KR20180116511A - Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same - Google Patents
Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same Download PDFInfo
- Publication number
- KR20180116511A KR20180116511A KR1020170048661A KR20170048661A KR20180116511A KR 20180116511 A KR20180116511 A KR 20180116511A KR 1020170048661 A KR1020170048661 A KR 1020170048661A KR 20170048661 A KR20170048661 A KR 20170048661A KR 20180116511 A KR20180116511 A KR 20180116511A
- Authority
- KR
- South Korea
- Prior art keywords
- carbon fiber
- resin composite
- reinforced resin
- composite material
- fiber reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 75
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 74
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 53
- 239000000805 composite resin Substances 0.000 title claims abstract description 30
- 239000004918 carbon fiber reinforced polymer Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 229920005989 resin Polymers 0.000 claims abstract description 30
- 239000011347 resin Substances 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 26
- 239000004412 Bulk moulding compound Substances 0.000 claims abstract description 16
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 13
- 239000002699 waste material Substances 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims abstract description 6
- 239000004744 fabric Substances 0.000 claims description 27
- 239000000835 fiber Substances 0.000 claims description 26
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 24
- 229910052799 carbon Inorganic materials 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 18
- 238000000465 moulding Methods 0.000 claims description 8
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 6
- 238000010030 laminating Methods 0.000 claims description 5
- 229920001567 vinyl ester resin Polymers 0.000 claims description 5
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 239000004640 Melamine resin Substances 0.000 claims description 2
- 229920000877 Melamine resin Polymers 0.000 claims description 2
- 229920000297 Rayon Polymers 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 239000011300 coal pitch Substances 0.000 claims description 2
- 229920005610 lignin Polymers 0.000 claims description 2
- 239000011301 petroleum pitch Substances 0.000 claims description 2
- 239000005011 phenolic resin Substances 0.000 claims description 2
- 239000002964 rayon Substances 0.000 claims description 2
- 238000000227 grinding Methods 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 4
- 239000004760 aramid Substances 0.000 description 3
- 229920006231 aramid fiber Polymers 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 229920002748 Basalt fiber Polymers 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 239000012783 reinforcing fiber Substances 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B11/00—Making preforms
- B29B11/14—Making preforms characterised by structure or composition
- B29B11/16—Making preforms characterised by structure or composition comprising fillers or reinforcement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/04—Reinforcing macromolecular compounds with loose or coherent fibrous material
- C08J5/0405—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
- C08J5/042—Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/24—Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/02—Fibres or whiskers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/04—Disintegrating plastics, e.g. by milling
- B29B2017/0424—Specific disintegrating techniques; devices therefor
- B29B2017/0496—Pyrolysing the materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C45/00—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
- B29C45/0005—Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fibre reinforcements
- B29C2045/001—Bulk moulding compounds [BMC]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
-
- Y02W30/625—
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Reinforced Plastic Materials (AREA)
Abstract
Description
본 발명은 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법, 탄소섬유 강화 수지 복합재 및 성형품에 관한 것이다. The present invention relates to a method for producing a carbon fiber-reinforced resin composite material containing recycled carbon fiber, a carbon fiber-reinforced resin composite material and a molded article.
탄소섬유 강화 플라스틱(carbon fiber reinforced plastic)은, 가볍고, 고강도이며, 내열성과 내식성이 우수하여, 로켓부품, 항공기부품, 자동차부품, 의료용품, 스포츠용품에 널리 사용된다. Carbon fiber reinforced plastic is lightweight, high strength, excellent in heat resistance and corrosion resistance, and is widely used in rocket parts, aircraft parts, automobile parts, medical supplies, sporting goods.
이러한 탄소섬유 강화 플라스틱은, 열경화성 수지 또는 열가소성 수지가 탄소섬유직물에 주입된 후 경화되어 만들어지는데, 탄소섬유 강화 플라스틱은 폐기 처분될 때 주로 소각된다. 탄소섬유 강화 플라스틱이 소각되면 수지는 연소되어 없어지지만, 탄소섬유직물은 남아 환경을 오염시키는 문제가 발생한다.Such carbon fiber reinforced plastics are produced by curing after a thermosetting resin or a thermoplastic resin is injected into a carbon fiber fabric, and carbon fiber reinforced plastics are mainly incinerated when being disposed of. When the carbon fiber reinforced plastic is incinerated, the resin is burned out, but the carbon fiber fabric has a problem of polluting the environment.
