[go: up one dir, main page]

KR20180106720A - 분포 브래그 반사기 적층체를 구비하는 발광 다이오드 - Google Patents

분포 브래그 반사기 적층체를 구비하는 발광 다이오드 Download PDF

Info

Publication number
KR20180106720A
KR20180106720A KR1020170035463A KR20170035463A KR20180106720A KR 20180106720 A KR20180106720 A KR 20180106720A KR 1020170035463 A KR1020170035463 A KR 1020170035463A KR 20170035463 A KR20170035463 A KR 20170035463A KR 20180106720 A KR20180106720 A KR 20180106720A
Authority
KR
South Korea
Prior art keywords
layer
light emitting
distributed bragg
bragg reflectors
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020170035463A
Other languages
English (en)
Inventor
김재권
김종규
채종현
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to KR1020170035463A priority Critical patent/KR20180106720A/ko
Priority to PCT/KR2018/002542 priority patent/WO2018174425A1/ko
Publication of KR20180106720A publication Critical patent/KR20180106720A/ko
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/814Bodies having reflecting means, e.g. semiconductor Bragg reflectors
    • H01L33/10
    • H01L27/156
    • H01L33/60
    • H01L33/62
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/855Optical field-shaping means, e.g. lenses
    • H10H20/856Reflecting means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H29/00Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
    • H10H29/10Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H29/00Integrated devices, or assemblies of multiple devices, comprising at least one light-emitting semiconductor element covered by group H10H20/00
    • H10H29/10Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00
    • H10H29/14Integrated devices comprising at least one light-emitting semiconductor component covered by group H10H20/00 comprising multiple light-emitting semiconductor components
    • H10H29/142Two-dimensional arrangements, e.g. asymmetric LED layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Led Devices (AREA)

Abstract

일 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 반도체 적층체의 일측 상에 배치된 복수의 분포 브래그 반사기들을 포함하되, 복수의 분포 브래그 반사기들은 서로 다른 면적을 가지고 적층된다. 분포 브래그 반사기들을 이용함으로써 발광 다이오드의 출사광 지향 패턴을 조절할 수 있다.

