, and a method for preparing a silylated compound using the silylation catalyst. More specifically, the present invention relates to a silylation catalyst capable of silylating various functional groups with excellent selectivity and yield, To a process for preparing a silylated compound.

전이금속 촉매를 이용하는 하이드로실릴화는 카보닐, 이민 및 올레핀과 같은 다양한 불포화 작용기의 환원성 전환에서 매우 편리하고 효율적임은 이미 알려져 있다.It is already known that hydrosilylation using transition metal catalysts is very convenient and efficient in reducing conversion of various unsaturated functionalities such as carbonyls, imines and olefins.

촉매를 이용하는 하이드로실릴화는 편리하고 온화한 조건하에서 반응이 진행될 수 있으며, 반응성 범위 및 생성물 선택성이 높아 다양한 하이드로실란과 함께 사용될 수 있으며, 하이드로실릴화된 생성물의 실리콘 모체는 이후 반응의 작용기로 매우 유용하게 사용할 수 있다는 점에서 일반적인 수소화 방법과는 확연히 구별되는 특유의 장점을 가진다.The hydrosilylation using a catalyst can be carried out under convenient and mild conditions and can be used with various hydrosilanes due to its high reactivity range and product selectivity, and the silicon matrix of the hydrosilylated product is very useful as a functional group And can be used in a variety of ways, and has distinctive advantages distinct from conventional hydrogenation methods.

실질적으로, 하이드로실릴화는 화학 산업의 균일 촉매분야에서 가장 큰 규모의 응용산업 중 하나이며, 유기 합성, 제약 화학 및 재료 과학까지 광범위한 화학 분야에 다양하게 사용되고 있다.Substantially, hydrosilylation is one of the largest application industries in the field of homogeneous catalysts in the chemical industry, and is used extensively in a wide range of chemical applications, from organic synthesis, pharmaceutical chemistry and materials science.

그러나, 균일한 하이드로실릴화와 관련한 효과적인 촉매는 주로 Pt, Pd, Ru 및 Rh를 갖는 귀금속 화합물에 의존한다. 이러한 촉매의 가장 큰 단점은 고가인 귀금속 화합물을 사용하면서도 하이드로실릴화 촉매 환원 공정 후에 재사용 할 수 없다는 점이다.However, effective catalysts related to homogeneous hydrosilylation depend mainly on noble metal compounds with Pt, Pd, Ru and Rh. The main disadvantage of these catalysts is that they can not be reused after the hydrosilylation catalytic reduction process, while using expensive noble metal compounds.

따라서 종래의 고가의 귀금속 화합물을 사용하지 않으면서 효과적이고 회수하여 재사용이 가능한 하이드로실릴화 촉매의 개발에 대한 요구가 계속되고 있는 실정이다. Therefore, there is a continuing need for the development of a hydrosilylation catalyst which can be effectively used, recovered and reused without using expensive noble metal compounds.

구체적으로 담지 하이드로실릴화 촉매에 대한 수많은 보고가 알려져 있지만, 이러한 불균일 촉매는 고정화를 위한 귀금속 화합물의 사용, 분자 예비 촉매의 다단계 예비기능화, 및 촉매 반응 동안 고정화된 분자가 촉매로부터 쉽게 침출 및/또는 분해되거나, 재활용이 불가능한 점 등의 다양한 문제점을 가지고 있어 실용성이 떨어진다.Although a number of reports on supported hydrosilylation catalysts are known in particular, such heterogeneous catalysts have the disadvantage that the use of noble metal compounds for immobilization, multistage pre-functionalization of molecular pre-catalysts, and that the immobilized molecules are easily leached from the catalyst during the catalysis and / It is disadvantageous in that it is disadvantageous in that it is disassembled or can not be recycled.

한편, 트리스(펜타플루오로페닐)보란[B(C6F5)3] 및 관련 루이스 산성 유사체는 알켄, 카보닐, 이민, 에테르 및 알콜의 환원성 실릴화에서 효과적인 촉매 성능을 가지고 있다.On the other hand, tris (pentafluorophenyl) borane [B (C 6 F 5 ) 3 ] and related Lewis acid analogs have effective catalytic performance in reducing silylation of alkenes, carbonyls, imines, ethers and alcohols.

그러나, B(C6F5)3-촉매화된 하이드로실릴화는 종종 부피가 작은 실란이 사용되는 경우 낮은 작용기 내성(functional-group tolerance)을 나타내어 모두 환원생성물만이 제조된다. 예를 들어, B(C6F5)3 촉매 하에서 케톤 및 에스테르PhSiH3, Et2SiH2와 같은 과량의 하이드로실란와 반응하여 탈산소화되어 상응하는 알칸 및 실록산의 혼합물이 주생성물로 제조된다. 환원반응에서 이러한 낮은 작용기 내성은 다기능기를 함유하는 화합물의 선택성이 낮아 이러한 촉매는 극히 한정된 용도로 사용될 수 밖에 없다.However, B (C 6 F 5 ) 3 -catalyzed hydrosilylation often exhibits low functional-group tolerance when small volume silanes are used, so that only the reduction products are all produced. For example, a ketone and an ester are reacted with an excess of hydrosilane, such as PhSiH 3 , Et 2 SiH 2 , under B (C 6 F 5 ) 3 catalyst to produce a mixture of the corresponding alkane and siloxane as the main product. This low functionality tolerance in the reduction reaction is due to the low selectivity of the compound containing the multifunctional group and such catalysts can only be used for very limited applications.

따라서 환원성(하이드로)실릴화를 위한 효과적이면서도 선택성이 높은 효율적인 촉매에 대한 연구가 필요한 실정이다.Therefore, it is necessary to study an efficient and highly efficient catalyst for reducing (hydro) silylation.

Chem. Commun., 2016, 52, 10478--10481Chem. Commun., 2016, 52, 10478--10481

본 발명자들은 상기와 같은 문제점을 해결하고자 노력하던 중 탄소체와 유기분자 π- 스태킹 상호 작용에 주목하여 탄소체와 붕소화합물이π-π결합하여 제조된 실릴화 촉매가 화학적 선택성이 높은 동시에 효율적이며 재사용이 가능한 점을 발견하여 본 발명을 완성하였다. The present inventors have made efforts to solve the above-mentioned problems, and have focused on the π-stacking interaction between the carbon material and the organic molecule, and have found that a silylation catalyst produced by π-π bonding of a carbon material and a boron compound has high chemical selectivity The present invention has been completed.

따라서 본 발명은 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및 Accordingly, the present invention provides a process for producing a carbon nanotube, a carbon nanofiber, a carbon nanofiber, a fullerene, a carbon nanocone, a carbon nanohorn, a carbon nanorod, an activated carbon, a graphite, an artificial graphite, graphene nanoplatelets), and / or < RTI ID = 0.0 >

유기붕소화합물을 포함하며,An organic boron compound,

상기 탄소구조체와 상기 유기붕소화합물은 π-π결합으로 연결된 실릴화 촉매 및 이의 제조방법을 제공한다.Wherein the carbon structure and the organoboron compound are connected in a π-π bond, and a method for producing the silylation catalyst.

또한 본 발명은 본 발명의 실릴화 촉매를 이용하는 실릴화된 화합물의 제조방법을 제공한다.The present invention also provides a process for preparing a silylated compound using the silylation catalyst of the present invention.

본 발명은 재사용이 가능하며, 화학적 선택성이 우수한 실릴화 촉매를 제공하는 것으로, 본 발명의 실릴화 촉매는 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및 The present invention provides a silylation catalyst which is reusable and has excellent chemical selectivity. The silylation catalyst of the present invention can be used as a catalyst for carbonization of carbon nanotubes, carbon nanofibers, carbon nanohair, fullerene, carbon nanocone, carbon nanohorn, carbon Carbon structures selected from the group consisting of nano-rods, activated carbon, graphite, artificial graphite, graphene, graphite, and graphene nanoplatelets;

유기붕소화합물을 포함하며,An organic boron compound,

상기 탄소구조체와 상기 유기붕소화합물은 π-π결합으로 연결된 것을 특징으로 한다.The carbon structure and the organic boron compound are connected by? -N bonds.

또한 본 발명은 본 발명의 실릴화 촉매의 제조방법을 제공하는 것으로, 본 발명의 실릴화 촉매는 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및 유기붕소화합물의 혼합액을 제조하는 단계, 및The present invention also provides a process for preparing a silylation catalyst according to the present invention, wherein the silylation catalyst of the present invention comprises a carbon nanotube, a carbon nanofiber, a carbon nanofiber, a fullerene, a carbon nanocone, A mixture of a carbon structure and an organic boron compound selected from the group consisting of activated carbon, graphite, artificial graphite, graphene, graphite, and graphene nanoplatelets;

상기 혼합액을 여과하여 얻어진 조생성물을 세척 및 건조하여 실릴화 촉매를 제조하는 단계를 포함한다.Filtering the mixed solution, and washing and drying the obtained crude product to prepare a silylation catalyst.

또한 본 발명은 본 발명의 실릴화 촉매를 이용하는 실릴화된 화합물의 제조방법을 제공하는 것으로, 본 발명의 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재하에 The present invention also provides a process for preparing a silylated compound using the silylation catalyst of the present invention, wherein the silylated compound of the present invention is prepared in the presence of the silylation catalyst of the present invention

카르복실산기, 알데히드기 및 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘이상의 작용기를 가지는 화합물과 실릴화합물을 반응시켜 실릴화된 화합물을 제조하는 단계를 포함한다.Reacting a silyl compound with a compound having one or two or more functional groups selected from a carboxylic acid group, an aldehyde group and a ketone group, a hydroxyl group and an epoxide group to prepare a silylated compound.

본 발명의 실릴화 촉매는 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체와 유기붕소화합이 π-π결합으로 연결되어 온화한 조건에서 높은 수율로 실릴화된 생성물을 얻을 수 있으며, 회수하여 여러 번 재사용이 가능해 매우 효율적인 촉매이다.The silylation catalyst of the present invention can be used as a silylation catalyst in the presence of carbon nanotubes, carbon nanofibers, carbon nanohair, fullerene, carbon nanocone, carbon nanohorn, carbon nanorod, activated carbon, graphite, artificial graphite, It is possible to obtain a silylated product in a high yield under mild condition by bonding an organic boron compound with a carbon structure having one or two selected from graphene nanoplatelets as a π-π bond, and recovered and reused many times It is a very efficient catalyst.

또한 본 발명의 실릴화 촉매는 고가의 금속을 사용하지 않고도 촉매 활성이 우수하여 경제적이고 효율적이며, 환원반응에서 높은 작용기 내성을 가져 다기능기를 함유하는 화합물의 화학적 선택성이 매우 높아 의약품, 천연물 등의 중간체 또는 원료물질 합성에 매우 유용하게 사용할 수 있다.In addition, the silylation catalyst of the present invention is excellent in catalytic activity without using an expensive metal and is economical and efficient, and has a high functional group resistance in the reduction reaction. Therefore, the chemical selectivity of a compound containing a multifunctional group is very high, Or can be very useful for synthesis of raw materials.

또한 본 발명의 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매를 사용함으로써 경제적이며, 온화한 조건에서도 선택성이 우수하고 높은 수율로 고순도의 생성물을 얻을 수 있는 매우 효과적인 방법이다.Further, the silylated compound of the present invention is economical by using the silylation catalyst of the present invention, and is a highly effective method for obtaining a product of high purity at a high yield with excellent selectivity under mild conditions.

또한 본 발명의 실릴화된 화합물의 제조방법은 다기능기를 가지는 화합물의 특정한 작용기와만 반응하는 화학적 선택성이 우수하며, 온화한 조건에서도 수율이 높고, 수차례 재사용이 가능한 본 발명의 실릴화 촉매를 사용함으로써 대량생산이 가능하여 상업적으로 이용가능성이 매우 높다.The silylated compound of the present invention can be produced by using the silylation catalyst of the present invention which is excellent in chemical selectivity to react only with a specific functional group of a compound having a multifunctional group and has high yield even under mild conditions and can be reused several times It is possible to mass-produce and is very commercially available.

본 발명은 고가의 금속을 사용하지 않으면서도 촉매 활성이 우수하며, 재사용이 가능하고, 화학적 선택성이 우수한 실릴화 촉매를 제공하는 것으로, 본 발명의 실릴화 촉매는 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및 The present invention provides a silylation catalyst which is superior in catalytic activity, reusable, and excellent in chemical selectivity without using an expensive metal. The silylation catalyst of the present invention includes carbon nanotubes, carbon nanofibers, carbon Wherein the carbon structure is one or more selected from nanohair, fullerene, carbon nanocone, carbon nanohorn, carbon nanorod, activated carbon, graphite, artificial graphite, graphene, graphite, and graphene nanoplatelets. And

유기붕소화합물을 포함하며,An organic boron compound,

상기 탄소구조체와 상기 유기붕소화합물은 π-π결합으로 연결된 것을 특징으로 한다.The carbon structure and the organic boron compound are connected by? -N bonds.

본 발명은 실릴화 촉매는 본 발명의 일 실시예에 따른 탄소구조체와 유기붕소화합물이 비공유결합 구체적으로, π-π스태킹 상호 작용으로 결합된 화합물로, 본 발명의 유기붕소화합물이 탄소구조체의 표면에 π-π스태킹 상호 작용으로 결합하여 우수한 촉매 활성 및 화학적 선택성을 가지며 온화한 조건하에서도 높은 수율로 선택적으로 실릴화된 화합물을 얻을 수 있다.The silylation catalyst according to the present invention is a compound in which a carbon structure and an organic boron compound according to an embodiment of the present invention are specifically bonded by a π-π stacking interaction with a noncovalent bond, and the organoboron compound of the present invention is bonded to the surface With π-π stacking interactions to obtain silylated compounds with high catalytic activity and chemical selectivity and with high yields under mild conditions.

본 발명의 실릴화 촉매는 종래의 개발된 반데르발스(van der Waals)상호 작용을 기반으로 외부 CNT 표면에 고정된 다수의 전이금속착체 및 불포화 관능기의 수소화를 위한 붕소 촉매와는 달리 회수하여 수차례 재사용하여도 활성이 저하되지 않아 매우 경제적이며, 선택성이 높아 다양한 기능기를 가지는 화합물에도 적용하여 원하는 생성물을 높은 수율로 얻을 수 있어 매우 효율적이다.The silylation catalysts of the present invention can be recovered, unlike the boron catalysts for the hydrogenation of a large number of transition metal complexes and unsaturated functional groups fixed on the external CNT surface based on the conventionally developed van der Waals interactions. The activity is not lowered even after the reuse, and it is very economical, and since it has high selectivity, it can be applied to a compound having various functional groups to obtain a desired product in a high yield, which is very efficient.

