[go: up one dir, main page]

KR20180071790A - Epoxy composites containing pitch coated glass fiber - Google Patents

Epoxy composites containing pitch coated glass fiber Download PDF

Info

Publication number
KR20180071790A
KR20180071790A KR1020160174813A KR20160174813A KR20180071790A KR 20180071790 A KR20180071790 A KR 20180071790A KR 1020160174813 A KR1020160174813 A KR 1020160174813A KR 20160174813 A KR20160174813 A KR 20160174813A KR 20180071790 A KR20180071790 A KR 20180071790A
Authority
KR
South Korea
Prior art keywords
pitch
glass fiber
coated
epoxy resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020160174813A
Other languages
Korean (ko)
Other versions
KR102008761B1 (en
Inventor
박수진
강우석
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to KR1020160174813A priority Critical patent/KR102008761B1/en
Publication of KR20180071790A publication Critical patent/KR20180071790A/en
Application granted granted Critical
Publication of KR102008761B1 publication Critical patent/KR102008761B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 방열성이 향상된 에폭시 복합재료에 관한 것으로서, 더욱 상세하게는 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료 및 이의 제조기술에 관한 것이다.
상기와 같은 본 발명에 따르면, 피치로 코팅된 유릿ㅁ유를 탄소화 시킨 보강제를 첨가함으로서, 열적 안정성 및 기계적 특성이 향상된 에폭시 복합재료를 제공하는 효과가 있다.
TECHNICAL FIELD The present invention relates to an epoxy composite material having improved heat dissipation property, and more particularly, to an epoxy composite material including glass fiber coated with a pitch and a manufacturing technique thereof.
According to the present invention, it is possible to provide an epoxy composite material having improved thermal stability and mechanical properties by adding a reinforcing agent in which the pitch-coated potting oil is carbonized.

Description

피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료{EPOXY COMPOSITES CONTAINING PITCH COATED GLASS FIBER}[0001] EPOXY COMPOSITES CONTAINING PITCH COATED GLASS FIBER [0002]

본 발명은 방열성이 향상된 에폭시 복합재료에 관한 것으로서, 더욱 상세하게는 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료의 제조기술에 대한 것이다.TECHNICAL FIELD The present invention relates to an epoxy composite material having improved heat dissipation property, and more particularly, to a technique for producing an epoxy composite material containing glass fiber coated with a pitch.

최근 전자산업의 급격한 발전으로 전자제품의 속도향상과 기능화로 인한 전력소모가 증가함에 따라 발생열을 효과적으로 방출해주는 문제를 중요하게 다루고 있다. 전자기기내의 발생열은 기기의 성능을 저하시키며, 수명을 단축시키는 원인으로 이를 해결할 수 있는 고방열 재료의 개발이 필수적이다. 초기 방열재료는 열전도도가 낮은 열가소성 고분자를 주로 이용하였으나, 열가소성 고분자의 0.2 W/mK 이하의 낮은 열전도도 및 고유특성상 열팽창계수와 같은 열안정성 문제가 야기되어 열확산 특성을 높이기 위하여 금속이나 세라믹 필러들을 첨가하는 방법이 연구되고 있다. 세라믹스 필러 중에서도 탄화규소 재료는 매트릭스에 비강도, 내산화성, 내부식성, 열충격 저항성, 내마모성, 높은 열전도도 등의 우수한 열적 기계적 특성을 갖고 있다. 하지만 탄화규소는 고함량을 필요로 하기 때문에 최종적으로 기계적 물성을 약화시키는 단점이 있다. 이에 강화 에폭시 복합재료는 열적특성을 이끌어 줄 수 있는 좋은 수지 중의 하나이다. 에폭시 수지는 접착성, 내약품성, 내식성, 내열성이 좋을 뿐만 아니라 가공성, 내마모성, 치수안정성이 우수하고 수지의 종류, 경화제의 선택과 배합에 의해 폭넓은 요구에 대응할 수 있는 장점을 가지고 있다. 이러한 이유로 이들을 조합한 강화 에폭시 복합재료에 대한 연구는 매우 흥미롭다.  Recently, the rapid development of the electronics industry has been regarded as an important issue that effectively emits heat due to an increase in power consumption due to the speed improvement and functionalization of electronic products. It is essential to develop highly heat-dissipative materials that can reduce the performance of equipment and shorten its service life. The initial heat-dissipating material is mainly made of a thermoplastic polymer having a low thermal conductivity. However, due to low thermal conductivity of the thermoplastic polymer of 0.2 W / mK or less and thermal stability problems such as thermal expansion coefficient due to its inherent characteristics, a metal or ceramic filler Is being studied. Among the ceramic fillers, silicon carbide materials have excellent thermal and mechanical properties such as noble strength, oxidation resistance, corrosion resistance, thermal shock resistance, abrasion resistance, and high thermal conductivity in a matrix. However, since silicon carbide requires a high content, there is a disadvantage that it finally weakens the mechanical properties. Therefore, reinforced epoxy composites are one of the good resins that can lead to thermal properties. Epoxy resins are excellent in adhesiveness, chemical resistance, corrosion resistance and heat resistance, and are excellent in processability, abrasion resistance and dimensional stability, and have the advantage of being able to cope with a wide variety of demands by selection of resin types and hardeners. For this reason, studies on reinforced epoxy composites combining these materials are very interesting.

본 발명의 목적은, 피치로 코팅된 유리섬유를 탄소화 시킨 보강제를 첨가함으로써, 열적 안정성과 기계적 특성이 향상된 에폭시 복합재료를 제공함에 있다.An object of the present invention is to provide an epoxy composite material having improved thermal stability and mechanical properties by adding a reinforcing agent obtained by carbonizing pitch-coated glass fibers.