이러한 문제점을 해결하기 위하여, 수지를 열분해하여 탄소섬유직물을 회수하고, 회수된 탄소섬유직물을 재활용하는 방법이 널리 개발되고 있다. In order to solve such a problem, a method of recovering a carbon fiber fabric by pyrolyzing the resin and recycling the recovered carbon fiber fabric has been widely developed.
또한, 탄소섬유 강화 플라스틱을 자동차 산업에 적용하기 위해서는 인장강도, 파괴인성 그리고 충격 강도와 같이 우수한 기계적 특성을 가질 뿐만 아니라 재료의 경량화에 대한 요구와 필요성이 증가하고 있다. In addition, in order to apply the carbon fiber-reinforced plastic to the automobile industry, not only have excellent mechanical properties such as tensile strength, fracture toughness and impact strength, but also demands and necessity for weight reduction of materials are increasing.
본 발명은 탄소섬유 강화 플라스틱 폐기물을 활용하는 동시에, 탄소섬유 강화 플라스틱을 자동차 산업에 적용하기 위해 인장강도, 파괴인성 그리고 충격 강도와 같이 우수한 기계적 특성을 갖는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법, 탄소섬유 강화 수지 복합재 및 성형품을 제공하기 위한 것이다. The present invention relates to a carbon fiber reinforced plastic material including recycled carbon fiber, which has excellent mechanical properties such as tensile strength, fracture toughness and impact strength for applying carbon fiber reinforced plastic to the automobile industry while utilizing carbon fiber reinforced plastic waste A method for manufacturing a composite material, a carbon fiber-reinforced resin composite material, and a molded article.
본 발명의 제1양태는 탄소섬유 강화 플라스틱 폐기물을 일정 사이즈로 파쇄하고 수지를 열분해하여 재활용 탄소섬유 조각을 얻는 제1단계; 및 매트릭스로서 열경화성 수지를 상기 재활용 탄소섬유 조각에 함침시켜 벌크 몰딩 컴파운드(bulk molding compound, BMC)를 형성하는 제2단계;를 포함하는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법을 제공한다.A first aspect of the present invention is a method for producing a carbon fiber-reinforced plastic waste, comprising: a first step of crushing a carbon fiber-reinforced plastic waste to a predetermined size and pyrolyzing the resin to obtain a piece of recycled carbon fiber; And a second step of impregnating a piece of the recycled carbon fiber with a thermosetting resin as a matrix to form a bulk molding compound (BMC). The method for producing a carbon fiber- to provide.
본 발명의 제2양태는 제1양태에 따른 제조방법에 의해 제조되어, 함침 수지 내에 존재하는 재활용 탄소섬유 길이가 6 내지 24 mm이고, 재활용 탄소섬유의 비율이 10 내지 60 중량%인, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재를 제공한다.A second aspect of the present invention is a carbon fiber composite material produced by the manufacturing method according to the first aspect, wherein the length of the recycled carbon fiber present in the impregnated resin is 6 to 24 mm and the ratio of the recycled carbon fiber is 10 to 60% Fiber reinforced resin composite material.
본 발명의 제3양태는 제2양태에 따른 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150 ℃ 이상에서 가압하여 열경화성 수지를 누수 또는 배출시킴으로써 건성 원단 또는 단향성 섬유에 열경화성 수지를 함침 및 성형시켜 제조된, 성형품을 제공한다.The third aspect of the present invention is a method for manufacturing a carbon fiber-reinforced resin composite according to the second aspect of the present invention, which comprises laminating a dry fabric or a monofilament fiber on one surface or both surfaces of a carbon fiber- Which is produced by impregnating and molding a thermosetting resin into a thermosetting resin.
본 발명에서 사용되는 용어 "섬유" 는 하나 이상의 모노필라멘트들의 다발로 규정된다. The term "fibers" as used herein is defined as a bundle of one or more monofilaments.
본 발명에서 사용되는 용어 "재활용 탄소섬유직물"은 탄소섬유 강화 플라스틱에서 회수되어 재활용되는 탄소섬유직물을 의미한다.As used herein, the term "recycled carbon fiber fabric" refers to a carbon fiber fabric that is recovered and recycled from carbon fiber reinforced plastics.