Description

분포 브래그 반사기 적층체를 구비하는 발광 다이오드{LIGHT EMITTING DIODE WITH STACK OF DBRS}
본 발명은 발광 다이오드에 관한 것으로, 더욱 상세하게는 분포 브래그 반사기 적층체를 구비하는 발광 다이오드에 관한 것이다.
일반적으로 질화갈륨(GaN), 질화알루미늄(AlN) 등과 같은 Ⅲ족 원소의 질화물은 열적 안정성이 우수하고 직접 천이형의 에너지 밴드(band) 구조를 가지므로, 최근 가시광선 및 자외선 영역의 광원용 물질로 많은 각광을 받고 있다. 특히, 질화인듐갈륨(InGaN)을 이용한 청색 및 녹색 발광 다이오드는 대규모 천연색 평판 표시 장치, 신호등, 실내 조명, 고밀도광원, 고해상도 출력 시스템과 광통신 등 다양한 응용 분야에 활용되고 있다.
발광 다이오드는 일반적으로 패키징 공정을 거쳐 패키지 형태로 사용되며, 출사광의 지향 패턴을 조절하기 위해 렌즈가 함께 사용되어 왔다.
최근, 발광 다이오드는 패키징 공정을 칩 레벨에서 수행하는 칩 스케일 패키지 형태의 발광 다이오드에 관한 연구가 진행중이다. 이러한 발광 다이오드는 그 크기가 일반 패키지에 비해 작고 패키징 공정을 별도로 수행하지 않기 때문에 공정을 더욱 단순화할 수 있어 시간 및 비용을 절약할 수 있다. 칩 스케일 패키지 형태의 발광 다이오드는 대체로 플립칩 형상의 전극 구조를 가지며, 방열 특성이 우수하다.
한편, 출사광의 지향 패턴을 조절하기 위해 사용되는 렌즈는 발광 다이오드에 비해 상대적으로 크기 때문에, 발광 모듈의 크기를 증가시킨다. 또한, 발광 다이오드와 별도로 렌즈를 설치하기 때문에 렌즈를 이용한 지향 패턴 조절은 공정을 단순화하려는 발광 다이오드 기술 추세에 적합하지 않다.
본 발명이 해결하고자 하는 과제는, 렌즈를 사용할 필요 없이 광 지향 패턴을 조절할 수 있는 발광 다이오드를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 칩 스케일 패키지 형태의 플립칩 구조 발광 다이오드를 제공하는 것이다.
본 발명의 일 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 복수의 분포 브래그 반사기들을 포함하되, 상기 복수의 분포 브래그 반사기들은 서로 다른 면적을 가지고 적층된다.
본 발명의 또 다른 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 분포 브래그 반사기들의 적층체를 포함하되, 상기 분포 브래그 반사기들의 적층체는 두께가 서로 다른 영역들을 포함하고, 상기 분포 브래그 반사기들의 적층체는 두께가 두꺼운 영역에서 더 높은 반사율을 가진다.
본 발명의 실시예들에 따르면, 분포 브래그 반사기들의 적층을 통해 출사광의 지향 패턴을 조절할 수 있으며, 이에 따라, 렌즈를 생략할 수 있다.
본 발명의 다른 장점 및 효과에 대해서는 상세한 설명을 통해 더 명확하게 될 것이다.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드의 출사광 지향 패턴을 설명하기 위한 개략적인 그래프이다.
도 3a는 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 평면도이다.
도 3b는 도 3a의 절취선 A-A를 따라 취해진 개략적인 단면도이다.
도 4 내지 도 9는 본 발명의 일 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 평면도들 및 단면도들이다.
도 10은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 발명의 일 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 복수의 분포 브래그 반사기들을 포함하되, 상기 복수의 분포 브래그 반사기들은 서로 다른 면적을 가지고 적층된다.
서로 다른 면적을 가지는 분포 브래그 반사기들을 적층함으로써 위치에 따라 반사율을 조절할 수 있으며, 따라서, 출사광의 지향 패턴을 조절할 수 있다.
한편, 상기 복수의 분포 브래그 반사기들은 상기 반도체 적층체로부터 멀수록 좁은 면적을 가질 수 있다. 분포 브래그 반사기들이 순차적으로 좁은 면적을 갖기 때문에, 상대적으로 쉽게 제조될 수 있다.
일 실시예에 있어서, 상기 복수의 분포 브래그 반사기들은 동일한 중심축을 가질 수 있다. 이에 따라, 출사광의 지향 패턴을 대칭적으로 형성할 수 있으며, 발광 다이오드의 중심축 방향으로 방출되는 광량을 감소시킬 수 있다.
다른 실시예에 있어서, 상기 복수의 분포 브래그 반사기들은 일측 측면들이 나란하도록 적층될 수 있다. 이에 따라, 출사광의 지향 패턴을 비대칭적으로 형성할 수 있다.
한편, 상기 분포 브래그 반사기들 각각은 5% 내지 50% 범위 내의 반사율을 나타낼 수 있다. 이들 분포 브래그 반사기들이 서로 적층됨으로써 더 높은 반사율을 나타낸다.
상기 분포 브래그 반사기들이 가장 많이 중첩된 영역의 반사율은 상기 활성층에서 방출된 광에 대해 90% 이상의 반사율을 나타낼 수 있다. 또한, 상기 분포 브래그 반사기들이 가장 적게 중첩된 영역의 반사율은 10% 이하의 반사율을 나타낼 수 있다.
상기 발광 다이오드는, 상기 반도체 적층체와 상기 복수의 분포 브래그 반사기들 사이에 위치하는 기판을 더 포함할 수 있다.
한편, 상기 발광 다이오드는, 상기 반도체 적층체를 덮되, 상기 반도체 적층체의 제1 도전형 반도체층을 노출시키는 제1 개구부를 포함하는 하부 절연층; 및 상기 하부 절연층 상에 배치되고, 상기 하부 절연층의 제1 개구부를 통해 상기 제1 도전형 반도체층에 전기적으로 접속하는 제1 금속층을 더 포함할 수 있다.
나아가, 상기 발광 다이오드는, 상기 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층을 더 포함하되, 상기 하부 절연층은 상기 오믹 반사층을 노출시키는 제2 개구부를 더 포함할 수 있다.
또한, 상기 발광 다이오드는, 상기 제1 금속층을 덮는 상부 절연층; 상기 상부 절연층 상에 위치하며, 상기 반도체 적층체의 제1 도전형 반도체층 및 제2 도전형 반도체층에 각각 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함하되, 상기 상부 절연층은 상기 제1 금속층을 노출시키는 제1 개구부를 포함하고, 상기 제1 범프 패드는 상기 제1 개구부를 통해 상기 제1 금속층에 접속할 수 있다.
몇몇 실시예들에 있어서, 상기 반도체 적층체는 서로 이격된 복수의 발광셀들을 포함하고, 상기 제1 금속층은 이웃하는 발광셀들을 전기적으로 직렬 연결하여 발광셀들의 직렬 어레이를 형성하기 위한 연결부(들), 및 상기 직렬 어레이의 끝단에 배치된 마지막 발광셀의 제1 도전형 반도체층에 전기적으로 접속하는 제1 패드 금속층을 포함할 수 있다. 이에 따라, 고전압에서 구동될 수 있는 발광 다이오드를 제공할 수 있다.
한편, 상기 발광 다이오드는, 각 발광셀의 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층; 및 상기 하부 절연층 상에 배치되어 상기 직렬 어레이의 첫단에 배치된 제1 발광셀의 오믹 반사층에 전기적으로 접속하는 제2 패드 금속층을 더 포함하고, 상기 하부 절연층은 각 발광셀 상의 상기 오믹 반사층을 노출시키는 제2 개구부들을 더 포함하며, 상기 제2 패드 금속층은 상기 제2 개구부를 통해 상기 제1 발광셀 상의 오믹 반사층에 전기적으로 접속될 수 있다.
나아가, 상기 발광 다이오드는, 상기 연결부(들), 제1 및 제2 패드 금속층를 덮되, 상기 제1 및 제2 패드 금속층의 상면들을 각각 노출시키는 개구부들을 가지는 상부 절연층; 및 상기 상부 절연층의 개구부들에 의해 노출된 상기 제1 패드 금속층 및 제2 패드 금속층의 상면에 각각 접속하는 제1 범프 패드 및 제2 범프 패드를 더 포함할 수 있다. 제2 패드 금속층을 채택함으로써 제1 범프 패드 및 제2 범프 패드가 동일 높이에 형성될 수 있다.
몇몇 실시예들에 있어서, 상기 제1 범프 패드 및 제2 범프 패드는 각각 2개 이상의 발광셀들 상부 영역에 걸쳐서 배치될 수 있다. 따라서, 제1 및 제2 범프 패드들을 상대적으로 크게 형성할 수 있어 발광 다이오드의 실장이 쉬워질 수 있다.
본 발명의 또 다른 실시예에 따른 발광 다이오드는, 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및 상기 반도체 적층체의 일측 상에 배치된 분포 브래그 반사기들의 적층체를 포함하되, 상기 분포 브래그 반사기들의 적층체는 두께가 서로 다른 영역들을 포함하고, 상기 분포 브래그 반사기들의 적층체는 두께가 두꺼운 영역에서 더 높은 반사율을 가진다.
분포 브래그 반사기들의 적층체의 두께를 조절함으로써 출사광의 지향 패턴을 제어할 수 있다.
나아가, 상기 분포 브래그 반사기들의 적층체는 중앙에서 가장 높은 반사율을 나타내고, 가장자리 근처에서 가장 낮은 반사율을 나타낼 수 있다. 이에 따라, 광을 분산시키기 위한 분산 렌즈를 사용하지 않고도 발광 다이오드에서 방출되는 광을 분산시킬 수 있다.
한편, 상기 활성층에서 생성된 광의 적어도 일부는 상기 분포 브래그 반사기들의 적층체를 통해 외부로 방출될 수 있다.
상기 발광 다이오드는 또한, 상기 반도체 적층체와 상기 분포 브래그 반사기들의 적층체 사이에 배치된 기판을 더 포함할 수 있다.
한편, 상기 발광 다이오드는, 상기 반도체 적층체 상에 배치되어 각각 상기 제1 도전형 반도체층 및 제2 도전형 반도체층에 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함할 수 있다. 이에 따라, 플립칩 구조의 발광 다이오드를 제공할 수 있다.
이하 도면을 참조하여 구체적으로 설명한다.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 1을 참조하면, 상기 발광 다이오드는 기판(21), 반도체 적층체(30), 제1 범프 패드(39a) 및 제2 범프 패드(39b), 및 복수의 분포 브래그 반사기들(51, 53, 55, 57, 59)의 적층체를 포함한다.