바람직하게 본 발명의 일 실시예에 따른 탄소구조체는 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상일 수 있으며, 우수한 특성을 가진 촉매로서 유기붕소화합물과 바람직한 조합으로는 탄소나노튜브, 탄소나노섬유 또는 그래핀일 수 있다. Preferably, the carbon structure according to an exemplary embodiment of the present invention may include carbon nanotubes, carbon nanofibers, carbon nanofibers, carbon nanocones, carbon nanofibers, carbon nanorods, activated carbon, graphite, artificial graphite, And graphene nanoplatelets, and may be a carbon nanotube, a carbon nanofiber, or a graphene as a preferable combination with an organic boron compound as a catalyst having excellent characteristics.

바람직하게 본 발명의 실릴화 촉매의 일 실시예에 따른 유기붕소화합물은 실릴화 촉매 총중량에 대하여 0.2 내지 20중량%로 포함될 수 있으나, 보다 바람직하게는 2.0 내지 15중량%로 포함될 수 있다.Preferably, the organic boron compound according to one embodiment of the silylation catalyst of the present invention may be contained in an amount of 0.2 to 20% by weight, and more preferably 2.0 to 15% by weight based on the total weight of the silylation catalyst.

바람직하게 본 발명의 일 실시예에 따른 유기붕소화합물은 B(C6F5)3, PhB(C6F3)2, HOB(C6F5)2 및 Ph2B(C6F5)에서 선택되는 하나 또는 둘 이상일 수 있으며, 촉매의 활성 및 생성물의 선택성 측면에서 좋기로는 B(C6F5)3 및 PhB(C6F3)2에서 선택되는 하나 또는 둘 이상일 수 있다.Preferably, the organoboron compound according to one embodiment of the present invention is B (C 6 F 5 ) 3 , PhB (C 6 F 3 ) 2 , HOB (C 6 F 5 ) 2 And Ph 2 B (C 6 F 5 ). In terms of the activity of the catalyst and the selectivity of the product, it is preferred to use one or more of B (C 6 F 5 ) 3 and PhB (C 6 F 3 ) 2 And may be one or more selected.

우수한 촉매활성 및 화학적 선택성과 재사용성의 측면에서 바람직하게 본 발명의 일 실시예에 따른 실릴화 촉매는 탄소나노튜브와 B(C6F5)3가 π-π결합된 것일 수 있다.In terms of excellent catalytic activity, chemical selectivity and reusability, the silylation catalyst according to one embodiment of the present invention may be one in which carbon nanotubes and B (C 6 F 5 ) 3 are bonded by π-π bonds.

본 발명의 일 실시예에 따른 실릴화 촉매는 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘이상의 작용기를 가지는 화합물의 실릴화, 구체적으로 실릴화 또는 하이드로실릴화에 사용될 수 있다. The silylation catalyst according to an embodiment of the present invention may be prepared by silylation, specifically silylation or hydrolysis of a compound having one or two or more functional groups selected from a carboxylic acid group, an aldehyde group, a ketone group, a hydroxyl group and an epoxide group Can be used for silylation.

또한 본 발명은 본 발명의 실릴화 촉매의 제조방법을 제공하는 것으로, 본 발명의 실릴화 촉매의 제조방법은 탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및 유기붕소화합물의 혼합액을 제조하는 단계, 및The present invention also provides a method for producing the silylation catalyst of the present invention, wherein the method for producing the silylation catalyst of the present invention is a method for producing a silylation catalyst, Preparing a mixed solution of a carbon structure and an organic boron compound which is one or both selected from carbon nanorods, activated carbon, graphite, artificial graphite, graphene, graphite, and graphene nanoplatelets; and

상기 혼합액을 여과하여 얻어진 조생성물을 세척 및 건조하여 실릴화 촉매를 제조하는 단계를 포함한다.Filtering the mixed solution, and washing and drying the obtained crude product to prepare a silylation catalyst.

본 발명의 일 실시예에 따른 실릴화 촉매의 제조방법에서 유기붕소화합물과 탄소구조체는 중량비가 1 : 1 내지 1 : 5일 수 있으며, 바람직하게는 1 : 1.5 내지 1 : 4.5일 수 있다.In the method for preparing a silylation catalyst according to an embodiment of the present invention, the weight ratio of the organic boron compound and the carbon structure may be 1: 1 to 1: 5, and preferably 1: 1.5 to 1: 4.5.

본 발명의 일 실시예에 따른 실릴화 촉매의 제조방법에서 혼합액은 10 내지 35℃에서 8 내지 24시간동안, 바람직하게는 25 내지 35℃에서 12 내지 24시간동안 교반시켜 제조될 수 있다.In the method for producing a silylation catalyst according to an embodiment of the present invention, the mixed solution may be prepared by stirring at 10 to 35 ° C for 8 to 24 hours, preferably at 25 to 35 ° C for 12 to 24 hours.

본 발명의 일 실시예에 따른 실릴화 촉매의 제조방법에서 건조는 40 내지 110℃에서 10 내지 76시간동안, 바람직하게는 60 내지 80℃에서 12 내지 36시간동안 수행될 수 있다.In the method for preparing a silylation catalyst according to an embodiment of the present invention, drying may be performed at 40 to 110 ° C for 10 to 76 hours, preferably at 60 to 80 ° C for 12 to 36 hours.

또한 본 발명은 본 발명의 실릴화 촉매 존재 하에 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘 이상의 작용기를 가지는 화합물과 실릴화합물을 반응시켜 실릴화된 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법을 제공한다.The present invention also relates to a process for producing a silylated compound by reacting a silyl compound with a compound having at least one functional group selected from a carboxylic acid group, an aldehyde group, a ketone group, a hydroxyl group and an epoxide group in the presence of the silylation catalyst of the present invention ≪ / RTI > to produce a silylated compound.

본 발명의 일 실시예에 따른 실릴화 촉매는 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘 이상의 작용기를 가지는 화합물 1몰에 대하여 0.2몰% 내지 0.5몰%로 사용될 수 있으며, 바람직하게 0.3몰% 내지 0.4몰%로 사용될 수 있다.The silylation catalyst according to an embodiment of the present invention may be used in an amount of 0.2 to 0.5 mol per mol of a compound having any one or two or more functional groups selected from a carboxylic acid group, an aldehyde group, a ketone group, a hydroxyl group and an epoxide group %, Preferably 0.3 mol% to 0.4 mol%.

구체적으로 본 발명의 실릴화 촉매는 본 발명에 기재된 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘 이상의 작용기를 가지는 화합물 1몰에 대하여 약1mg 내지 40mg로 사용될 수 있으며, 바람직한 측면에서 5mg 내지 10 mg로 사용될 수 있다.Specifically, the silylation catalyst of the present invention is used in an amount of about 1 mg to 40 mg per mol of the compound having any one or two or more functional groups selected from the carboxylic acid group, aldehyde group, ketone group, hydroxyl group and epoxide group described in the present invention And may be used in a preferred amount of 5 mg to 10 mg.

본 발명에 기재된 몰%는 기준이 되는 화합물 100몰에 대하여 사용한 mol량을 나타낸 것으로 일례로 실릴화 촉매가 0.2몰%로 사용된다는 기재는 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘 이상의 작용기를 가지는 화합물 100몰에 대하여 실릴화 촉매가 0.2몰로 사용됨을 의미한다.The molar amount described in the present invention represents the molar amount used relative to 100 moles of the reference compound. For example, the description that the silylation catalyst is used in an amount of 0.2 mol% is based on a carboxylic acid group, an aldehyde group, a ketone group, Means that the silylation catalyst is used in an amount of 0.2 moles per 100 moles of the compound having any one or two or more functional groups selected from the group consisting of

본 발명의 일 실시예에 따른 실릴화합물은 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘 이상의 작용기를 가지는 화합물 1몰에 대하여 1몰 내지 10몰로 사용될 수 있으며, 바람직하게는 2 내지 4몰로 사용될 수 있다.The silyl compound according to an embodiment of the present invention may be used in an amount of 1 to 10 moles per mole of a compound having any one or two or more functional groups selected from a carboxylic acid group, an aldehyde group, a ketone group, a hydroxyl group and an epoxide group And preferably 2 to 4 moles.

본 발명의 실릴화된 화합물의 제조방법의 일 실시예에 따른 반응은 15 내지 35℃에서 20분 내지 15시간동안 수행될 수 있으며, 바람직하게는 20 내지 25℃에서 10 분 내지 12 시간동안 무용매하에서 수행되거나, 메탄올, 톨루엔, 클로로포름, 클로로벤젠 및 헥산에서 선택되는 하나 또는 둘이상의 용매하에서 수행될 수 있으며, 바람직하게는 클로로포름, 톨루엔 및 헥산에서 선택되는 하나 또는 둘이상의 혼합용매에서 수행될 수 있다.The reaction according to one embodiment of the process for the preparation of the silylated compounds of the present invention can be carried out at 15 to 35 ° C for 20 minutes to 15 hours, preferably at 20 to 25 ° C for 10 minutes to 12 hours, , Or may be carried out in one or more solvents selected from methanol, toluene, chloroform, chlorobenzene and hexane, preferably in a mixed solvent of one or more selected from chloroform, toluene and hexane .

본 발명의 실릴화된 화합물의 제조방법의 일 실시예에 따른 실릴화합물은 하기 화학식 1로 표시될 수 있다.The silyl compound according to one embodiment of the method for producing the silylated compound of the present invention can be represented by the following formula (1).

[화학식1][Chemical Formula 1]

(R1)(R2)(R3)SiH(R 1 ) (R 2 ) (R 3 ) SiH

(상기 화학식 1에서, R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴, 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)Wherein R 1 to R 3 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, (C 6 -C 20) aryl or -OSiH (R 4 ) (R 5 ) And R 4 or R 5 independently from each other are hydrogen, (C 1 -C 20) alkyl or (C 6 -C 20) aryl.

바람직하게 상기 화학식 1에서, R1 내지 R5는 서로 독립적으로, 수소, 메틸, 에틸, 또는 페닐일 수 있다.Preferably, in Formula 1, R 1 to R 5 independently of each other may be hydrogen, methyl, ethyl, or phenyl.

구체적으로 본 발명의 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 3의 화합물을 반응시켜 하기 화학식 2의 화합물을 제조하는 단계를 포함할 수 있다.Specifically, the silylated compound of the present invention can be prepared by reacting the silyl compound of formula (1) with a compound of formula (3) in the presence of a silylation catalyst of the present invention to prepare a compound of formula .

[화학식 2](2)

Figure pat00001
Figure pat00001

[화학식 3](3)

Figure pat00002
Figure pat00002

(상기 화학식 2 및 3에서, (In the above formulas 2 and 3,

A는 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬 또는 (C3-C20)시킬로알킬이며,A is (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) aryl

D는 수소, (C1-C20)알킬, (C6-C20)아릴 또는 (C6-C20)아릴(C1-C20)알킬이며, A의 알킬, 아릴, 아릴알킬 또는 시클로알킬 및 D의 알킬, 아릴 또는 아릴알킬은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 더 치환될 수 있다.)D is hydrogen, (C 1 -C 20) alkyl, (C 6 -C 20) aryl or (C 6 -C 20) aryl (C 1 -C 20) alkyl; A is an alkyl, aryl, arylalkyl or cycloalkyl of A, The arylalkyl may be further substituted with any one or more selected from halogen, nitro, (C1-C20) alkyl, (C1-C20) alkoxy and halo (C1-

본 발명의 일 실시예에 따른 상기 화학식 2 내지 3에서 D가 수소인 알데하이드인 경우 A는 (C1-C20)알킬로 치환되거나 비치환된 (C1-C20)알킬 또는 (C1-C20)알킬로 치환되거나 비치환된 (C6-C20)아릴(C1-C20)알킬일 수 있다.In the general formulas (2) to (3) according to an embodiment of the present invention, when D is an aldehyde having hydrogen, A is substituted with (C1-C20) alkyl or (C6-C20) aryl (C1-C20) alkyl.

본 발명의 일 실시예에 따른 상기 화학식 2 내지 3에서 D가 수소가 아닌 케톤인 경우 A는 (C1-C20)알킬, (C3-C20)시클로알킬 또는 (C6-C20)아릴일 수 있으며, 상기 알킬, 시클로알킬 또는 아릴은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 더 치환될 수 있으며, 구체적으로 상기 화학식 2 내지 3에서 D가 수소가 아닌 케톤인 경우 A는 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 치환되거나 치환되지 않은 페닐, 벤질, 시클로펜틸, 시클로헥실, 프로필, 부틸 또는 펜에틸일 수 있다.In the above formulas 2 to 3 according to an embodiment of the present invention, when D is a non-hydrogen ketone, A may be (C 1 -C 20) alkyl, (C 3 -C 20) cycloalkyl or (C 6 -C 20) Alkyl, cycloalkyl or aryl may be further substituted with at least one of halogen, nitro, (C1-C20) alkyl, (C1-C20) alkoxy and halo (C1- Wherein A is a ketone other than hydrogen when D is a non-hydrogen, the substituent is selected from the group consisting of halogen, nitro, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy and halo Phenyl, benzyl, cyclopentyl, cyclohexyl, propyl, butyl or phenethyl.

보다 구체적으로 본 발명의 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 5의 화합물을 반응시켜 하기 화학식 4의 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법일 수 있다.More specifically, the process for preparing a silylated compound of the present invention comprises reacting a silyl compound of the formula (1) with a compound of the following formula (5) in the presence of a silylation catalyst of the present invention to prepare a compound of the formula May be a method for preparing the compound.

[화학식4][Chemical Formula 4]

Figure pat00003
Figure pat00003

[화학식 5][Chemical Formula 5]

Figure pat00004
Figure pat00004

(상기 화학식 4 및 화학식 5에서,(In the formulas (4) and (5)

R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,

R은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 또는 할로(C1-C20)알킬이며, n은 0 또는 1 내지 5의 정수이며,R is halogen, nitro, (C1-C20) alkyl, (C1-C20) alkoxy or halo (C1-C20) alkyl, n is 0 or an integer from 1 to 5,

R11 내지 R12는 서로 독립적으로 수소 또는 (C1-C20)알킬이며, R 11 to R 12 independently from each other are hydrogen or (C 1 -C 20) alkyl,

R13은 수소, (C1-C20)알킬, (C6-C20)아릴 또는 (C6-C20)아릴(C1-C20)알킬이며, R13의 알킬, 아릴 또는 아릴알킬은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 더 치환될 수 있으며,R 13 is hydrogen, (C1-C20) alkyl, (C6-C20) aryl or (C6-C20) aryl (C1-C20) alkyl, the R 13 alkyl, aryl or aryl alkyl is halogen, nitro, (C1- (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy and halo (C 1 -C 20) alkyl,

p는 0 또는 1 내지 5의 정수이며,p is 0 or an integer of 1 to 5,

q는 1 내지 6의 정수이며, p+q≤6이다.)q is an integer of 1 to 6, and p + q? 6.