본 발명에서 사용되는 용어 "건성 원단(dry fiber fabric)"은 탄소섬유, 유리섬유, 아라미드, 현무암 섬유 등 강화섬유를 사용한 직물을 의미한다.The term "dry fiber fabric " as used in the present invention means a fabric using reinforcing fibers such as carbon fiber, glass fiber, aramid, and basalt fiber.
본 발명에서 사용되는 용어 "단향성 섬유(uni-directional fabric)" 는 라미네이트의 단일 방향으로, 예컨대 부하 방향 또는 워프 방향으로 전체 섬유들 중 적어도 대략 80% 를 포함하는 임의의 섬유를 의미한다. The term "uni-directional fabric " as used herein means any fiber comprising at least about 80% of the total fibers in a single direction of the laminate, e.g., in the direction of the load or warp.
탄소섬유 강화 플라스틱을 자동차 산업 등의 분야에 적용하기 위해 인장강도, 파괴인성 그리고 충격 강도와 같이 기계적 특성을 향상시킬 필요성이 증가하고 있다. 종래에 탄소섬유 강화 플라스틱의 강도 보강을 위해 바인더 화합물이나 접착제를 사용하여 보강재를 부착하였으나, 자동차 산업 등에 적용하기 위해선 강도 개선의 여지가 있었다. 본 발명자들은 재활용 탄소섬유를 사용하는 탄소섬유 강화 수지 복합재를 150 ℃ 이상에서 핫 프레스(hot press) 가압하여 매트릭스의 누수 또는 배출을 이용하여 건성 원단 또는 단향성 섬유를 함침시키며 적층함으로써 인장강도가 놀랍게 향상되는 것을 확인하였다. 본 발명은 이에 기초한 것이다.There is an increasing need to improve mechanical properties such as tensile strength, fracture toughness and impact strength in order to apply carbon fiber-reinforced plastic to fields such as the automobile industry. Conventionally, in order to reinforce the strength of the carbon fiber-reinforced plastic, a reinforcing material is attached using a binder compound or an adhesive. However, there is room for improvement in strength for application to automobile industry. The present inventors have found that when a carbon fiber reinforced resin composite material using recycled carbon fibers is hot press-pressed at a temperature of 150 ° C or more to impregnate and dry a dry or unidirectional fiber using leakage or discharge of a matrix, Respectively. The present invention is based on this.
본 발명에 따른 재활용 탄소섬유를 포함하는 탄소섬유 강화수지의 제조 방법은 크게 탄소섬유 강화 플라스틱 폐기물을 일정 사이즈로 파쇄하고 열분해하여 재활용 탄소섬유를 제조하는 과정과, 이 분쇄분말을 몰딩 컴파운드의 충진제로 첨가하여 벌크 몰딩 컴파운드를 제조하는 과정으로 이루어진다. The method for producing a carbon fiber-reinforced resin containing recycled carbon fibers according to the present invention comprises the steps of: preparing carbon fiber-reinforced plastic waste by crushing and pyrolyzing carbon fiber-reinforced plastic waste to a predetermined size to produce recycled carbon fiber; Thereby preparing a bulk molding compound.
탄소섬유는, 폴리아크릴로니트릴(PAN)계 탄소섬유, 석유·석탄 피치계 탄소섬유, 레이온계 탄소섬유, 셀룰로오스계 탄소섬유, 리그닌계 탄소섬유, 페놀계 탄소섬유, 기상(氣相) 성장계 탄소섬유 등일 수 있으나, 이에 제한되지는 않는다.The carbon fibers may be selected from the group consisting of polyacrylonitrile (PAN) carbon fibers, petroleum and coal pitch carbon fibers, rayon carbon fibers, cellulose carbon fibers, lignin carbon fibers, phenolic carbon fibers, Carbon fiber, and the like.
그 중에서도, 폴리아크릴로니트릴(PAN)계 탄소섬유를 사용하는 것이 바람직하고, 인장 탄성률은 100GPa 이상 600GPa 이하의 범위 내인 것이 바람직하고, 200GPa 이상 500GPa 이하의 범위 내인 것이 보다 바람직하다. 또한, 인장강도는 2000MPa 이상 10000MPa 이하의 범위 내인 것이 바람직하고, 3000MPa 이상 8000MPa 이하의 범위 내인 것이 보다 바람직하다.Of these, polyacrylonitrile (PAN) based carbon fibers are preferably used, and the tensile elastic modulus is preferably within a range from 100 GPa to 600 GPa, more preferably from 200 GPa to 500 GPa. The tensile strength is preferably within a range from 2000 MPa to 10000 MPa, and more preferably within a range from 3000 MPa to 8000 MPa.
제1단계에서 얻은 재활용 탄소섬유 조각은 길이가 6 내지 24 mm 인 것이 바람직하다. The piece of recycled carbon fiber obtained in the first step preferably has a length of 6 to 24 mm.
재활용 탄소섬유 길이가 24 mm를 초과하면 분쇄에 필요한 에너지 소모량이 증대되고, 점도 상승이 심하여 몰딩 컴파운드 제조시 함침이 곤란할 수 있으며 표면 확보가 미흡할 수 있으며, 6 mm 미만이면 인장 강도가 감소할 수 있다.If the length of the recycled carbon fiber exceeds 24 mm, the energy consumption required for grinding is increased, the viscosity is increased, the impregnation may be difficult and the surface hardness may be insufficient when the molding compound is manufactured. have.
본 발명은 열가소성 수지보다 높은 강도/물성 및 높은 퀄리티의 표면을 얻을 수 있도록 매트릭스로서 열경화성 수지를 사용한다. 열경화성 수지는 비닐 에스테르 수지, 에폭시 수지, 페놀 수지, 멜라민 수지 등일 수 있으나, 이에 제한되지는 않는다. 바람직하게는 비닐 에스테르 수지, 에폭시 수지 등을 사용할 수 있다. The present invention uses a thermosetting resin as a matrix to obtain a surface of high strength / physical properties and high quality than a thermoplastic resin. The thermosetting resin may be, but not limited to, a vinyl ester resin, an epoxy resin, a phenol resin, a melamine resin and the like. Vinyl ester resin, epoxy resin and the like can be preferably used.
상기 벌크 몰딩 컴파운드에 포함된 열경화성 수지의 함량은 40 내지 90 중량%인 것이 바람직하다. 40 중량% 미만이면 몰딩 컴파운드 제조시 함침이 곤란할 수 있고, 90 중량%를 초과하면 몰딩 컴파운드의 강도가 감소할 수 있다.The content of the thermosetting resin contained in the bulk molding compound is preferably 40 to 90% by weight. If it is less than 40% by weight, it may be difficult to impregnate the molding compound, and if it exceeds 90% by weight, the strength of the molding compound may be decreased.
벌크 몰딩 컴파운드는 충전재, 보강제, 안료, 개질제, 연쇄이동제, 다관능아크릴계 단량체, 안정제, 내부이형제, 중합개시제, 중합촉진제 등을 일정 비율로 섞어 제조될 수 있다. 벌크 몰딩 컴파운드의 제조는 주로 오픈 니더(open kneader)에서 행한다.The bulk molding compound may be prepared by mixing a certain proportion of filler, reinforcing agent, pigment, modifier, chain transfer agent, polyfunctional acrylic monomer, stabilizer, internal mold release agent, polymerization initiator, polymerization promoter and the like. Bulk molding compounds are mainly produced in open kneaders.
상기 벌크 몰딩 컴파운드에 포함된 재활용 탄소섬유의 함량은 10 내지 60 중량%인 것이 바람직하다. 10 중량% 미만이면 몰딩 컴파운드의 강도가 감소할 수 있고, 60 중량%를 초과하면 몰딩 컴파운드 제조시 함침이 곤란할 수 있다.The content of the recycled carbon fibers contained in the bulk molding compound is preferably 10 to 60% by weight. If the amount is less than 10% by weight, the strength of the molding compound may be decreased. If the amount is more than 60% by weight, impregnation of the molding compound may be difficult.
본 발명에서, 건성 원단(dry fiber fabric)은 탄소섬유, 유리섬유, 아라미드, 현무암 섬유 등 강화섬유를 사용한 직물일 수 있다. In the present invention, the dry fiber fabric may be a fabric using reinforcing fibers such as carbon fiber, glass fiber, aramid, and basalt fiber.
바람직하게는, 건성 원단은 건조 탄소 섬유 원단(dry carbon fiber fabric)일 수 있다.Preferably, the dry fabric may be a dry carbon fiber fabric.
본 발명에서, 단향성 섬유는 유리, 탄소, 아라미드 및 폴리머 섬유들 중 적어도 하나로부터 형성되는 섬유 다발일 수 있다.In the present invention, the unidirectional fiber can be a fiber bundle formed from at least one of glass, carbon, aramid and polymer fibers.
바람직한 구체예에서 단향성 섬유는, 형성 방향으로 위치된 섬유 다발들의 길이방향 축선과 실질적으로 평행한 정렬로 위치된 복수의 유리 섬유 다발들을 포함하는 것일 수 있다. 단향성 섬유는 성형품의 강도와 모듈러스 모두를 증가시킬 수 있다. 이에 비해, 두 개의 수직 방향들 (즉, 워프 및 웨프트)로 제직된 섬유 다발들로 형성된 워프 및 웨프트 섬유는 섬유의 강도에 기여하지 않으면서 섬유의 중량만 증가시킬 수 있다. In a preferred embodiment, the unidirectional fibers may comprise a plurality of glass fiber bundles positioned in an alignment substantially parallel to the longitudinal axis of the fiber bundles positioned in the forming direction. Unidirectional fibers can increase both strength and modulus of a molded article. On the other hand, warp and weft fibers formed of two bundles of fibers woven in two vertical directions (i.e., warp and weft) can only increase the weight of the fibers without contributing to the strength of the fibers.
본 발명의 제3양태는 제2양태에 따른 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150 ℃ 이상에서 가압하여 열경화성 수지를 누수 또는 배출시킴으로써 건성 원단 또는 단향성 섬유를 함침 및 성형시켜 제조된, 성형품을 제공한다.The third aspect of the present invention is a method for manufacturing a carbon fiber-reinforced resin composite according to the second aspect of the present invention, which comprises laminating a dry fabric or a monofilament fiber on one surface or both surfaces of a carbon fiber- And a molded product obtained by impregnating and shaping the oriented fiber.
상기 성형품은, 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후, 150~250℃의 온도, 100~300kgf/cm2의 압력, 3~5분 Cycle의 조건으로 가압하여 제조될 수 있다.The molded product is obtained by laminating a dry fabric or a monofilament fiber on one surface or both surfaces of a carbon fiber-reinforced resin composite material, pressing the surface of the carbon fiber-reinforced resin composite material under conditions of a temperature of 150 to 250 ° C, a pressure of 100 to 300 kgf / cm 2 , .
상기 가압은 핫 프레스(hot press)로 성형하는 과정일 수 있다. The pressurization may be a process of molding by hot press.
상기 가압은 10 내지 50체적%의 압축율로 압축하는 과정일 수 있다. The pressurization may be a process of compressing at a compression rate of 10 to 50% by volume.
본 발명은 탄소섬유 강화 수지 복합재의 보강을 위해 보강재를 부착하는 방법으로 바인더 화합물이나 접착제의 사용없이, 탄소섬유 강화 수지 복합재의 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적층한 후 가압하여 열경화성 수지를 누수 또는 배출시켜 건성 원단 또는 단향성 섬유에 열경화성 수지를 함침시킴과 동시에 성형하여 건성원단 또는 단향성 섬유가 부착된 탄소섬유 강화 수지 복합재 성형품을 제조하는 것을 특징으로 한다.The present invention relates to a method for attaching a reinforcing material to reinforce a carbon fiber reinforced resin composite material, which comprises laminating a dry fabric or a monofilament fiber on one side or both sides of a carbon fiber reinforced resin composite material without using a binder compound or an adhesive, Is leaked or discharged to impregnate and dry the dry fabric or the monofilament fiber with a thermosetting resin to produce a molded product of a carbon fiber-reinforced resin composite having a dry fabric or monofilament fiber adhered thereto.
본 발명의 성형품은 일면 또는 양면에 건성 원단 또는 단향성 섬유를 적용함으로써 표면(surface)을 확보할 수 있다. 표면 확보를 통하여 고품질의 제품을 얻을 수 있어, 본 발명의 성형품은 자동차 부품 중 외관, 장식(데코) 부품에 사용 가능해질 수 있다.The molded article of the present invention can secure a surface by applying a dry fabric or a monofilament fiber to one or both surfaces. Quality products can be obtained through securing the surface, and the molded article of the present invention can be used for appearance and decorative (decorative) parts of automobile parts.
본 발명은 기존 방식인 프리프레그(Prepreg(Wet Carbon fiber Fabric)) 투입 방식에 비교하여 간단한 방식으로 탄소섬유 강화 수지 복합재의 강도를 증가시킬 수 있는 구조 보강 방식일 수 있다. 프리프레그 투입 방식은 프리프레그를 원하는 두께/강도에 맞추어 적층 진공/고온/고압의 조건에서 성형하는 방식이다.The present invention can be a structure reinforcing method that can increase the strength of a carbon fiber reinforced resin composite material by a simple method as compared with a conventional filling method (Prepreg (Wet Carbon Fiber Fabric)). The prepreg injection method is a method in which the prepreg is molded under the conditions of laminated vacuum / high temperature / high pressure in accordance with a desired thickness / strength.
본 발명에 따르면, 탄소섬유 강화 플라스틱 폐기물을 활용하는 동시에, 자동차 산업 등에 적용할 수 있는 인장강도, 파괴인성 그리고 충격 강도와 같이 우수한 기계적 특성을 갖는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재 및 성형품을 제조할 수 있다. 재활용 탄소섬유 가격은 신재 대비 약 70% 수준이다. 따라서 본 발명에 따르면 기존 탄소섬유 강화 수지 성형품 대비 약 30% 원가 저감이 가능하다. According to the present invention, it is possible to provide a carbon fiber-reinforced resin composite material including recycled carbon fibers, which has excellent mechanical properties such as tensile strength, fracture toughness and impact strength applicable to the automobile industry while utilizing carbon fiber- A molded article can be manufactured. The price of recycled carbon fiber is about 70% of that of new materials. Therefore, according to the present invention, it is possible to reduce the cost by about 30% compared to the conventional carbon fiber reinforced resin molded article.
도 1은 본 발명의 일 실시예에 따라 양면에 건성 원단이 적층된 성형품의 구조를 모식적으로 도시한 것이다.
도 2는 본 발명의 일 실시예에 따라 성형품을 제조하는 과정을 모식적으로 도시한 것이다.FIG. 1 schematically shows a structure of a molded product in which a dry fabric is laminated on both sides according to an embodiment of the present invention.
2 is a schematic view illustrating a process of manufacturing a molded article according to an embodiment of the present invention.
이하, 본 발명의 실험예(실시예)를 예시한다. 하기의 실험예(실시예)는 본 발명의 이해를 돕도록 하기 위해 예시적으로 제공되는 것일 뿐, 이에 의해 본 발명의 기술적 범위가 한정되는 것은 아니다.Hereinafter, an experimental example (embodiment) of the present invention will be exemplified. The following experimental examples are provided to illustrate the present invention only, and the technical scope of the present invention is not limited thereto.
실시예Example 1: One: 탄소섬유Carbon fiber 강화 수지 복합재의 제조 Manufacture of reinforced resin composites
탄소섬유 강화 플라스틱 폐기물을 분쇄하고 수지를 열분해하여 12 mm의 길이를 가지는 탄소섬유 조각을 준비하였다. 탄소섬유는 4900 MPa의 인장강도, 230 GPa의 탄성계수, 1.80 g/cm3의 밀도를 갖는 것을 사용하였다. 또한, 매트릭스로 비닐에스테르 수지를 준비하였다. 상기 탄소섬유 조각에 비닐에스테르 수지를 함침시켜 벌크 몰딩 컴파운드를 제조하였다.Carbon fiber reinforced plastic waste was pulverized and the resin was pyrolyzed to prepare a piece of carbon fiber having a length of 12 mm. The carbon fiber used had a tensile strength of 4900 MPa, an elastic modulus of 230 GPa, and a density of 1.80 g / cm < 3 & gt ;. Further, a vinyl ester resin was prepared as a matrix. The carbon fiber piece was impregnated with a vinyl ester resin to prepare a bulk molding compound.
상기 벌크 몰딩 컴파운드 중 탄소섬유의 함량은 50 wt% 이었다.The content of carbon fiber in the bulk molding compound was 50 wt%.
실시예Example 2: 성형품의 제조 2: Production of molded article
상기 실시예 1의 벌크 몰딩 컴파운드의 일면에 건성 원단인 탄소섬유 직물(3K 평직)을 적층한 후, 약 180℃에서 핫 프레스(압력: 250kgf/cm2, 3분 사이클)하여 탄소섬유 강화 수지 성형품을 제조하였다.A carbon fiber fabric (3K plain weave) as a dry fabric was laminated on one side of the bulk molding compound of Example 1, and then hot press (pressure: 250 kgf / cm 2 , 3 minutes cycle) at about 180 캜 to obtain a carbon fiber- .
비교예Comparative Example 1 One
건조 섬유(dry fabric)로 보강하지 않는 것을 제외하고는 실시예 2와 동일한 방법으로 탄소섬유 강화 수지 성형품을 제조하였다.A carbon fiber-reinforced resin molded article was produced in the same manner as in Example 2 except that it was not reinforced with dry fabric.
실험예Experimental Example 1 One
실시예 2 및 비교예 1에서 제조된 성형품에 대해 ISO 인장시험 규격(ISO 527)에 따른 인장시험을 진행하였다. The molded articles prepared in Example 2 and Comparative Example 1 were subjected to a tensile test according to the ISO tensile test standard (ISO 527).
시험편 형상 : 도그본(dog-bone)Specimen shape: dog-bone
시험기기 : SHIMADZU사의 만능시험기(Universal testing machine)Test equipment: SHIMADZU's universal testing machine
로드셀 : 2,000 NLoad cell: 2,000 N
크로스헤드 속도(시험속도) : 5 mm/minCrosshead speed (test speed): 5 mm / min
실시예 2와 비교예 1에 따라 제조된 성형품의 인장강도 측정시, 비교예 1에 따라 제조된 성형품의 인장강도는 41.6 Mpa이었으나, 실시예 2에 따라 제조된 성형체의 인장강도는 75.3 MPa이었다. 비교예 1에 따라 제조된 성형품에 비해 실시예 1에 따라 제조된 성형품의 인장강도는 81% 증가하였다. The tensile strength of the molded article prepared in Example 2 and Comparative Example 1 was 41.6 MPa, while the tensile strength of the molded article prepared in Example 2 was 75.3 MPa. The tensile strength of the molded article produced according to Example 1 was increased by 81% as compared with the molded article prepared according to Comparative Example 1. [
Claims (9)
매트릭스로서 열경화성 수지를 상기 재활용 탄소섬유 조각에 함침시켜 벌크 몰딩 컴파운드(bulk molding compound, BMC)를 형성하는 제2단계;를 포함하는, 재활용 탄소섬유를 포함하는 탄소섬유 강화 수지 복합재의 제조방법.A first step of crushing the carbon fiber-reinforced plastic waste to a predetermined size and pyrolyzing the resin to obtain a piece of recycled carbon fiber; And
And a second step of impregnating the thermosetting resin as a matrix into the piece of recycled carbon fiber to form a bulk molding compound (BMC).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170048661A KR20180116511A (en) | 2017-04-14 | 2017-04-14 | Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170048661A KR20180116511A (en) | 2017-04-14 | 2017-04-14 | Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180116511A true KR20180116511A (en) | 2018-10-25 |
Family
ID=64131906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170048661A Ceased KR20180116511A (en) | 2017-04-14 | 2017-04-14 | Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20180116511A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210078823A (en) * | 2019-12-19 | 2021-06-29 | 한국신발피혁연구원 | Rubber composition for shoes outsole having recycled carbon fiber |
EP3868534A1 (en) * | 2020-02-21 | 2021-08-25 | Palo Alto Research Center Incorporated | Recyclable enhanced performance carbon fiber reinforced polymers |
KR102310710B1 (en) * | 2020-07-15 | 2021-10-12 | 한국생산기술연구원 | Method for manufacturing heat-dissipating adhesive comprising waste carbon fiber and composition comprising the heat-dissipating adhesive |
CN116589853A (en) * | 2023-04-27 | 2023-08-15 | 四川大学 | A method for preparing high-strength thermal conductive composite nylon material by using waste carbon fiber reinforced epoxy resin material |
-
2017
- 2017-04-14 KR KR1020170048661A patent/KR20180116511A/en not_active Ceased
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210078823A (en) * | 2019-12-19 | 2021-06-29 | 한국신발피혁연구원 | Rubber composition for shoes outsole having recycled carbon fiber |
EP3868534A1 (en) * | 2020-02-21 | 2021-08-25 | Palo Alto Research Center Incorporated | Recyclable enhanced performance carbon fiber reinforced polymers |
US20210260793A1 (en) * | 2020-02-21 | 2021-08-26 | Palo Alto Research Center Incorporated | Recyclable enhanced performance carbon fiber reinforced polymers |
JP2021133685A (en) * | 2020-02-21 | 2021-09-13 | パロ アルト リサーチ センター インコーポレイテッド | Recyclable high performance carbon fiber reinforced polymer |
US12115701B2 (en) | 2020-02-21 | 2024-10-15 | Xerox Corporation | Recyclable enhanced performance carbon fiber reinforced polymers |
KR102310710B1 (en) * | 2020-07-15 | 2021-10-12 | 한국생산기술연구원 | Method for manufacturing heat-dissipating adhesive comprising waste carbon fiber and composition comprising the heat-dissipating adhesive |
CN116589853A (en) * | 2023-04-27 | 2023-08-15 | 四川大学 | A method for preparing high-strength thermal conductive composite nylon material by using waste carbon fiber reinforced epoxy resin material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6778309B2 (en) | Thermoplastic (meth) acrylic resin composite material obtained by in-site polymerization and its use | |
Zuccarello et al. | Optimal manufacturing and mechanical characterization of high performance biocomposites reinforced by sisal fibers | |
Song | Pairing effect and tensile properties of laminated high-performance hybrid composites prepared using carbon/glass and carbon/aramid fibers | |
Edwards | An overview of the technology of fibre-reinforced plastics for design purposes | |
KR20180116511A (en) | Manufacturing method of carbon fiber reinforced plastics, carbon fiber reinforced resin composite and molded article using the same | |
Crosky et al. | Thermoset matrix natural fibre-reinforced composites | |
WO2009048674A3 (en) | Composite ballistic fabric structures for hard armor applications | |
Sathish et al. | Experimental testing on hybrid composite materials | |
US20190152212A1 (en) | Manufacturing method of thermoplastic continuous-discontinuous fiber composite sheet | |
Biswas et al. | Mechanical and dynamic mechanical properties of unsaturated polyester resin-based composites | |
Chen et al. | Manufacturing and properties of cotton and jute fabrics reinforced epoxy and PLA composites | |
Saidi et al. | Tensile strength of natural fiber in different types of matrix | |
SHEWALE et al. | Carbon and natural fiber reinforced polymer hybrid composite: Processes, applications, and challenges | |
Yang et al. | Simple manufacturing method for a thermoplastic composite using PP-Straw | |
NL2014282B1 (en) | Consolidation Cycle. | |
Ma et al. | The optimization of thermo-compression process parameters of continuous carbon fiber reinforced PEEK composites | |
RU2560419C1 (en) | Glass plastic and article made thereof | |
Jeong et al. | A study on the production of carbon fiber composites using injection-molding grade thermoplastic pellets | |
JP7473416B2 (en) | Method for producing fiber-reinforced composite material | |
Masania et al. | Effect of fibre volume content on the mechanical performance of natural fibre reinforced thermoplastic composites | |
CN106182803B (en) | Polyborosiloxane-carbon cloth composite plate and its melt impregnation hot pressing the preparation method | |
Mahendran et al. | Study on mechanical properties of flax fibre textile reinforced composites fabricated using bio-based epoxy resin matrix | |
Ramesh et al. | Experimental investigation on the mechanical properties of flax, E-glass and carbon fabric reinforced hybrid epoxy resin composites | |
KR102291931B1 (en) | Manufacturing method for molded article using fiber reinforcerd plastic waste comprising thermosetting plastics and molded article using the same | |
Uthale et al. | Comparison of Mechnanical Properties of Hybrid Woven Fabric Reinforced Epoxy Composites Fabricated Using of Glass Carbonand Basalt Fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20170414 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20180620 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20181011 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20180620 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
PG1501 | Laying open of application |