기판(21)은 예컨대 질화갈륨계 반도체층을 성장시킬 수 있는 기판일 수 있다. 기판(21)은 사파이어 기판, 질화갈륨 기판, SiC 기판 등을 포함할 수 있으며, 특히, 패터닝된 사파이어 기판일 수 있다. 기판(21)은 직사각형 또는 정사각형의 평면 형상을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다. 기판(21)의 크기는 특별히 한정되는 것은 아니며 다양하게 선택될 수 있다.
반도체 적층체(30)는 제1 도전형 반도체층, 활성층, 및 제2 도전형 반도체층을 포함하며, 활성층에서 전자와 정공의 결합을 이용하여 광을 방출한다. 반도체 적층체(30)의 구체적인 구조에 대해서는 도 3을 참조하여 뒤에서 상세하게 설명된다.
한편, 반도체 적층체(30) 상에 제1 범프 패드(39a) 및 제2 범프 패드(39b)가 배치되며, 제1 및 제2 범프 패드들(39a, 39b)은 각각 제1 도전형 반도체층 및 제2 도전형 반도체층에 전기적으로 접속된다.
한편, 기판(21) 상에 분포 브래그 반사기들(51~59)의 적층체가 배치된다. 도 1에 도시한 바와 같이, 복수의 분포 브래그 반사기들(51~59)이 서로 다른 면적을 가지고 적층된다. 기판(21)에 가장 가까운 제1 분포 브래그 반사기(51)는 기판(21)과 동일한 면적을 가질 수도 있으나, 그 보다 더 작을 수도 있다. 제1 분포 브래그 반사기(51)는 그 중심축이 기판(21)의 중심축에 일치하도록 기판(21) 상에 배치될 수 있다. 또한, 그 위에 배치되는 분포 브래그 반사기들(53~59)은 기판(21)에서 멀수록 좁은 면적으로 갖고 차례로 배치될 수 있다. 또한, 도 1에 도시한 바와 같이, 분포 브래그 반사기들(51~59)의 중심축이 서로 일치하도록 배치될 수 있다.
이에 따라, 기판(21)의 중앙 영역 상에 분포 브래그 반사기들(51~59)이 모두 적층되며, 가장자리로 갈수록 적층되는 분포 브래그 반사기 개수가 감소한다. 따라서, 분포 브래그 반사기들(51~59)의 적층체는 중앙 영역에서 가장 두껍고 가장자리 근처에서 가장 얇다.
분포 브래그 반사기들(51, 53, 55, 57, 59)은 각각 활성층에서 생성되는 광을 5% 내지 50% 범위 내의 반사율로 반사할 수 있다. 또한, 이들 분포 브래그 반사기들(51~59)이 서로 적층됨으로써, 적층 수가 많은 영역, 즉 두께가 두꺼운 영역에서는 더 높은 반사율을 나타낸다. 예를 들어, 도 1에서 분포 브래그 반사기들(51~59)이 모두 적층된 중앙 영역은 활성층에서 생성된 광에 대해 90% 이상의 반사율을 나타낼 수 있으며, 분포 브래그 반사기(51)만이 배치된 가장자리에서는 10% 이하의 반사율을 나타낼 수 있다.
분포 브래그 반사기들(51, 53, 55, 57, 59)은 각각 굴절률이 서로 다른 제1 재료층과 제2 재료층이 교대로 적층된 구조를 가진다. 예를 들어, 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 분포 브래그 반사기들(51, 53, 55, 57, 59)이 모두 동일한 제1 및 제2 재료층들로 형성될 수 있지만, 이에 한정되는 것은 아니며, 서로 다른 제1 및 제2 재료층들로 형성될 수도 있다. 예를 들어, 제1 분포 브래그 반사기(51)는 SiO2/TiO2로 형성되고, 제2 분포 브래그 반사기는 SiO2/ZrO2로 형성될 수도 있다.
분포 브래그 반사기들(51~59)을 구성하는 제1 재료층 및 제2 재료층의 종류, 형성 방법, 이들 층들의 두께 및 적층 수를 조절함으로써 분포 브래그 반사기들의 반사율을 조절할 수 있다.
한편, 도면에서 각각의 분포 브래그 반사기들(51~59)의 측면이 수직한 것으로 도시하지만, 이에 한정되는 것은 아니다. 특히, 분포 브래그 반사기들(51~59)의 측면은 기판(21) 면에 대해 약 20 내지 70도 범위 내의 경사각을 가질 수 있다.
활성층에서 생성된 광은 대체로 분포 브래그 반사기들(51~59)을 통해 외부로 방출된다. 기판(21) 상의 분포 브래그 반사기들(51~59)을 통해 광을 방출하기 위해, 제1 범프 패드(39a) 및 제2 범프 패드(39b)측의 반도체 적층체(30) 상에는 광을 기판(21)측으로 반사하기 위한 다른 반사기가 마련될 수 있다.
본 실시예에 따르면, 분포 브래그 반사기들(51~59)의 적층 구조를 이용하여 출사광의 방출량을 제어할 수 있다. 위치에 따라 광의 방출량을 제어함으로써 출사광의 지향 패턴을 조절할 수 있다.
한편, 본 실시예에서, 분포 브래그 반사기들(51~59)이 반도체 적층체(30)에 대향하여 기판(21) 상에 배치된 것으로 설명하지만, 분포 브래그 반사기들(51~59)은 반도체 적층체(30) 상에 배치될 수도 있다. 이 경우, 활성층에서 생성된 광은 분포 브래그 반사기들(51~59)을 통해 기판(21) 반대 방향으로 출사될 것이다.
도 2는 본 발명의 일 실시예에 따른 발광 다이오드의 출사광 지향 패턴을 설명하기 위한 개략적인 그래프이다.
도 2를 참조하면, 도 1에 도시한 바와 같이, 기판(21)의 중앙 영역에서 반사율이 높고 가장자리에서 반사율이 낮도록 분포 브래그 반사기들(51~59)을 배치함으로써, 발광 다이오드의 수직 방향으로 출사되는 광의 강도를 줄일 수 있으며, 더 큰 각도의 지향각으로 더 많은 광이 출사되도록 할 수 있다.
분포 브래그 반사기들(51~59)을 이용하여 출사광의 지향 패턴을 조절할 수 있으므로, 중앙 영역의 광량을 줄일 수 있다. 따라서, 발광 다이오드의 지향 패턴을 변경하기 위해 사용되는 분산 렌즈와 같은 별도의 렌즈를 사용할 필요 없다.
또한, 상기 발광 다이오드는 백라이트의 광원으로 렌즈 없이 사용될 수 있어 직하형 발광 모듈의 백라이트 모듈을 박형화할 수 있다.
도 3a는 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 평면도이고, 도 3b는 도 3a의 절취선 A-A를 따라 취해진 단면도이다.
도 3a 및 도 3b를 참조하면, 상기 발광 다이오드는 기판(21), 반도체 적층체(30), 오믹 반사층(31), 하부 절연층(33), 제1 패드 금속층(35a), 제2 패드 금속층(35b), 연결부들(35ab), 상부 절연층(37), 제1 범프 패드(39a) 및 제2 범프 패드(39b), 분포 브래그 반사기들(51~59)의 적층체를 포함한다. 반도체 적층체(30)는 1 도전형 반도체층(23), 활성층(25), 및 제2 도전형 반도체층(27)을 포함하며, 복수의 발광셀들(C1~C7)로 분리될 수 있다.
기판(21)은 질화갈륨계 반도체층을 성장시킬 수 있는 기판이면 특별히 제한되지 않는다. 기판(21)의 예로는 사파이어 기판, 질화갈륨 기판, SiC 기판 등 다양할 수 있으며, 패터닝된 사파이어 기판일 수 있다. 기판(21)은 도 3a의 평면도에서 보듯이 직사각형 또는 정사각형의 외형을 가질 수 있으나, 반드시 이에 한정되는 것은 아니다. 기판(21)의 크기는 특별히 한정되는 것은 아니며 다양하게 선택될 수 있다.
반도체 적층체(30)는 복수의 발광셀들(C1~C7)로 분리될 수 있다. 복수의 발광셀들(C1~C7)은 기판(21) 상에서 서로 이격되어 배치된다. 본 실시예에서 7개의 발광셀들(C1~C7)이 도시되지만, 발광셀들의 개수는 조절될 수 있다. 또한, 본 실시예에서 반도체 적층체(30)가 복수의 발광셀들(C1~C7)로 분리된 것에 대해 설명하지만, 분리되지 않은 단일의 발광셀일 수도 있다.
발광셀들(C1~C7)은 각각 제1 도전형 반도체층(23)을 포함한다. 제1 도전형 반도체층(23)은 기판(21) 상에 배치된다. 제1 도전형 반도체층(23)은 기판(21) 상에서 성장된 층으로, 불순물, 예컨대 Si이 도핑된 질화갈륨계 반도체층일 수 있다.
제1 도전형 반도체층(23) 상에 활성층(25) 및 제2 도전형 반도체층(27)이 배치된다. 활성층(25)은 제1 도전형 반도체층(23)과 제2 도전형 반도체층(27) 사이에 배치된다. 활성층(25) 및 제2 도전형 반도체층(27)은 제1 도전형 반도체층(23)보다 작은 면적을 가질 수 있다. 활성층(25) 및 제2 도전형 반도체층(27)은 메사 식각에 의해 메사 형태로 제1 도전형 반도체층(23) 상에 위치할 수 있다.
발광셀들(C1~C7)의 가장자리들 중 기판(21)의 가장자리에 인접한 가장자리들에서, 제1 도전형 반도체층(23)의 가장자리와 메사, 예컨대 활성층(25) 및 제2 도전형 반도체층(27)의 가장자리들은 서로 이격될 수 있다. 즉, 제1 도전형 반도체층(23)의 상면 일부가 메사의 외부에 노출된다. 활성층(25)은 제1 도전형 반도체층(23)보다 기판(21)의 가장자리로부터 멀리 이격되며, 따라서, 레이저에 의한 기판 분리 공정에서 활성층(25)이 손상되는 것을 방지할 수 있다.
한편, 발광셀들(C1~C7)의 가장자리들 중 인접한 발광셀들과 마주보는 가장자리들에서, 제1 도전형 반도체층(23)의 가장자리와 활성층(25) 및 제2 도전형 반도체층(27)의 가장자리는 동일한 경사면 상에 위치할 수 있다. 따라서, 발광셀들이 서로 마주보는 면에서 제1 도전형 반도체층(23)의 상부면은 노출되지 않을 수 있다. 이에 따라, 발광셀들(C1~C7)의 발광 면적을 확보할 수 있다.
활성층(25)은 단일 양자우물 구조 또는 다중 양자우물 구조를 가질 수 있다. 활성층(25) 내에서 우물층의 조성 및 두께는 생성되는 광의 파장을 결정한다. 특히, 우물층의 조성을 조절함으로써 자외선, 청색광 또는 녹색광을 생성하는 활성층을 제공할 수 있다.
한편, 제2 도전형 반도체층(27)은 p형 불순물, 예컨대 Mg이 도핑된 질화갈륨계 반도체층일 수 있다. 제1 도전형 반도체층(23) 및 제2 도전형 반도체층(27)은 각각 단일층일 수 있으나, 이에 한정되는 것은 아니며, 다중층일 수도 있으며, 초격자층을 포함할 수도 있다. 제1 도전형 반도체층(23), 활성층(25) 및 제2 도전형 반도체층(27)은 금속유기화학 기상 성장법(MOCVD) 또는 분자선 에피택시(MBE)와 같은 공지의 방법을 이용하여 챔버 내에서 기판(21) 상에 성장되어 형성될 수 있다.