바람직하게 본 발명의 실릴화 촉매는 탄소나노튜브와 B(C6F5)3가 π-π결합으로 연결된 것일 수 있으며, 상기 화학식 4 내지 5에서 R13은 수소인 경우 R은 (C1-C20)알킬이며, n은 0 또는 1 내지 5의 정수일 수 있다.Preferably, the silylation catalyst of the present invention may be one in which carbon nanotubes and B (C 6 F 5 ) 3 are connected in a π-π bond. In the above formulas 4 to 5, when R 13 is hydrogen, R is (C 1 -C 20 ) Alkyl, and n may be 0 or an integer of 1 to 5.

바람직하게 본 발명의 실릴화된 화합물의 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 7의 화합물을 반응시켜 하기 화학식 6의 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법일 수 있다. Preferably, the silylated compound of the present invention is prepared by reacting the silyl compound of formula 1 with a compound of formula 7 in the presence of a silylation catalyst to produce a compound of formula 6 May be a manufacturing method.

[화학식 6][Chemical Formula 6]

Figure pat00005
Figure pat00005

[화학식 7](7)

Figure pat00006
Figure pat00006

(화학식 6 및 화학식 7에서,(In the formulas (6) and (7)

R1 내지 R3은 서로 독립적으로, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,R 1 to R 3 are, independently of each other, a (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 are each Independently, hydrogen, (C1-C20) alkyl or (C6-C20)

R은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 또는 할로(C1-C20)알킬이며, s는 0 내지 5의 정수이며,R is halogen, nitro, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy or halo (C 1 -C 20) alkyl, s is an integer from 0 to 5,

p는 s에 따라 달라지며, 0 또는 1 내지 9의 정수이다.) p is 0 or an integer from 1 to 9, depending on s.

본 발명의 일 실시예에 따른 상기 화학식 6 및 7에서 s가 0인 경우 시클로펜틸이며 이에 따라 p는 0 또는 1 내지 4의 정수일 수 있으며, s가 1인 경우 p는 0 또는 1 내지 5의 정수일 수 있고, s가 2인 경우 p는 0 또는 1 내지 6의 정수일 수 있는 것과 같이 p는 s에 따라 달라질 수 있다. P is 0 or an integer of 1 to 4, and when s is 1, p is 0 or an integer of 1 to 5 P may be 0 or an integer from 1 to 6 when s is 2, and p may vary depending on s.

본 발명의 일 실시예에 따른 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 9의 화합물을 반응시켜 하기 화학식 8의 화합물을 제조하는 단계를 포함하여 하기 화학식 8의 화합물의 제조방법일 수 있다.The method for preparing a silylated compound according to an embodiment of the present invention includes the step of reacting the silyl compound of Formula 1 and the compound of Formula 9 in the presence of a silylation catalyst of the present invention to prepare a compound of Formula 8 To obtain a compound of formula (8).

[화학식 8] [Chemical Formula 8]

Figure pat00007
Figure pat00007

[화학식 9][Chemical Formula 9]

Figure pat00008
Figure pat00008

(상기 화학식 8 및 화학식 9에서,(In the above formulas 8 and 9,

R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,

R은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 또는 할로(C1-C20)알킬이며, n은 0 또는 1 내지 5의 정수이며R is selected from the group consisting of halogen, nitro, (C1-C20) alkyl, (C1-C20) alkoxy or halo

R11 내지 R12는 서로 독립적으로 수소 또는 (C1-C20)알킬이며, R 11 to R 12 independently from each other are hydrogen or (C 1 -C 20) alkyl,

p는 0 또는 1 내지 5의 정수이다.) p is 0 or an integer of 1 to 5).

본 발명의 일 실시예에 따른 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 11의 화합물을 반응시켜 하기 화학식 10의 화합물을 제조하는 단계를 포함하는 하기 화학식 10으로 표시되는 실릴화된 화합물의 제조방법일 수 있다.The method for preparing a silylated compound according to an embodiment of the present invention includes the step of reacting a silyl compound of the formula (1) with a compound of the following formula (11) in the presence of a silylation catalyst of the present invention to prepare a compound of the formula To form a silylated compound represented by the following general formula (10).

[화학식 10][Chemical formula 10]

Figure pat00009
Figure pat00009

[화학식 11] (11)

Figure pat00010
Figure pat00010

(상기 화학식 10 내지 11에서,  (In the above formulas 10 to 11,

R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,

R7은 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아릴알킬 또는 (C3-C20)시킬로알킬이며,R 7 is (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) arylalkyl or (C 3 -C 20)

R7의 알킬, 아릴, 아릴알킬 또는 시클로알킬은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 더 치환될 수 있다.)The alkyl, aryl, arylalkyl or cycloalkyl of R 7 may be further substituted with any one or more selected from halogen, nitro, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy and halo (C 1 -C 20) .)

본 발명의 일 실시예에 따른 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 13의 화합물을 반응시켜 하기 화학식 12의 화합물을 제조하는 단계를 포함하는 하기 화학식 12로 표시되는 실릴화된 화합물의 제조방법일 수 있다.The method for preparing a silylated compound according to an embodiment of the present invention includes the step of reacting the silyl compound of the formula (1) with a compound of the following formula (13) in the presence of the silylation catalyst of the present invention to prepare a compound of the formula May be a process for producing a silylated compound represented by the following formula (12).

[화학식 12][Chemical Formula 12]

Figure pat00011
Figure pat00011

[화학식 13] [Chemical Formula 13]

Figure pat00012
Figure pat00012

(상기 화학식 12 내지 13에서, (In the above formulas 12 to 13,

R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,

R8은 (C1-C20)알킬이다.)R < 8 > is (C1-C20) alkyl.

또한 본 발명의 일 실시예에 따른 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 15의 화합물을 반응시켜 하기 화학식 14의 화합물을 제조하는 단계를 포함하는 하기 화학식 14로 표시되는 실릴화된 화합물의 제조방법일 수 있다.The method for preparing a silylated compound according to an embodiment of the present invention includes the steps of reacting the silyl compound of the formula (1) with a compound of the following formula (15) in the presence of a silylation catalyst of the present invention to prepare a compound of the formula May be a process for producing a silylated compound represented by the following general formula (14).

[화학식 14][Chemical Formula 14]

Figure pat00013
Figure pat00013

[화학식 15][Chemical Formula 15]

Figure pat00014
Figure pat00014

(상기 화학식 14 및 화학식 15에서,(In the above formulas 14 and 15,

R1 내지 R3은 서로 독립적으로, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,R 1 to R 3 are, independently of each other, a (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 are each Independently, hydrogen, (C1-C20) alkyl or (C6-C20)

R11 내지 R12는 서로 독립적으로 (C1-C20)알킬이다.)R 11 to R 12 independently of one another are (C 1 -C 20) alkyl.

본 발명의 일 실시예에 따른 실릴화된 화합물의 제조방법은 본 발명의 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 17의 화합물을 반응시켜 하기 화학식 16의 화합물을 제조하는 단계를 포함하는 하기 화학식 16으로 표시되는 실릴화된 화합물의 제조방법일 수 있다.The method for preparing a silylated compound according to an embodiment of the present invention includes the step of reacting the silyl compound of the formula (1) with a compound of the following formula (17) in the presence of a silylation catalyst of the present invention to prepare a compound of the formula May be a process for producing a silylated compound represented by the following formula (16).

[화학식 16][Chemical Formula 16]

Figure pat00015
Figure pat00015

[화학식 17][Chemical Formula 17]

Figure pat00016
Figure pat00016

(상기 화학식 16 및 화학식 17에서,(In the above formulas 16 and 17,

R1 내지 R3은 서로 독립적으로, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,R 1 to R 3 are, independently of each other, a (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 are each Independently, hydrogen, (C1-C20) alkyl or (C6-C20)

R11 은 (C1-C20)알킬이다.)R < 11 > is (C1-C20) alkyl.

본 발명의 실릴화 촉매는 온화한 반응조건에서 다양한 작용기를 가지는 화합물을 고선택성 및 고수율로 실릴화된 화합물을 제조할 수 있다.The silylation catalyst of the present invention can produce silylated compounds with high selectivity and high yields of compounds having various functional groups under mild reaction conditions.

나아가 본 발명의 실릴화 촉매는 선택성이 높아 에스테르기와 반응하지 않아 에스테르기가 실릴화된 생성물은 제조되지 않으며, 알데히드, 케톤, 알코올 및 카르복실기의 실릴화된 생성물만을 얻을 수 있다.Further, the silylation catalyst of the present invention has high selectivity and does not react with the ester group, so that a silylated product of an ester group is not produced, and only a silylated product of an aldehyde, a ketone, an alcohol and a carboxyl group can be obtained.

또한 본 발명의 실릴화 촉매는 실란화합물과 반응하여 탈산소화되어 이에 상응하는 알칸 및 실록산의 혼합물이 아닌 선택성이 높은 실릴화된 화합물을 주생성물로 제조할 수 있어 추후에 진행되는 반응에서 원하는 작용기를 용이하게 도입할 수 있다.In addition, the silylation catalyst of the present invention can be produced as a main product by reacting with a silane compound to deoxidize it to produce a silylated compound having high selectivity, which is not a mixture of an alkane and a siloxane. Can be easily introduced.

본 발명에 기재된 실릴화는 실릴기가 작용기로 도입되는 반응을 의미하는 것으로, 환원성 하이드록실릴화 및 하이드로실릴화를 포함하는 넓은 범위를 의미한다.The silylation described in the present invention means a reaction in which a silyl group is introduced into a functional group, which means a wide range including reducing hydroxyl silylation and hydrosilylation.

본 발명에 기재된 「알킬」, 「알콕시」 및 그 외 「알킬」부분을 포함하는 치환체는 직쇄 또는 분쇄 형태를 모두 포함하며, 1 내지 20개의 탄소원자 바람직하게는 1 내지 10, 보다 바람직하게는 1 내지 7의 탄소원자를 갖는다. The substituents comprising the "alkyl", "alkoxy" and other "alkyl" moieties described in the present invention include both straight-chain or branched forms and include 1 to 20 carbon atoms, preferably 1 to 10, more preferably 1 Lt; / RTI > to 7 carbon atoms.

또한 본 발명에 기재된 「아릴」은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 구체적인 예로 페닐, 나프틸, 비페닐, 안트릴, 인데닐(indenyl), 플루오레닐 등을 포함하지만, 이에 한정되지 않는다. The term " aryl " in the present invention means an organic radical derived from an aromatic hydrocarbon by the removal of one hydrogen, and may be a single or fused ring containing 4 to 7, preferably 5 or 6 ring atoms, A ring system, and a form in which a plurality of aryls are connected by a single bond. Specific examples include, but are not limited to, phenyl, naphthyl, biphenyl, anthryl, indenyl, fluorenyl, and the like.

본 발명에 기재된 할로겐이 치환된 알킬 또는 할로알킬은 알킬에 존재하는 하나이상의 수소가 할로겐으로 치환된 것을 의미하다.The halogen-substituted alkyl or haloalkyl described in this invention means that at least one of the hydrogens present on the alkyl is substituted with a halogen.

본 발명에 기재된 「시클로알킬」은 3 내지 20개 탄소원자를 갖는 비방향족 일환식(monocyclic) 또는 다환식(multicyclic)고리 계를 의미하는 것으로, 일환식 고리는, 비제한적으로, 시클로프로필, 시클로부틸, 시클로펜틸 및 시클로헥실을 포함한다. 다환식 시클로알킬기의 일례는 퍼히드로나프틸, 퍼히드로인데닐 등을 포함하고; 브리지화된 다환식 시클로알킬기는 아다만틸 및 노르보르닐 등을 포함한다.&Quot; Cycloalkyl ", as used herein, refers to a non-aromatic monocyclic or multicyclic ring system having from 3 to 20 carbon atoms, including, but not limited to cyclopropyl, cyclobutyl , Cyclopentyl, and cyclohexyl. Examples of polycyclic cycloalkyl groups include perhydronaphthyl, perhydroindenyl, and the like; Branched polycyclic cycloalkyl groups include adamantyl and norbornyl and the like.

본 발명에 기재된 「치환된」은 기 또는 부분의 구조적 골격에 부착된 하나 이상의 치환기를 갖는 기 또는 부위를 지칭하며, 비제한적으로 언급된 기 또는 구조적 골격에 히드록시기, 할로겐기, 카르복실기, 시아노기, 나이트로기, 옥소(=0), 티오(=S), 트리플루오로메틸기, 알킬기, 할로알콕시기, 알켄일기, 알킨일기, 아릴기, 아릴알킬기, 시클로알킬기, 시클로알킬알킬기, 시클로알켄일기, 아미노기, 알킬아미노기, 디알킬아미노기, 헤테로아릴기, 헤테로시클릴알킬 고리, 헤테로아릴알킬 및 헤테로시클로알킬에서 선택되는 어느 하나이상의 치환기로 치환되는 것을 의미하며, 바람직하게는 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상의 치환기로 치환되는 것을 의미한다.Refers to a group or moiety having one or more substituents attached to the structural or structural skeleton of the moiety or moiety and includes, but is not limited to, a hydroxy group, a halogen group, a carboxyl group, a cyano group, (= O), thio (= S), trifluoromethyl group, alkyl group, haloalkoxy group, alkenyl group, alkynyl group, aryl group, arylalkyl group, cycloalkyl group, cycloalkylalkyl group, cycloalkenyl group, (C1-C4) alkylamino group, an alkylamino group, a dialkylamino group, a heteroaryl group, a heterocyclylalkyl group, a heteroarylalkyl group and a heterocycloalkyl group, (C1-C20) alkyl, (C1-C20) alkoxy and halo (C1-C20) alkyl.

이하, 실시예를 통하여 본 발명의 구성을 보다 구체적으로 설명하지만, 하기의 실시예들은 본 발명에 대한 이해를 돕기 위한 것으로서, 본 발명의 범위가 여기에 국한된 것은 아니다.Hereinafter, the structure of the present invention will be described in more detail with reference to examples. However, the following examples are provided to aid understanding of the present invention, and the scope of the present invention is not limited thereto.