또한, 본 발명의 다른 목적은, 피치로 코팅된 탄소화 시킨 보강제 및 탄화규소(SiC)를 보강제로 동시에 첨가함으로써, 열적 안정성과 기계적 특성이 더욱 향상된 에폭시 복합재료를 제공함에 있다.Another object of the present invention is to provide an epoxy composite material in which thermal stability and mechanical properties are further improved by simultaneously adding carbonized reinforcing agent coated with pitch and silicon carbide (SiC) as a reinforcing agent.

상기 목적을 달성하기 위하여, 본 발명은 에폭시 수지 및 상기 에폭시 수지 100중량부 대비 0.1 내지 0.5중량부의 피치(pitch)로 코팅 된 유리섬유를 포함하는 에폭시 수지 조성물을 제공한다.In order to achieve the above object, the present invention provides an epoxy resin composition comprising an epoxy resin and glass fibers coated with a pitch of 0.1 to 0.5 parts by weight based on 100 parts by weight of the epoxy resin.

상기 피치로 코팅 된 유리섬유는 피치로 유리섬유를 코팅한 후 탄소화(carbonization)된 것을 특징으로 한다.The glass fiber coated with the pitch is carbonized after coating the glass fiber with a pitch.

상기 에폭시 수지 조성물은 탄화규소(SiC) 0.4 내지 2.8중량부를 더 포함하는 것을 특징으로 한다.The epoxy resin composition further comprises 0.4 to 2.8 parts by weight of silicon carbide (SiC).

또한, 본 발명은 방열성이 향상된 에폭시 복합재료 제조방법을 제공한다. 상기 에폭시 복합재료 제조방법은 유리섬유에 피치를 코팅하는 단계, 피치가 코팅된 유리섬유를 탄소화 시키는 단계, 상기 탄소화 된 피치코팅 유리섬유 및 에폭시 수지를 혼합하는 단계 및 상기 혼합물을 경화시키는 단계를 포함한다.Further, the present invention provides a method for producing an epoxy composite material having improved heat dissipation. The epoxy composite material manufacturing method includes the steps of coating a pitch on a glass fiber, carbonizing the glass fiber coated with pitch, mixing the carbonized pitch-coated glass fiber and epoxy resin, and curing the mixture .

상기 탄소화 시키는 단계는 온도 600 내지 1000℃, 불활성 기체 분위기에서 수행되는 것을 특징으로 한다.The carbonizing step is performed in an inert gas atmosphere at a temperature of 600 to 1000 ° C.

상기 혼합하는 단계는 에폭시 수지 및 상기 에폭시 수지 100중량부 대비 0.1 내지 0.5중량부의 피치(pitch)로 코팅 된 유리섬유를 혼합하는 것을 특징으로 한다. 상기 혼합하는 단계는 탄화규소(SiC) 0.4 내지 2.8 중량부를 더 혼합하는 것을 특징으로 한다.Wherein the mixing step comprises mixing an epoxy resin and glass fibers coated with a pitch of 0.1 to 0.5 parts by weight relative to 100 parts by weight of the epoxy resin. Wherein the mixing step further comprises mixing 0.4 to 2.8 parts by weight of silicon carbide (SiC).

상기와 같은 본 발명에 따르면, 피치로 코팅된 유리섬유를 탄소화 시킨 보강제를 첨가함으로써, 열적 안정성 및 기계적 특성이 향상된 에폭시 복합재료를 제공하는 효과가 있다. 또한, 본 발명에 따른 방열성이 향상된 에폭시 복합재료를 제공함으로써, 전자산업에서 고방열재료로 이용될 수 있는 효과가 있다. According to the present invention, it is possible to provide an epoxy composite material improved in thermal stability and mechanical properties by adding a reinforcing agent obtained by carbonizing pitch-coated glass fibers. Further, by providing the epoxy composite material with improved heat dissipation property according to the present invention, there is an effect that it can be used as a high heat dissipation material in the electronic industry.

도 1은 본 발명의 일 실시예에 따른 에폭시 복합재료의 주사전자현미경(SEM) 사진이다.
도 2는 본 발명의 일 실시예에 따른 에폭시 복합재료의 퓨리에 변환 적외선 분광분석(Fourier Transform Infrared Spectroscopy, FT-IR) 결과를 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 에폭시 복합재료의 열 중량 분석(thermogravimetric analysis, TGA) 결과를 도시한 것이다.
1 is a scanning electron microscope (SEM) photograph of an epoxy composite according to an embodiment of the present invention.
FIG. 2 illustrates Fourier Transform Infrared Spectroscopy (FT-IR) results of an epoxy composite according to an embodiment of the present invention.
FIG. 3 is a thermogravimetric analysis (TGA) result of an epoxy composite according to an embodiment of the present invention.

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명의 일 형태에 따른 에폭시 수지 조성물은 에폭시 수지 및 상기 에폭시 수지 100중량부 대비 0.1 내지 0.5중량부의 피치(pitch)로 코팅 된 유리섬유를 포함한다.An epoxy resin composition according to one embodiment of the present invention includes an epoxy resin and glass fibers coated with a pitch of 0.1 to 0.5 parts by weight relative to 100 parts by weight of the epoxy resin.

피치로 코팅된 유리섬유는 피치로 유리섬유를 코팅한 후 탄소화(carbonization) 된 것을 특징으로 한다.The pitch-coated glass fibers are characterized by carbonization after coating with glass fibers at a pitch.

또한, 에폭시 수지 조성물은 에폭시수지 100중량부 대비 0.4 내지 2.8 중량부의 탄화규소(SiC) 를 더 포함하는 것을 특징으로 한다. 탄화규소의 농도가 에폭시 수지 100중량부 대비 0.4 중량비 미만인 경우는 방열 효과가 미미하기 때문에 바람직하지 못하고, 탄화규소의 농도가 에폭시 수지 100중량부 대비 2.8 중량비를 초과하면 분산성이 저하되고 수지 내에서 탄화규소 간의 상호 응집이 일어나 불균일한 상을 형성하여 물성을 감소시키기 때문에 바람직하지 못하다. 사용된 탄화규소의 입자크기는 4μm 이하일 경우 방열 효과가 미미하기 때문에 바람직하지 못하고, 10μm 이상인 경우 분산 효과가 미미하여 바람직하지 못하다.The epoxy resin composition further comprises 0.4 to 2.8 parts by weight of silicon carbide (SiC) based on 100 parts by weight of the epoxy resin. If the concentration of silicon carbide is less than 0.4 parts by weight based on 100 parts by weight of the epoxy resin, the heat dissipation effect is insufficient, which is not preferable. When the concentration of silicon carbide exceeds 2.8 parts by weight based on 100 parts by weight of the epoxy resin, Mutual agglomeration of silicon carbide occurs to form a heterogeneous phase, thereby reducing physical properties, which is not preferable. When the particle size of the silicon carbide used is 4 μm or less, the heat radiation effect is insignificant, and if it is 10 μm or more, the dispersing effect is insignificant.

본 발명의 다른 일 형태에 따른 방열성이 향상된 에폭시 복합재료 제조방법은 유리섬유에 피치를 코팅하는 단계, 피치가 코팅된 유리섬유를 탄소화 시키는 단계, 상기 탄소화 된 피치 코팅 유리섬유 및 에폭시 수지를 혼합하는 단계 및 상기 혼합물을 경화시키는 단계를 포함한다. According to another aspect of the present invention, there is provided a method of manufacturing an epoxy composite material having improved heat dissipation, comprising the steps of: coating a pitch with a glass fiber; carbonizing the pitch-coated glass fiber; Mixing and curing the mixture.

피치(pitch)는 유기용액 및 피치가 질량비 10:1 내지 1:10로 혼합된 것을 특징으로 한다.The pitch is characterized in that the organic solution and pitch are mixed in a mass ratio of 10: 1 to 1:10.

유기용액은 방향족 용매를 선택하는 것이 바람직하나, 퀴놀린(Quinoline)이 더욱 바람직하다. 유기용액과 피치를 상온에서 1 내지 5시간동안 교반하여 혼합하는 것이 바람직하다.The organic solvent is preferably an aromatic solvent, but quinoline is more preferable. It is preferable to mix the organic solution and the pitch by stirring at room temperature for 1 to 5 hours.

피치로 유리섬유를 코팅한 후 사용한 유기용액이 제거될 수 있도록 80 내지 100℃의 오븐에서 12 내지 24시간 동안 건조하는 것이 바람직하며, 건조 후 증류수로 1 내지 10회 세척하는 것이 바람직하다.It is preferable to dry in an oven at 80 to 100 ° C for 12 to 24 hours so that the used organic solution can be removed after coating the glass fiber with a pitch, and it is preferable that the glass fiber is washed 1 to 10 times with distilled water after drying.

탄소화 시키는 단계는 온도 600 내지 1000℃, 불활성 기체 분위기에서 수행되는 것을 특징으로 한다. 더욱 상세하게는 불활성 분위기의 퍼니스를 사용하여 승온속도 1 내지 4℃/min, 온도 600 내지 1000℃ 조건에서 5 내지 60분간 열처리하는 것이 바람직하다. 또한, 탄소화 온도는 600℃이하인 경우는 탄화효과가 미미하고, 1000℃이상일 경우에는 구조 파괴를 초례하여 유리섬유의 물성 저하를 유도하기 때문에 바람직하지 못하다. 탄소화 시키기 위한 열처리 후 표면에 잔존하는 불순물을 제거하기 위하여 증류수 세척 및 건조 과정을 더 수행하는 것이 바람직하다. And the step of carbonizing is performed in an inert gas atmosphere at a temperature of 600 to 1000 캜. More specifically, it is preferable to use a furnace in an inert atmosphere for heat treatment at a temperature raising rate of 1 to 4 占 폚 / min and a temperature of 600 to 1000 占 폚 for 5 to 60 minutes. In addition, the carbonization temperature is lower than 600 ° C., and the carbonization effect is insignificant. On the other hand, when the temperature is higher than 1000 ° C., the structure is broken and the physical properties of the glass fiber are deteriorated. After the heat treatment for carbonizing, it is preferable to further perform distilled water washing and drying to remove impurities remaining on the surface.

혼합하는 단계는 에폭시 수지 및 상기 에폭시 수지 100중량부 대비 0.1 내지 0.5중량부의 피치(pitch)로 코팅 된 유리섬유를 혼합하는 것을 특징으로 한다. 또한, 상기 혼합하는 단계는 에폭시 수지 100중량부 대비 0.4 내지 2.8 중량부의 탄화규소(SiC)를 더 혼합하는 것을 특징으로 한다. And mixing the epoxy resin and the glass fiber coated with the pitch of 0.1 to 0.5 parts by weight relative to 100 parts by weight of the epoxy resin. In addition, the mixing step may further include mixing 0.4 to 2.8 parts by weight of silicon carbide (SiC) with respect to 100 parts by weight of the epoxy resin.

탄화규소(SiC)는 입자크기가 4 내지 10μm인 것이 바람직하다. 사용된 탄화규소의 입자크기는 4μm 이하일 경우 방열 효과가 미미하기 때문에 바람직하지 못하고, 10μm 이상인 경우 분산 효과가 미미하여 바람직하지 못하다.The silicon carbide (SiC) preferably has a particle size of 4 to 10 mu m. When the particle size of the silicon carbide used is 4 μm or less, the heat radiation effect is insignificant, and if it is 10 μm or more, the dispersing effect is insignificant.

경화하는 단계는 온도 140 내지 200℃, 압력 10 내지 100MPa 조건으로 3시간 이상 경화하는 것을 특징으로 한다. 경화 온도가 140℃ 이하일 경우에는 완전한 경화를 유도하지 못하기 때문에 바람직하지 못하고, 200℃ 이상일 경우에는 물성 저하를 초례하여 바람직하지 못하다. 압력이 10MPa 이하일 경우 수지가 섬유내부에 과량 잔존되어 물성 저하를 초례하고, 100MPa 이상일 경우는 에폭시 수지가 과량 빠져나가 수지와 필러 사이의 결착 저하를 유도하여 바람직하지 못 하다.The curing step is characterized by curing at a temperature of 140 to 200 占 폚 and a pressure of 10 to 100 MPa for 3 hours or more. When the curing temperature is lower than 140 캜, it is not preferable because it can not induce complete curing. When it is higher than 200 캜, the physical properties are lowered, which is not preferable. When the pressure is less than 10 MPa, excess resin remains in the fiber to deteriorate the physical properties. When the pressure is more than 100 MPa, excessive amount of epoxy resin escapes to induce deterioration of adhesion between the resin and the filler.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예Example 1. One.

피치가 코팅된 탄화유리섬유를 제조하였다.Pitch - coated carbonized glass fiber was prepared.

퀴놀린과 피치를 10:1의 질량비로 혼합하여 상온에서 약 2시간동안 교반하여 피치용액을 준비하였다. 제조 된 피치 용액에 유리섬유를 담지하여 유리섬유 표면에 균일하게 코팅한 후, 70℃의 건조오븐에서 12시간 건조하였으며, 불활성분위기의 튜브형 퍼니스를 사용하여 600℃에서 5분간 열처리하였다. 표면에 잔존하는 불순물을 제거하기 위하여, 피치가 코팅 된 유리섬유를 증류수로 수차례 세척한 후 80℃의 건조오븐에서 12시간 건조하였다.Quinoline and pitch were mixed at a mass ratio of 10: 1 and stirred at room temperature for about 2 hours to prepare a pitch solution. The prepared pitch solution was coated with glass fiber uniformly on the glass fiber surface, dried in a drying oven at 70 ° C for 12 hours, and heat-treated at 600 ° C for 5 minutes using a tubular furnace in an inert atmosphere. To remove impurities remaining on the surface, the pitch-coated glass fibers were washed several times with distilled water and dried in a drying oven at 80 ° C for 12 hours.

탄화규소는 프리저밀을 사용하여 입자의 크기를 4 μm로 분쇄하여 제조한다. Silicon carbide is prepared by pulverizing the particle size to 4 μm using a freezer mill.

피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료는 에폭시 수지 100중량부 대비 피치 코팅된 탄화유리섬유 0.1 wt%와 탄화규소 0.4 wt%를 첨가하고 교반하여 용융혼합한다. 분산이 완료된 에폭시 수지에 경화제인 DDM(Dephenyl Deamino Metane)을 첨가하여 혼합한 후, 혼합과정에서 생성된 기포를 제거하였다. 최종적으로 핫프레스를 이용하여 10 MPa의 압력, 140℃에서 2시간동안 고온압착하여 경화시켜 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다. The epoxy composite material containing pitch-coated glass fibers is prepared by adding 0.1 wt% of carbonized glass fiber pitch-coated to 0.4 wt% of epoxy resin and 0.4 wt% of silicon carbide. DDM (Dephenyl Deamino Metane), a curing agent, was added to the dispersed epoxy resin, and the bubbles formed in the mixing process were removed. Finally, an epoxy composite material containing glass fibers coated with pitch was prepared by curing by hot pressing at a pressure of 10 MPa and a high temperature at 140 캜 for 2 hours.

실시예Example 2. 2.

상기 실시예 1과 동일하게 제조하되, 10분 동안 탄화하여 피치 코팅된 탄화유리섬유를 제조하고, 복합재료 제조 과정에서 유리섬유의 0.2 wt% 및 탄화규소 0.8 wt% 첨가하고, 30 MPa의 압력으로 경화하여 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다.The carbonized glass fibers were carbonized for 10 minutes to form pitch-coated carbonized glass fibers, and 0.2 wt% of glass fibers and 0.8 wt% of silicon carbide were added during the course of preparing the composite material, and a pressure of 30 MPa The epoxy composite material including the glass fiber coated with the pitch by curing was produced.

실시예Example 3.  3.

상기 실시예 1과 동일하게 제조하되, 탄화온도를 700℃, 탄화시간을 20분으로 하여 피치 코팅된 탄화유리섬유 제조하고, 복합재료 제조 과정에서 유리섬유 0.4 wt% 및 탄화규소 1.2 wt% 첨가하여 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다.The carbonized glass fiber was produced in the same manner as in Example 1 except that the carbonization temperature was 700 ° C. and the carbonization time was 20 minutes. In the course of producing the composite material, 0.4 wt% of glass fiber and 1.2 wt% of silicon carbide were added An epoxy composite material comprising glass fiber coated with pitch was prepared.

실시예Example 4. 4.

상기 실시예 1과 동일하게 제조하되, 탄화규소의 입자크기를 7 μm로 분쇄하고, 복합재료 제조 과정에서 탄화규소 1.6 wt% 및 50 MPa의 압력, 170 ℃의 온도 조건에서 경화하여 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다. The same procedure as in Example 1 was carried out except that the particle size of silicon carbide was pulverized to 7 μm and cured at a pressure of 1.6 wt% and 50 MPa and a temperature of 170 ° C. An epoxy composite material containing glass fibers was prepared.

실시예Example 5. 5.

상기 실시예 1과 동일하게 제조하되, 탄화온도를 800℃, 탄화시간을 30분으로 하여 피치 코팅된 탄화유리섬유 제조하고, 복합재료 제조 과정에서 유리섬유 0.6 wt% 및 탄화규소 2.0 wt% 첨가하여 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다.The carbonized glass fiber was produced in the same manner as in Example 1 except that the carbonized glass fibers were pitch-coated at a carbonization temperature of 800 ° C. and a carbonization time of 30 minutes, and 0.6 wt% of glass fibers and 2.0 wt% of silicon carbide were added An epoxy composite material comprising glass fiber coated with pitch was prepared.

실시예Example 6. 6.

상기 실시 예 1과 동일하게 과정을 실시하되, 70 MPa의 압력에서 경화시켜 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다.The procedure of Example 1 was followed to cure at 70 MPa to prepare an epoxy composite material comprising glass fiber coated with a pitch.

실시예Example 7. 7.

상기 실시예 1과 동일하게 과정을 실시하되, 40분 동안 탄화하여 피치 코팅된 탄화유리섬유를 제조하고, 탄화규소의 입자크기를 10 μm로 분쇄하고, 복합재료 제조 과정에서 유리섬유 0.8 wt% 및 탄화규소 2.4 wt%를 첨가하고, 200℃ 의 온도에서 경화하여 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다.The carbonized glass fiber was pitch-coated by carbonization for 40 minutes in the same manner as in Example 1, the particle size of silicon carbide was pulverized to 10 μm, and 0.8 wt% 2.4 wt% of silicon carbide was added and cured at a temperature of 200 캜 to prepare an epoxy composite material containing glass fiber coated with a pitch.

실시예Example 8. 8.

상기 실시 예 1과 동일하게 과정을 실시하되, 90 MPa의 압력에서 경화시켜 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료 제조하였다.The procedure was carried out in the same manner as in Example 1, except that an epoxy composite material containing glass fibers coated with pitch was cured at a pressure of 90 MPa.

실시예Example 9. 9.

상기 실시 예 1과 동일하게 과정을 실시하되, 탄화온도를 1000℃, 탄화시간을 50분으로 하여 피치 코팅된 탄화유리섬유 제조하고, 복합재료 제조 과정에서 유리섬유 1.0 wt% 및 탄화규소 2.8 wt%를 첨가하고 100 MPa의 압력에서 경화시켜 피치로 코팅된 유리섬유를 포함하는 에폭시 복합재료를 제조하였다.The carbonized glass fibers were pitch-coated at a carbonization temperature of 1000 ° C. and a carbonization time of 50 minutes to prepare carbonized glass fibers. In the course of producing the composite material, 1.0 wt% of glass fibers and 2.8 wt% Was added and cured at a pressure of 100 MPa to prepare an epoxy composite material containing pitch-coated glass fibers.

비교예Comparative Example 1. One.

유리섬유Glass fiber

비교예Comparative Example 2.  2.

피치pitch

비교예Comparative Example 3.  3.

에폭시 수지에 경화제인 DDM을 첨가하여 혼합한 후 혼합과정에서 생성된 기포를 제거한다. 핫프레스를 이용하여 50 MPa의 압력, 170 ℃에서 2시간동안 고온압착하여 경화시켜 에폭시 복합재료를 제조하였다.Add DDM as a curing agent to the epoxy resin and mix to remove the bubbles generated during the mixing process. The epoxy composite was cured by hot pressing at 50 MPa and 170 DEG C for 2 hours.

실시예에 따른 에폭시 복합재료의 제조조건Production conditions of the epoxy composite material according to the embodiment 탄화온도
(℃)
Carbonization temperature
(° C)
탄화시간
(min)
Carbonization time
(min)
탄화규소
입자크기
(μm)
Silicon carbide
Particle size
(μm)
유리섬유
사용량
(wt%)
Glass fiber
usage
(wt%)
탄화규소
사용량
(wt%)
Silicon carbide
usage
(wt%)
경화온도
(℃)
Curing temperature
(° C)
경화압력
(MPa)
Curing pressure
(MPa)
실시예 1Example 1 600600 55 44 0.10.1 0.40.4 140140 1010 실시예 2Example 2 600600 1010 44 0.20.2 0.80.8 140140 3030 실시예 3Example 3 700700 2020 44 0.40.4 1.21.2 140140 3030 실시예 4Example 4 700700 2020 77 0.40.4 1.61.6 170170 5050 실시예 5Example 5 800800 3030 77 0.60.6 2.02.0 170170 5050 실시예 6Example 6 800800 3030 77 0.60.6 2.02.0 170170 7070 실시예 7Example 7 900900 4040 1010 0.80.8 2.42.4 200200 7070 실시예 8Example 8 900900 4040 1010 0.80.8 2.42.4 200200 9090 실시예 9Example 9 10001000 5050 1010 1.01.0 2.82.8 200200 100100 비교예 1Comparative Example 1 -- -- -- -- -- -- -- 비교예 2Comparative Example 2 -- -- -- -- -- -- -- 비교예 3Comparative Example 3 -- -- -- -- -- 170170 5050

측정예Measurement example 1. 주사전자현미경( 1. Scanning electron microscope ( SEMSEM ) 을 이용한 표면 관찰) Surface observation

탄소화 된 피치코팅 유리섬유의 표면 변화를 주사전자현미경을 이용하여 측정하였다.Surface changes of carbonized pitch coated glass fibers were measured using a scanning electron microscope.

주사전자현미경을 이용한 표면 관찰 결과는 도 1에 도시하였다. 상기 결과에 따르면 유리섬유 표면에 피치가 코팅된 모습을 확인할 수 있다. 이와 비교하여, 유리섬유(비교예1)는 피치가 코팅되지 않아 표면이 거칠지 않은 것을 알 수 있다.The results of surface observation using a scanning electron microscope are shown in Fig. According to the above results, it can be confirmed that the surface of the glass fiber is coated with the pitch. In comparison with this, it can be seen that the glass fiber (Comparative Example 1) is not coated with a pitch and the surface is not rough.

측정예Measurement example 2.  2. 퓨리에Fury 변환 적외선 스펙트럼(FT-IR) 분석 Transform Infrared Spectrum (FT-IR) Analysis

탄소화 된 피치코팅 유리섬유 표면의 작용기를 분석하기 위하여, 퓨리에 변확 적외선 스펙트럼 분석을 수행하였다.To analyze the functional groups on the carbonized pitch coated glass fiber surfaces, Fourier transform infrared spectral analysis was performed.

표면 작용기 분석을 위한 퓨리에 변환 적외선 스펙트럼 분석 결과는 도 2에 도시하였다. 상기 결과에 따르면 도 2와 같이 Si-O-Si 피크(1010cm-1)와 carbonyl 피크(1298cm-1) 및 전형적인 피치의 피크 2989cm-1, 2789cm-1 및 1655cm-1에서 나타나는 것을 확인할 수 있으며, 이는 유리섬유의 표면에 피치가 코팅되었음을 나타낸다.Fourier transform infrared spectral analysis results for surface functional group analysis are shown in FIG. According to the above results, it can be seen that Si-O-Si peak (1010 cm -1 ), carbonyl peak (1298 cm -1 ) and peaks of typical pitches are 2989 cm -1 , 2789 cm -1 and 1655 cm -1 , This indicates that the surface of the glass fiber is coated with a pitch.

측정예Measurement example 3. 열중량분석( 3. Thermogravimetric analysis ( TGATGA , , ThermogravimetricThermogravimetric analysis) analysis)

실시예에 따른 에폭시 복합재료의 열 안정성을 측정하기 위하여 열중량 분석을 수행하였다. 상기 열중량분석은 초기 열분해 온도(IDT)와 활성화 에너지(Ea ,dec)값을 이용하여 열안정성을 확인하였다. 또한, 분해 활성화 에너지는 Horowitz-Metzger의 적분방법을 사용하여 계산하였다. 분석조건은 질소(N2) 분위기 하에서 승온속도 10℃/min이며, 측정범위는 30 내지 900℃이다.Thermogravimetric analysis was performed to determine the thermal stability of the epoxy composites according to the Examples. In the thermogravimetric analysis , thermal stability was confirmed by using initial thermal decomposition temperature (IDT) and activation energy (E a , dec ) values. The decomposition activation energies were also calculated using the Horowitz-Metzger integration method. The analytical conditions are nitrogen (N 2) is a temperature rise rate under the atmosphere of 10 ℃ / min, measuring range is 30 to 900 ℃.

열중량분석결과는 도 3 및 표 2에 도시하였다. 상기 결과에 따르면 에폭시 복합재료에서 탄화규소의 함량이 증가할수록 열분해온도 및 활성화 에너지가 증가하는 것을 알수 있다. 이는 탄화규소의 함량이 증가함에따라 열안정성이 증가하는 것을 의미한다.The thermogravimetric analysis results are shown in FIG. 3 and Table 2. According to the above results, it can be seen that the pyrolysis temperature and the activation energy increase as the content of silicon carbide increases in the epoxy composite material. This means that as the content of silicon carbide increases, the thermal stability increases.

본 발명의 일 실시예에 따른 에폭시 복합재료의 열중량분석 결과The thermogravimetric analysis results of the epoxy composite material according to one embodiment of the present invention IPDT (oC)IPDT ( o C) Ea ,dec (KJ/mol)E a , dec (KJ / mol) 실시예 1Example 1 667667 270270 실시예 2Example 2 667667 289289 실시예 3Example 3 673673 308308 실시예 4Example 4 724724 335335 실시예 5Example 5 756756 354354 실시예 6Example 6 761761 360360 실시예 7Example 7 776776 361361 실시예 8Example 8 782782 365365 실시예 9Example 9 790790 366366 비교예 1Comparative Example 1 -- -- 비교예 2Comparative Example 2 -- -- 비교예 3Comparative Example 3 596596 258258

측정예Measurement example 4.  4. 굴곡강도Flexural strength 시험 exam

실시예에 따른 에폭시 복합재료의 굴곡강도를 측정하였다. 굴곡 강도 시험은 1mm/min의 크로스헤드 비율로 ASTM D 790에 따라 만능재료 시험기를 이용하여 시험하였으며, 시험결과의 신뢰도를 위해 각 실시예 당 적어도 다섯 개의 표본을 시험하였다.The flexural strength of the epoxy composite material according to the example was measured. Flexural strength tests were conducted using a universal material tester in accordance with ASTM D 790 at a crosshead ratio of 1 mm / min and at least five specimens were tested per each example for reliability of the test results.

실시예에 따른 에폭시 복합재료의 굴곡강도 측정결과는 표 3에 도시하였다. 상기 결과에 따르면, 표 2와 같이 탄화규소의 함량이 증가함에 따라 굴곡강도가 증가하였으며, 실시예 3(탄화규소 2.0g첨가군)이 가장 굴곡강도가 높았다.The flexural strength measurement results of the epoxy composites according to the examples are shown in Table 3. According to the results, as shown in Table 2, the flexural strength was increased as the content of silicon carbide was increased, and the flexural strength of Example 3 (silicon carbide added 2.0 g) was the highest.

본 발명의 일 실시예에 따른 에폭시 복합재료의 굴곡강도The flexural strength of the epoxy composite according to an embodiment of the present invention 굴곡강도 (MPa.m1/2)Flexural Strength (MPa.m1 / 2 ) 실시예 1Example 1 9.579.57 실시예 2Example 2 11.6711.67 실시예 3Example 3 12.5412.54 실시예 4Example 4 13.0513.05 실시예 5Example 5 13.9813.98 실시예 6Example 6 13.8513.85 실시예 7Example 7 11.8711.87 실시예 8Example 8 9.959.95 실시예 9Example 9 7.637.63 비교예 1Comparative Example 1 -- 비교예 2Comparative Example 2 -- 비교예 3Comparative Example 3 5.125.12

이상, 본 발명내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 정의된다고 할 것이다. Having described specific portions of the present invention in detail, those skilled in the art will appreciate that these specific embodiments are merely preferred embodiments and that the scope of the present invention is not limited thereby. something to do. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (7)

에폭시 수지 및
상기 에폭시 수지 100중량부 대비 0.1 내지 0.5중량부의 피치(pitch)로 코팅 된 유리섬유를 포함하는 에폭시 수지 조성물.
Epoxy resin and
Wherein the glass fiber is coated with a pitch of 0.1 to 0.5 parts by weight relative to 100 parts by weight of the epoxy resin.
제1항에 있어서,
상기 피치로 코팅 된 유리섬유는 피치로 유리섬유를 코팅한 후 탄소화(carbonization)된 것을 특징으로 하는 에폭시 수지 조성물.
The method according to claim 1,
Wherein the glass fiber coated with the pitch is carbonized after coating with a glass fiber at a pitch.
제1항에 있어서,
상기 에폭시 수지 조성물은 에폭시 수지 100중량부 대비 0.4 내지 2.8중량부의 탄화규소(SiC)를 더 포함하는 것을 특징으로 하는 에폭시 수지 조성물.
The method according to claim 1,
Wherein the epoxy resin composition further comprises silicon carbide (SiC) in an amount of 0.4 to 2.8 parts by weight based on 100 parts by weight of the epoxy resin.
유리섬유에 피치(pitch)를 코팅하는 단계;
피치가 코팅된 유리섬유를 탄소화(carbonization)시키는 단계;
상기 탄소화 된 피치 코팅 유리섬유 및 에폭시 수지를 혼합하는 단계; 및
상기 혼합물을 경화시키는 단계; 를 포함하는 방열성이 향상된 에폭시 복합재료의 제조방법.
Coating a pitch on the glass fiber;
Carbonizing the pitch coated glass fiber;
Mixing the carbonized pitch-coated glass fiber and the epoxy resin; And
Curing the mixture; Wherein the epoxy composite material has a high thermal conductivity.
제4항에 있어서,
상기 탄소화 시키는 단계는 온도 600 내지 1000℃, 불활성 기체 분위기에서 수행되는 것을 특징으로 하는 방열성이 향상된 에폭시 복합재료의 제조방법.
5. The method of claim 4,
Wherein the carbonizing step is performed in an inert gas atmosphere at a temperature of 600 to 1000 ° C.
제4항에 있어서,
상기 혼합하는 단계는 에폭시 수지 및 상기 에폭시 수지 100중량부 대비 0.1 내지 0.5중량부의 피치(pitch)로 코팅 된 유리섬유를 혼합하는 것을 특징으로 하는 방열성이 향상된 에폭시 복합재료의 제조방법.
5. The method of claim 4,
Wherein the mixing step comprises mixing an epoxy resin and a glass fiber coated with a pitch of 0.1 to 0.5 part by weight relative to 100 parts by weight of the epoxy resin.
제6항에 있어서,
상기 혼합하는 단계는 에폭시 수지 100중량부 대비 0.4 내지 2.8중량부의 탄화규소(SiC)를 더 혼합하는 것을 특징으로 하는 방열성이 향상된 에폭시 복합재료의 제조방법.
The method according to claim 6,
Wherein the mixing step further comprises mixing 0.4 to 2.8 parts by weight of silicon carbide (SiC) with respect to 100 parts by weight of the epoxy resin.
KR1020160174813A 2016-12-20 2016-12-20 Epoxy composites containing pitch coated glass fiber Active KR102008761B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160174813A KR102008761B1 (en) 2016-12-20 2016-12-20 Epoxy composites containing pitch coated glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160174813A KR102008761B1 (en) 2016-12-20 2016-12-20 Epoxy composites containing pitch coated glass fiber

Publications (2)

Publication Number Publication Date
KR20180071790A true KR20180071790A (en) 2018-06-28
KR102008761B1 KR102008761B1 (en) 2019-08-08

Family

ID=62780310

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160174813A Active KR102008761B1 (en) 2016-12-20 2016-12-20 Epoxy composites containing pitch coated glass fiber