한편, 발광셀들(C1~C7)은 각각 제2 도전형 반도체층(27) 및 활성층(23)을 관통하여 제1 도전형 반도체층(23)을 노출시키는 관통홀들(30a)을 가진다. 관통홀들(30a)은 제2 도전형 반도체층(27) 및 활성층(25)으로 둘러싸인다. 도시한 바와 같이, 관통홀들(30a)은 발광셀들(C1~C7)의 중앙 영역에 배치될 수 있으며, 기다란 형상을 가질 수 있다. 그러나 본 발명은 이에 한정되는 것은 아니며, 각 발광셀에 복수의 관통홀들이 형성될 수도 있다.
한편, 오믹 반사층(31)은 제2 도전형 반도체층(27) 상에 배치되며, 제2 도전형 반도체층(27)에 전기적으로 접속한다. 오믹 반사층(31)은 제2 도전형 반도체층(27)의 상부 영역에서 제2 도전형 반도체층(27)의 거의 전 영역에 걸쳐 배치될 수 있다. 예를 들어, 오믹 반사층(31)은 제2 도전형 반도체층(27) 상부 영역의 80% 이상, 나아가 90% 이상을 덮을 수 있다.
오믹 반사층(31)은 반사성을 갖는 금속층을 포함할 수 있으며, 따라서, 활성층(25)에서 생성되어 오믹 반사층(31)으로 진행하는 광을 기판(21) 측으로 반사시킬 수 있다. 예를 들어, 오믹 반사층(31)은 단일 반사 금속층으로 형성될 수 있으나, 이에 한정되는 것은 아니며, 오믹층과 반사층을 포함할 수도 있다. 오믹층으로는 Ni과 같은 금속층 또는 인디움주석산화물(ITO)과 같은 투명 산화물층이 사용될 수 있으며, 반사층으로는 Ag 또는 Al과 같이 반사율이 높은 금속층이 사용될 수 있다.
하부 절연층(33)은 발광셀들(C1~C7) 및 오믹 반사층(31)을 덮는다. 하부 절연층(33)은 발광셀들(C1~C7)의 상면 뿐만 아니라 그 둘레를 따라 발광셀들(C1~C7)의 측면을 덮을 수 있으며, 발광셀들(C1~C7) 주위의 기판(21)을 부분적으로 덮을 수 있다. 하부 절연층(33)은 특히 발광셀들(C1~C7) 사이의 셀 분리 영역(ISO)을 덮으며, 나아가, 관통홀들(30a) 내에 노출된 제1 도전형 반도체층(23)을 부분적으로 덮을 수 있다.
한편, 하부 절연층(33)은 제1 도전형 반도체층을 노출시키는 제1 개구부들(33a) 및 오믹 반사층들(31)을 노출시키는 제2 개구부들(33b)를 가진다. 제1 개구부(33a)는 관통홀(30a) 내에서 제1 도전형 반도체층(23)을 노출시키며, 또한, 기판(21)의 가장자리를 따라 기판(21)의 상부면을 노출시킬 수 있다.
제2 개구부(33b)는 오믹 반사층(31)의 상부에 위치하여 오믹 반사층(31)을 노출시킨다. 제2 개구부들(33b)의 위치 및 형상은 발광셀들(C1~C7)의 배치 및 전기적 연결을 위해 다양하게 변형될 수 있다. 또한, 도 1에서 각 발광셀 상에 하나의 제2 개구부(33b)가 배치된 것으로 도시하였으나, 각 발광셀 상에 복수의 제2 개구부들(33b)이 배치될 수도 있다.
한편, 하부 절연층(33)은 실리콘 산화막 또는 실리콘 질화막과 같은 단일층으로 형성될 수 있다. 또한, 하부 절연층(33)은 다중층으로 형성될 수 있으며, 특히, 제1 굴절률을 갖는 제1 재료층과 제2 굴절률을 갖는 제2 재료층이 교대로 적층된 적층 구조를 가질 수 있다. 특히, 하부 절연층(33)은 이러한 적층 구조를 통해 특정 파장 대역에서 반사율이 높은 분포 브래그 반사기일 수 있다. 여기서, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 제1 재료층은 SiO2층으로 형성되고, 제2 재료층은 ZrO2층으로 형성될 수 있으며, 이에 따라 하부 절연층(33)의 내습성을 향상시킬 수 있다.
한편, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 상기 하부 절연층(33) 상에 배치된다. 제2 패드 금속층(35a)은 제1 발광셀(C1) 상부에 위치하며, 제1 패드 금속층(35b)은 마지막 발광셀, 즉 제7 발광셀(C7) 상부에 위치한다. 한편, 연결부들(35ab)은 이웃하는 두 개의 발광셀들 상부에 걸쳐서 위치하며, 발광셀들(C1~C7)을 전기적으로 직렬 연결한다. 이에 따라, 연결부들(35ab)에 의해 7개의 발광셀들(C1~C7)이 직렬 연결되어 직렬 어레이가 형성된다. 여기서, 제1 발광셀(C1)은 직렬 어레이의 첫단에 위치하며, 마지막 발광셀인 제7 발광셀(C7)은 직렬 어레이의 끝단에 위치한다.
본 발명이 반드시 이에 한정되는 것은 아니지만, 제1 패드 금속층(35a)은 마지막 발광셀(C7)의 상부 영역 내에, 나아가, 마지막 발광셀(C7)의 제2 도전형 반도체층(27)의 상부 영역 내에 한정되어 위치할 수 있다. 제1 패드 금속층(35a)은 또한, 하부 절연층(33)의 제1 개구부(33a)를 통해 마지막 발광셀(C7)의 제1 도전형 반도체층(23)에 전기적으로 접속한다. 제1 패드 금속층(35a)은 제1 개구부(33a)를 통해 직접 제1 도전형 반도체층(23)에 접촉할 수 있다.
또한, 제2 패드 금속층(35b)은 제1 발광셀(C1)의 상부 영역 내에, 나아가, 제1 발광셀(C1)의 제2 도전형 반도체층(27)의 상부 영역 내에 한정되어 위치할 수 있다. 제2 패드 금속층(35b)은 하부 절연층(33)의 제2 개구부(33b)를 통해 제1 발광셀(C1) 상의 오믹 반사층(31)에 전기적으로 접속한다. 제2 패드 금속층(35b)은 제2 개구부(33b)를 통해 오믹 반사층(31)에 직접 접촉할 수 있다.
한편, 제2 패드 금속층(35b)은 연결부(35ab)에 의해 둘러싸일 수 있으며, 따라서, 제2 패드 금속층(35b)과 연결부(35ab) 사이에 제2 패드 금속층(35b)을 둘러싸는 경계 영역이 형성될 수 있다. 이 경계 영역은 하부 절연층(33)을 노출시킨다.
한편, 연결부들(35ab)은 서로 이웃하는 발광셀들을 전기적으로 연결한다. 각 연결부(35ab)는 하나의 발광셀의 제1 도전형 반도체층(23)에 전기적으로 접속함과 아울러, 이웃하는 발광셀의 오믹 반사층(31), 따라서, 제2 도전형 반도체층(27)에 전기적으로 접속하여 이들 발광셀들을 직렬 연결한다. 구체적으로, 연결부들(35ab)은 각각 하부 절연층(33)의 제1 개구부(33a)를 통해 노출된 제1 도전형 반도체층(23)에 전기적으로 접속할 수 있으며, 제2 개구부(33b)를 통해 노출된 오믹 반사층(31)에 전기적으로 접속할 수 있다. 나아가, 연결부들(35ab)은 제1 도전형 반도체층(23) 및 오믹 반사층(31)에 직접 접촉할 수도 있다.
각 연결부(35ab)는 발광셀들 사이의 셀 분리 영역(ISO)을 지난다. 각 연결부(35ab)는 제1 도전형 반도체층(23)의 복수의 가장자리들 중 오직 하나의 가장자리 상부 영역을 지날 수 있다. 이에 따라, 셀 분리 영역(ISO) 상부에 위치하는 연결부(35ab) 면적을 감소시킬 수 있다. 나아가, 이웃하는 발광셀들을 연결하기 위해 셀 분리 영역(ISO)을 지나는 연결부(35ab) 부분을 제외한 나머지 부분들은 모두 발광셀들 영역 상부에 한정되어 위치한다. 예를 들어, 발광셀들(C1~C7)은 각각 도 3a에 도시한 바와 같이 직사각형의 형상을 가질 수 있으며, 따라서, 네 개의 가장자리들을 가진다. 연결부(35ab)는 하나의 발광셀의 가장자리들 중 오직 하나의 가장자리 상부 영역을 지나며, 상기 발광셀의 나머지 가장자리들의 상부 영역으로부터 이격될 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 연결부들(35ab)이 해당 발광셀의 2개 이상의 측면을 덮을 수도 있고, 발광셀의 네 측면 주위의 셀 분리 영역들을 덮을 수도 있다.
한편, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 하부 절연층(33)이 형성된 후에 동일 공정에서 동일 재료로 함께 형성될 수 있으며, 따라서 동일 레벨에 위치할 수 있다. 반드시 이에 한정되는 것은 아니나, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 각각 하부 절연층(33) 상에 위치하는 부분을 포함할 수 있다.
제1 및 제2 패드 금속층(35a, 35b) 및 연결부(35ab)는 Al층과 같은 반사층을 포함할 수 있으며, 반사층은 Ti, Cr 또는 Ni 등의 접착층 상에 형성될 수 있다. 또한, 상기 반사층 상에 Ni, Cr, Au 등의 단층 또는 복합층 구조의 보호층이 형성될 수 있다. 제1 및 제2 패드 금속층(35a, 35b) 및 연결부들(35ab)은 예컨대, Cr/Al/Ni/Ti/Ni/Ti/Au/Ti의 다층 구조를 가질 수 있다.
상부 절연층(37)은 제1 및 제2 패드 금속층(35a, 35b)과 연결부들(35ab)을 덮는다. 또한, 상부 절연층(37)은 발광셀들(C1~C7) 둘레를 따라 하부 절연층(33)의 가장자리를 덮을 수 있다. 다만, 상부 절연층(37)은 기판(21)의 가장자리를 따라 기판(21)의 상부면을 노출시킬 수 있다.
일 실시예에서, 상부 절연층(37)의 가장자리로부터 연결부들(35ab)까지의 최단 거리는 수분이 침투하여 연결부들(35ab)을 손상시키는 것을 방지하기 위해 대략 15um 이상일 수 있다.
한편, 상부 절연층(37)은 제1 패드 금속층(35a)을 노출시키는 제1 개구부(37a) 및 제2 패드 금속층(35b)을 노출시키는 제2 개구부(37b)를 가진다. 제1 개구부(37a) 및 제2 개구부(37b)는 각각 마지막 발광셀(C7)과 제1 발광셀(C1) 상부 영역에 배치된다. 이들 제1 및 제2 개구부들(37a, 37b)을 제외하면 발광셀들(C1~C7)의 다른 영역들은 모두 상부 절연층(37)으로 덮일 수 있다. 따라서, 연결부들(35ab)의 상면 및 측면은 모두 상부 절연층(37)으로 덮여 밀봉될 수 있다.