[실시예 1] 실릴화 촉매 B_MWCNT의 제조[Example 1] Production of silylation catalyst B_MWCNT

Figure pat00017
Figure pat00017

세개의 20 mL 바이알에 B(C6F5)3 를 각각 30, 60, 120 mg를 녹인 클로로포름 5.0 mL를 각각 넣고, 여기에 다중벽탄소나노튜브(MWCNT, 200 mg, NanocylTM , NC7000)를 각각 첨가해 25℃에서 18시간동안 교반시켰다. 이후 반응혼합물을 여과하고 클로로포름 20 mL으로 세척한 후 40 내지 100 oC에서 감압하(<0.1 mmHg)에 건조시켜 본 발명의 실릴화 촉매(B_MWCNT)를 제조하였다. 이를 추후 실릴화 촉매로 사용하였다.To the three 20 mL vials into a chloroform 5.0 mL of B (C 6 F 5) 3 dissolved in 30, 60, 120 mg each, respectively, where the multi-walled carbon nanotube (MWCNT, 200 mg, Nanocyl TM, NC7000) on And the mixture was stirred at 25 DEG C for 18 hours. Thereafter, the reaction mixture was filtered, washed with 20 mL of chloroform, and dried at 40 to 100 ° C. under reduced pressure (<0.1 mmHg) to prepare a silylation catalyst (B_MWCNT) of the present invention. This was later used as a silylation catalyst.

[실시예 2] 실릴화 촉매 B_SWCNT의 제조[Example 2] Production of silylation catalyst B_SWCNT

실시예 1에서 MWCNT 대신 단일벽탄소나노튜브(SWeNT®, CG300, Aldrich)를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 B_SWCNT를 제조하였다.B_SWCNT was prepared in the same manner as in Example 1 except that single-walled carbon nanotubes (SWeNT ® , CG300, Aldrich) were used instead of MWCNT in Example 1.

[실시예 3] 실릴화 촉매 B_CNF의 제조[Example 3] Production of silylation catalyst B_CNF

실시예 1 에서 MWCNT 대신 탄소나노섬유(CNF, PR-25-XT-HHT, diameter 130 nm, Aldrich) 를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 B_CNF를 제조하였다.B_CNF was prepared in the same manner as in Example 1, except that carbon nanofibers (CNF, PR-25-XT-HHT, diameter 130 nm, Aldrich) were used instead of MWCNT in Example 1.

[실시예 4] 실릴화 촉매 B_AC의 제조[Example 4] Production of silylation catalyst B_AC

실시예 1 에서 MWCNT 대신 활성탄(AC, DARCO®, 20-40 mesh, Aldrich) 를 사용한 것을 제외하고는 실시예 1과 동일하게 실시하여 실릴화 촉매 B_AC를 제조하였다.A silylation catalyst B_AC was prepared in the same manner as in Example 1, except that activated carbon (AC, DARCO ® , 20-40 mesh, Aldrich) was used instead of MWCNT in Example 1.

[실시예 5 내지 14 및 비교예 1 내지 4] 실릴화 촉매를 이용한 실릴화된 화합물의 제조방법[Examples 5 to 14 and Comparative Examples 1 to 4] Method for producing a silylated compound using a silylation catalyst

Figure pat00018
Figure pat00018

5mL 바이알에 4-메틸 아세토페논 (0.50 mmol) 및 하기 표 1에 기재된 실릴화합물(1 내지 2mmol)을 첨가하고 여기에 하기 표 1에 기재된 실릴화 촉매(1 내지 10mg)를 녹인 용매를 첨가하여 25 내지 55o에서 0.5 내지 12시간동안 교반시켰다. 이후 반응혼합물을 여과하고 여과액을 1H and 13C{1H}NMR으로 분석하였다. 반응조건 및 결과를 하기 표 1에 기재하였다.4-methylacetophenone (0.50 mmol) and the silyl compound (1-2 mmol) shown in the following Table 1 were added to a 5 mL vial, and a solvent in which the silylation catalyst (1 to 10 mg) described in the following Table 1 was dissolved was added to 25 from to 55 o and stirred for 0.5 to 12 hours. The reaction mixture was then filtered and the filtrate was analyzed by 1 H and 13 C { 1 H} NMR. The reaction conditions and results are shown in Table 1 below.

촉매
(mg)
catalyst
(mg)
용매
(mL)
menstruum
(mL)
[Si]H
(equiv)
[Si] H
(equiv)
반응온도
(oC)
Reaction temperature
( o C)
반응시간
(h)
Reaction time
(h)
전환율
(%) b
Conversion Rate
(%) b
2a
(%) b
2a
(%) b
2aa
(%) b
2aa
(%) b
실시예 5Example 5 B_MWCNT
(10)
B_MWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 0.50.5 9898 100100 00
실시예 6Example 6 B_MWCNT
(10)
B_MWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 100100 96
(91) c
96
(91) c
44
실시예 7Example 7 B_MWCNT
(10)
B_MWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) Et3SiH (4)Et 3 SiH (4) 2525 1212 100100 100100 00
실시예 8Example 8 B_MWCNT
(10)
B_MWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) Et2SiH2 (4)Et 2 SiH 2 (4) 2525 1212 100100 9696 44
실시예 9Example 9 B_MWCNT
(10)
B_MWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) TMDS (4)TMDS (4) 2525 1212 100100 9797 33
실시예 10Example 10 B_MWCNT
(10)
B_MWCNT
(10)
toluene (0.5)toluene (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 100100 9797 33
실시예 11Example 11 B_MWCNT
(10)
B_MWCNT
(10)
neatneat Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 100100 100100 00
실시예 12Example 12 B_MWCNT
(2)
B_MWCNT
(2)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (2)Me 2 PhSiH (2) 2525 1212 100100 9797 33
실시예 13Example 13 B_SWCNT
(10)
B_SWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 100100 9595 55
실시예 14Example 14 B_CNF
(10)
B_CNF
(10)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 9898 9999 1One
비교예 1Comparative Example 1 B(C6F5)3
(1)
B (C 6 F 5) 3
(One)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 100100 00 100100
비교예 2 d Comparative Example 2 d B(C6F5)3 (1)+ MWCNT
(10)
B (C 6 F 5) 3 (1) + MWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 100100 00 100100
비교예 3Comparative Example 3 MWCNT
(10)
MWCNT
(10)
CHCl3 (0.5)CHCl 3 (0.5) Me2PhSiH (4)Me 2 PhSiH (4) 2525 1212 00

b는 1H NMR로 계산한 수율이며, c는 ()안은 분리하여 얻어진 수율이고, d는 CHCl3 (0.5 mL)에서 B(C6F5)3 (1 mg) 및 CNT (10 mg)를 혼합하고 3시간동안 교반한 후 Ph Me2SiH 및 1a를 첨가하였다. b is the yield calculated by 1 H NMR, c is the yield obtained by separating (), d is the yield of B (C 6 F 5 ) 3 (1 mg) and CNT (10 mg) in CHCl 3 After mixing and stirring for 3 hours, Ph Me 2 SiH and 1a were added.

표 1에서 보이는 바와 같이 촉매로 유기붕소화합물 또는 CNT를 각각 단독으로 사용하거나, 단순히 유기붕소화합물 및 CNT를 혼합하여 사용한 경우는 2a 화합물이 아닌 탈산소화된 2aa화합물을 얻거나 반응이 진행되지 않았다.As shown in Table 1, when the organoboron compound or CNT was used alone as the catalyst, or when the organoboron compound and CNT were simply mixed, the deacidified 2aa compound not the 2a compound was obtained or the reaction did not proceed.

따라서 본 발명의 실릴화 촉매는 우수한 선택성, 전환율 및 고수율로 실릴화된 화합물을 제조할 수 있음을 알 수 있다.Therefore, it can be seen that the silylated catalyst of the present invention can produce silylated compounds with excellent selectivity, conversion and yield.

[실시예 15 내지 18] 본 발명의 실릴화 촉매를 이용한 실릴화된 화합물의 제조방법[Examples 15 to 18] A method for producing a silylated compound using the silylation catalyst of the present invention

Figure pat00019
Figure pat00019

상기 실시예 5에서 하기 표 2에 기재된 촉매를 사용하고B(C6F5)3 (10 mg), CHCl3 (0.5 mL), 1a (0.5 mmol) 및 PhMe2SiH (2.0 mmol)을 25 oC에서 12시간동안 반응시킨 것을 제외하고는 실시예 5와 동일하게 실시하여 실릴화된 화합물을 제조하였으며, 반응조건 및 결과를 하기 표 2에 기재하였다.The above-described use of the catalyst described in Table 2 in Example 5, and B (C 6 F 5) 3 (10 mg), CHCl 3 (0.5 mL), 1a (0.5 mmol) and PhMe 2 SiH (2.0 mmol) 25 o C for 12 hours to prepare a silylated compound. The reaction conditions and results are shown in Table 2 below.

2a: 1H NMR (600 MHz, CDCl3) δ 7.54 - 7.50 (m, 2H), 7.26 (m, 3H, overlapped with dimethylphenylsilane), 7.15 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.8 Hz, 2H), 4.78 (q, J = 6.3 Hz, 1H), 2.24 (s, 3H), 1.37 (d, J = 6.5 Hz, 3H), 0.30 (s, 3H), 0.25 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 143.3, [138.2 - 127.7] (6C of -SiMe2 Ph), 136.2, 128.8 (2C), 125.3 (2C), 71.0, 26.9, 21.0, [-0.8 - -1.3] (2C of -SiMe 2 Ph).2a: 1 H NMR (600 MHz, CDCl 3) δ 7.54 - 7.50 (m, 2H), 7.26 (m, 3H, overlapped with dimethylphenylsilane), 7.15 (d, J = 7.8 Hz, 2H), 7.02 (d, J = 7.8 Hz, 2H), 4.78 (q, J = 6.3 Hz, 1H), 2.24 (s, 3H), 1.37 (d, J = 6.5 Hz, 3H), 0.30 (s, 3H), 0.25 13 C NMR (150 MHz, CDCl 3) δ 143.3, [138.2 - 127.7] (6C of -SiMe 2 Ph), 136.2, 128.8 (2C), 125.3 (2C), 71.0, 26.9, 21.0, [-0.8 - - 1.3] (2C of -Si Me 2 Ph).

촉매catalyst 흡착된 보란 (wt%) c Adsorbed borane (wt%) c Normalized Adsorption of Borane (wt% g/m2)Normalized Adsorption of Borane (wt% g / m 2 ) Conv. (%) d Conv. (%) d 2a(%):2aa(%) d
2a (%): 2aa (%) d
실시예 15Example 15 B_SWCNTB_SWCNT 15.515.5 0.0200.020 100100 90:1090:10 실시예 16Example 16 B_MWCNTB_MWCNT 88 0.0320.032 100100 96:496: 4 실시예 17Example 17 B_CNFB_CNF 0.50.5 0.0210.021 9898 99:199: 1 실시예 18Example 18 B_ACB_AC 14.414.4 0.0100.010 100100 95:595: 5

c는 ICP-OES로 측정한 값이고, d는 1H NMR로 계산된 수율이다.c is the value measured by ICP-OES, and d is the yield calculated by 1 H NMR.

[실시예 19] {1-(4-Methoxyphenyl)ethoxy}dimethyl(phenyl)silane 의 제조[Example 19] Preparation of {1- (4-Methoxyphenyl) ethoxy} dimethyl (phenyl) silane

Figure pat00020
Figure pat00020

5mL 바이알에 4-메톡시 아세토페논 (0.50 mmol) 및 실릴화합물인 PhSiMe2H(2mmol)을 첨가하고 여기에 B_MWCNT (10 mg)를 녹인 CDCl3 (0.50 mL)를 첨가하여 55oC에서 12시간동안 교반시켰다. 이후 반응혼합물을 여과하고 여과액을 1H and 13C{1H}NMR으로 분석하여 표제 화합물을 얻었다(Crude yield = 84%).12 hours in 5mL vials 4-methoxy acetophenone (0.50 mmol) and a silyl compound, was added to PhSiMe 2 H (2mmol) was added to CDCl 3 (0.50 mL) dissolved B_MWCNT (10 mg) here 55 o C &Lt; / RTI &gt; The reaction mixture was then filtered and the filtrate was analyzed by 1 H and 13 C { 1 H} NMR to give the title compound (Crude yield = 84%).

1H NMR (600 MHz, CDCl3) δ 7.51 (m, 2H), δ 7.30 - 7.24 (m, 3H, overlapped with dimethylphenylsilane), 7.17 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 4.77 (q, J = 6.3 Hz, 1H), 3.63 (s, 3H), 1.37 (d, J = 6.4 Hz, 3H), 0.31 (s, 3H), 0.25 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 158.6, [138.4 - 127.7] (6C of -SiMe2 Ph), 132.9, 126.5 (2C), 113.5 (2C), 70.7, 54.9, 26.8, [-0.8 - -1.3] (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.51 (m, 2H), δ 7.30 - 7.24 (m, 3H, overlapped with dimethylphenylsilane), 7.17 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 4.77 ( q, J = 6.3 Hz, 1H), 3.63 (s, 3H), 1.37 (d, J = 6.4 Hz, 3H), 0.31 (s, 3H), 0.25 (s, 3H) ; 13 C NMR (150 MHz, CDCl 3) δ 158.6, [138.4 - 127.7] (6C of -SiMe 2 Ph), 132.9, 126.5 (2C), 113.5 (2C), 70.7, 54.9, 26.8, [-0.8 - - 1.3] (2C of -Si Me 2 Ph).

[실시예 20] Dimethyl(phenyl) (1-phenylethoxy)silane 의 제조[Example 20] Preparation of dimethyl (phenyl) (1-phenylethoxy) silane

Figure pat00021
Figure pat00021

(Crude yield = 100%) (Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.51 (m, 2H), 7.30 - 7.23 (m, 5H, overlapped with dimethylphenylsilane), 7.20 (t, J = 7.6 Hz, 2H), 7.12 (t, J = 7.3 Hz, 1H), 4.80 (q, J = 6.4 Hz, 1H), 1.38 (d, J = 6.4 Hz, 3H), 0.30 (s, 3H), 0.25 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 146.3, [138.1 - 127.8] (6C of -SiMe2 Ph), 128.1 (2C), 126.9, 125.4 (2C), 71.1, 26.9, [-0.8 - -1.3] (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.51 (m, 2H), 7.30 - 7.23 (m, 5H, overlapped with dimethylphenylsilane), 7.20 (t, J = 7.6 Hz, 2H), 7.12 (t, J = 7.3 Hz, 1H), 4.80 (q, J = 6.4 Hz, 1H), 1.38 (d, J = 6.4 Hz, 3H), 0.30 (s, 3H), 0.25 13 C NMR (150 MHz, CDCl 3) δ 146.3, [138.1 - 127.8] (6C of -SiMe 2 Ph), 128.1 (2C), 126.9, 125.4 (2C), 71.1, 26.9, [-0.8 - -1.3] (2C of -Si Me 2 Ph) .