Country Status (1)

Country Link
KR (1) KR102008761B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210152785A (en) * 2020-06-09 2021-12-16 (주) 건일산업 Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
KR20210152782A (en) * 2020-06-09 2021-12-16 (주) 건일산업 Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
WO2022121547A1 (en) * 2020-12-07 2022-06-16 浙江大学 High-thermal-conductivity reinforced polyphenylene sulfide composite material and preparation method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283955A (en) * 1996-04-10 1997-10-31 Matsushita Electric Works Ltd Heat radiation sheet
KR20070068770A (en) * 2005-12-27 2007-07-02 강석환 Manufacturing method of carbon fiber for planar heating element
JP2009227565A (en) * 2008-02-27 2009-10-08 Hitachi Chem Co Ltd Carbon fiber-reinforced silicon carbide composite and method for producing the same
KR20120121409A (en) * 2010-02-19 2012-11-05 가부시키가이샤 인큐베이션 얼라이언스 Carbon material and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09283955A (en) * 1996-04-10 1997-10-31 Matsushita Electric Works Ltd Heat radiation sheet
KR20070068770A (en) * 2005-12-27 2007-07-02 강석환 Manufacturing method of carbon fiber for planar heating element
JP2009227565A (en) * 2008-02-27 2009-10-08 Hitachi Chem Co Ltd Carbon fiber-reinforced silicon carbide composite and method for producing the same
KR20120121409A (en) * 2010-02-19 2012-11-05 가부시키가이샤 인큐베이션 얼라이언스 Carbon material and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210152785A (en) * 2020-06-09 2021-12-16 (주) 건일산업 Manufacturing Method for Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
KR20210152782A (en) * 2020-06-09 2021-12-16 (주) 건일산업 Refractory Insulation Material for Spill Tray of Single Crystal Silicon Ingot Growth
WO2022121547A1 (en) * 2020-12-07 2022-06-16 浙江大学 High-thermal-conductivity reinforced polyphenylene sulfide composite material and preparation method therefor

Also Published As

Publication number Publication date
KR102008761B1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
KR102169771B1 (en) A flame retardant composite of tannic acid coated grapheme-epoxy and method preparing the same
US9631067B2 (en) Carbon fiber composite coated with silicon carbide and production method for same
Wang et al. Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism
KR102185383B1 (en) Basalt fiber reinforced epoxy composites reinforced with ozone treated single-walled carbon nanotubes and method for manufacturing the same
KR101104390B1 (en) Manufacturing method of organic-inorganic nano fusion insulation varnish and coil coated with organic-inorganic nano fusion insulation varnish
KR20180071790A (en) Epoxy composites containing pitch coated glass fiber
US20100130646A1 (en) Method for manufacturing epoxy nanocomposite material containing vapor-grown carbon nanofibers and its products thereby
Chen et al. Design of high-performance resin by tuning cross-linked network topology to improve CF/bismaleimide composite compressive properties
KR20200032536A (en) Manufacturing method of basalt fiber-reinforced epoxy composites with natural graphite flakes intrduced
Bartoli et al. Mechanical, electrical, thermal and tribological behavior of epoxy resin composites reinforced with waste hemp-derived carbon fibers
Kim et al. Pitch coating of SiC and its effects on the thermal stability and oxidation resistance of SiC/epoxy composites
KR20190074655A (en) Epoxy nanocomposite reinforced with graphene oxide decorated with nanodiamond nanocluster and method for manufacturing thereof
KR102198383B1 (en) Method for preparation of carbon-benzoxazine complex and its carbon-polymer composite material
Zhang et al. Improving the ablative performance of epoxy‐modified vinyl silicone rubber composites by incorporating different types of reinforcing fibers
Wang et al. Influence of vinyl polyhedral oligomeric silsesquioxane with different functionalities and cage structures on the mechanical properties and ablation resistance of EPDM composites
Zhao et al. Synergetic control of multi‐level interface structure of basalt fibers by plasma and chemical functionalization to enhance the mechanical, thermal and interfacial performances of PBZ composites
Pandit et al. Electrically conductive epoxy-polyester-graphite nanocomposites modified with aromatic amines
KR100665130B1 (en) Method for preparing epoxy nanocomposites containing vapor-grown carbon nanofibers and nanocomposites prepared therefrom
KR100542660B1 (en) Expanded Graphite / Epoxy Nanocomposite Compositions
KR101730437B1 (en) Epoxy composites having enhanced thermal stability and mechnical behaviors and manufacturing method of the same
Jiang et al. Effect of poly (catechol/polyamine) modified boron nitride on microstructure and properties of thermally vulcanized silicone rubber
CN104559042B (en) A kind of bakelite brush holder phenolic resin injection molding material
Wu et al. Preparation, curing, and properties of boron-containing bisphenol-S formaldehyde resin/o-cresol formaldehyde epoxy resin/nano-SiO2 composites
KR102113382B1 (en) Method for preparing carbon nanotube fiber assemblies having improved strength
Niu et al. Fabrication and properties of aluminum phosphate framework/bismaleimide composites with double‐crosslinking structures

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20161220

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170717

Patent event code: PE09021S01D

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20180131

Patent event code: PE09021S01D

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20181022

Patent event code: PE09021S01D

E90F Notification of reason for final refusal
PE0902 Notice of grounds for rejection

Comment text: Final Notice of Reason for Refusal

Patent event date: 20190211

Patent event code: PE09021S02D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20190620

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20190802

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20190805

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20220624

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20230621

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20240626

Start annual number: 6

End annual number: 6