한편, 일 실시예에 있어서, 상부 절연층(37)의 제2 개구부(37b)는 하부 절연층(33)의 제2 개구부(33b)와 중첩하지 않도록 횡방향으로 이격되어 배치될 수 있다. 이에 따라, 상부 절연층(37)의 제2 개구부(37b)를 통해 솔더가 침투하더라도 하부 절연층(33)의 제2 개구부(33b)로 솔더가 확산되는 것을 방지할 수 있어, 솔더에 의한 오믹 반사층(31)의 오염을 방지할 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 상부 절연층(37)의 제2 개구부(37b)가 하부 절연층(33)의 제2 개구부(33b)와 중첩하도록 배치될 수도 있다.
상부 절연층(37)은 SiO2 또는 Si3N4의 단일층으로 형성될 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 상부 절연층(37)은 하부 절연층(33)과 유사하게 제1 굴절률을 가지는 제1 재료층과 제2 굴절률을 가지는 제2 재료층이 교대로 적층된 다층 구조를 가질 수 있다. 예를 들어, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 제1 재료층은 SiO2층으로 형성되고, 제2 재료층은 ZrO2층으로 형성될 수 있다. 이에 따라, 내습성이 강한 발광 다이오드가 제공될 수 있다. 특히, 상부 절연층은 분포브래그 반사기일 수 있다.
한편, 제1 범프 패드(39a)는 상부 절연층(37)의 제1 개구부(37a)를 통해 노출된 제1 패드 금속층(35a)에 전기적으로 접촉하고, 제2 범프 패드(39b)는 제2 개구부(37b)를 통해 노출된 제2 패드 금속층(35b)에 전기적으로 접속할 수 있다. 제1 범프 패드(39a)는 상부 절연층(37)의 제1 개구부들(37a)을 모두 덮어 밀봉하며, 제2 범프 패드(39b)는 상부 절연층(37)의 제2 개구부(37b)를 모두 덮어 밀봉한다.
또한, 도 3a에 도시한 바와 같이, 제1 및 제2 범프 패드(39a, 39b)는 복수의 발광셀들에 걸쳐 배치될 수 있다. 도 3a에서, 제1 범프 패드(39a)는 제2, 제3, 제5, 제6 및 제7 발광셀들(C2, C3, C5, C6 및 C7)의 상부 영역에 걸쳐서 배치되며, 제2 범프 패드(39b)는 제1, 제4, 제5 및 제6 발광셀들(C1, C4, C5, C6)의 상부 영역에 걸쳐서 배치된다. 이에 따라, 제1 및 제2 범프 패드들(39a, 39b)을 상대적으로 크게 형성할 수 있으며, 따라서, 발광 다이오드의 실장 공정을 도울 수 있다.
제1 범프 패드(39a) 및 제2 범프 패드(39b)는 발광 다이오드를 서브마운트나 인쇄회로보드 등에 본딩되는 부분들로서 본딩에 적합한 재료로 형성된다. 예를 들어, 제1 및 제2 범프 패드들(39a, 39b)은 Au층 또는 AuSn층을 포함할 수 있다.
한편, 분포 브래그 반사기들(51~59)은 반도체 적층체(30)에 대향하여 기판(21) 상에 배치된다. 분포 브래그 반사기들(51~59)은 도 1 및 도 2를 참조하여 설명한 바와 같으므로, 여기서 상세한 설명은 생략한다.
이상에서 7개의 발광셀들(C1~C7)을 갖는 발광 다이오드에 대해 설명하였지만, 발광셀들의 개수는 더 많을 수도 있고 더 적을 수도 있다. 더욱이, 상기 발광 다이오드는 단일의 발광셀을 포함할 수도 있으며, 이 경우, 연결부(35ab)는 불필요하게 된다.
한편, 이하에서 설명되는 발광 다이오드 제조 방법을 통해 발광 다이오드의 구조가 더욱 명확하게 설명될 것이다.
도 4 내지 도 9는 도 3a의 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 개략적인 평면도들 및 단면도들이다. 각 도면들에서 a는 평면도를 b는 각 평면도의 절취선 A-A를 따라 취해진 단면도를 나타낸다.
우선, 도 4a 및 도 4b를 참조하면, 기판(21) 상에 제1 도전형 반도체층(23), 활성층(25) 및 제2 도전형 반도체층(27)을 포함하는 반도체 적층체(30)가 성장된다. 상기 기판(21)은 질화갈륨계 반도체층을 성장시킬 수 있는 기판으로서, 예컨대 사파이어 기판, 탄화실리콘 기판, 질화갈륨(GaN) 기판, 스피넬 기판 등일 수 있다. 특히, 상기 기판(21)은 패터닝된 사파이어 기판과 같이 패터닝된 기판일 수 있다.
제1 도전형 반도체층(23)은 예컨대 n형 질화갈륨계층을 포함하고, 제2 도전형 반도체층(27)은 p형 질화갈륨계층을 포함할 수 있다. 또한, 활성층(25)은 단일양자우물 구조 또는 다중양자우물 구조일 수 있으며, 우물층과 장벽층을 포함할 수 있다. 또한, 우물층은 요구되는 광의 파장에 따라 그 조성원소가 선택될 수 있으며, 예컨대 AlGaN, GaN 또는 InGaN을 포함할 수 있다.
이어서, 반도체 적층(30)을 패터닝하여 복수의 발광셀들(C1~C7)이 형성된다. 예컨대, 제1 도전형 반도체층(23)의 상면을 노출시키기 위한 메사 형성 공정 및 셀 분리 영역(ISO)을 형성하기 위한 셀 분리 공정이 사진 및 식각 공정을 이용하여 수행될 수 있다.
발광셀들(C1~C7)은 셀 분리 영역(ISO)에 의해 서로 이격되며, 각각 관통홀들(30a)을 가진다. 도 4b에 도시한 바와 같이, 셀 분리 영역(ISO)의 측벽 및 관통홀들(30a)의 측벽은 경사지게 형성될 수 있다.
한편, 메사 식각 공정에 의해 각 발광셀들의 제1 도전형 반도체층(23)의 상면이 노출된다. 관통홀들(30a)은 메사 식각 공정에서 함께 형성될 수 있다. 다만, 제2 도전형 반도체층(27) 및 활성층(23)의 둘레를 따라 제1 도전형 반도체층(23)의 상면이 링 형상으로 노출될 수도 있으나, 이에 한정되는 것은 아니다. 도 4a 및 도 4b에 도시한 바와 같이, 기판(21)의 가장자리 근처에 위치하는 발광셀들(C1~C7)의 가장자리들 근처에서 제1 도전형 반도체층(23)의 상면이 노출되고, 그 외의 가장자리들 근처에서는 제2 도전형 반도체층(27), 활성층(23) 및 제1 도전형 반도체층(23)이 연속적인 경사면을 이룰 수 있으며, 따라서, 제1 도전형 반도체층(23)의 상면이 노출되지 않을 수 있다. 특정 실시예에서, 발광셀들에 의해 둘러싸인 고립된 발광셀이 존재할 수 있는데, 이 고립된 발광셀의 가장자리들은 기판(21)의 가장자리로부터 이격된다. 이 경우, 이 고립된 발광셀의 제1 도전형 반도체층(23)은 제2 도전형 반도체층(27) 및 활성층(25)과 함께 연속적인 경사면을 형성하고, 그 가장자리 근처에 노출된 상면을 전혀 갖지 않을 수 있다.
기판(21) 상에 셀 분리 영역(ISO)에 의해 서로 이격된 복수의 발광셀들(C1~C7)을 형성함에 따라 높이가 서로 다른 위치들을 갖는 모폴로지가 형성된다. 이 모폴로지에서, 각 발광셀의 제2 도전형 반도체층(27)의 상면이 가장 높으며, 셀 분리 영역(ISO)에 노출된 기판(21) 면이 가장 낮다.
도 5a 및 도 5b를 참조하면, 발광셀들(C1~C7) 상에 각각 오믹 반사층들(31)이 형성된다. 오믹 반사층(31)은 예를 들어, 리프트 오프 기술을 이용하여 형성될 수 있다. 오믹 반사층(31)은 단일층 또는 다중층으로 형성될 수 있으며, 예컨대 오믹층 및 반사층을 포함할 수 있다. 이들 층들은 예를 들어, 전자-빔 증발법을 이용하여 형성될 수 있다. 오믹 반사층(31)을 형성하기 전에 오믹 반사층(31)이 형성될 영역에 개구부를 가지는 예비 절연층(도시하지 않음)이 먼저 형성될 수도 있다.
본 실시예에 있어서, 발광셀들(C1~C7)이 형성된 후에 오믹 반사층(31)이 형성되는 것으로 설명하지만, 이에 한정되는 것은 아니다. 예를 들어, 오믹 반사층(31)이 먼저 형성되고, 발광셀들(C1~C7)이 형성될 수도 있으며, 또한, 오믹 반사층(31)을 위한 금속층이 반도체 적층(30) 상에 증착된 후, 금속층과 반도체 적층(30)이 함께 패터닝되어 오믹 반사층(31) 및 발광셀들(C1~C7)이 함께 형성될 수도 있다.
도 6a 및 도 6b를 참조하면, 오믹 반사층(31) 및 발광셀들(C1~C7)을 덮는 하부 절연층(33)이 형성된다. 하부 절연층(33)은 SiO2 또는 Si3N4와 같은 단일층으로 형성될 수 있다. 또는, 하부 절연층(33)은 화학기상증착(CVD) 등의 기술을 사용하여 굴절률이 서로 다른 제1 재료층과 제2 재료층을 교대로 적층하여 형성될 수 있다. 예를 들어, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 제1 재료층은 예컨대 SiO2층일 수 있고, 제2 재료층은 ZrO2층일 수 있다. 제2 재료층으로 ZrO2층을 채택함으로써 내습성이 강한 하부 절연층(33)을 제공할 수 있다.
앞서 설명한 예비 절연층(도시하지 않음)은 하부 절연층(33)과 통합될 수 있다. 따라서, 오믹 반사층(31) 주위에 형성된 예비 절연층에 기인하여, 하부 절연층(33)의 두께가 위치에 따라 다를 수 있다. 즉, 오믹 반사층(31) 상의 하부 절연층(33)이 오믹 반사층(31) 주위의 하부 절연층(33)보다 얇을 수 있다.
하부 절연층(33)은 사진 및 식각 공정을 통해 패터닝될 수 있으며, 이에 따라, 하부 절연층(33)은 관통홀들(30a) 내에서 제1 도전형 반도체층(23)을 노출시키는 제1 개구부(33a)를 가지며, 또한, 각 발광셀 상에서 오믹 반사층(31)을 노출시키는 제2 개구부(33b)를 가진다. 나아가, 하부 절연층(33)은 기판(21)의 가장자리 근처에 배치된 측면을 가진다.
도 7a 및 도 7b를 참조하면, 하부 절연층(33) 상에 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)이 형성된다.
연결부들(35ab)은 제1 발광셀(C1) 내지 제7 발광셀(C7)을 전기적으로 연결하여 발광셀들(C1~C7)의 직렬 어레이를 형성한다. 제1 발광셀(C1)은 직렬 어레이의 첫단에 위치하며, 제7 발광셀(C7)은 직렬 어레이의 끝단에 위치한다.
특히, 연결부들(35ab)은 각각 하나의 발광셀의 제1 도전형 반도체층(23)과 그것에 이웃하는 발광셀의 제2 도전형 반도체층(27)을 전기적으로 연결한다. 연결부들(35ab)은 하부 절연층(33)의 제1 개구부들(33a)을 통해 관통홀들(30a) 내에 노출된 제1 도전형 반도체층(23)에 전기적으로 접속할 수 있으며, 하부 절연층(33)의 제2 개구부들(33b)을 통해 노출된 오믹 반사층(31)에 전기적으로 접속할 수 있다. 나아가, 연결부들(35ab)은 제1 도전형 반도체층(23)과 오믹 반사층(31)에 직접 접촉할 수 있다.
연결부들(35ab)은 이웃하는 발광셀들을 연결하기 위해 셀 분리 영역(ISO)을 지난다. 도 7a에 도시한 바와 같이, 각각의 연결부(35ab)는 기판(21) 상의 모폴로지의 영향을 줄이기 위해, 하나의 발광셀의 제1 도전형 반도체층(23)의 가장자리들 중 오직 하나의 가장자리의 상부를 지난다. 즉, 본 실시예에 있어서, 각 발광셀의 제1 도전형 반도체층(23)은 네 개의 가장자리들을 가지며, 연결부(35ab)는 이 가장자리들 중 오직 하나의 가장자리 상부를 지난다. 연결부(35ab)가 전기적 연결에 불필요하게 셀 분리 영역(ISO)을 지나는 것을 방지하여 연결부(35ab)가 모폴로지의 영향으로 손상되는 것을 줄일 수 있다. 그러나 본 발명이 이에 한정되는 것은 아니며, 연결부(35ab)가 발광셀의 2개 이상의 측면들을 덮을 수도 있으며, 발광셀 주위의 2개 이상의 셀 분리 영역들(ISO)을 덮을 수도 있다.
한편, 제1 패드 금속층(35a)은 발광셀들의 직렬 어레이의 끝단에 위치한 마지막 발광셀(C7) 상에 위치하고, 제2 패드 금속층(35b)은 첫단에 위치한 제1 발광셀(C1) 상에 위치한다. 제1 패드 금속층(35a)은 마지막 발광셀(C7)의 제2 도전형 반도체층(27) 상부 영역 내에 한정되어 위치할 수 있으며, 제2 패드 금속층(35b)은 제1 발광셀(C1)의 상부 영역 내에 한정되어 위치할 수 있다.
제1 패드 금속층(35a)은 마지막 발광셀(C7) 상에서 하부 절연층(33)의 제1 개구부(33a)를 통해 제1 도전형 반도체층(23)에 전기적으로 접속한다. 제1 패드 금속층(35a)은 제1 도전형 반도체층(23)에 직접 접촉할 수 있다. 따라서, 제1 패드 금속층(35a)은 제1 도전형 반도체층(23)에 오믹 콘택하는 오믹층을 포함할 수 있다.
한편, 제2 패드 금속층(35b)은 제1 발광셀(C1) 상에서 하부 절연층(33)의 제2 개구부(33b)를 통해 오믹 반사층(31)에 전기적으로 접속한다. 제2 패드 금속층(35b)은 오믹 반사층(31)에 직접 접촉할 수 있다. 나아가, 도 7a에 도시한 바와 같이, 제2 패드 금속층(35b)은 연결부(35ab)에 의해 둘러싸일 수 있다. 이에 따라, 제2 패드 금속층(35b)과 연결부(35ab) 사이에 경계 영역이 형성될 수 있으며, 이 경계 영역에 하부 절연층(33)이 노출될 수 있다.
상기 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 동일 재료로 동일 공정에서 함께 형성될 수 있다. 예컨대, 상기 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 접착층으로서 Ti, Cr, Ni 등을 포함할 수 있으며, 금속 반사층으로 Al을 포함할 수 있다. 나아가, 상기 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)은 Sn과 같은 금속 원소의 확산을 방지하기 위한 확산 방지층 및 확산 방지층의 산화를 방지하기 위한 산화 방지층을 더 포함할 수 있다. 확산 방지층으로서는 예를 들어 Cr, Ti, Ni, Mo, TiW 또는 W 등이 사용될 수 있으며, 산화방지층으로서는 Au가 사용될 수 있다.
도 8a 및 도 8b를 참조하면, 제1 패드 금속층(35a), 제2 패드 금속층(35b) 및 연결부들(35ab)을 덮는 상부 절연층(37)이 형성된다. 상부 절연층(31)은 제1 패드 금속층(35a)을 노출시키는 개구부(37a) 및 제2 패드 금속층(35b)을 노출시키는 개구부(37b)를 가진다. 본 실시예에 있어서, 복수의 개구부들(37a)이 도시되어 있으나, 이에 한정되는 것은 아니며, 하나의 개구부(37a)가 사용될 수도 있다.
상부 절연층(37)의 개구부(37b)는 하부 절연층(33)의 제2 개구부(33b)로부터 횡방향으로 이격되어 배치될 수 있다. 상부 절연층(37)의 개구부(37b)와 하부 절연층(33)의 제2 개구부(33b)를 서로 중첩하지 않도록 이격시킴으로써, 오믹 반사층(31)이 솔더 등에 의해 오염되는 것을 방지할 수 있다. 그러나 본 발명은 이에 한정되는 것은 아니며, 하부 절연층(33)의 제2 개구부(33b)와 상부 절연층(37)의 개구부(37b)가 서로 중첩될 수도 있다.
한편, 상부 절연층(37)은 또한 기판(21)의 가장자리를 따라 하부 절연층(33)의 가장자리를 덮을 수 있으며, 기판(21)의 가장자리 근처의 일부 영역을 노출시킬 수 있다. 상부 절연층(37)의 가장자리는 연결부들(35ab)로부터 적어도 11um, 나아가 적어도 15um 이격되도록 형성될 수 있다.
상부 절연층(37)은 실리콘 산화막 또는 실리콘 질화막의 단일층으로 형성될 수도 있으며, 나아가 다층 구조의 분포 브래그 반사기로 형성될 수도 있다. 상부 절연층(37)은 또한 하부 절연층(33)과 유사하게 제1 재료층과 제2 재료층이 교대로 적층된 분포 브래그 반사기일 수 있다. 예를 들어, 상기 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 특히, 상부 절연층(37)은 SiO2층/ZrO2층이 교대로 적층된 분포 브래그 반사기로 형성될 수도 있다.
상부 절연층(37) 또한 사진 및 식각 공정을 이용하여 패터닝될 수 있으며, 이에 따라 개구부들(37a, 37b)이 형성될 수 있다. 이들 개구부들(37a, 37b) 또한 하부 절연층(33)의 개구부들(33a, 33b)과 같이 오픗셋 형상의 측벽을 가질 수 있다.
도 9a 및 도 9b를 참조하면, 상부 절연층(37) 상에 제1 범프 패드(39a) 및 제2 범프 패드(39b)가 형성된다.
제1 범프 패드(39a)는 상부 절연층(37)의 개구부(37a)를 통해 제1 패드 금속층(35a)에 전기적으로 접속하고, 제2 범프 패드(39b)는 상부 절연층(37)의 개구부(37b)를 통해 제2 패드 금속층(35b)에 전기적으로 접속한다.
제1 및 제2 범프 패드(39a, 39b)는 도 9a에 도시한 바와 같이 복수의 발광셀들에 걸쳐서 형성될 수 있다. 상부 절연층(37)이 발광셀들과 제1 및 제2 범프 패드들(39a, 39b) 사이에서 전기적 단락을 방지한다.
제1 및 제2 범프 패드들(39a, 39b)이 형성된 후, 기판(21)의 하면을 그라인딩 및/또는 래핑 공정을 통해 부분적으로 제거하여 기판(21) 두께를 감소시킬 수 있다. 이어서, 기판(21) 상에 도 3a의 분포 브래그 반사기들(51~59)을 순차적으로 형성하여 분포 브래그 반사기들(51~59)의 적층체를 형성하고, 기판(21)을 개별 칩 단위로 분할함으로써 서로 분리된 발광 다이오드가 제공된다. 이때, 상기 기판(21)은 레이저 스크라이빙 기술을 이용하여 분리될 수 있다.
상기 분포 브래그 반사기들(51~59)은 사진 및 식각 공정 또는 리프트 오프 기술을 이용하여 기판(21)에 가까운 분포 브래그 반사기(51)부터 차례로 형성될 수 있다. 즉, 제1 분포 브래그 반사기(51)를 형성하고, 그 위에 제2 분포 브래그 반사기(53), 제3 분포 브래그 반사기(55), 제4 분포 브래그 반사기(57) 및 제5 분포 브래그 반사기(59)를 차례로 형성할 수 있다. 이와 달리, 90% 이상의 반사율을 갖도록 기판(21) 상에 제1 재료층과 제2 재료층을 교대로 적층한 후, 위에서부터 제5 분포 브래그 반사기(59)를 패터닝하여 형성하고, 이어서, 제4 분포 브래그 반사기(57), 제3 분포 브래그 반사기(55), 제2 분포 브래그 반사기(53)를 차례로 패터닝하여 형성함으로써 분포 브래그 반사기들(51~59)의 적층체를 형성할 수 있다.
분포 브래그 반사기들(51, 53, 55, 57, 59)은 각각 굴절률이 서로 다른 제1 재료층과 제2 재료층이 교대로 적층된 구조를 가진다. 예를 들어, 제1 재료층은 SiO2 또는 MgF2일 수 있으며, 제2 재료층은 상기 제1 재료층보다 높은 굴절률을 가지는 물질층일 수 있다. 제2 재료층은 예를 들어, TiO2, Nb2O5 또는 ZrO2일 수 있다. 분포 브래그 반사기들(51, 53, 55, 57, 59)이 모두 동일한 제1 및 제2 재료층들로 형성될 수 있지만, 이에 한정되는 것은 아니며, 서로 다른 제1 및 제2 재료층들로 형성될 수도 있다. 예를 들어, 제1 분포 브래그 반사기(51)는 SiO2/TiO2로 형성되고, 제2 분포 브래그 반사기는 SiO2/ZrO2로 형성될 수도 있다.
한편, 식각공정이나 리프트 오프 기술을 이용하여 형성된 분포 브래그 반사기들(51~59)의 측면들은 경사각을 가질 수 있으며, 그 경사각은 기판(21) 면에 대해 약 20 내지 70도 범위 내일 수 있다.
도 10은 본 발명의 또 다른 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 단면도이다.
도 10을 참조하면, 본 실시예에 따른 발광 다이오드는 도 1을 참조하여 설명한 발광 다이오드와 대체로 유사하나, 분포 브래그 반사기들(51~59)이 모두 기판(21)의 일측에 치우쳐 배치된 것에 차이가 있다. 예를 들어, 분포 브래그 반사기들(51~59)은 일측 측면들이 나란하도록 적층될 수 있다. 도 1의 발광 다이오드는 도 2에 도시한 바와 같이 대칭적인 지향 패턴을 가지지만, 본 실시예에 따른 발광 다이오드는 출사광의 지향 패턴이 비대칭적인 형상을 갖게 된다.
본 실시예에 있어서, 분포 브래그 반사기들(51~59)의 일측 측면들이 나란한 것에 대해 설명하지만, 분포 브래그 반사기들(51~59)의 위치 및 형상은 다양하게 변형될 수 있으며, 이에 따라, 발광 다이오드의 출사광의 지향 패턴을 다양하게 변화시킬 수 있다.
이상에서, 본 발명의 다양한 실시예들에 대해 설명하였으나, 본 발명은 이들 실시예들에 한정되는 것은 아니다. 또한, 하나의 실시예에 대해서 설명한 사항이나 구성요소는 본 발명의 기술적 사상을 벗어나지 않는 한, 다른 실시예에도 적용될 수 있다.

Claims (20)

  1. 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및
    상기 반도체 적층체의 일측 상에 배치된 복수의 분포 브래그 반사기들을 포함하되,
    상기 복수의 분포 브래그 반사기들은 서로 다른 면적을 가지고 적층된 발광 다이오드.
  2. 청구항 1에 있어서,
    상기 복수의 분포 브래그 반사기들은 상기 반도체 적층체로부터 멀수록 좁은 면적을 가지는 발광 다이오드.
  3. 청구항 3에 있어서,
    상기 복수의 분포 브래그 반사기들은 동일한 중심축을 가지는 발광 다이오드.
  4. 청구항 3에 있어서,
    상기 복수의 분포 브래그 반사기들은 일측 측면들이 나란하도록 적층된 발광 다이오드.
  5. 청구항 2에 있어서,
    상기 분포 브래그 반사기들 각각은 5% 내지 50% 범위 내의 반사율을 나타내는 발광 다이오드.
  6. 청구항 5에 있어서,
    상기 분포 브래그 반사기들이 가장 많이 중첩된 영역의 반사율은 상기 활성층에서 방출된 광에 대해 90% 이상의 반사율을 나타내는 발광 다이오드.
  7. 청구항 6에 있어서,
    상기 분포 브래그 반사기들이 가장 적게 중첩된 영역의 반사율은 10% 이하의 반사율을 나타내는 발광 다이오드.
  8. 청구항 1에 있어서,
    상기 반도체 적층체와 상기 복수의 분포 브래그 반사기들 사이에 위치하는 기판을 더 포함하는 발광 다이오드.
  9. 청구항 8에 있어서,
    상기 반도체 적층체를 덮되, 상기 반도체 적층체의 제1 도전형 반도체층을 노출시키는 제1 개구부를 포함하는 하부 절연층; 및
    상기 하부 절연층 상에 배치되고, 상기 하부 절연층의 제1 개구부를 통해 상기 제1 도전형 반도체층에 전기적으로 접속하는 제1 금속층을 더 포함하는 발광 다이오드.
  10. 청구항 9에 있어서,
    상기 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층을 더 포함하되,
    상기 하부 절연층은 상기 오믹 반사층을 노출시키는 제2 개구부를 더 포함하는 발광 다이오드.
  11. 청구항 10에 있어서,
    상기 제1 금속층을 덮는 상부 절연층;
    상기 상부 절연층 상에 위치하며, 상기 반도체 적층체의 제1 도전형 반도체층 및 제2 도전형 반도체층에 각각 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함하되,
    상기 상부 절연층은 상기 제1 금속층을 노출시키는 제1 개구부를 포함하고,
    상기 제1 범프 패드는 상기 제1 개구부를 통해 상기 제1 금속층에 접속하는 발광 다이오드.
  12. 청구항 9에 있어서,
    상기 반도체 적층체는 서로 이격된 복수의 발광셀들을 포함하고,
    상기 제1 금속층은 이웃하는 발광셀들을 전기적으로 직렬 연결하여 발광셀들의 직렬 어레이를 형성하기 위한 연결부(들), 및 상기 직렬 어레이의 끝단에 배치된 마지막 발광셀의 제1 도전형 반도체층에 전기적으로 접속하는 제1 패드 금속층을 포함하는 발광 다이오드.
  13. 청구항 12에 있어서,
    각 발광셀의 제2 도전형 반도체층 상에 배치되어 상기 제2 도전형 반도체층에 오믹 콘택하는 오믹 반사층; 및
    상기 하부 절연층 상에 배치되어 상기 직렬 어레이의 첫단에 배치된 제1 발광셀의 오믹 반사층에 전기적으로 접속하는 제2 패드 금속층을 더 포함하고,
    상기 하부 절연층은 각 발광셀 상의 상기 오믹 반사층을 노출시키는 제2 개구부들을 더 포함하며,
    상기 제2 패드 금속층은 상기 제2 개구부를 통해 상기 제1 발광셀 상의 오믹 반사층에 전기적으로 접속된 발광 다이오드.
  14. 청구항 12에 있어서,
    상기 연결부(들), 제1 및 제2 패드 금속층를 덮되, 상기 제1 및 제2 패드 금속층의 상면들을 각각 노출시키는 개구부들을 가지는 상부 절연층; 및
    상기 상부 절연층의 개구부들에 의해 노출된 상기 제1 패드 금속층 및 제2 패드 금속층의 상면에 각각 접속하는 제1 범프 패드 및 제2 범프 패드를 더 포함하는 발광 다이오드.
  15. 청구항 14에 있어서,
    상기 제1 범프 패드 및 제2 범프 패드는 각각 2개 이상의 발광셀들 상부 영역에 걸쳐서 배치된 발광 다이오드.
  16. 제1 도전형 반도체층, 활성층 및 제2 도전형 반도체층을 포함하는 반도체 적층체; 및
    상기 반도체 적층체의 일측 상에 배치된 분포 브래그 반사기들의 적층체를 포함하되,
    상기 분포 브래그 반사기들의 적층체는 두께가 서로 다른 영역들을 포함하고,
    상기 분포 브래그 반사기들의 적층체는 두께가 두꺼운 영역에서 더 높은 반사율을 가지는 발광 다이오드.
  17. 청구항 16에 있어서,
    상기 분포 브래그 반사기들의 적층체는 중앙에서 가장 높은 반사율을 나타내고, 가장자리 근처에서 가장 낮은 반사율을 나타내는 발광 다이오드.
  18. 청구항 16에 있어서,
    상기 활성층에서 생성된 광의 적어도 일부는 상기 분포 브래그 반사기들의 적층체를 통해 외부로 방출되는 발광 다이오드.
  19. 청구항 18에 있어서,
    상기 반도체 적층체와 상기 분포 브래그 반사기들의 적층체 사이에 배치된 기판을 더 포함하는 발광 다이오드.
  20. 청구항 19에 있어서,
    상기 반도체 적층체 상에 배치되어 각각 상기 제1 도전형 반도체층 및 제2 도전형 반도체층에 전기적으로 접속된 제1 범프 패드 및 제2 범프 패드를 더 포함하는 발광 다이오드.
KR1020170035463A 2017-03-21 2017-03-21 분포 브래그 반사기 적층체를 구비하는 발광 다이오드 Withdrawn KR20180106720A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020170035463A KR20180106720A (ko) 2017-03-21 2017-03-21 분포 브래그 반사기 적층체를 구비하는 발광 다이오드
PCT/KR2018/002542 WO2018174425A1 (ko) 2017-03-21 2018-03-02 분포 브래그 반사기 적층체를 구비하는 발광 다이오드