[실시예 21] {1-(4-Chlorophenyl)ethoxy}dimethyl(phenyl)silane의 제조[Example 21] Preparation of {1- (4-Chlorophenyl) ethoxy} dimethyl (phenyl) silane

Figure pat00022
(Crude yield = 100%)
Figure pat00022
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.52 - 7.45 (m, 2H, overlapped with dimethylphenylsilane), 7.27 (m, 3H, overlapped with dimethylphenylsilane), 7.17 (d, J = 8.5 Hz, 2H), 7.14 (d, J = 8.6 Hz, 2H), 4.75 (q, J = 6.4 Hz, 1H), 1.33 (d, J = 6.4 Hz, 3H), 0.31 (s, 3H), 0.25 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 144.8, [137.8 - 127.8] (6C of -SiMe2 Ph), 132.5, 128.3 (2C), 126.8 (2C), 70.4, 26.8, [-1.0 - -1.4] (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.52 - 7.45 (m, 2H, overlapped with dimethylphenylsilane), 7.27 (m, 3H, overlapped with dimethylphenylsilane), 7.17 (d, J = 8.5 Hz, 2H), 7.14 (d , J = 8.6 Hz, 2H) , 4.75 (q, J = 6.4 Hz, 1H), 1.33 (d, J = 6.4 Hz, 3H), 0.31 (s, 3H), 0.25 (s, 3H); 13 C NMR (150 MHz, CDCl 3) δ 144.8, [137.8 - 127.8] (6C of -SiMe 2 Ph), 132.5, 128.3 (2C), 126.8 (2C), 70.4, 26.8, [-1.0 - -1.4] (2C of -Si Me 2 Ph) .

[실시예 22] Dimethyl(phenyl)[1-{4-(trifluoromethyl)phenyl}ethoxy]silane의 제조[Example 22] Preparation of dimethyl (phenyl) [1- {4- (trifluoromethyl) phenyl} ethoxy] silane

Figure pat00023
(Crude yield = 100%)
Figure pat00023
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.53 - 7.47 (m, 2H, overlapped with dimethylphenylsilane), 7.46 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.26 (m, 3H, overlapped with dimethylphenylsilane), 4.81 (q, J = 6.4 Hz, 1H), 1.34 (d, J = 6.4 Hz, 3H), 0.32 (s, 3H), 0.27 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 150.3, [137.6 - 127.9] (6C of -SiMe2 Ph), 129.21 (q, J = 32.2 Hz), 125.7 (2C), 125.1 (2C, q, J = 3.9 Hz), 124.4 (q, J = 271.8 Hz), 70.6, 26.7, [-1.1 - -1.4] (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.53 - 7.47 (m, 2H, overlapped with dimethylphenylsilane), 7.46 (d, J = 8.0 Hz, 2H), 7.31 (d, J = 8.5 Hz, 2H), 7.26 ( m, 3H, overlapped with dimethylphenylsilane), 4.81 (q, J = 6.4 Hz, 1H), 1.34 (d, J = 6.4 Hz, 3H), 0.32 (s, 3H), 0.27 13 C NMR (150 MHz, CDCl 3) δ 150.3, [137.6 - 127.9] (6C of -SiMe 2 Ph), 129.21 (q, J = 32.2 Hz), 125.7 (2C), 125.1 (2C, q, J = 3.9 Hz), 124.4 (q, J = 271.8 Hz), 70.6, 26.7, [-1.1 - -1.4] (2C of -Si Me 2 Ph).

[실시예 23] Dimethyl{1-(4-nitrophenyl)ethoxy}(phenyl)silane [Example 23] Dimethyl {1- (4-nitrophenyl) ethoxy} (phenyl) silane

Figure pat00024
(Crude yield = 52%)
Figure pat00024
(Crude yield = 52%)

1H NMR (600 MHz, CDCl3) δ 7.90 (d, J = 8.9 Hz, 2H), 7.53 - 7.46 (m, 2H, overlapped with dimethylphenylsilane), 7.34 (d, J = 8.6 Hz, 2H), 7.32 - 7.25 (m, 3H, overlapped with dimethylphenylsilane), 4.85 (q, J = 6.4 Hz, 1H), 1.36 (d, J = 6.4 Hz, 3H), 0.36 (s, 3H), 0.31 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 153.5, 146.8, [139.6 - 127.8] (6C of -SiMe2 Ph), 125.9 (2C), 123.5 (2C), 70.1, 26.5, [-1.3 - -1.5] (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.90 (d, J = 8.9 Hz, 2H), 7.53 - 7.46 (m, 2H, overlapped with dimethylphenylsilane), 7.34 (d, J = 8.6 Hz, 2H), 7.32 - (D, J = 6.4 Hz, 3H), 0.36 (s, 3H), 0.31 (s, 3H); 7.25 (m, 3H, overlapped with dimethylphenylsilane), 4.85 (q, J = 6.4 Hz, 1H). 13 C NMR (150 MHz, CDCl 3) δ 153.5, 146.8, [139.6 - 127.8] (6C of -SiMe 2 Ph), 125.9 (2C), 123.5 (2C), 70.1, 26.5, [-1.3 - -1.5] (2C of -Si Me 2 Ph) .

[실시예 24] Diethyl{(1-phenylpropan-2-yl)oxy}silane 의 제조[Example 24] Preparation of diethyl {(1-phenylpropan-2-yl) oxy} silane

Figure pat00025
(Crude yield = 100%)
Figure pat00025
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.31 (t, J = 7.5 Hz, 2H), 7.24 (d, J = 7.6 Hz, 3H), 4.48 - 4.34 (m, 1H), 4.08 (p, J = 6.0 Hz, 1H), 2.86 (dd, J = 13.4, 7.2 Hz, 1H), 2.75 (dd, J = 13.5, 5.9 Hz, 1H), 1.26 (d, J = 6.2 Hz, 3H), 1.02 (t, J = 7.9 Hz, 3H), 0.94 (t, J = 8.1 Hz, 3H), 0.67 (q, J = 7.5 Hz, 2H), 0.57 (q, J = 7.6 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 139.2, 129.6 (2C), 128.1 (2C), 126.1, 71.8, 46.1, 23.1, [6.6 - 5.3] (4C of -SiEt 2 H). 1 H NMR (600 MHz, CDCl 3) δ 7.31 (t, J = 7.5 Hz, 2H), 7.24 (d, J = 7.6 Hz, 3H), 4.48 - 4.34 (m, 1H), 4.08 (p, J = 6.0 Hz, 1H), 2.86 ( dd, J = 13.4, 7.2 Hz, 1H), 2.75 (dd, J = 13.5, 5.9 Hz, 1H), 1.26 (d, J = 6.2 Hz, 3H), 1.02 (t, J = 7.9 Hz, 3H), 0.94 (t, J = 8.1 Hz, 3H), 0.67 (q, J = 7.5 Hz, 2H), 0.57 (q, J = 7.6 Hz, 2H); 13 C NMR (150 MHz, CDCl 3) δ 139.2, 129.6 ( 2C), 128.1 (2C), 126.1, 71.8, 46.1, 23.1, [6.6 - 5.3] (4C of -Si Et 2 H).

[실시예 25] (Hexan-2-yloxy)dimethyl(phenyl)silane의 제조[Example 25] Preparation of (Hexan-2-yloxy) dimethyl (phenyl) silane

Figure pat00026
(Crude yield = 100%)
Figure pat00026
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.58 (t, J = 4.5 Hz, 2H), 7.38 - 7.23 (m, 3H, overlapped with Me2PhSiH), 3.77 (m, 1H), 1.52 - 1.13 (m, 6H), 1.12 - 1.03 (m, 3H), 0.92 - 0.77 (m, 3H), 0.37 (s, 3H, overlapped with dimethylphenylsilane), 0.32 (s, 3H, overlapped with dimethylphenylsilane); 13C NMR (150 MHz, CDCl3) δ [138.6 - 127.7] (6C of -SiMe2 Ph), 69.0, 39.3, 28.0, 23.7, 22.7, 14.1, [-1.0 - -1.1] (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.58 (t, J = 4.5 Hz, 2H), 7.38 - 7.23 (m, 3H, overlapped with Me 2 PhSiH), 3.77 (m, 1H), 1.52 - 1.13 (m , 6H), 1.12-1.03 (m, 3H), 0.92-0.77 (m, 3H), 0.37 (s, 3H, overlapped with dimethylphenylsilane), 0.32 (s, 3H, overlapped with dimethylphenylsilane); 13 C NMR (150 MHz, CDCl 3) δ [138.6 - 127.7] (6C of -SiMe 2 Ph), 69.0, 39.3, 28.0, 23.7, 22.7, 14.1, [-1.0 - -1.1] (2C of -Si Me 2 Ph).

[실시예 26] 1-(Benzhydryloxy)-1,1,3,3-tetramethyldisiloxane의 제조[Example 26] Production of 1- (Benzhydryloxy) -1,1,3,3-tetramethyldisiloxane

Figure pat00027
(Crude yield = 100%)
Figure pat00027
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.48 (d, J = 7.3 Hz, 4H), 7.38 (t, J = 7.7 Hz, 4H), 7.30 (t, J = 7.4 Hz, 2H), 6.03 (s, 1H), 4.80 (hept, J = 2.8 Hz, 1H), 0.21 - 0.18 (m, 12H); 13C NMR (150 MHz, CDCl3) δ 144.7 (2C), 128.2 (4C), 127.1 (2C), 126.6 (4C), 76.2, [0.5 - -0.6] (4C of -SiMe 2 OSiMe 2 H). 1 H NMR (600 MHz, CDCl 3) δ 7.48 (d, J = 7.3 Hz, 4H), 7.38 (t, J = 7.7 Hz, 4H), 7.30 (t, J = 7.4 Hz, 2H), 6.03 (s , 1H), 4.80 (hept, J = 2.8 Hz, 1H), 0.21-0.18 (m, 12H); 13 C NMR (150 MHz, CDCl 3) δ 144.7 (2C), 128.2 (4C), 127.1 (2C), 126.6 (4C), 76.2, [0.5 - -0.6] (4C of -Si Me 2 OSi Me 2 H ).

[실시예 27] 1-(1,2-diphenylethoxy)-1,1,3,3-tetramethyldisiloxane의 제조[Example 27] Preparation of 1- (1,2-diphenylethoxy) -1,1,3,3-tetramethyldisiloxane

Figure pat00028
(Crude yield = 100%)
Figure pat00028
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.41 - 7.35 (m, 4H), 7.34 - 7.29 (m, 3H), 7.28 - 7.24 (m, 1H), 7.24 - 7.21 (m, 2H), 5.03 (dd, J = 8.1, 5.0 Hz, 1H), 4.69 (m, 1H), 3.10 (dd, J = 13.4, 8.0 Hz, 1H), 3.03 (dd, J = 13.4, 4.9 Hz, 1H), δ 0.14 - 0.11 (m, 6H), -0.01 (s, 3H), -0.06 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 144.6, 138.8, 129.9 (2C), 128.0 (2C), 128.0 (2C), 127.1, 126.2, 126.0 (2C), 76.1, 47.5, [-0.8 - -1.2] (4C of -SiMe 2 OSiMe 2 H). 1 H NMR (600 MHz, CDCl 3) δ 7.41 - 7.35 (m, 4H), 7.34 - 7.29 (m, 3H), 7.28 - 7.24 (m, 1H), 7.24 - 7.21 (m, 2H), 5.03 (dd J = 8.1, 5.0 Hz, 1H), 4.69 (m, 1H), 3.10 (dd, J = 13.4, 8.0 Hz, 1H), 3.03 (dd, J = 13.4, 4.9 Hz, 1H) (m, 6H), -0.01 (s, 3H), -0.06 (s, 3H); 13 C NMR (150 MHz, CDCl 3) δ 144.6, 138.8, 129.9 (2C), 128.0 (2C), 128.0 (2C), 127.1, 126.2, 126.0 (2C), 76.1, 47.5, [-0.8 - -1.2] (4C of -Si Me 2 OSi Me 2 H).

[실시예 28] Triethyl[{(1R,2S)-2-methylcyclopentyl}oxy]silane의 제조[Example 28] Preparation of triethyl [{(1R, 2S) -2-methylcyclopentyl} oxy] silane

Figure pat00029
(Crude yield = 100%)
Figure pat00029
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 4.12 - 4.02 (m, 1H), 1.86 - 1.72 (m, 3H), 1.71 - 1.59 (m, 2H), 1.52 (m, 1H), 1.40 (m, 1H), 1.01 (m, 12H, overlapped with triethylsilane), 0.62 (m, 6H, overlapped with triethylsilane); 13C NMR (150 MHz, CDCl3) δ 76.2, 40.1, 35.2, 30.9, 22.0, 14.1, [6.9 - 5.1] (6C of -SiEt 3 ). 1 H NMR (600 MHz, CDCl 3) δ 4.12 - 4.02 (m, 1H), 1.86 - 1.72 (m, 3H), 1.71 - 1.59 (m, 2H), 1.52 (m, 1H), 1.40 (m, 1H ), 1.01 (m, 12H, overlapped with triethylsilane), 0.62 (m, 6H, overlapped with triethylsilane); 13 C NMR (150 MHz, CDCl 3 )? 76.2, 40.1, 35.2, 30.9, 22.0, 14.1, [6.9-5.1] (6C of -Si Et 3 ).

[실시예 29] [{(1r,4r)-4-(tert-Butyl)cyclohexyl}oxy]triethylsilane의 제조[Example 29] Preparation of [{(1 r , 4 r ) -4- ( tert- Butyl) cyclohexyl} oxy] triethylsilane

Figure pat00030
(Crude yield = 100%)
Figure pat00030
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 4.01 (s, 1H), 1.76 (d, J = 12.8 Hz, 2H), 1.49 (m, 4H), 1.39 (t, J = 13.3 Hz, 2H), 1.00 (m, 10H, overlapped with triethylsilane), 0.88 (s, 9H), 0.62 (q, J = 8.9 Hz, 6H, overlapped with triethylsilane); 13C NMR (150 MHz, CDCl3) δ 66.2, 48.3, 34.5 (2C), 32.6, 27.5 (3C), 21.1 (2C), [6.9 - 5.1] (6C of -SiEt 3 ). 1 H NMR (600 MHz, CDCl 3) δ 4.01 (s, 1H), 1.76 (d, J = 12.8 Hz, 2H), 1.49 (m, 4H), 1.39 (t, J = 13.3 Hz, 2H), 1.00 (m, 10H, overlapped with triethylsilane), 0.88 (s, 9H), 0.62 (q, J = 8.9 Hz, 6H; overlapped with triethylsilane); 13 C NMR (150 MHz, CDCl 3) δ 66.2, 48.3, 34.5 (2C), 32.6, 27.5 (3C), 21.1 (2C), [6.9 - 5.1] (6C of -Si Et 3).

[실시예 30] Triethyl[{(3S)-3-methylcyclohexyl}oxy]silane의 제조[Example 30] Preparation of triethyl [{(3S) -3-methylcyclohexyl} oxy] silane

Figure pat00031
(Crude yield = 100%)
Figure pat00031
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 4.15 - 4.01 (m, 1H), 2.03 - 1.87 (m, 1H), 1.86 - 1.57 (m, 4H), 1.54 - 1.35 (m, 2H), 1.22 - 1.11 (m, 2H), 1.03 (m, 9H, overlapped with triethylsilane), 0.90 (d, J = 6.8 Hz, 3H), 0.65 (m, 6H, overlapped with triethylsilane); 13C NMR (150 MHz, CDCl3) δ 67.2, 42.8, 34.7, 34.0, 26.6, 22.2, 20.3, [6.9 - 5.1] (6C of -SiEt 3 ). 1 H NMR (600 MHz, CDCl 3) δ 4.15 - 4.01 (m, 1H), 2.03 - 1.87 (m, 1H), 1.86 - 1.57 (m, 4H), 1.54 - 1.35 (m, 2H), 1.22 - 1.11 (m, 2H), 1.03 (m, 9H, overlapped with triethylsilane), 0.90 (d, J = 6.8 Hz, 3H), 0.65 (m, 6H, overlapped with triethylsilane); 13 C NMR (150 MHz, CDCl 3) δ 67.2, 42.8, 34.7, 34.0, 26.6, 22.2, 20.3, [6.9 - 5.1] (6C of -Si Et 3).

[실시예 31] Diethyl[{(1S,2S,5R)-2-isopropyl-5-methylcyclohexyl}oxy]silane의 제조[Example 31] Preparation of diethyl [{(1S, 2S, 5R) -2-isopropyl-5-methylcyclohexyl} oxy]

Figure pat00032
(Crude yield = 100%)
Figure pat00032
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 4.49 (m, 1H), 4.13 (s, 1H), 1.88 - 1.75 (m, 2H), 1.72 (m, 1H), 1.64 - 1.54 (m, 2H), 1.41 (qd, J = 12.9, 3.6 Hz, 1H), 1.01 (m, 8H), 0.95 - 0.85 (m, 9H), δ 0.85 - 0.79 (m, 1H), 0.69 (m, 4H, overlapped with diethylsilane); 13C NMR (150 MHz, CDCl3) δ 70.4, 49.2, 42.8, 35.5, 28.9, 25.8, 24.2, 22.4, 21.0, 20.9, [7.0 - 5.6] (4C of -SiEt 2 H). 1 H NMR (600 MHz, CDCl 3) δ 4.49 (m, 1H), 4.13 (s, 1H), 1.88 - 1.75 (m, 2H), 1.72 (m, 1H), 1.64 - 1.54 (m, 2H), (M, 4H, overlapped with diethylsilane), 1.01 (m, 8H), 0.95-0.85 (m, 9H), 1.41 (qd, J = ; 13 C NMR (150 MHz, CDCl 3 )? 70.4, 49.2, 42.8, 35.5, 28.9, 25.8, 24.2, 22.4, 21.0, 20.9, [7.0-5.6] (4C of -Si Et 2 H).

[실시예 32] Dimethyl{(4-methylbenzyl)oxy}(phenyl)silane의 제조[Example 32] Preparation of dimethyl {(4-methylbenzyl) oxy} (phenyl) silane

Figure pat00033
(Crude yield = 100%)
Figure pat00033
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.59 - 7.53 (m, 2H), 7.34 - 7.21 (m, 3H, overlapped with dimethylphenylsilane), 7.14 (d, J = 7.6 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H), 4.60 (s, 2H), 2.23 (s, 3H), 0.35 (s, 6H); 13C NMR (150 MHz, CDCl3) δ 137.8, [137.7 - 127.8] (6C of -SiMe2 Ph), 136.5, 128.9 (2C), 126.6 (2C), 64.9, 21.0, -1.6 (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.59 - 7.53 (m, 2H), 7.34 - 7.21 (m, 3H, overlapped with dimethylphenylsilane), 7.14 (d, J = 7.6 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H), 4.60 (s, 2H), 2.23 (s, 3H), 0.35 (s, 6H); 13 C NMR (150 MHz, CDCl 3) δ 137.8, [137.7 - 127.8] (6C of -SiMe 2 Ph), 136.5, 128.9 (2C), 126.6 (2C), 64.9, 21.0, -1.6 (2C of -Si Me 2 Ph).

[실시예 33] (Benzyloxy)diethylsilane의 제조[Example 33] Preparation of (Benzyloxy) diethylsilane

Figure pat00034
(Crude yield = 100%)
Figure pat00034
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.39 (m, 4H), 7.31 (d, J = 7.1 Hz, 1H), 4.83 (s, 2H), 4.61 (s, 1H), 1.17 - 1.02 (m, 6H, overlapped with diethylsilane), 0.87 - 0.66 (m, 4H, overlapped with diethylsilane); 13C NMR (150 MHz, CDCl3) δ 140.7, 128.2 (2C), 127.2, 126.5 (2C), 66.6, [7.0 - 5.3] (4C of -SiEt 2 H). 1 H NMR (600 MHz, CDCl 3) δ 7.39 (m, 4H), 7.31 (d, J = 7.1 Hz, 1H), 4.83 (s, 2H), 4.61 (s, 1H), 1.17 - 1.02 (m, 6H, overlapped with diethylsilane), 0.87-0.66 (m, 4H, overlapped with diethylsilane); 13 C NMR (150 MHz, CDCl 3) δ 140.7, 128.2 (2C), 127.2, 126.5 (2C), 66.6, [7.0 - 5.3] (4C of -Si Et 2 H).

[실시예 34] Dimethyl(tert-pentyloxy)(phenyl)silane의 제조[Example 34] Preparation of dimethyl ( tert- pentyloxy) (phenyl) silane

Figure pat00035
(Crude yield = 100%)
Figure pat00035
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.59 - 7.55 (m, 2H), 7.27 (m, 3H, overlapped with dimethylphenylsilane), 1.45 (q, J = 7.5 Hz, 2H), 1.15 (s, 6H), 0.87 (t, J = 7.5 Hz, 3H), 0.35 (s, 6H); 13C NMR (150 MHz, CDCl3) δ [140.6 - 127.6] (6C of -SiMe2 Ph), 74.8, 37.4, 29.4 (2C), 8.8, 1.5 (2C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.59 - 7.55 (m, 2H), 7.27 (m, 3H, overlapped with dimethylphenylsilane), 1.45 (q, J = 7.5 Hz, 2H), 1.15 (s, 6H), 0.87 (t, J = 7.5 Hz, 3H), 0.35 (s, 6H); 13 C NMR (150 MHz, CDCl 3) δ [140.6 - 127.6] (6C of -SiMe 2 Ph), 74.8, 37.4, 29.4 (2C), 8.8, 1.5 (2C of -Si Me 2 Ph).

[실시예 35] 1,1,3,3-Tetramethyl-1-phenethoxydisiloxane의 제조[Example 35] Preparation of 1,1,3,3-Tetramethyl-1-phenethoxydisiloxane

Figure pat00036
(Crude yield = 100%)
Figure pat00036
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.32 (t, J = 7.4 Hz, 2H), 7.26 (m, 3H), 4.86 - 4.74 (m, 1H, overlapped with tetramethyldisiloxane), 3.93 (t, J = 7.2 Hz, 2H), 2.92 (t, J = 7.2 Hz, 2H), 0.19 - 0.08 (m, 12H, overlapped with tetramethyldisiloxane); 13C NMR (150 MHz, CDCl3) δ 139.0, 129.1 (2C), 128.3 (2C), 126.2, 63.5, 39.5, [0.8 - -1.3] (4C of -SiMe 2 OSiMe 2 H). 1 H NMR (600 MHz, CDCl 3) δ 7.32 (t, J = 7.4 Hz, 2H), 7.26 (m, 3H), 4.86 - 4.74 (m, 1H, overlapped with tetramethyldisiloxane), 3.93 (t, J = 7.2 Hz, 2H), 2.92 (t, J = 7.2 Hz, 2H), 0.19-0.08 (m, 12H, overlapped with tetramethyldisiloxane); 13 C NMR (150 MHz, CDCl 3) δ 139.0, 129.1 (2C), 128.3 (2C), 126.2, 63.5, 39.5, [0.8 - -1.3] (4C of -Si Me 2 OSi Me 2 H).

[실시예 36] 6-Benzyl-8-{(dimethylsilyl)oxy}-2,4,4,8-tetramethyl-3,5,7-trioxa-2,4,8-trisilanonane의 제조Example 36 Preparation of 6-Benzyl-8 - {(dimethylsilyl) oxy} -2,4,4,8-tetramethyl-3,5,7-trioxa-2,4,8-trisilanonane

Figure pat00037
(Crude yield = 88%)
Figure pat00037
(Crude yield = 88%)

1H NMR (600 MHz, CDCl3) δ 7.35 - 7.17 (m, 5H, overlapped with 1,1,3,3-tetramethyl-1-phenethoxydisiloxane), 5.66 (t, J = 4.9 Hz, 1H), 4.78 (m, 2H, overlapped with tetramethyldisiloxane), 2.98 (d, J = 4.9 Hz, 2H), 0.32 - 0.04 (m, 24H, overlapped with tetramethyldisiloxane); 13C NMR (150 MHz, CDCl3) δ 136.9, 130.0 (2C), 128.0 (2C), 126.3, 94.4, 46.5, [0.4 - -0.7] (8C of -SiMe 2 OSiMe 2 H). 1 H NMR (600 MHz, CDCl 3 )? 7.35-7.17 (m, 5H, overlapped with 1,1,3,3-tetramethyl-1-phenethoxydisiloxane), 5.66 (t, J = 4.9 Hz, 1H), 4.78 m, 2 H, overlapped with tetramethyldisiloxane), 2.98 (d, J = 4.9 Hz, 2H), 0.32-0.04 (m, 24H, overlapped with tetramethyldisiloxane); 13 C NMR (150 MHz, CDCl 3) δ 136.9, 130.0 (2C), 128.0 (2C), 126.3, 94.4, 46.5, [0.4 - -0.7] (8C of -Si Me 2 OSi Me 2 H).

[실시예 37] 2,6-Dimethyl-4-phenethyl-2,6-diphenyl-3,5-dioxa-2,6-disilaheptane의 제조[Example 37] Preparation of 2,6-Dimethyl-4-phenethyl-2,6-diphenyl-3,5-dioxa-2,6-disilaheptane

Figure pat00038
(Crude yield = 98%)
Figure pat00038
(Crude yield = 98%)

1H NMR (600 MHz, CDCl3) δ 7.57 - 7.44 (m, 4H, overlapped with dimethylphenylsilane), 7.31 - 7.22 (m, 6H, overlapped with dimethylphenylsilane), 7.13 (t, J = 7.5 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.98 - 6.93 (m, 2H), 5.14 (t, J = 4.8 Hz, 1H), 2.65 - 2.55 (m, 2H), 1.84 - 1.75 (m, 2H), 0.29 (m, 12H, overlapped with dimethylphenylsilane); 13C NMR (150 MHz, CDCl3) δ 141.8, [137.7 - 127.7] (12C of -SiMe2 Ph), 128.3 (2C), 128.2 (2C), 125.6, 92.9, 41.6, 30.3, [-0.6 - -1.1] (4C of -SiMe 2 Ph). 1 H NMR (600 MHz, CDCl 3) δ 7.57 - 7.44 (m, 4H, overlapped with dimethylphenylsilane), 7.31 - 7.22 (m, 6H, overlapped with dimethylphenylsilane), 7.13 (t, J = 7.5 Hz, 2H), 7.06 (t, J = 7.4 Hz, 1H), 6.98-6.93 (m, 2H), 5.14 (t, J = 4.8 Hz, 1H), 2.65-2.55 0.29 (m, 12H, overlapped with dimethylphenylsilane); 13 C NMR (150 MHz, CDCl 3) δ 141.8, [137.7 - 127.7] (12C of -SiMe 2 Ph), 128.3 (2C), 128.2 (2C), 125.6, 92.9, 41.6, 30.3, [-0.6 - - 1.1] (4C of -Si Me 2 Ph).

[실시예 38] Phenylsilyl acetate의 제조[Example 38] Preparation of phenylsilyl acetate

Figure pat00039
(Crude yield = 100%)
Figure pat00039
(Crude yield = 100%)

1H NMR (600 MHz, CDCl3) δ 7.95 - 7.91 (m, 2H), 7.66 - 7.62 (m, 1H), 7.61 - 7.55 (m, 2H, overlapped with phenylsilane), 5.35 (s, 2H), 2.25 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 171.9, [135.2 - 128.0] (6C of -SiPhH2), 21.9. 1 H NMR (600 MHz, CDCl 3) δ 7.95 - 7.91 (m, 2H), 7.66 - 7.62 (m, 1H), 7.61 - 7.55 (m, 2H, overlapped with phenylsilane), 5.35 (s, 2H), 2.25 (s, 3 H); 13 C NMR (150 MHz, CDCl 3 )? 171.9, [135.2 - 128.0] (6C of - Si Ph H 2 ), 21.9.

[실시예 39] 2,2-dimethyloxirane의 하이드로실릴화 환원[Example 39] Hydrosilylation reduction of 2,2-dimethyloxirane

Figure pat00040
Figure pat00040

(Conversion = 100%)(Conversion = 100%)

1H NMR (600 MHz, CDCl3) δ 4.99 (s, 2H of 2-methylprop-1-ene), 4.78 - 4.74 (m, 1H of 2x and 1H of 2y), 3.42 (d, J = 6.6 Hz, 2H of 2x), 1.77 (m, 1H of 2x), 1.72 (s, 6H of 2-methylprop-1-ene), 1.15 (s, 9H of 2y), 0.90 (d, J = 6.7 Hz, 6H of 2x), 0.26 - 0.05 (m, 12H of 2x and 12H of 2y, overlapped with tetramethyldisiloxane); 13C NMR (150 MHz, CDCl3) δ 144.0 (1C of 2-methylprop-1-ene), 109.8 (1C of 2-methylprop-1-ene), 74.8 (1C of 2y), 69.0 (1C of 2x), 31.9, 30.8 (1C of 2x), 23.2 (2C of 2-methylprop-1-ene), 19.0 (2C of 2x), [0.7 - -1.3] (4C of -SiMe 2 OSiMe 2 H in 2x and 2y). 1 H NMR (600 MHz, CDCl 3) δ 4.99 (s, 2H of 2-methylprop-1-ene), 4.78 - 4.74 (m, 1H of 2x and 1H of 2y), 3.42 (d, J = 6.6 Hz, 2H of 2x), 1.77 (m , 1H of 2x), 1.72 (s, 6H of 2-methylprop-1-ene), 1.15 (s, 9H of 2y), 0.90 (d, J = 6.7 Hz, 6H of 2x ), 0.26-0.05 (m, 12H of 2x and 12H of 2y, overlapped with tetramethyldisiloxane); 13 C NMR (150 MHz, CDCl 3) δ 144.0 (1C of 2-methylprop-1-ene), 109.8 (1C of 2-methylprop-1-ene), 74.8 (1C of 2y), 69.0 (1C of 2x) , 31.9, 30.8 (1C of 2x ), 23.2 (2C of 2-methylprop-1-ene), 19.0 (2C of 2x), [0.7 - -1.3] (4C of -Si Me 2 OSi Me 2 H in 2x and 2y).

[실시예 40] 2-butyloxirane의 하이드로실릴화 환원[Example 40] Hydrosilylation reduction of 2-butyloxirane

Figure pat00041
Figure pat00041

(Conversion = 100%)(Conversion = 100%)

1H NMR (600 MHz, CDCl3) δ 4.75 (m, 1H of 2h and 1H of 2z), 3.90 (m, 1H of 2h), 3.66 (t, J = 6.6 Hz, 2H of 2z), 1.55 (p, J = 6.9 Hz, 2H of 2z), 1.52 - 1.23 (m, 6H of 2h and 6H of 2z), 1.16 (d, J = 6.2 Hz, 3H of 2h), 0.95 - 0.87 (m, 3H of 2h and 3H of 2z), 0.25 - 0.04 (m, 12H of 2h and 12H of 2z, overlapped with tetramethyldisiloxane).; 13C NMR (150 MHz, CDCl3) δ 68.5 (1C of 2h), 62.4 (1C of 2z), 39.4 (1C of 2h), 32.7 (1C of 2z), 31.8 (1C of 2z), 28.2 (1C of 2h), 25.6 (1C of 2z), 23.8 (1C of 2h), 22.8 (1C of 2h), 22.8 (1C of 2z), 14.1 (1C of 2h), 14.0 (1C of 2z), [0.7 - -1.3] (4C of -SiMe 2 OSiMe 2 H in 2h and 2z). 1 H NMR (600 MHz, CDCl 3) δ 4.75 (m, 1H of 2h and 1H of 2z), 3.90 (m, 1H of 2h), 3.66 (t, J = 6.6 Hz, 2H of 2z), 1.55 (p , J = 6.9 Hz, 2H of 2z), 1.52 - 1.23 (m, 6H of 2h and 6H of 2z), 1.16 (d, J = 6.2 Hz, 3H of 2h), 0.95 - 0.87 (m, 3H of 2h and 3H of 2z), 0.25-0.04 (m, 12H of 2h and 12H of 2z, overlapped with tetramethyldisiloxane) .; 13 C NMR (150 MHz, CDCl 3) δ 68.5 (1C of 2h), 62.4 (1C of 2z), 39.4 (1C of 2h), 32.7 (1C of 2z), 31.8 (1C of 2z), 28.2 (1C of (1C of 2h), 14.8 (1C of 2h), 22.8 (1C of 2h), 22.8 ] (4C of -Si Me 2 OSi Me 2 H in 2h and 2z).

[실시예 41] 실릴화 촉매의 선택성[Example 41] Selectivity of silylation catalyst

Figure pat00042
Figure pat00042

5mL 바이알에 4-메틸 아세토페논 (0.25 mmol), 에틸4-메틸벤조에이트(0.25 mmol) 및 실릴화합물인 Me2PhSiH(2mmol)을 첨가하고 여기에 B_MWCNT (10 mg)를 녹인 CDCl3 (0.50 mL)를 첨가하여 25 oC에서 12시간동안 교반시켰다. 이후 반응혼합물을 여과하고 여과액을 1H and 13C{1H}NMR으로 분석하여 표제 화합물을 얻었다.To the 5 mL vial was added 4-methylacetophenone (0.25 mmol), ethyl 4-methylbenzoate (0.25 mmol) and the silyl compound Me 2 PhSiH ( 2 mmol), followed by addition of CDCl 3 ) Was added and stirred at 25 ° C for 12 hours. The reaction mixture was then filtered and the filtrate was analyzed by 1 H and 13 C { 1 H} NMR to give the title compound.

[비교예 5] [Comparative Example 5]

Figure pat00043
Figure pat00043

실시예 41에서 B_MWCNT 대신 B(C6F5)3 0.4몰% 및 Me2PhSiH(1 equiv)를 사용한 것을 제외하고는 실시예 41과 동일하게 실시하여 2a화합물을 제조하였다.Compound 2a was prepared in the same manner as in Example 41, except that 0.4 mol% of B (C6F5) 3 and Me 2 PhSiH (1 equiv) were used in place of B_MWCNT in Example 41.

[실시예 42][Example 42]

Figure pat00044
Figure pat00044

실시예 41에서 출발물질을 4-아세틸페닐 아세테이트 및 Me2PhSiH(4 equiv)를 사용한 것을 제외하고는 실시예 41과 동일하게 실시하여 화합물 2ab를 제조하였다.Compound 2ab was prepared in the same manner as in Example 41, except that 4-acetylphenylacetate and Me 2 PhSiH (4 equiv) were used as starting materials in Example 41.

[실시예 43][Example 43]

Figure pat00045
Figure pat00045

실시예 42에서 출발물질로 3-포밀페닐아세테이트를 사용한 것을 제외하고는 실시예 42과 동일하게 실시하여 화합물 2ac를 제조하였다.Compound 2ac was prepared in the same manner as in Example 42, except that 3-formylphenylacetate was used as the starting material in Example 42.

[실시예 44][Example 44]

Figure pat00046
Figure pat00046

실시예 42에서 출발물질로 5-(메톡시카보닐)펜타노익산을 사용한 것을 제외하고는 실시예 42와 동일하게 실시하여 화합물 2ad를 제조하였다.Compound 2ad was prepared in the same manner as in Example 42, except that 5- (methoxycarbonyl) pentanoic acid was used as the starting material in Example 42.

실시예 41 내지 44 및 비교예 5에서 보이는 바와 같이 본 발명의 실릴화 촉매는 에스테르기와 대비하여 알데히드 또는 케톤을 작용기를 실릴화하는 것을 알 수 있으며, 이로부터 본 발명의 실릴화 촉매의 화학적 선택성이 매우 높은 것을 알 수 있다.As can be seen from Examples 41 to 44 and Comparative Example 5, the silylation catalyst of the present invention shows silylation of an aldehyde or a ketone functional group in comparison with an ester group. From this, it can be seen that the chemical selectivity of the silylation catalyst of the present invention It is very high.

[실시예 45] 본 발명의 실릴화 촉매의 재사용[Example 45] Reuse of the silylation catalyst of the present invention

Figure pat00047
Figure pat00047

5mL 바이알에 4-메틸 아세토페논 (1.5 mmol) 및 실릴화합물인 Me2PhSiH(3.0mmol, 2equiv)을 첨가하고 여기에 하기 표 3에 기재된 촉매인 B_MWCNT 및 B_AC (30 mg)를 녹인 CDCl3 (1.50 mL)를 첨가하여 25 oC에서 12시간동안 교반시켰다. 이후 반응혼합물을 여과하고 여과액을 1H and 13C{1H}NMR으로 분석하였으며, 반응에 사용된 촉매는 회수하였다. 회수된 촉매를 CHCl3 (3 mL) 또는 펜탄(20mL)으로 세척하고 감압하 25 oC에서 6시간동안 건조시켰다. 회수된 촉매는 상기와 동일한 조건으로 1a화합물의 하이드로실릴화 반응에 동일하게 재사용하였다. 12시간동안 하이드로실릴화 반응을 시켜 각 촉매의 전환율이 40%이하로 감소할 때까지 반응을 진행하였으며, 그 결과는 하기 표 3에 나타내었다.To the 5 mL vial was added 4-methylacetophenone (1.5 mmol) and Me 2 PhSiH (3.0 mmol, 2 equiv) as a silyl compound, and CDCl 3 (1.50 g) obtained by dissolving B_MWCNT and B_AC (30 mg) mL) was added and the mixture was stirred at 25 ° C for 12 hours. The reaction mixture was then filtered and the filtrate was analyzed by 1 H and 13 C { 1 H} NMR and the catalyst used in the reaction was recovered. The recovered catalyst was washed with CHCl 3 (3 mL) or pentane (20 mL) and dried at 25 ° C under reduced pressure for 6 hours. The recovered catalyst was similarly reused in the hydrosilylation reaction of the compound 1a under the same conditions as above. The reaction was carried out for 12 hours by the hydrosilylation reaction until the conversion of each catalyst was reduced to 40% or less. The results are shown in Table 3 below.

Figure pat00048
Figure pat00048

표 3에서 보이는 바와 같이 본 발명의 실릴화 촉매는 반응 후 회수하여 재사용하여도 촉매활성이 감소하지 않아 수차례 재사용이 가능하여 매우 경제적이다.As shown in Table 3, the silylation catalyst of the present invention is recovered after the reaction and reused, so that the catalyst activity is not reduced, so that it can be reused several times, which is very economical.

Claims (24)

탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및
유기붕소화합물을 포함하며,
상기 탄소구조체와 상기 유기붕소화합물은 π-π결합으로 연결된 실릴화 촉매.
One selected from carbon nanotubes, carbon nanofibers, carbon nanohair, fullerene, carbon nanocone, carbon nanohorn, carbon nanorod, activated carbon, graphite, artificial graphite, graphene, graphite, Or two-carbon carbon structure and
An organic boron compound,
Wherein the carbon structure and the organoboron compound are connected in a π-π bond.
제 1항에 있어서,
상기 유기붕소화합물은 실릴화 촉매 총중량에 대하여 0.2 내지 20중량%로 포함된 실릴화 촉매.
The method according to claim 1,
Wherein the organic boron compound is contained in an amount of 0.2 to 20% by weight based on the total weight of the silylation catalyst.
제 1항에 있어서,
상기 유기붕소화합물은 B(C6F5)3, HOB(C6F3)2, PhB(C6F5)2 및 Ph2B(C6F5)에서 선택되는 하나 또는 둘 이상인 실릴화 촉매.
The method according to claim 1,
The organic boron compound is B (C 6 F 5) 3 , HOB (C 6 F 3) 2, PhB (C 6 F 5) 2 and Ph 2 B Chemistry silyl least one or two selected from (C 6 F 5) catalyst.
제 1항에 있어서,
상기 실릴화 촉매는 탄소나노튜브와 B(C6F5)3가 π-π결합된 것인 실릴화 촉매.
The method according to claim 1,
Wherein the silylation catalyst is a silylation catalyst in which carbon nanotubes and B (C 6 F 5 ) 3 are bonded by π-π bonds.
제 1항에 있어서,
상기 실릴화 촉매는 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘이상의 작용기를 가지는 화합물의 실릴화에 이용되는 것인 실릴화 촉매.
The method according to claim 1,
Wherein the silylation catalyst is used for silylation of a compound having any one or two or more functional groups selected from a carboxylic acid group, an aldehyde group, a ketone group, a hydroxyl group and an epoxide group.
탄소나노튜브, 탄소나노섬유, 탄소나노헤어, 플러렌, 탄소나노콘, 탄소나노호른, 탄소나노로드, 활성탄소, 흑연, 인조흑연, 그래핀, 그래파이트, 및 그래핀 나노플레이트렛(graphene nanoplatelets)에서 선택되는 어느 하나 또는 둘이상인 탄소구조체 및 유기붕소화합물의 혼합액을 제조하는 단계, 및
상기 혼합액을 여과하여 얻어진 조생성물을 세척 및 건조하여 실릴화 촉매를 제조하는 단계를 포함하는 실릴화 촉매의 제조방법.
Carbon nanotubes, carbon nanofibers, carbon nanofibers, fullerenes, carbon nanocones, carbon nanohorns, carbon nanorods, activated carbon, graphite, artificial graphite, graphene, graphite, and graphene nanoplatelets. Preparing a mixed solution of a carbon structure and an organic boron compound in which one or both of them are selected, and
Filtering the mixed solution, and washing and drying the obtained crude product to prepare a silylation catalyst.
제 6항에 있어서,
상기 유기붕소화합물과 탄소구조체는 중량비가 1: 1 내지 1: 5인 실릴화 촉매의 제조방법.
The method according to claim 6,
Wherein the organoboron compound and the carbon structure are in a weight ratio of 1: 1 to 1: 5.
제 6항에 있어서,
상기 혼합액은 10 내지 35℃에서 8 내지 24시간동안 교반시켜 제조되는 실릴화 촉매의 제조방법.
The method according to claim 6,
Wherein the mixed solution is prepared by stirring at 10 to 35 DEG C for 8 to 24 hours.
제 6항에 있어서,
상기 건조는 40 내지 110℃에서 10 내지 76시간동안 수행되는 실릴화 촉매의 제조방법.
The method according to claim 6,
Wherein the drying is carried out at 40 to 110 DEG C for 10 to 76 hours.
제 1항 내지 제 5항에서 선택되는 어느 한항의 실릴화 촉매 존재 하에
카르복실산기, 알데히드기 및 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘이상의 작용기를 가지는 화합물과 실릴화합물을 반응시켜 실릴화된 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법.
A process for the preparation of a silylation catalyst according to any one of claims 1 to 5
Comprising reacting a silyl compound with a compound having at least one functional group selected from a carboxylic acid group, an aldehyde group and a ketone group, a hydroxyl group and an epoxide group to produce a silylated compound Gt;
제 10항에 있어서,
상기 실릴화 촉매는 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘이상의 작용기를 가지는 화합물 1몰에 대하여 0.2몰% 내지 0.5몰%로 사용되는 실릴화된 화합물의 제조방법.
11. The method of claim 10,
The silylation catalyst is used in an amount of from 0.2 mol% to 0.5 mol% based on 1 mol of the compound having any one or two or more functional groups selected from a carboxylic acid group, an aldehyde group, a ketone group, a hydroxyl group and an epoxide group. &Lt; / RTI &gt;
제 10항에 있어서,
상기 실릴화합물은 카르복실산기, 알데히드기, 케톤기, 하이드록시기 및 에폭사이드기에서 선택되는 어느 하나 또는 둘이상의 작용기를 가지는 화합물 1몰에 대하여 1몰 내지 10몰로 사용되는 실릴화된 화합물의 제조방법.
11. The method of claim 10,
The silyl compound is used in an amount of 1 to 10 moles per 1 mole of a compound having any one or two or more functional groups selected from a carboxylic acid group, an aldehyde group, a ketone group, a hydroxyl group and an epoxide group .
제 10항에 있어서,
상기 반응은 15 내지 35℃에서 10분 내지 12시간동안 수행되는 실릴화된 화합물의 제조방법.
11. The method of claim 10,
Wherein the reaction is carried out at 15 to 35 DEG C for 10 minutes to 12 hours.
제 13항에 있어서,
상기 반응은 무용매하에서 수행되거나, 메탄올, 톨루엔, 클로로포름, 클로로벤젠 및 헥산에서 선택되는 하나 또는 둘 이상의 용매하에서 수행되는 실릴화된 화합물의 제조방법.
14. The method of claim 13,
Wherein the reaction is carried out in the absence of solvent or is carried out in one or more solvents selected from methanol, toluene, chloroform, chlorobenzene and hexane.
제 10항에 있어서,
상기 실릴화합물은 하기 화학식 1로 표시되는 실릴화된 화합물의 제조방법.
[화학식1]
(R1)(R2)(R3)SiH
(상기 화학식 1에서, R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴, 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이다.)
11. The method of claim 10,
Wherein the silyl compound is represented by the following formula (1).
[Chemical Formula 1]
(R 1 ) (R 2 ) (R 3 ) SiH
Wherein R 1 to R 3 are independently of each other hydrogen, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy, (C 6 -C 20) aryl or -OSiH (R 4 ) (R 5 ) And R 4 or R 5 independently from each other are hydrogen, (C 1 -C 20) alkyl or (C 6 -C 20) aryl.
제 15항에 있어서,
상기 화학식 1에서, R1 내지 R5는 서로 독립적으로, 수소, 메틸, 에틸, 또는 페닐인 실릴화된 화합물의 제조방법.
16. The method of claim 15,
Wherein R 1 to R 5 are, independently of each other, hydrogen, methyl, ethyl, or phenyl.
제 10항에 있어서,
상기 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 3의 화합물을 반응시켜 하기 화학식 2의 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법.
[화학식 2]
Figure pat00049

[화학식 3]
Figure pat00050

(상기 화학식 2 및 3에서,
A는 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아릴(C1-C20)알킬 또는 (C3-C20)시킬로알킬이며,
D는 수소, (C1-C20)알킬, (C6-C20)아릴 또는 (C6-C20)아릴(C1-C20)알킬이며, A의 알킬, 아릴, 아릴알킬 또는 시클로알킬 및 D의 알킬, 아릴 또는 아릴알킬은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 더 치환될 수 있다.)
11. The method of claim 10,
Wherein the silylated compound of formula (1) is reacted with a compound of formula (3) in the presence of a silylation catalyst to produce a compound of formula (2).
(2)
Figure pat00049

(3)
Figure pat00050

(In the above formulas 2 and 3,
A is (C1-C20) alkyl, (C6-C20) aryl, (C6-C20) aryl
D is hydrogen, (C 1 -C 20) alkyl, (C 6 -C 20) aryl or (C 6 -C 20) aryl (C 1 -C 20) alkyl; A is an alkyl, aryl, arylalkyl or cycloalkyl of A, The arylalkyl may be further substituted with any one or more selected from halogen, nitro, (C1-C20) alkyl, (C1-C20) alkoxy and halo (C1-
제 10항에 있어서
상기 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 5의 화합물을 반응시켜 하기 화학식 4의 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법.
[화학식4]
Figure pat00051

[화학식 5]
Figure pat00052

(상기 화학식 4 및 화학식 5에서,
R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,
R은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 또는 할로(C1-C20)알킬이며, n은 0 또는 1 내지 5의 정수이며
R11 내지 R12는 서로 독립적으로 수소 또는 (C1-C20)알킬이며,
R13은 수소, (C1-C20)알킬, (C6-C20)아릴 또는 (C6-C20)아릴(C1-C20)알킬이며, R13의 알킬, 아릴 또는 아릴알킬은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 더 치환될 수 있으며,
p는 0 또는 1 내지 5의 정수이며,
q는 1 내지 6의 정수이며, p+q≤6이다.)
The method of claim 10, wherein
Wherein the silylated compound of formula (1) is reacted with a compound of formula (5) in the presence of a silylation catalyst to produce a compound of formula (4).
[Chemical Formula 4]
Figure pat00051

[Chemical Formula 5]
Figure pat00052

(In the formulas (4) and (5)
R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,
R is selected from the group consisting of halogen, nitro, (C1-C20) alkyl, (C1-C20) alkoxy or halo
R 11 to R 12 independently from each other are hydrogen or (C 1 -C 20) alkyl,
R 13 is hydrogen, (C1-C20) alkyl, (C6-C20) aryl or (C6-C20) aryl (C1-C20) alkyl, the R 13 alkyl, aryl or aryl alkyl is halogen, nitro, (C1- (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy and halo (C 1 -C 20) alkyl,
p is 0 or an integer of 1 to 5,
q is an integer of 1 to 6, and p + q? 6.
제 10항에 있어서
상기 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 7의 화합물을 반응시켜 하기 화학식 6의 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법.
[화학식 6]
Figure pat00053

[화학식 7]
Figure pat00054

(화학식 6 및 화학식 7에서,
R1 내지 R3은 서로 독립적으로, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,
R은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 또는 할로(C1-C20)알킬이며, s는 0 내지5의 정수이며,
p는 s에 따라 달라지며, 0 또는 1 내지 9의 정수이다.)
The method of claim 10, wherein
Wherein the silylated compound of formula (1) is reacted with a compound of formula (7) in the presence of a silylation catalyst to produce a compound of formula (6).
[Chemical Formula 6]
Figure pat00053

(7)
Figure pat00054

(In the formulas (6) and (7)
R 1 to R 3 are, independently of each other, a (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 are each Independently, hydrogen, (C1-C20) alkyl or (C6-C20)
R is halogen, nitro, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy or halo (C 1 -C 20) alkyl, s is an integer from 0 to 5,
p is 0 or an integer from 1 to 9, depending on s.
제 10항에 있어서
상기 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 9의 화합물을 반응시켜 하기 화학식 8의 화합물을 제조하는 단계를 포함하는 제조방법.
[화학식 8]
Figure pat00055

[화학식 9]
Figure pat00056

(상기 화학식 8 및 화학식 9에서,
R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,
R은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 또는 할로(C1-C20)알킬이며, n은 0 또는 1 내지 5의 정수이며
R11 내지 R12는 서로 독립적으로 수소 또는 (C1-C20)알킬이며,
p는 0 또는 1 내지 5의 정수이다.)
The method of claim 10, wherein
Wherein the silyl compound of formula (1) is reacted with a compound of formula (9) in the presence of a silylation catalyst to produce a compound of formula (8).
[Chemical Formula 8]
Figure pat00055

[Chemical Formula 9]
Figure pat00056

(In the above formulas 8 and 9,
R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,
R is selected from the group consisting of halogen, nitro, (C1-C20) alkyl, (C1-C20) alkoxy or halo
R 11 to R 12 independently from each other are hydrogen or (C 1 -C 20) alkyl,
p is 0 or an integer of 1 to 5).
제 10항에 있어서,
상기 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 11의 화합물을 반응시켜 하기 화학식 10의 화합물을 제조하는 단계를 포함하는 실릴화된 화합물의 제조방법.
[화학식 10]
Figure pat00057

[화학식 11]
Figure pat00058

(상기 화학식 10 내지 11에서,
R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,
R7은 (C1-C20)알킬, (C6-C20)아릴, (C6-C20)아릴알킬 또는 (C3-C20)시킬로알킬이며,
R7의 알킬, 아릴, 아릴알킬 또는 시클로알킬은 할로겐, 니트로, (C1-C20)알킬, (C1-C20)알콕시 및 할로(C1-C20)알킬에서 선택되는 어느 하나이상으로 더 치환될 수 있다.)
11. The method of claim 10,
Wherein the silylated compound of formula (1) is reacted with a compound of formula (11) in the presence of a silylation catalyst to produce a compound of formula (10).
[Chemical formula 10]
Figure pat00057

(11)
Figure pat00058

(In the above formulas 10 to 11,
R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,
R 7 is (C 1 -C 20) alkyl, (C 6 -C 20) aryl, (C 6 -C 20) arylalkyl or (C 3 -C 20)
The alkyl, aryl, arylalkyl or cycloalkyl of R 7 may be further substituted with any one or more selected from halogen, nitro, (C 1 -C 20) alkyl, (C 1 -C 20) alkoxy and halo (C 1 -C 20) .)
제 10항에 있어서
상기 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 13의 화합물을 반응시켜 하기 화학식 12의 화합물을 제조하는 단계를 포함하는 제조방법.
[화학식 12]
Figure pat00059

[화학식 13]
Figure pat00060

(상기 화학식 12 내지 13에서,
R1 내지 R3은 서로 독립적으로, 수소, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,
R8은 (C1-C20)알킬이다.)
The method of claim 10, wherein
Wherein the silyl compound of formula (1) is reacted with a compound of formula (13) in the presence of a silylation catalyst to produce a compound of formula (12).
[Chemical Formula 12]
Figure pat00059

[Chemical Formula 13]
Figure pat00060

(In the above formulas 12 to 13,
R 1 to R 3 are independently from each other, are hydrogen, (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 Are independently of each other hydrogen, (C1-C20) alkyl or (C6-C20) aryl,
R &lt; 8 &gt; is (C1-C20) alkyl.
제 10항에 있어서
상기 제조방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 15의 화합물을 반응시켜 하기 화학식 14의 화합물을 제조하는 단계를 포함하는 제조방법.
[화학식 14]
Figure pat00061

[화학식 15]
Figure pat00062

(상기 화학식 14 및 화학식 15에서,
R1 내지 R3은 서로 독립적으로, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,
R11 내지 R12는 서로 독립적으로 (C1-C20)알킬이다.)
The method of claim 10, wherein
Wherein the silyl compound of formula (1) is reacted with a compound of formula (15) in the presence of a silylation catalyst to produce a compound of formula (14).
[Chemical Formula 14]
Figure pat00061

[Chemical Formula 15]
Figure pat00062

(In the above formulas 14 and 15,
R 1 to R 3 are, independently of each other, a (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 are each Independently, hydrogen, (C1-C20) alkyl or (C6-C20)
R 11 to R 12 independently of one another are (C 1 -C 20) alkyl.
제 10항에 있어서
상기 방법은 실릴화 촉매 존재 하에 상기 화학식 1의 실릴화합물과 하기 화학식 17의 화합물을 반응시켜 하기 화학식 16의 화합물을 제조하는 단계를 포함하는 제조방법.
[화학식 16]
Figure pat00063

[화학식 17]
Figure pat00064

(상기 화학식 16 및 화학식 17에서,
R1 내지 R3은 서로 독립적으로, (C1-C20)알킬, (C1-C20)알콕시, (C6-C20)아릴 또는 -OSiH(R4)(R5)이며, R4 또는 R5는 서로 독립적으로 수소, (C1-C20)알킬 또는 (C6-C20)아릴이며,
R11 은 (C1-C20)알킬이다.)
The method of claim 10, wherein
The method comprises reacting the silyl compound of formula (1) with a compound of formula (17) in the presence of a silylation catalyst to produce a compound of formula (16).
[Chemical Formula 16]
Figure pat00063

[Chemical Formula 17]
Figure pat00064

(In the above formulas 16 and 17,
R 1 to R 3 are, independently of each other, a (C1-C20) alkyl, (C1-C20) alkoxy, (C6-C20) aryl or -OSiH (R 4) (R 5 ), R 4 or R 5 are each Independently, hydrogen, (C1-C20) alkyl or (C6-C20)
R &lt; 11 &gt; is (C1-C20) alkyl.
KR1020170065203A 2017-05-26 2017-05-26 catalysts for silylation, their preparation and their use for preparing silylated compounds Withdrawn KR20180129333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170065203A KR20180129333A (en) 2017-05-26 2017-05-26 catalysts for silylation, their preparation and their use for preparing silylated compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170065203A KR20180129333A (en) 2017-05-26 2017-05-26 catalysts for silylation, their preparation and their use for preparing silylated compounds

Publications (1)

Publication Number Publication Date
KR20180129333A true KR20180129333A (en) 2018-12-05

Family

ID=64743604

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170065203A Withdrawn KR20180129333A (en) 2017-05-26 2017-05-26 catalysts for silylation, their preparation and their use for preparing silylated compounds

Country Status (1)

Country Link
KR (1) KR20180129333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975107B2 (en) * 2017-03-02 2021-04-13 National Institute Of Advanced Industrial Science And Technology Sequence-controlled oligosiloxane and manufacturing method and oligosiloxane synthesizer therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10975107B2 (en) * 2017-03-02 2021-04-13 National Institute Of Advanced Industrial Science And Technology Sequence-controlled oligosiloxane and manufacturing method and oligosiloxane synthesizer therefor

Similar Documents

Publication Publication Date Title
CN102329332B (en) Organo-aluminum compound
EP2921229A1 (en) Aluminum catalyst
JP5115729B2 (en) Organosilicon compound containing acetoacetate group protected with trialkylsilyl group and process for producing the same
KR20180129333A (en) catalysts for silylation, their preparation and their use for preparing silylated compounds
CN110981900B (en) A kind of method for metal-catalyzed terminal alkene to prepare 1,1-diacetylene compounds
US10737255B2 (en) Water soluble homogeneous catalysts that are recoverable by phase selectivity and host-guest interactions
JP5565554B2 (en) Hydrogen storage material
JP2011518822A (en) Novel 1,4-disilacyclohexane derivative and process for producing the same
JP4542128B2 (en) Norbornane skeleton-containing organosilicon compound and method for producing the same
JP6109604B2 (en) Octahydrobinaphthyl derivative
KR101375141B1 (en) Method for producing alkoxy-substituted 1,2-bissilylethanes
CN113260622B (en) Process for preparing functionalized organosilane compounds
JPH02145590A (en) Novel disilacyclohexane compound and production thereof
JP5215003B2 (en) Oxidation reaction of silane using hydroxyapatite with surface silver immobilized
JP5283984B2 (en) Process for producing transition metal compound
JP2008222568A (en) New chiral salen compound and application thereof
JP4526275B2 (en) Method for producing tetra-substituted phosphonium tetrakisaroyloxyborate and its precursor
JPH05140173A (en) Organosilicon compound and its production
JP4520497B2 (en) Radiation-polymerizable functional group-containing organosilicon compound and method for producing the same
JP2007137850A (en) Phosphorus compound and method for producing the same
JP2008127345A (en) Diphosphine core type amphiphilic dendrimer, process for producing the same, bidentate phosphine ligand and palladium-containing complex compound having a coordination structure thereof
CN107365327A (en) A kind of main chain contains DDSQ and C2Linear copolymer of symmetric double prolineamide structure and its production and use
EP2845857A1 (en) Use of cyclohexa-2,5-dien-1-yl-silanes as precursors for gaseous hydrosilanes
JP2010208975A (en) Method for producing optically active convolutamydine derivative by asymmetric carbonyl-ene reaction
JP2010209030A (en) Method for producing organic-inorganic composite material

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170526

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination