[go: up one dir, main page]

KR20180076907A - 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 - Google Patents

전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 Download PDF

Info

Publication number
KR20180076907A
KR20180076907A KR1020160181590A KR20160181590A KR20180076907A KR 20180076907 A KR20180076907 A KR 20180076907A KR 1020160181590 A KR1020160181590 A KR 1020160181590A KR 20160181590 A KR20160181590 A KR 20160181590A KR 20180076907 A KR20180076907 A KR 20180076907A
Authority
KR
South Korea
Prior art keywords
electrode
ionomer
catalyst
membrane
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020160181590A
Other languages
English (en)
Other versions
KR102189064B1 (ko
Inventor
김정호
김형수
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020160181590A priority Critical patent/KR102189064B1/ko
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to US16/343,522 priority patent/US11283093B2/en
Priority to PCT/KR2017/015301 priority patent/WO2018124645A1/ko
Priority to JP2019521674A priority patent/JP6895517B2/ja
Priority to EP17887671.0A priority patent/EP3536664B1/en
Priority to CN201780066307.3A priority patent/CN109890752A/zh
Publication of KR20180076907A publication Critical patent/KR20180076907A/ko
Priority to JP2020099641A priority patent/JP7083003B2/ja
Application granted granted Critical
Publication of KR102189064B1 publication Critical patent/KR102189064B1/ko
Priority to US17/592,595 priority patent/US11557782B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8828Coating with slurry or ink
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • Y02E60/521
    • Y02E60/523
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/56

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)

Abstract

본 발명은 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것으로서, 상기 전극의 제조 방법은 촉매와 이오노머를 혼합하여 전극 형성용 조성물을 제조하는 단계, 상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고 상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계를 포함한다.
상기 전극의 제조 방법은 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있다.

Description

전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지{METHOD FOR MANUFACTURING ELECTRODE, ELECTRODE MANUFACTURED BY USING THE SAME, MEMBRANE-ELECTRODE ASSEMBLY COMPRISING THE ELECTRODE, AND FUEL CELL COMPRISING THE MEMBRANE-ELECTRODE ASSEMBLY}
본 발명은 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것으로서, 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있는 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지에 관한 것이다.
연료 전지는 메탄올, 에탄올, 천연 기체와 같은 탄화수소 계열의 연료물질 내에 함유되어 있는 수소와 산소의 산화/환원반응과 같은 화학 반응 에너지를 직접 전기 에너지로 변환시키는 발전 시스템을 구비한 전지로서, 높은 에너지 효율성과 오염물 배출이 적은 친환경적인 특징으로 인해 화석 에너지를 대체할 수 있는 차세대 청정 에너지원으로 각광받고 있다.
이러한 연료 전지는 단위 전지의 적층에 의한 스택 구성으로 다양한 범위의 출력을 낼 수 있는 장점을 갖고 있으며, 소형 리튬 전지에 비하여 4 내지 10 배의 에너지 밀도를 나타내기 때문에 소형 및 이동용 휴대전원으로 주목받고 있다.
연료 전지에서 전기를 실질적으로 발생시키는 스택은 막-전극 어셈블리 (Membrane Electrode Assembly, MEA)와 세퍼레이터(separator)(또는 바이폴라 플레이트(Bipolar Plate)라고도 함)로 이루어진 단위 셀이 수 개 내지 수십 개로 적층된 구조를 가지며, 막-전극 어셈블리는 일반적으로 전해질 막을 사이에 두고 그 양쪽에 산화극(Anode, 또는, 연료극)과 환원극(Cathode, 또는 공기극)이 각각 형성된 구조를 이룬다.
연료 전지는 전해질의 상태 및 종류에 따라 알칼리 전해질 연료 전지, 고분자 전해질 연료 전지(Polymer Electrolyte Membrane Fuel Cell, PEMFC) 등으로 구분될 수 있는데, 그 중에 고분자 전해질 연료 전지는 100 ℃ 미만의 낮은 작동온도, 빠른 시동과 응답특성 및 우수한 내구성 등의 장점으로 인하여 휴대용, 차량용 및 가정용 전원장치로 각광을 받고 있다.
고분자 전해질 연료 전지의 대표적인 예로는 수소 가스를 연료로 사용하는 수소이온 교환막 연료 전지 (Proton Exchange Membrane Fuel Cell, PEMFC), 액상의 메탄올을 연료로 사용하는 직접 메탄올 연료 전지 (Direct Methanol Fuel Cell, DMFC) 등을 들 수 있다.
고분자 전해질 연료 전지에서 일어나는 반응을 요약하면, 우선, 수소가스와 같은 연료가 산화극에 공급되면, 산화극에서는 수소의 산화반응에 의해 수소이온(H+)과 전자(e-)가 생성된다. 생성된 수소이온은 고분자 전해질 막을 통해 환원극으로 전달되고, 생성된 전자는 외부회로를 통해 환원극에 전달된다. 환원극에서는 산소가 공급되고, 산소가 수소이온 및 전자와 결합하여 산소의 환원반응에 의해 물이 생성된다.
한편, 상기 연료 전지의 전극은 촉매 및 이오노머로 구성되는데 이들 간에 결합 및 분산도가 상기 연료 전지의 성능 및 내구성에 큰 영향을 미치게 된다.
본 발명의 목적은 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있는 전극의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 전극의 제조 방법에 의하여 제조된 전극을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 전극을 포함하는 막-전극 어셈블리를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 막-전극 어셈블리를 포함하는 연료 전지를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조하는 단계, 상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고 상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계를 포함하는 전극의 제조 방법을 제공한다.
상기 저주파 음향 에너지는 10 내지 100 Hz의 주파수를 가질 수 있다.
상기 공진 혼합은 상기 촉매와 이오노머를 포함하는 전극 형성용 조성물에 10 내지 100 G의 가속도를 가하여 이루어질 수 있다.
상기 공진 혼합은 30 초 내지 30 분 동안 이루어질 수 있다.
상기 전극 형성용 조성물은 용매를 더 포함할 수 있다.
본 발명의 다른 일 실시예에 따르면, 촉매 및 이오노머를 포함하며, 상기 이오노머는 상기 촉매의 표면에 5 nm 이하의 두께로 코팅된 것인 전극을 제공한다.
상기 이오노머는, 상기 촉매 및 상기 이오노머를 포함하는 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 코팅된 것일 수 있다.
상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 55 중량% 내지 95 중량%일 수 있다.
상기 촉매 표면에 코팅되지 않고 응집된(aggregated) 이오노머는 상기 이오노머 전체 중량에 대하여 0 중량% 내지 45 중량%일 수 있다.
상기 촉매는 촉매 금속 입자 단독 또는 담체에 담지된 촉매 금속 입자를 포함할 수 있다.
하기 수학식 1로 표시되는 상기 담체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6일 수 있다.
[수학식 1]
I/C ratio = WI / WC
WI = 이오노머(Ionomer)의 전체 중량
WC = 담체(Carrier)의 전체 중량
본 발명의 또 다른 일 실시예에 따르면, 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고 상기 애노드 전극과 캐소드 전극 사이에 위치하는 이온 교환막을 포함하며, 상기 애노드 전극, 상기 캐소드 전극 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 전극을 포함하는 것인 막-전극 어셈블리를 제공한다.
본 발명의 또 다른 일 실시예에 따르면, 상기 막-전극 어셈블리를 포함하는 것인 연료 전지를 제공한다.
본 발명은 촉매의 표면에 이오노머를 나노 두께로 코팅함으로써, 촉매 등의 분산성을 증대시켜 혼합을 용이하게 하고, 촉매 표면에 이오노머가 균일하게 분포하도록 하여, 촉매와 이오노머의 활용율을 증대시켜 각종 성능을 향상시키고, 촉매와 이오노머의 결합 효율을 증대시켜 내구성을 증대시킬 수 있다.
도 1은 촉매 표면에 이오노머가 코팅되는 과정을 나타내는 모식도이다.
도 2는 본 발명의 일 실시예에 따른 막-전극 어셈블리를 개략적으로 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 연료 전지의 전체적인 구성을 도시한 모식도이다.
도 4 및 5는 각각 본 발명의 실시예 1 및 비교예 1에서 제조된 전극의 투과 전자 현미경(TEM) 사진이다.
도 6은 본 발명의 실시예 1 및 비교예 1에서 제조된 막-전극 접합체의 성능 평가 결과를 나타내는 그래프이다.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 특별한 언급이 없는 한, 층, 막, 영역, 판 등의 부분이 다른 부분 '위에' 있다고 할 때, 이는 다른 부분 '바로 위에' 있는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 발명의 일 실시예에 따른 전극의 제조 방법은 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조하는 단계, 상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고 상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계를 포함한다.
우선, 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조한다.
상기 촉매는 수소 산화반응, 산소 환원반응에 촉매로 사용될 수 있는 것은 어느 것을 사용하여도 무방하며, 바람직하게는 백금계 금속을 사용하는 것이 좋다.
상기 백금계 금속은 백금(Pt), 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 백금-M 합금(상기 M은 팔라듐(Pd), 루테늄(Ru), 이리듐(Ir), 오스뮴(Os), 갈륨(Ga), 티타늄(Ti), 바나듐(V), 크롬(Cr), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 은(Ag), 금(Au), 아연(Zn), 주석(Sn), 몰리브덴(Mo), 텅스텐(W), 란탄(La) 및 로듐(Rh)으로 이루어진 군에서 선택되는 어느 하나 이상) 및 이들의 조합으로 이루어진 군에서 선택되는 하나를 포함할 수 있으며, 보다 바람직하게는 상기 백금계 촉매 금속 군에서 선택된 2종 이상의 금속을 조합한 것을 사용할 수 있으나, 이에 한정되는 것은 아니며, 본 기술 분야에서 사용 가능한 백금계 촉매 금속이라면 제한 없이 사용할 수 있다.
또한, 상기 촉매는 금속 자체(black)을 사용할 수도 있고, 촉매 금속을 담체에 담지시켜 사용할 수도 있다.
상기 담체는 탄소계 담체, 지르코니아, 알루미나, 티타니아, 실리카, 세리아 등의 다공성 무기산화물, 제올라이트 등에서 선택될 수 있다. 상기 탄소계 담체는 수퍼피(super P), 탄소섬유(carbon fiber), 탄소시트(carbon sheet), 카본블랙(carbon black), 케첸블랙(Ketjen Black), 아세틸렌 블랙(acetylene black), 카본나노튜브(carbon nano tube, CNT), 탄소구체(carbon sphere), 탄소리본(carbon ribbon), 풀러렌(fullerene), 활성탄소 및 이들의 하나 이상의 조합에서 선택될 수 있으나, 이에 한정되는 것은 아니며, 본 기술분야에서 사용 가능한 담체는 제한 없이 사용할 수 있다.
상기 촉매 금속 입자는 담체의 표면 위에 위치할 수도 있고, 담체의 내부 기공(pore)을 채우면서 담체 내부로 침투할 수도 있다.
상기 담체에 담지된 귀금속을 촉매로 사용하는 경우에는 상용화된 시판된 것을 사용할 수도 있고, 또한 담체에 귀금속을 담지시켜 제조하여 사용할 수도 있다. 상기 담체에 귀금속을 담지시키는 공정은 당해 분야에서 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하여도, 당해 분야에 종사하는 사람들에게 쉽게 이해될 수 있는 내용이다.
상기 촉매 금속 입자는 상기 촉매의 전체 중량 대비 20 중량% 내지 80 중량%로 함유될 수 있으며, 20 중량% 미만으로 함유될 경우에는 활성 저하의 문제가 있을 수 있고, 80 중량%를 초과할 경우에는 촉매 금속 입자의 응집으로 활성 면적이 줄어들어 촉매 활성이 반대로 저하될 수 있다.
상기 촉매는 상기 전극 전체 중량에 대하여 50 중량% 내지 80 중량%로 함유될 수 있으며, 50 중량% 미만일 경우에는 촉매의 부족으로 인한 활성 저하의 문제가 있을 수 있고, 80 중량%를 초과하는 경우에는 이오노머가 부족하여 이온 전도에 불리할 수 있다.
한편, 상기 이오노머는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 양이온 전도체는 측쇄 말단의 양이온 교환 그룹에서 H를 Na, K, Li, Cs 또는 테트라부틸암모늄으로 치환할 수도 있다. 상기 측쇄 말단의 양이온 교환 그룹에서 H를 Na으로 치환하는 경우에는 촉매 조성물 제조시 NaOH를, 테트라부틸암모늄으로 치환하는 경우에는 테트라부틸암모늄 하이드록사이드를 사용하여 치환하며, K, Li 또는 Cs도 적절한 화합물을 사용하여 치환할 수 있다. 상기 치환 방법은 당해 분야에 널리 알려진 내용이므로 본 명세서에서 자세한 설명은 생략하기로 한다.
상기 양이온 전도체는 단일물 또는 혼합물 형태로 사용가능하며, 또한 선택적으로 이온 교환막과의 접착력을 보다 향상시킬 목적으로 비전도성 화합물과 함께 사용될 수도 있다. 그 사용량은 사용 목적에 적합하도록 조절하여 사용하는 것이 바람직하다.
상기 비전도성 화합물로는 폴리테트라플루오로에틸렌(PTFE), 테트라플루오로에틸렌-헥사플루오르프로필렌 공중합체(FEP), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체(PFA), 에틸렌/테트라플루오로에틸렌(ethylene/tetrafluoroethylene(ETFE)), 에틸렌클로로트리플루오로-에틸렌공중합체(ECTFE), 폴리비닐리덴플루오라이드, 폴리비닐리덴플루오라이드-헥사플루오로프로필렌의 코폴리머(PVdF-HFP), 도데실벤젠술폰산 및 소르비톨(sorbitol)로 이루어진 군에서 선택된 1종 이상의 것이 사용될 수 있다.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.
상기 이오노머의 상업적으로 상용화된 예로는 나피온, 아퀴비온 등을 들 수 있다.
상기 이오노머는 상기 전극 전체 중량에 대하여 20 중량% 내지 50 중량%로 포함될 수 있다. 상기 이오노머의 함량이 20 중량% 미만일 경우에는 생성된 이온이 잘 전달되지 못할 수 있고, 50 중량%를 초과하는 경우에는 기공이 부족하여 수소 또는 산소(공기)의 공급이 어려우며 반응할 수 있는 활성면적이 줄어들 수 있다.
상기 전극 형성용 조성물은 구체적으로 상기 촉매를 이오노머에 첨가하거나, 상기 이오노머를 상기 촉매에 첨가하여 제조할 수 있고, 상기 첨가 후 상기 제조된 전극 형성용 조성물을 혼합하여 줄 필요는 없으나, 상기 공진 혼합에 앞서 일반적인 방법에 의하여 혼합하는 것도 가능하다. 이때, 상기 일반적인 혼합 방법은 초음파 분산, 교반, 3롤밀, 볼밀, 유성교반, 고압분산 및 이들의 혼합법 중에서 선택되는 어느 하나 이상의 분산법을 이용할 수 있다.
상기 전극 형성용 조성물은 상기 촉매 및 상기 이오노머와 함께 용매를 더 포함할 수 있는데, 이 경우 상기 전극 형성용 조성물은 상기 촉매를 상기 용매에 첨가하여 촉매 용액을 제조한 후 상기 촉매 용액에 상기 이오노머를 첨가하여 제조할 수 있고, 상기 이오노머를 상기 용매에 첨가하여 이오노머 용액을 제조한 후 상기 이오노머 용액에 상기 촉매를 첨가하여 제조할 수 있고, 상기 촉매 용액과 상기 이오노머 용액을 혼합하여 제조할 수도 있다.
상기 용매는 물, 친수성 용매, 유기용매 및 이들의 하나 이상의 혼합물로 이루어진 군에서 선택되는 용매일 수 있다.
상기 친수성 용매는 탄소수 1 내지 12의 직쇄상, 분지상의 포화 또는 불포화 탄화수소를 주쇄로서 포함하는 알코올, 케톤, 알데히드, 카보네이트, 카르복실레이트, 카르복실산, 에테르 및 아미드로 구성된 군으로부터 선택되는 하나 이상의 관능기를 가진 것일 수 있으며, 이들은 지환식 또는 방향족 사이클로 화합물을 주쇄의 최소한 일부로 포함할 수 있다. 구체적인 예로 알코올에는 메탄올, 에탄올, 이소프로필알코올, 에톡시 에탄올, n-프로필알코올, 부틸알코올, 1,2-프로판디올, 1-펜탄올, 1.5-펜탄디올, 1.9-노난디올 등; 케톤에는 헵타논, 옥타논 등; 알데히드에는 벤즈알데하이드, 톨루알데하이드 등; 에스터에는 메틸펜타노에이트, 에틸-2-하이드록시프로파노에이트 등; 카르복실산에는 펜타노익산, 헵타노익산 등; 에테르에는 메톡시벤젠, 다이메톡시프로판 등; 아미드에는 프로판아미드, 뷰틸아미드, 디메틸아세트아마이드 등이 있다.
상기 유기용매는 N-메틸피롤리돈, 디메틸술폭사이드, 테트라하이드로퓨란 및 이들의 혼합물에서 선택할 수 있다.
상기 용매는 상기 전극 형성용 조성물 전제 중량에 대하여 80 내지 95 중량%로 함유될 수 있으며, 80 중량% 미만일 경우에는 고형분의 함량이 너무 높아 전극 코팅시 균열 및 고점도로 인한 분산 문제가 있을 수 있고, 95 중량%를 초과하는 경우에는 전극 활성에 불리할 수 있다.
다음으로, 상기 전극 형성용 조성물을 공진 혼합하여 상기 촉매 표면에 상기 이오노머를 코팅한다.
상기 공진 혼합은 혼합이 공진하는 혼합 공정으로서, 상기 혼합의 공진은 혼합 성분들의 진동과 가속의 조합의 결과로 발생시킬 수 있다. 상기 공진 혼합을 하게 되면 약 50 ㎛ 직경의 다수의 강력한 혼합 영역을 발생시켜 데드 존(dead-zone)을 없애 전체적으로 균일한 혼합이 가능해진다.
상기 공진 혼합은 임펠러 등 교반에 필요한 부품이 필요 없어 오염을 최소화 할 수 있으며, 손실율(Loss)을 감소시킬 수 있고, 가용 점도 범위는 1 cP 내지 100만 cP 이상이며, 진공이나 온도를 조절할 수도 있다.
상기 공진 혼합을 할 수 있는 상용화되어 있는 기기로는 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM) 등을 이용할 수 있다.
본 발명의 발명자들은 상기 공진 혼합을 이용하면 상기 촉매 표면에 상기 이오노머를 5 nm 이하의 나노 두께로 코팅 가능하다는 것을 발견하고 본 발명을 완성하였다.
도 1은 상기 촉매 표면에 상기 이오노머가 코팅되는 과정을 나타내는 모식도이다. 도 1을 참고하면, 상기 공진 혼합에 의하여 담체(1)에 담지된 촉매 금속 입자(2)의 표면이 상기 이오노머(3)에 의하여 나노 두께로 코팅된다. 즉, 상기 공진 혼합을 이용해 보다 단단한 구조의 상기 촉매 금속 입자(2)의 표면으로 보다 무른 형태의 상기 이오노머(3)가 코팅될 수 있다.
이를 위하여, 상기 공진 혼합은 저주파 음향 에너지를 가하여 이루어질 수 있다. 상기 저주파 음향 에너지는 10 내지 20000 Hz의 주파수 영역 내에 있는 유형 매체를 통한 직선 또는 구면 에너지 전파로서, 본 발명에서는 상기 촉매 표면에 상기 이오노머를 나노 두께로 코팅시키기 위하여, 10 내지 100 Hz의 주파수, 구체적으로 50 내지 70 Hz의 주파수를 가지는 저주파 음향 에너지를 이용한다.
또한, 상기 공진 혼합은 상기 주파수 하에서 상기 촉매와 이오노머를 포함하는 전극 형성용 조성물에 10 내지 100 G, 구체적으로 40 내지 100 G의 가속도를 가하여 이루어질 수 있다(여기서, G는 중력가속도를 의미하며, 예를 들어 10 G는 중력가속도의 10 배를 의미한다).
상기 가속도가 10 G 미만인 경우 미혼합 영역이 존재할 수 있고, 코팅이 이루어지지 않아 성능이 저하될 수 있고, 100 G를 초과하는 경우 이오노머끼리 뭉침현상이나 상분리 및 발열에 의한 혼합 조건 변화와 성능 감소, 플러딩(flooding) 등의 문제가 있을 수 있다.
상기 주파수 영역 내의 저주파 음향 에너지와 상기 가속도를 상기 전극 형성용 조성물에 가하기 위한 방법은 본 발명에서 특별히 한정되지 않으며, 종래 알려진 방법이면 어느 것이나 이용 가능하다. 일 예로서 상기 Resodyn®사의 공명 음향 혼합기를 이용하는 경우, 상기 촉매와 이오노머의 혼합물을 채우고 있는 용기의 주기적인 직선 변위에 의해 상기 음향 에너지를 공급하고, 이를 위하여 다수의 기계식 또는 전자 변환기 배치를 이용하며, 보다 구체적으로 상기 용기로 진동과 가속을 옮기는 오실레이터 드라이브(oscillator drives)와 스프링과 같은 가변성 탄성 부재를 포함하고 있다. 상기 공명 음향 혼합기에 관한 내용은 미국 특허 등록 제7188993호 및 미국 특허 공개 제2010-0294113호 등을 참고할 수 있다.
상기 공진 혼합은 30 초 내지 30 분 동안 이루어질 수 있고, 구체적으로 1 분 내지 10 분 동안의 짧은 시간 동안 이루어질 수 있다. 상기 공진 혼합의 시간이 30 초 미만인 경우 덜 혼합되거나 코팅 특성을 확인할 수 없을 수 있고, 30 분을 초과하는 경우 시료나 조성이 변화될 수 있다.
또한, 상기 공진 혼합은 고체-고체, 고체-액체, 액체-액체, 액체-기체 등 광범위한 물질의 혼합도 가능하므로, 상기 공진 혼합을 이용하면 상기 전극 형성용 조성물이 용매를 포함하지 않고 상기 촉매와 상기 이오노머만을 포함하는 고체-고체 혼합이 가능하고, 상기 촉매, 상기 이오노머, 및 이 둘 모두가 용매를 포함하는 고체-액체 또는 액체-액체 혼합도 가능하다.
마지막으로, 상기 전극 형성용 조성물을 코팅하여 전극을 제조한다.
상기 전극을 제조하는 단계는 본 발명에서 특별히 한정되지 않으나, 구체적인 일 예시로 상기 전극 형성용 조성물을 이형필름에 코팅하여 전극을 제조하고, 상기 전극을 이온 교환막에 전사하는 단계를 더 포함할 수 있다.
상기 전극 형성용 조성물을 상기 이형필름 위에 코팅할 때는 상기 촉매를 포함하는 전극 형성용 조성물을 연속적 또는 간헐적으로 코터(coater)에 이송시킨 후 이형필름 상에 10 내지 200 ㎛의 건조두께로 균일하게 도포하는 것이 바람직하다.
더욱 상세하게는, 상기 전극 형성용 조성물의 점성에 따라 펌프를 통해서 연속적으로 다이(die), 그라비아(gravure), 바(bar), 콤마 코터(comma coater) 등의 코터에 이송한 후, 슬롯다이 코팅, 바 코팅, 콤마 코팅, 스크린 프린팅, 스프레이 코팅, 닥터 블레이드 코팅, 브러시 등의 방법이 사용하여 데칼필름 위에 전극층의 건조두께가 10 내지 200 ㎛, 더욱 바람직하게는 10 내지 100 ㎛로 균일하게 도포하고 일정한 온도로 유지된 건조로를 통과시키며 용매를 휘발시킨다.
상기 전극 형성용 조성물을 1 ㎛ 미만의 두께로 코팅할 경우 촉매 함량이 작아 활성이 떨어질 수 있고, 200 ㎛를 초과하는 두께로 코팅할 경우에는 이온 및 전자의 이동 거리가 증가하여 저항이 증가될 수 있다.
상기 건조 공정은 25 ℃ 내지 90 ℃에서 12 시간 이상 건조시키는 것일 수 있다. 상기 건조 온도가 25 ℃ 미만이고 건조 시간이 12 시간 미만인 경우에는 충분히 건조된 전극을 형성하지 못할 수 있는 문제가 발생될 수 있고, 90 ℃를 초과하는 온도에서 건조시키면 전극의 균열 등이 발생할 수 있다.
다만, 상기 전극 형성용 조성물을 도포 및 건조하는 방법은 상기에 한정되지 않는다.
선택적으로, 상기 전극 형성용 조성물을 건조시켜 전극을 제조하는 단계 이후에는 건조된 전극 및 이형필름을 필요한 크기로 컷팅하여 이온 교환막에 접합하는 단계를 더 포함할 수 있다.
상기 이온 교환막은 이온 전도체를 포함한다. 상기 이온 전도체는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 전도체이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 전도체일 수 있다.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.
상기 양이온 전도체는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.
보다 구체적으로, 상기 양이온 전도체가 수소 이온 양이온 전도체인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene), 술폰화된 폴리퀴녹살린(sulfonated polyquinoxaline), 술폰화된 폴리케톤(sulfonated polyketone), 술폰화된 폴리페닐렌옥사이드(sulfonated polyphenylene oxide), 술폰화된 폴리에테르술폰(sulfonated polyether sulfone), 술폰화된 폴리에테르케톤(sulfonated polyether ketone), 술폰화된 폴리페닐렌술폰(sulfonated polyphenylene sulfone), 술폰화된 폴리페닐렌설파이드(sulfonated polyphenylene sulfide), 술폰화된 폴리페닐렌설파이드술폰(sulfonated polyphenylene sulfide sulfone), 술폰화된 폴리페닐렌설파이드술폰니트릴(sulfonated polyphenylene sulfide sulfone nitrile), 술폰화된 폴리아릴렌에테르(sulfonated polyarylene ether), 술폰화된 폴리아릴렌에테르니트릴(sulfonated polyarylene ether nitrile), 술폰화된 폴리아릴렌에테르에테르니트릴(sulfonated polyarylene ether ether nitrile), 폴리아릴렌에테르술폰케톤(sulfonated polyarylene ether sulfone ketone), 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.
상기 음이온 전도체는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 전도체는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 전도체는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.
상기 음이온 전도체로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.
한편, 상기 이온 교환막은 e-PTFE와 같은 불소계 다공성 지지체 또는 전기 방사 등에 의하여 제조된 다공성 나노웹 지지체 등의 공극을 상기 이온 전도체가 채우고 있는 강화막 형태일 수도 있다.
상기 전극과 상기 이온 교환막을 접합하는 방법은 일 예로 전사 방법을 이용할 수 있고, 상기 전사 방법은 금속프레스 단독 또는 금속프레스에 실리콘 고무재 등과 같은 고무재의 연질판을 덧대어 열과 압력을 가하는 핫프레싱(hot pressing) 방법으로 수행될 수 있다.
상기 전사 방법은 80 ℃ 내지 150 ℃ 및 50 kgf/cm2 내지 200 kgf/cm2의 조건에서 이루어질 수 있다. 80 ℃, 50 kgf/cm2 미만의 조건에서 핫프레싱 할 경우, 이형필름상의 상기 전극의 전사가 제대로 이루어지지 않을 수 있고, 150 ℃를 초과할 경우에는 상기 이온 교환막의 고분자가 타면서 상기 전극의 구조변성이 일어날 우려가 있으며, 200 kgf/cm2을 초과하는 조건에서 핫프레싱 할 경우, 상기 전극의 전사보다 상기 전극을 압착하는 효과가 더 커져서 전사가 제대로 이루어지지 못할 수 있다.
본 발명의 다른 일 실시예에 따른 전극은 상술한 전극의 제조 방법에 의하여 제조될 수 있다. 이에 따라, 상기 전극은 촉매 및 이오노머를 포함하며, 상기 이오노머는 상기 촉매 및 상기 이오노머를 포함하는 전극 형성용 조성물에 저주파 음향 에너지를 가하여 공진 혼합하여 상기 촉매 표면에 코팅되며, 이때 상기 이오노머 코팅층은 5 nm 이하의 나노 두께, 구체적으로 0.5 내지 4 nm의 나노 두께를 가질 수 있다. 상기 이오노머 코팅층의 두께가 5 nm 이하인 경우 촉매의 성능 향상 측면에서 바람직하다.
또한, 상기 공진 혼합을 이용하여 상기 촉매 표면에 상기 이오노머를 코팅하는 경우 다양한 두께의 이오노머 응집 층(ionomer aggregation layer)들이 현저히 감소될 수 있다.
종래의 다른 방법들로 상기 촉매와 상기 이오노머를 혼합하는 경우 다양한 두께를 가지는 이오노머 응집 층들이 형성되나, 상기 공진 혼합을 이용하여 상기 촉매 표면에 상기 이오노머를 코팅하는 경우 상기 촉매를 5 nm 이하의 두께로 코팅하는 이오노머 층을 상기 전극의 전체 영역에서 거의 균일하게 형성될 수 있다.
상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 55 내지 95 중량%일 수 있고, 구체적으로 80 내지 90 중량%일 수 있다. 상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머가 상기 이오노머 전체 중량에 대하여 55 중량% 미만인 경우 코팅되지 않은 부분에 의한 성능 감소 및 촉매-이오노머 결합체들 간의 연결 제한에 따른 안정성 감소 등의 문제가 있을 수 있고, 95 중량%를 초과하는 경우 이오노머의 응집으로 인한 촉매 활성이 저하될 수 있다.
또한, 상기 촉매 표면에 코팅되지 않고 응집된 이오노머로 이루어지는 이오노머 응집 층은 상기 이오노머 전체 중량에 대하여 0 내지 45 중량%일 수 있고, 구체적으로 10 내지 20 중량%일 수 있다. 상기 이오노머 응집 층이 상기 이오노머 전체 중량에 대하여 45 중량%를 초과하는 경우 이오노머의 응집 및 코팅되지 않은 촉매로 인한 촉매 활성이 저하될 수 있다.
상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 전극을 투과 전자 현미경(TEM) 또는 주사 투과 전자 현미경(STEM)으로 관찰시 두께가 5 nm 이하인 것을 의미하고, 상기 촉매 표면에 코팅되지 않고 응집된 이오노머는 상기 전극을 TEM 또는 STEM으로 관찰시 두께가 5 nm를 초과하거나, 응집된 이오노머가 TEM, STEM 또는 주사 전자 현미경(SEM)으로 관찰되는 것을 의미한다. 또한, 상기 이오노머는 상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머 및 상기 촉매 표면에 코팅되지 않고 응집된 이오노머 이외의 이오노머를 나머지 함량으로 포함할 수 있다. 상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머의 함량 또는 상기 응집된 이오노머의 함량은 상기 전극 전체에 대하여 측정한 함량 값일 수 있고, 상기 전극의 임의의 적어도 5 군데에 대한 TEM 또는 STEM 사진 상 존재하는 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머의 함량 또는 응집된 이오노머의 함량을 측정한 후 이들의 평균 값을 계산하여 구할 수도 있다.
또한, 상기 이오노머가 불소계 이오노머인 경우, 상기 이오노머가 코팅된 촉매는 TEM 또는 SEM 분석 조건에서 에너지분산형 분광분석법(energy dispersive X-ray spectroscope, EDS)에 의한 분석시 불소(F)의 검출로 상기 이오노머의 분포로 코팅 및 코팅되지 않은 영역을 확인할 수 있다.
또한, 상기 이오노머가 이온 교환 그룹으로 술폰산기를 포함하는 경우, 상기 이오노머가 코팅된 촉매는 TEM 또는 SEM 분석 조건에서 에너지분산형 분광분석법(energy dispersive X-ray spectroscope, EDS)에 의한 분석시 황(S)의 검출로 상기 이오노머의 분포를 확인할 수 있으며, 상기 이오노머의 분포로 코팅 및 코팅되지 않은 영역을 확인할 수 있다.
이와 같이, 상기 이오노머가 상기 촉매 표면에 균일하게 코팅되기 때문에 종래의 다른 방법들에 비해 더 많은 함량의 이오노머가 필요하게 된다. 구체적으로, 하기 수학식 1로 표시되는 상기 촉매의 담체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6 일 수 있다. 이는 기존 전극 대비 I/C ratio가 0.05 내지 0.2 만큼 향상된 것일 수 있다. 상기 기존 전극은 5 nm 이하의 이오노머 코팅층을 포함하지 않는 경우로, 볼밀 등의 기존 혼합 방법을 이용하여 제조된 것일 수 있다.
[수학식 1]
I/C ratio = WI / WC
WI = 이오노머(Ionomer)의 전체 중량
WC = 담체(Carrier)의 전체 중량
또한, 상기 전극은 전기화학적 유효 표면적(electrochemical active surface area, ECSA)이 기존 전극 대비 1 내지 30 % 성능 향상을 나타낼 수 있고, 구체적으로는 5 내지 20 % 성능 향상을 나타낼 수 있다. 상기 전기화학적 유효 표면적은 회전 원반 전극(Rotating Disk Electrode)를 이용해 시클로-볼타메트리(Cyclo-voltammetry)를 측정해 수소 산화반응 면적을 구해 측정할 수 있다. 상기 기존 전극은 5 nm 이하의 이오노머 코팅층을 포함하지 않는 경우로, 볼밀 등의 기존 혼합 방법을 이용하여 제조된 것일 수 있다.
본 발명의 또 다른 일 실시예에 따른 막-전극 어셈블리는 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고 상기 애노드 전극과 캐소드 전극 사이에 위치하는 상기 이온 교환막을 포함한다. 상기 애노드 전극, 상기 캐소드 전극 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 본 발명의 일 실시예에 따른 전극을 포함할 수 있다. 상기 전극과 상기 전극의 제조 방법에 대한 설명은 상술한 바와 동일하므로 반복적인 설명은 생략한다.
도 2는 상기 막-전극 어셈블리를 개략적으로 나타낸 단면도이다. 상기 도 2를 참조하여 설명하면, 상기 막-전극 어셈블리(100)는 상기 이온 교환막(50) 및 상기 이온 교환막(50)의 양면에 각각 배치되는 상기 전극(20, 20')을 포함한다. 상기 전극(20, 20')은 전극기재(40, 40')와 상기 전극기재(40, 40') 표면에 형성된 촉매층(30, 30')을 포함하며, 상기 전극 기재(40, 40')와 상기 촉매층(30, 30') 사이에 상기 전극기재(40, 40')에서의 물질 확산을 용이하게 하기 위해 탄소분말, 카본 블랙 등의 도전성 미세 입자를 포함하는 미세기공층(미도시)을 더 포함할 수도 있다.
상기 막-전극 어셈블리(100)에 있어서, 상기 이온 교환막(50)의 일면에 배치되어 상기 전극기재(40)를 지나 상기 촉매층(30)으로 전달된 연료로부터 수소 이온과 전자를 생성시키는 산화 반응을 일으키는 전극(20)을 애노드 전극이라 하고, 상기 이온 교환막(50)의 다른 일면에 배치되어 상기 이온 교환막(50)을 통해 공급받은 수소 이온과 전극기재(40')를 지나 상기 촉매층(30')으로 전달된 산화제로부터 물을 생성시키는 환원 반응을 일으키는 전극(20')을 캐소드 전극이라 한다.
상기 애노드 및 캐소드 전극(20, 20')의 촉매층(30, 30')은 상기 촉매, 이오노머 및 폴리아크릴산을 포함하는 본 발명의 일 실시예에 따른 전극을 포함한다.
상기 전극기재(40, 40')로는 수소 또는 산소의 원활한 공급이 이루어질 수 있도록 다공성의 도전성 기재가 사용될 수 있다. 그 대표적인 예로 탄소 페이퍼(carbon paper), 탄소 천(carbon cloth), 탄소 펠트(carbon felt) 또는 금속천(섬유 상태의 금속천으로 구성된 다공성의 필름 또는 고분자 섬유로 형성된 천의 표면에 금속 필름이 형성된 것을 말함)이 사용할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 전극기재(40, 40')는 불소 계열 수지로 발수 처리한 것을 사용하는 것이 연료 전지의 구동시 발생되는 물에 의하여 반응물 확산 효율이 저하되는 것을 방지할 수 있어 바람직하다. 상기 불소 계열 수지로는 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리헥사플루오로프로필렌, 폴리퍼플루오로알킬비닐에테르, 폴리퍼플루오로술포닐플루오라이드알콕시비닐 에테르, 플루오리네이티드 에틸렌 프로필렌(Fluorinated ethylene propylene), 폴리클로로트리플루오로에틸렌 또는 이들의 코폴리머를 사용할 수 있다.
상기 막-전극 어셈블리(100)는 상기 애노드 또는 캐소드 전극(20, 20')으로서 본 발명에 따른 전극을 사용하는 것을 제외하고는 통상의 막-전극 어셈블리의 제조 방법에 따라 제조할 수 있다.
본 발명의 또 다른 일 실시예에 따른 연료 전지는 상기 막-전극 어셈블리를 포함한다.
도 3은 상기 연료 전지의 전체적인 구성을 도시한 모식도이다.
상기 도 3을 참조하면, 상기 연료 전지(200)는 연료와 물이 혼합된 혼합 연료를 공급하는 연료 공급부(210), 상기 혼합 연료를 개질하여 수소 가스를 포함하는 개질 가스를 발생시키는 개질부(220), 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스가 산화제와 전기 화학적인 반응을 일으켜 전기 에너지를 발생시키는 스택(230), 및 산화제를 상기 개질부(220) 및 상기 스택(230)으로 공급하는 산화제 공급부(240)를 포함한다.
상기 스택(230)은 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스와 산화제 공급부(240)로부터 공급되는 산화제의 산화/환원 반응을 유도하여 전기 에너지를 발생시키는 복수의 단위 셀을 구비한다.
각각의 단위 셀은 전기를 발생시키는 단위의 셀을 의미하는 것으로서, 수소 가스를 포함하는 개질 가스와 산화제 중의 산소를 산화/환원시키는 상기 막-전극 어셈블리와, 수소 가스를 포함하는 개질 가스와 산화제를 막-전극 어셈블리로 공급하기 위한 분리판(또는 바이폴라 플레이트(bipolar plate)라고도 하며, 이하 '분리판'이라 칭한다)을 포함한다. 상기 분리판은 상기 막-전극 어셈블리를 중심에 두고, 그 양측에 배치된다. 이 때, 상기 스택의 최외측에 각각 위치하는 분리판을 특별히 엔드 플레이트라 칭하기도 한다.
상기 분리판 중 상기 엔드 플레이트에는 상기 개질부(220)로부터 공급되는 수소 가스를 포함하는 개질 가스를 주입하기 위한 파이프 형상의 제1 공급관(231)과, 산소 가스를 주입하기 위한 파이프 형상의 제2 공급관(232)이 구비되고, 다른 하나의 엔드 플레이트에는 복수의 단위 셀에서 최종적으로 미반응되고 남은 수소 가스를 포함하는 개질 가스를 외부로 배출시키기 위한 제1 배출관(233)과, 상기한 단위 셀에서 최종적으로 미반응되고 남은 산화제를 외부로 배출시키기 위한 제2 배출관(234)이 구비된다.
상기 전극은 상기한 연료 전지용 막-전극 어셈블리 이외에도 이차 전지 또는 커패시터 등의 다양한 분야에 적용 가능하다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되는 것은 아니다. 또한, 여기에 기재되지 않은 내용은 당 기술분야에서 숙련된 자이면 충분히 기술적으로 유추할 수 있는 것으로 그 설명을 생략한다.
[제조예: 전극의 제조]
(실시예 1)
Pt/C(다나카 사(社) 제품) 1.0 g을 용기에 개량하고, 이오노머 파우더(Nafion, 듀폰 사(社) 제품) 1.0 g을 개량해 동일 용기에 넣었다.
상기 혼합물이 담긴 용기를 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM)에 장착하였다. 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 5 분 동안 혼합시켜 전극 형성용 조성물을 제조하였다.
상기 전극 형성용 조성물을 폴리이미드 이형필름에 코팅속도 10 mm/s, 코팅 두께 100 ㎛의 조건으로 바 코팅한 후, 30 ℃, 6 시간 동안 건조시켜 전극을 제조하였다.
상기 건조된 전극을 필요한 크기로 자르고, 이온 교환막(듀폰社 제품; Nafion 212 Membrane) 양면에 전극과 이온 교환막이 맞닿게 정렬시킨 후, 100 ℃, 100 kgf/cm2의 열 및 압력 조건으로 5 분간 압착한 후, 1 분간 상온에서 유지하는 방법으로 핫프레싱하여 전사하고, 이형필름을 박리하여 막-전극 어셈블리를 제조하였다.
(실시예 2)
상기 실시예 1에서 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 10분 동안 혼합시킨 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.
(실시예 3)
상기 실시예 1에서 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 80 G의 가속도로 5분 동안 혼합시킨 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 막-전극 어셈블리를 제조하였다.
(실시예 4)
Pt/C(다나카 사(社) 제품) 1.0 g을 용기에 개량하고, 이오노머 용액(Nafion 20 % 용액, 듀폰 사(社) 제품) 5.0 g을 개량해 동일 용기에 넣었다.
상기 혼합물이 담긴 용기를 Resodyn®사의 공명 음향 혼합기(Resonant Acoustic Mixer, RAM)에 장착하였다. 상기 공명 음향 혼합기에 60 Hz의 주파수를 가지는 저주파 음향 에너지를 가하면서 70 G의 가속도로 5 분 동안 혼합시켜 전극 형성용 조성물을 제조하였다.
상기 전극 형성용 조성물을 폴리이미드 이형필름에 코팅속도 10 mm/s, 코팅 두께 100 ㎛의 조건으로 바 코팅한 후, 30 ℃, 6 시간 동안 건조시켜 전극을 제조하였다.
상기 건조된 전극을 필요한 크기로 자르고, 이온 교환막(듀폰社 제품; Nafion 212 Membrane) 양면에 전극과 이온 교환막이 맞닿게 정렬시킨 후, 100 ℃, 100 kgf/cm2의 열 및 압력 조건으로 5 분간 압착한 후, 1 분간 상온에서 유지하는 방법으로 핫프레싱하여 전사하고, 이형필름을 박리하여 막-전극 어셈블리를 제조하였다.
(비교예 1)
Pt/C(다나카 사(社) 제품) 1.0 g을 용기에 개량하고, 이오노머 용액(Nafion 20 % 용액, 듀폰 사(社) 제품) 5.0 g을 개량해 동일 용기에 넣었다.
상기 혼합물을 볼밀을 이용하여 분산 및 교반시켜 전극 형성용 조성물을 제조하였다.
이후 상기 전극 형성용 조성물을 데칼필름에 코팅, 건조하여 막-전극 어셈블리를 제조하는 단계는 상기 실시예에서 기재한 바와 동일하게 진행하여 막-전극 어셈블리를 제조하였다.
[실험예 1]
(실험예 1: TEM 사진 관찰)
상기 실시예 1 및 비교예 1에서 제조된 전극의 투과 전자 현미경(Transmission Electron Microscope, TEM) 사진을 각각 하기 도 4 및 도 5에 나타내었다.
상기 도 4 및 도 5를 참고하면, 상기 실시예 1에서와 같이 공진 혼합으로 제조된 전극은 촉매의 표면에 이오노머의 코팅 현상이 뚜렷하게 관찰되며, 그 코팅 두께가 5 nm 이하인 것을 확인할 수 있다. 구체적으로, 상기 도 4에서 화살표 부분의 물결 무늬가 이오노머가 5 nm 이하로 코팅된 것을 나타내며, 상기 코팅 부분이 전체적으로 퍼져 있는 것을 확인할 수 있다. 또한, 볼밀로 제조된 비교예 1에서 나타나는 이오노머가 겹겹이 쌓인 뭉침 현상이 관찰되지 않음을 확인할 수 있다.
(실험예 2: CV 분석)
상기 실시예 1 및 비교예 1에서 제조된 막-전극 어셈블리에 대하여 전극에서 출력되는 전압과 전류를 측정하고, 전압-전류밀도의 출력특성(방전성능)을 비교 평가하여 그 결과를 도 6에 나타내었다.
상기 도 6을 참고하면, 상기 실시예에서 제조된 막-전극 어셈블리가 상기 비교예에서 제조된 막-전극 어셈블리에 비하여 전류 밀도에 따른 전압 성능이 우수함을 확인할 수 있고, 이로써 상기 실시예에서 제조된 전극이 상기 비교예에서 제조된 전극에 비하여 전기화학적 유효 표면적 더 크게 나타나는 것, 즉 촉매의 활성이 증대되는 것을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만, 상기한 실시예는 본 발명의 특정한 일 예로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명의 권리범위는 후술할 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
1: 담체
2: 촉매 금속 입자
3: 이오노머
20, 20': 전극
30, 30': 촉매층
40, 40': 전극기재
50: 이온 교환막
100: 막-전극 어셈블리
200: 연료 전지
210: 연료 공급부 220: 개질부
230: 스택 231: 제 1 공급관
232: 제 2 공급관 233: 제 1 배출관
234: 제 2 배출관 240: 산화제 공급부

Claims (13)

  1. 촉매와 이오노머를 포함하는 전극 형성용 조성물을 제조하는 단계,
    상기 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 상기 이오노머를 코팅하는 단계, 그리고
    상기 전극 형성용 조성물을 코팅하여 전극을 제조하는 단계
    를 포함하는 전극의 제조 방법.
  2. 제 1 항에 있어서,
    상기 저주파 음향 에너지는 10 내지 100 Hz의 주파수를 가지는 것인 전극의 제조 방법.
  3. 제 1 항에 있어서,
    상기 공진 혼합은 상기 촉매와 이오노머를 포함하는 전극 형성용 조성물에 10 내지 100 G의 가속도를 가하여 이루어지는 것인 전극의 제조 방법.
  4. 제 1 항에 있어서,
    상기 공진 혼합은 30 초 내지 30 분 동안 이루어지는 것인 전극의 제조 방법.
  5. 제 1 항에 있어서,
    상기 전극 형성용 조성물은 용매를 더 포함하는 것인 전극의 제조 방법.
  6. 촉매 및 이오노머를 포함하며,
    상기 이오노머는 상기 촉매의 표면에 5 nm 이하의 두께로 코팅된 것인 전극.
  7. 제 6 항에 있어서,
    상기 이오노머는,
    상기 촉매 및 상기 이오노머를 포함하는 전극 형성용 조성물에 저주파 음향 에너지(low-frequency acoustic energy)를 가하여 공진 혼합(resonant vibratory mixing)하여 상기 촉매 표면에 코팅된 것인 전극.
  8. 제 6 항에 있어서,
    상기 촉매 표면에 5 nm 이하의 두께로 코팅된 이오노머는 상기 이오노머 전체 중량에 대하여 55 중량% 내지 95 중량%인 것인 전극.
  9. 제 6 항에 있어서,
    상기 촉매 표면에 코팅되지 않고 응집된(aggregated) 이오노머는 상기 이오노머 전체 중량에 대하여 0 중량% 내지 45 중량%인 것인 전극.
  10. 제 6 항에 있어서,
    상기 촉매는 촉매 금속 입자 단독 또는 담체에 담지된 촉매 금속 입자를 포함하는 것인 전극.
  11. 제 10 항에 있어서,
    하기 수학식 1로 표시되는 상기 담체에 대한 상기 이오노머의 중량비(I/C ratio)는 0.75 내지 1.6인 것인 전극.
    [수학식 1]
    I/C ratio = WI / WC
    WI = 이오노머(Ionomer)의 전체 중량
    WC = 담체(Carrier)의 전체 중량
  12. 서로 대향하여 위치하는 애노드 전극과 캐소드 전극, 그리고
    상기 애노드 전극과 캐소드 전극 사이에 위치하는 이온 교환막을 포함하며,
    상기 애노드 전극, 상기 캐소드 전극 및 이 둘 모두로 이루어진 군에서 선택되는 어느 하나는 상기 제 6 항에 따른 전극을 포함하는 것인 막-전극 어셈블리.
  13. 제 12 항에 따른 막-전극 어셈블리를 포함하는 것인 연료 전지.
KR1020160181590A 2016-12-28 2016-12-28 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지 Active KR102189064B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020160181590A KR102189064B1 (ko) 2016-12-28 2016-12-28 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
PCT/KR2017/015301 WO2018124645A1 (ko) 2016-12-28 2017-12-22 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
JP2019521674A JP6895517B2 (ja) 2016-12-28 2017-12-22 電極の製造方法、これによって製造された電極、前記電極を含む膜−電極アセンブリー、そして前記膜−電極アセンブリーを含む燃料電池
EP17887671.0A EP3536664B1 (en) 2016-12-28 2017-12-22 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
US16/343,522 US11283093B2 (en) 2016-12-28 2017-12-22 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly
CN201780066307.3A CN109890752A (zh) 2016-12-28 2017-12-22 电极的制备方法,由该法制备的电极,含该电极的膜电极组件及含该膜电极组件的燃料电池
JP2020099641A JP7083003B2 (ja) 2016-12-28 2020-06-08 電極の製造方法、これによって製造された電極、前記電極を含む膜-電極アセンブリー、そして前記膜-電極アセンブリーを含む燃料電池
US17/592,595 US11557782B2 (en) 2016-12-28 2022-02-04 Method for manufacturing electrode, electrode manufactured thereby, membrane-electrode assembly comprising same electrode, and fuel cell including same membrane-electrode assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160181590A KR102189064B1 (ko) 2016-12-28 2016-12-28 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지

Publications (2)

Publication Number Publication Date
KR20180076907A true KR20180076907A (ko) 2018-07-06
KR102189064B1 KR102189064B1 (ko) 2020-12-09

Family

ID=62921186

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160181590A Active KR102189064B1 (ko) 2016-12-28 2016-12-28 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지

Country Status (1)

Country Link
KR (1) KR102189064B1 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036794A (ko) * 2018-09-28 2020-04-07 코오롱인더스트리 주식회사 금속 산화물-탄소 복합체, 상기 금속 산화물-탄소 복합체의 제조 방법, 촉매, 상기 촉매의 제조 방법, 상기 촉매를 포함하는 전극, 상기 전극을 포함하는 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지
KR20200080151A (ko) * 2018-12-26 2020-07-06 코오롱인더스트리 주식회사 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지
KR20200080152A (ko) * 2018-12-26 2020-07-06 코오롱인더스트리 주식회사 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
KR20200114423A (ko) * 2019-03-28 2020-10-07 현대자동차주식회사 전자절연층이 도입된 막-전극 접합체의 전해질막 및 이의 제조방법
KR20210038388A (ko) * 2019-09-30 2021-04-07 코오롱인더스트리 주식회사 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막
KR20210147380A (ko) * 2020-05-28 2021-12-07 코오롱인더스트리 주식회사 연료전지용 혼합 촉매, 그 제조방법, 그것을 이용한 전극 형성방법, 및 그것을 포함하는 막-전극 어셈블리
WO2022145748A1 (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 막-전극 어셈블리 및 이를 포함하는 연료 전지
WO2022145771A1 (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 연료전지용 촉매층, 이의 제조 방법, 이를 포함하는 막-전극 접합체 및 연료전지
KR20230090577A (ko) * 2021-12-15 2023-06-22 코오롱인더스트리 주식회사 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013045694A (ja) * 2011-08-25 2013-03-04 Nissan Motor Co Ltd 燃料電池用電極触媒層、燃料電池用電極、燃料電池用膜電極接合体及び燃料電池
JP2014229528A (ja) * 2013-05-24 2014-12-08 トヨタ自動車株式会社 燃料電池用触媒電極層、膜電極接合体、燃料電池、および、燃料電池用触媒電極層を製造する方法。
KR20150075106A (ko) * 2012-10-26 2015-07-02 아우디 아게 연료 전지 막 전극 조립체 제조 공정
KR102014134B1 (ko) * 2011-02-08 2019-10-21 인스터? 내셔널 드 라 르세르슈 사이언티피크 열분해 가능한 다공성 담체를 이용하여 제조한 촉매

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102014134B1 (ko) * 2011-02-08 2019-10-21 인스터? 내셔널 드 라 르세르슈 사이언티피크 열분해 가능한 다공성 담체를 이용하여 제조한 촉매
JP2013045694A (ja) * 2011-08-25 2013-03-04 Nissan Motor Co Ltd 燃料電池用電極触媒層、燃料電池用電極、燃料電池用膜電極接合体及び燃料電池
KR20150075106A (ko) * 2012-10-26 2015-07-02 아우디 아게 연료 전지 막 전극 조립체 제조 공정
JP2014229528A (ja) * 2013-05-24 2014-12-08 トヨタ自動車株式会社 燃料電池用触媒電極層、膜電極接合体、燃料電池、および、燃料電池用触媒電極層を製造する方法。

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200036794A (ko) * 2018-09-28 2020-04-07 코오롱인더스트리 주식회사 금속 산화물-탄소 복합체, 상기 금속 산화물-탄소 복합체의 제조 방법, 촉매, 상기 촉매의 제조 방법, 상기 촉매를 포함하는 전극, 상기 전극을 포함하는 막-전극 어셈블리 및 상기 막-전극 어셈블리를 포함하는 연료 전지
KR20200080151A (ko) * 2018-12-26 2020-07-06 코오롱인더스트리 주식회사 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지
KR20200080152A (ko) * 2018-12-26 2020-07-06 코오롱인더스트리 주식회사 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
US11837735B2 (en) 2018-12-26 2023-12-05 Kolon Industries, Inc. Catalyst, method for producing same, electrode comprising same, membrane-electrode assembly comprising same, and fuel cell comprising same
KR20200114423A (ko) * 2019-03-28 2020-10-07 현대자동차주식회사 전자절연층이 도입된 막-전극 접합체의 전해질막 및 이의 제조방법
US12034192B2 (en) * 2019-09-30 2024-07-09 Kolon Industries, Inc. Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
WO2021066544A1 (ko) * 2019-09-30 2021-04-08 코오롱인더스트리 주식회사 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막
EP4040549A4 (en) * 2019-09-30 2023-10-25 Kolon Industries, Inc. Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
US20220285715A1 (en) * 2019-09-30 2022-09-08 Kolon Industries, Inc. Ionomer dispersion having high dispersion stability, method for producing same, and polymer electrolyte membrane produced using same
KR20210038388A (ko) * 2019-09-30 2021-04-07 코오롱인더스트리 주식회사 높은 분산 안정성을 갖는 이오노머 분산액, 그 제조방법, 및 그것을 이용하여 제조된 고분자 전해질막
KR20210147380A (ko) * 2020-05-28 2021-12-07 코오롱인더스트리 주식회사 연료전지용 혼합 촉매, 그 제조방법, 그것을 이용한 전극 형성방법, 및 그것을 포함하는 막-전극 어셈블리
EP4160757A4 (en) * 2020-05-28 2025-07-09 Kolon Inc MIXED CATALYST FOR FUEL CELL, PREPARATION METHOD THEREOF, ELECTRODE FORMATION METHOD USING THE SAME, AND MEMBRANE-ELECTRODE ASSEMBLY COMPRISING THE SAME
US11652214B2 (en) 2020-05-28 2023-05-16 Kolon Industries, Inc. Mixed catalyst for fuel cell, method for preparing same, method for forming electrode by using same, and membrane-electrode assembly comprising same
WO2022145771A1 (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 연료전지용 촉매층, 이의 제조 방법, 이를 포함하는 막-전극 접합체 및 연료전지
KR20220097235A (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 연료전지용 촉매층, 이의 제조 방법, 이를 포함하는 막-전극 접합체 및 연료전지
WO2022145748A1 (ko) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 막-전극 어셈블리 및 이를 포함하는 연료 전지
KR20230090577A (ko) * 2021-12-15 2023-06-22 코오롱인더스트리 주식회사 고분자 전해질막, 이의 제조 방법 및 이를 포함하는 막-전극 어셈블리

Also Published As

Publication number Publication date
KR102189064B1 (ko) 2020-12-09

Similar Documents

Publication Publication Date Title
JP7083003B2 (ja) 電極の製造方法、これによって製造された電極、前記電極を含む膜-電極アセンブリー、そして前記膜-電極アセンブリーを含む燃料電池
US11831025B2 (en) Catalyst, preparation method therefor, electrode comprising same, membrane-electrode assembly, and fuel cell
KR102189064B1 (ko) 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
KR102141882B1 (ko) 혼합 촉매를 포함하는 연료전지 전극 형성용 조성물, 연료전지용 전극 및 이의 제조방법
KR102387596B1 (ko) 촉매, 이의 제조 방법, 이를 포함하는 전극, 이를 포함하는 막-전극 어셈블리, 및 이를 포함하는 연료 전지
KR102407694B1 (ko) 촉매, 그 제조방법, 그것을 포함하는 전극, 그것을 포함하는 막-전극 어셈블리, 및 그것을 포함하는 연료 전지
JP2007305591A (ja) 燃料電池用カソード触媒、これを含む燃料電池用膜−電極接合体、及びこれを含む燃料電池システム
US10868311B2 (en) Membrane-electrode assembly for fuel cell, method for manufacturing same, and fuel cell system comprising same
KR101201816B1 (ko) 막-전극 어셈블리, 그 제조방법, 및 이를 포함하는 연료전지 시스템
US8445163B2 (en) Membrane electrode assembly for fuel cell having catalyst layer with mesopore volume, method of preparing same, and fuel cell system including the same
EP4235876A1 (en) Catalyst layer for fuel cell, manufacturing method therefor, and membrane-electrode assembly and fuel cell which comprise same
KR102141881B1 (ko) 고분자 전해질 연료 전지용 나노구조 전극 및 이의 제조 방법
KR20180036212A (ko) 전극의 제조 방법, 이에 의하여 제조된 전극, 상기 전극을 포함하는 막-전극 어셈블리, 그리고 상기 막-전극 어셈블리를 포함하는 연료 전지
KR100578977B1 (ko) 연료전지용 전극, 이를 포함하는 연료전지 및 연료전지용전극의 제조방법
KR20230078305A (ko) 연료전지 전극 형성용 조성물 및 이를 이용한 연료전지용 전극의 제조방법
KR20070106303A (ko) 연료전지용 막-전극 어셈블리, 및 이를 포함하는 연료전지시스템
JP2018181676A (ja) 燃料電池用触媒層の製造方法および電極触媒混合物
KR20090034147A (ko) 연료 전지용 막-전극 어셈블리 및 이를 포함하는 연료 전지시스템

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20161228

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20181205

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20161228

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20200430

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20201125

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20201203

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20201204

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20231128

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20241126

Start annual number: 5

End annual number: 5