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170035463A KR20180106720A (ko) 2017-03-21 2017-03-21 분포 브래그 반사기 적층체를 구비하는 발광 다이오드

Publications (1)

Publication Number Publication Date
KR20180106720A true KR20180106720A (ko) 2018-10-01

Family

ID=63584657

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170035463A Withdrawn KR20180106720A (ko) 2017-03-21 2017-03-21 분포 브래그 반사기 적층체를 구비하는 발광 다이오드

Country Status (2)

Country Link
KR (1) KR20180106720A (ko)
WO (1) WO2018174425A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387383B2 (en) * 2019-02-14 2022-07-12 Seoul Viosys Co., Ltd. Method of transferring light emitting device for display and display apparatus
CN113924662B (zh) * 2019-05-29 2025-01-21 首尔伟傲世有限公司 具有悬臂电极的发光元件、具有其的显示面板及显示装置
TWI762234B (zh) * 2021-03-12 2022-04-21 錼創顯示科技股份有限公司 發光元件及顯示面板
CN113036008B (zh) * 2021-03-12 2023-11-03 錼创显示科技股份有限公司 发光元件及显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050023184A (ko) * 2003-08-27 2005-03-09 주식회사 옵토웰 수직공진 발광 소자 및 그 제조방법
KR20090072980A (ko) * 2007-12-28 2009-07-02 서울옵토디바이스주식회사 발광 다이오드 및 그 제조방법
KR20110053064A (ko) * 2009-11-13 2011-05-19 서울옵토디바이스주식회사 분포 브래그 반사기를 갖는 발광 다이오드 칩 및 발광 다이오드 패키지
KR101138952B1 (ko) * 2010-09-24 2012-04-25 서울옵토디바이스주식회사 복수개의 발광셀들을 갖는 웨이퍼 레벨 발광 다이오드 패키지 및 그것을 제조하는 방법
KR20140073351A (ko) * 2012-12-06 2014-06-16 엘지이노텍 주식회사 발광 소자

Also Published As

Publication number Publication date
WO2018174425A1 (ko) 2018-09-27

Similar Documents

Publication Publication Date Title
KR102641239B1 (ko) 발광 다이오드, 그것을 제조하는 방법 및 그것을 갖는 발광 소자 모듈
CN110073505B (zh) 高可靠性发光二极管
CN111081841B (zh) 发光二极管
US20220158056A1 (en) Light emitting diodes having a plurality of light emitting cells
US12015112B2 (en) Light emitting diode
KR20160046538A (ko) 발광 소자 및 그 제조 방법
KR102601417B1 (ko) 발광 다이오드 칩
US10580933B2 (en) Highly reliable light emitting diode
KR102562063B1 (ko) 발광 다이오드
KR20180106720A (ko) 분포 브래그 반사기 적층체를 구비하는 발광 다이오드
KR102610627B1 (ko) 복수의 파장변환기를 가지는 발광 다이오드
KR20200112410A (ko) 발광 다이오드
EP4340049A2 (en) Light emitting diode chip
EP4187597A1 (en) Light-emitting diode having plurality of light-emitting cells
KR102601419B1 (ko) 고 신뢰성 발광 다이오드
KR20180072279A (ko) 개선된 방열 성능을 가지는 발광 다이오드
KR20180097979A (ko) 광 차단층을 가지는 발광 다이오드
EP4415045A2 (en) Led display pixel element and display device comprising same
KR102632226B1 (ko) 분포 브래그 반사기를 갖는 발광 다이오드
KR20220018944A (ko) 복수개의 발광셀들을 갖는 발광 다이오드
KR20180104479A (ko) 고 신뢰성 발광 다이오드
TW202310448A (zh) 發光元件

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20170321

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination