[go: up one dir, main page]

KR20180066003A - 감전 방지 컨택터 - Google Patents

감전 방지 컨택터 Download PDF

Info

Publication number
KR20180066003A
KR20180066003A KR1020180065005A KR20180065005A KR20180066003A KR 20180066003 A KR20180066003 A KR 20180066003A KR 1020180065005 A KR1020180065005 A KR 1020180065005A KR 20180065005 A KR20180065005 A KR 20180065005A KR 20180066003 A KR20180066003 A KR 20180066003A
Authority
KR
South Korea
Prior art keywords
layer
esd protection
insulating
electric shock
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
KR1020180065005A
Other languages
English (en)
Inventor
조승훈
허성진
이동석
Original Assignee
주식회사 모다이노칩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 모다이노칩 filed Critical 주식회사 모다이노칩
Priority to KR1020180065005A priority Critical patent/KR20180066003A/ko
Publication of KR20180066003A publication Critical patent/KR20180066003A/ko
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/14Protection against electric or thermal overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/40Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2407Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means
    • H01R13/2428Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the resilient means using meander springs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0009Casings with provisions to reduce EMI leakage through the joining parts
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/0015Gaskets or seals
    • H05K9/0016Gaskets or seals having a spring contact
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0067Devices for protecting against damage from electrostatic discharge

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

본 발명은 전자기기의 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련된 감전 방지 컨택터이고, 서로 대향되어 마련되며 상기 도전체 및 상기 내부 회로에 적어도 일부가 각각 접촉되는 컨택부 및 감전 방지부를 포함하고, 상기 감전 방지부는 복수의 절연 시트가 적층된 적층체와, 상기 적층체의 외부에 형성되며 적어도 일부가 상기 컨택부의 하측에 마련된 외부 전극을 포함하며, 상기 적층체는 복수의 절연 시트 중 선택된 절연 시트 상에 형성된 복수의 도전층과, 최외층 절연 시트 상에 형성된 더미층을 포함하고, 상기 외부 전극은 상기 적층체의 일 측면 및 타 측면에 각각 형성된 제 1 및 제 2 영역과, 상기 제 1 및 제 2 영역으로부터 상기 적층체의 일면으로 연장 형성되며 서로 이격된 제 3 및 제 4 영역과, 상기 제 2 영역으로부터 상기 적층체의 일면과 대향되는 타면으로 연장 형성된 제 5 영역을 포함하며, 상기 제 1 영역은 상기 소자 형성층의 측면에만 형성되고 상기 더미층의 측면에는 형성되지 않고, 상기 제 2 영역은 상기 소자 형성층 및 상기 더미층의 측면에 형성된 감전 방지 컨택터를 제시한다.

Description

감전 방지 컨택터{Contactor for preventing electric shock}
본 발명은 감전 방지 컨택터에 관한 것으로, 특히 스마트 폰 등의 충전 또는 변압기를 이용한 전자기기를 통해 사용자에게 감전 전압이 전달되는 것을 방지할 수 있는 감전 방지 컨택터에 관한 것이다.
스마트폰 등과 같이 다기능을 가지는 전자 기기에는 그 기능에 따라 다양한 부품들이 집적되어 있다. 또한, 전자 기기에는 기능별로 다양한 주파수 대역 무선 LAN(wireless LAN), 블루투스(bluetooth), GPS(Global Positioning System) 등 다른 주파수 대역 등을 수신할 수 있는 안테나가 구비되며, 이중 일부는 내장형 안테나로서, 전자 기기를 구성하는 케이스에 설치될 수 있다. 이에, 케이스에 설치된 안테나와 전자 기기의 내장 회로 기판 사이에 전기적 접속을 위한 컨택터가 설치된다.
한편, 최근 들어 전자 기기의 고급스런 이미지와 내구성이 강조되면서, 케이스가 금속 소재로 이루어진 단말기의 보급이 증가하고 있다. 즉, 테두리를 금속으로 제작하거나, 전면의 화면 표시부를 제외한 나머지 케이스를 금속으로 제작한 스마트폰의 보급이 증가하고 있다.
그런데, 케이스가 금속 소재로 이루어진 경우, 외부의 금속 케이스를 통하여 순간적으로 높은 전압을 갖는 정전기 등의 ESD(ElectroStatic Discharge) 전압이 유입될 수 있으며, 이러한 ESD 전압은 컨택터를 통하여 내부 회로로 유입되어 내부 회로를 파손시킬 수 있다.
또한, 금속 케이스를 적용한 전자 기기에 과전류 보호 회로가 내장되지 않거나 저품질의 소자를 사용한 비정품 충전기 또는 불량 충전기를 이용하여 충전함으로써 쇼크 전류(Shock Current)가 발생된다. 이러한 쇼크 전류는 스마트폰의 접지 단자로 전달되고, 다시 접지 단자로부터 금속 케이스로 전달되어 금속 케이스에 접촉된 사용자가 감전될 수 있다. 결국, 금속 케이스를 이용한 스마트폰에 비정품 충전기를 이용한 충전 중 스마트폰을 이용하면 감전 사고가 발생할 수 있다.
따라서, 정전기에 의한 내부 회로의 파손 및 사용자의 감전 사고를 방지할 수 있는 컨택터가 필요하다.
한국등록특허 제10-876206호
본 발명은 스마트폰 등의 전자기기 내에 마련되는 감전 방지 컨택터를 제공한다.
본 발명은 사용자의 감전을 방지하는 동시에 ESD 전압에 의한 내부 회로의 파손을 방지할 수 있는 감전 방지 컨택터를 제공한다.
본 발명은 ESD 전압에 의해 절연 파괴되지 않는 감전 방지 컨택터를 제공한다.
본 발명의 일 양태에 따른 감전 방지 컨택터는 전자기기의 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련된 감전 방지 컨택터이고, 서로 대향되어 마련되며 상기 도전체 및 상기 내부 회로에 적어도 일부가 각각 접촉되는 컨택부 및 감전 방지부를 포함하고, 상기 감전 방지부는 복수의 절연 시트가 적층된 적층체와, 상기 적층체의 외부에 형성되며 적어도 일부가 상기 컨택부의 하측에 마련된 외부 전극을 포함하며, 상기 적층체는 복수의 절연 시트 중 선택된 절연 시트 상에 형성된 복수의 도전층과, 최외층 절연 시트 상에 형성된 더미층을 포함하고, 상기 외부 전극은 상기 적층체의 일 측면 및 타 측면에 각각 형성된 제 1 및 제 2 영역과, 상기 제 1 및 제 2 영역으로부터 상기 적층체의 일면으로 연장 형성되며 서로 이격된 제 3 및 제 4 영역과, 상기 제 2 영역으로부터 상기 적층체의 일면과 대향되는 타면으로 연장 형성된 제 5 영역을 포함하며, 상기 제 1 영역은 상기 소자 형성층의 측면에만 형성되고 상기 더미층의 측면에는 형성되지 않고, 상기 제 2 영역은 상기 소자 형성층 및 상기 더미층의 측면에 형성된다.
상기 컨택부가 상기 도전체에 고정되고 상기 감전 방지부가 상기 내부 회로에 고정되거나, 상기 컨택부가 상기 내부 회로에 고정되고 상기 감전 방지부가 상기 컨택부에 고정된다.
상기 컨택부는 전도성을 가지며 탄성력을 갖는다.
상기 컨택부는 상기 도전체에 고정된 영역으로부터 적어도 일부가 상기 감전 방지부를 향해 돌출된 돌출부를 포함한다.
상기 컨택부는 탄성체와, 상기 탄성체를 감싸는 도전층을 포함한다.
상기 적층체 내에 형성된 캐패시터부 및 ESD 보호부 중 저겅도 하나를 포함한다.
상기 ESD 보호부는 수직 또는 수평 방향으로 이격된 적어도 둘 이상의 방전 전극과, 상기 방전 전극 사이에 마련되며 다공성 절연 물질, 도전 물질, 상기 다공성 절연 물질과 상기 도전 물질의 혼합물 및 공극 중 적어도 하나를 포함하는 ESD 보호층을 포함한다.
상기 ESD 보호부는 감전 전압보다 높고 ESD 전압보다 낮은 항복 전압을 갖는 배리스터 또는 다이오드를 포함한다.
상기 더미층은 복수의 절연 시트의 최상층 시트 및 최하층 시트 중 적어도 하나 상에 형성된다.
상기 더미층은 상기 ESD 보호층의 두께, 상기 캐패시터부의 내부 전극 사이의 두께, 상기 ESD 보호층과 상기 내부 전극 사이의 두께, 최하층 절연 시트의 두께 중 적어도 어느 하나보다 두껍게 형성된다.
본 발명의 실시 예들에 따른 감전 방지 컨택터는 컨택부와 감전 방지부를 포함하여 전자기기의 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련될 수 있다. 즉, 컨택부 및 감전 방지부가 도전체 및 내부 회로에 각각 접촉되어 마련될 수 있다. 또한, 감전 방지부는 캐패시터부와 ESD 보호부를 포함할 수 있다.
본 발명에 의하면, 감전 방지 보호부의 ESD 보호부는 ESD 전압을 내부 회로의 접지 단자로 바이패스시켜 ESD 전압에 의한 내부 회로의 파손을 방지할 수 있고, 방전 개시 전압 또는 항복 전압 이하의 감전 전압을 차단시켜 사용자의 감전을 방지할 수 있다.
또한, 캐패시터부를 이용하여 외부와의 통신 신호를 송수신함으로써 신호의 감쇄를 줄이거나 최소화할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 감전 방지 컨택터의 단면도.
도 2 내지 도 4는 본 발명의 다른 실시 예들에 따른 감전 방지 컨택터의 컨택부의 단면도.
도 5는 본 발명의 일 실시 예에 따른 감전 방지 컨택터의 감전 방지부의 표면 개략도.
도 6은 본 발명의 일 실시 예에 따른 감전 방지 컨택터의 감전 방지부의 부분 단면도.
도 7 내지 도 12는 본 발명의 또다른 실시 예들에 따른 감전 방지 컨택터의 감전 방지부의 단면도.
도 13은 본 발명의 다른 실시 예에 따른 감전 방지 컨택터의 단면도.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
도 1은 본 발명의 일 실시 예에 따른 감전 방지 컨택터의 단면도이다. 또한, 도 2 내지 도 4는 본 발명의 일 실시 예의 변형 예에 따른 감전 방지 컨택터의 컨택부의 단면도이다. 그리고, 도 5는 본 발명의 일 실시 예에 따른 감전 방지 컨택터의 감전 방지부의 표면 개략도이고, 도 6은 감전 방지부의 ESD 보호부의 단면 개략도이다.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 감전 방지 컨택터는 전자기기의 외부에 마련되어 사용자가 접촉할 수 있는 도전체(10)와 전자기기 내부에 마련되어 전자기기의 각종 기능을 수행하는 내부 회로(20) 사이에 마련될 수 있다. 또한, 감전 방지 컨택터는 적어도 일부가 도전체(10)와 접촉된 컨택부(1000)와, 적어도 일부가 내부 회로(20)와 접촉된 감전 방지부(2000)를 포함할 수 있다. 여기서, 도전체(10)는 전자기기의 전체적인 외관을 형성하고, 필요에 따라 외부와 통신할 수 있는 안테나로 기능하는 케이스를 포함할 수 있다. 또한, 내부 회로(20)는 전자기기의 각종 기능을 수행하기 위한 마련된 복수의 수동 소자, 능동 소자 등을 포함하며, 일 영역에 마련된 접지 단자를 포함할 수 있다. 예를 들어, 내부 회로(20)는 복수의 수동 소자 및 능동 소자 등이 실장되며, 적어도 일 영역에 접지 단자가 마련된 인쇄회로기판(PCB)일 수 있다.
1. 컨택부
컨택부(1000)는 전자기기의 외부에서 외력이 가해질 때, 그 충격을 완화할 수 있도록 탄성력을 가지며, 도전성의 물질을 포함하는 재료로 이루어질 수 있다. 이러한, 컨택부(1000)는 전자기기의 도전체(10)에 부착된 클립(clip) 형상일 수 있다. 예를 들어, 컨택부(1000)는 도 1에 도시된 바와 같이 양 끝단이 도전체(10)에 접촉되고 양 끝단으로부터 중앙부를 향해 돌출된 형상으로 마련될 수 있다. 즉, 컨택부(1000)는 양 끝단으로부터 중앙부로 갈수록 감전 방지부(2000)와 가까워지는 형상으로 마련될 수 있다. 또한, 컨택부(1000)는 도전체(10)와 접촉되는 부분의 면적을 증가시키기 위해 도전체(10)와 접촉되는 일 영역이 내측 또는 외측으로 연장 형성될 수도 있다. 한편, 컨택부(1000)는 소정의 폭을 가질 수 있다. 이때, 컨택부(1000)의 폭은 감전 방지부(2000)의 폭보다 작을 수 있다. 물론, 컨택부(1000)의 폭이 감전 방지부(2000)의 폭과 같을 수도 있다. 컨택부(1000)의 폭은 전자기기의 외부에서 외력이 가해질 때 그 충격을 완화시킬 수 있을 정도의 탄성력을 갖는 범위에서 조절될 수 있다. 예를 들어, 컨택부(1000)의 폭은 감전 방지부(2000)의 폭보다 5% 내지 100%로 형성될 수 있다.
또한, 컨택부(1000)는 다양한 형상으로 제작될 수 있다. 예를 들어, 도 2에 도시된 바와 같이 도전체(10)에 접촉되어 감전 방지부(2000)를 향해 구부러진 형상으로 형성될 수 있다. 즉, 도 2에 도시된 바와 같이 도전체(10)에 접촉되며 평판 형상으로 마련된 평판부(1100)와, 평판부(1100)의 일단과 연결되어 연장 형성된 연장부(1200)와, 연장부(1200)로부터 감전 방지부(2000)를 향해 돌출되도록 형성된 돌출부(1300)를 포함할 수 있다. 평판부(1100)는 평판 형상으로 마련되어 도전체(10)의 일면에 고정될 수 있다. 연장부(1200)는 평판부(1100)의 일 끝단과 연결되어 감전 방지부(2000) 방향으로 연장 형성될 수 있다. 이때, 연장부(1200)는 수평 방향으로 굴곡지게 형성될 수 있다. 즉, 연장부(1200)는 돌출부(1300)가 형성된 방향과 반대 방향으로 볼록하게 곡면을 이루도록 형성될 수 있다. 또한, 돌출부(1300)은 연장부(1200)의 일 끝단과 연결되어 평판부(1100)가 형성된 방향으로 형성될 수 있다. 이때, 돌출부(1300)는 연장부(1200)와 연결된 부분으로부터 수평하게 형성된 제 1 영역과, 제 1 영역의 끝단으로부터 감전 방지부(2000) 방향으로 굴곡지게 형성된 제 2 영역을 포함할 수 있다. 따라서, 돌출부(1300)의 굴곡진 부분이 감전 방지부(2000)와 대향하게 된다. 한편, 컨택부(1000)는 적어도 일부가 탄성력을 가질 수 있다. 즉, 연장부(1200) 및 돌출부(1300)의 적어도 하나가 탄성력을 가질 수 있다. 예를 들어, 연장부(1200)는 탄성력을 가지며, 그에 따라 외력에 의해 가압되면 내부 회로(20)가 위치된 방향으로 눌려지고, 외력이 해제되면 원래 상태로 복원될 수 있다. 이러한 컨택부(1000)는 구리(Cu) 등의 금속을 포함한 도전 재료로 형성될 수 있다.
또한, 컨택부(1000)는 가스켓일 수도 있다. 즉, 도 3에 도시된 바와 같이 도전체(10)와 감전 방지부(2000) 사이에 가스켓 형태의 컨택부(1000a)가 위치하며, 컨택부(1000a)는 도전체(10)와 면 접촉되고 감전 방지부(2000)와 이격될 수 있다. 여기서, 가스켓 형태의 컨택부(1000a)는 탄성력을 가지는 내부 부재(1400)와, 내부 부재(1400)의 표면에 형성된 도전층(1500)을 포함할 수 있다. 내부 부재(1400)는 폴리우레탄 폼, PVC, 실리콘, 에틸렌 비닐아세테이트코폴리머, 폴리에틸린 등의 고분자 합성수지, 천연 고무(NR), 부틸렌 고무(SBR), 에틸렌프로필렌 고무(EPDM), 나이크릴 고무(NBR), 네오프렌(Neoprene) 등의 고무, 합성고무 시트(solid sheets) 또는 스폰지 시트(sponge sheet) 등을 이용할 수 있다. 도전층(1500)은 내부 부재(1400)의 외주면을 둘러싸도록 형성될 수 있다. 여기서, 도전층(1500)은 카본블랙, 그라파이트, 금, 은, 구리, 니켈, 알루미늄 등 다양한 도전 재료로 형성될 수 있다. 또한, 내부 부재(1400)의 내부에는 도 4에 도시된 바와 같이 홀(1600)이 마련될 수 있으며, 홀(1600)은 가스켓 형태의 컨택부(1000a)의 탄성력 또는 충격 완화 효과를 향상시키기 위해 보조적으로 형성될 수 있다. 여기서, 홀(1600)의 형상은 원형, 타원형, 다각형 등 다양하게 변경 가능하다.
상술한 바와 같이 컨택부(1000)는 전자기기의 케이스 등 사용자가 접촉 가능한 도전체(10)와 접촉되도록 형성될 수 있다. 예를 들어, 컨택부(1000)는 케이스와 접촉되도록 마련될 수도 있고, 외부와 통신 신호를 전달하는 안테나의 역할을 하는 도전체와 접촉될 수도 있다. 물론, 케이스가 안테나의 역할을 할 수도 있다.
2. 감전 방지부
감전 방지부(2000)는 일단이 내부 회로(20)에 접촉되어 마련되고 타단이 컨택부(1000)와 접촉 가능하도록 마련될 수 있다. 즉, 감전 방지부(2000)의 타단은 컨택부(1000)와 접촉될 수도 있고 이격될 수도 있다. 이러한 감전 방지부(2000)는 복수의 절연 시트(100; 101 내지 111)가 적층된 적층체(2100)과, 적층체(2100) 내에 마련되며 복수의 내부 전극(200; 201 내지 208)을 구비하는 적어도 하나의 캐패시터부(2200, 2400)와, 적어도 하나의 방전 전극(310; 311, 312)과 ESD 보호층(320)을 구비하는 ESD 보호부(2300)를 포함할 수 있다. 또한, 적층체(2100) 내에 마련되며, 도전층 등이 형성되지 않는 소정 두께의 더미층(2500)을 더 포함할 수 있다. 즉, 적층체(2100) 내의 복수의 절연 시트(100)에 복수의 내부 전극(200) 및 방전 전극(310)을 포함하는 도전층이 선택적으로 형성될 수 있고, 도전층이 형성된 절연 시트(100) 상에 더미층(2500)이 형성될 수 있다. 예를 들어, 적층체(2100) 내에 제 1 및 제 2 캐패시터부(2200, 2400)가 마련되고, 그 사이에 ESD 보호부(2300)가 마련되며, 제 2 캐패시터부(4000) 상에 더미층(2500)이 형성될 수 있다. 즉, 적층체(2100) 내부에 제 1 캐패시터부(2200), ESD 보호부(2300), 제 2 캐패시터부(2400) 및 더미층(2500)이 적층되어 감전 방지부(2000)가 구현될 수 있다. 또한, 적층체(2100)의 서로 대향하는 두 측면에 형성되어 제 1 및 제 2 캐패시터부(2200, 2400)와 ESD 보호부(2300)와 연결되는 외부 전극(2610, 2620; 2600)을 더 포함할 수 있다. 물론, 감전 방지부(2000)는 적어도 하나의 캐패시터부와 적어도 하나의 ESD 보호부를 포함할 수 있다. 즉, ESD 보호부(2300)의 하측 또는 상측의 어느 하나에 캐패시터부가 마련될 수 있고, 서로 이격된 둘 이상의 ESD 보호부(2300)의 상측 및 하측에 적어도 하나의 캐패시터부가 마련될 수도 있다. 또한, ESD 보호부(2300)는 적층체(2100) 내부 또는 적층체(2100) 외부에 마련될 수 있는데, 본 실시 예들은 적층체(2100) 내부에 형성되는 경우를 설명하겠다. ESD 보호부(2300)가 적층체(2100) 외부에 형성되는 경우 ESD 보호층(320)이 적층체(2100)와 외부 전극(2600) 사이에 형성되고, 방전 전극(310)이 적층체(2100) 내부에 형성될 수 있다. 이러한 감전 방지부(2000)는 도 1에 도시된 바와 같이 전자기기의 내부 회로(예를 들어 PCB)(20) 상에 마련될 수 있다. 즉, 감전 방지부(2000)는 일측이 내부 회로(20)에 접촉되고 타측이 전자기기의 도전체(10)와 이격될 수 있다. 이때, 도전체(10)와 감전 방지부(2000) 사이에 컨택부(1000)가 마련되므로 감전 방지부(2000)의 타측은 컨택부(1000)와 컨택부(1000)와 접촉될 수 있다. 물론, 감전 방지부(2000)의 타측은 컨택부(1000)와 이격된 후 외력에 의한 컨택부(1000)의 탄성력에 의해 접촉될 수 있다. 이렇게 감전 방지부(2000)가 도전체(10)와 내부 회로(20) 사이에 마련되어 내부 회로(20)로부터 인가되는 감전 전압을 차단할 수 있다. 또한, ESD 전압을 접지 단자로 바이패스시키고, ESD에 의해 절연이 파괴되지 않아 감전 전압을 지속적으로 차단할 수 있다. 즉, 본 발명에 따른 감전 방지부(2000)는 감전 전압 이하에서 절연 상태를 유지하여 내부 회로(20)로부터 인가되는 감전 전압을 차단하고, ESD 전압 이상에서 도전 상태를 유지하여 외부로부터 전자기기 내부로 인가되는 ESD 전압을 접지 단자로 바이패스시킨다.
2.1. 적층체
적층체(2100)는 복수의 절연 시트(101 내지 111; 100)와, 더미층(2500)이 적층되어 형성된다. 여기서, 복수의 절연 시트(100)에는 적어도 하나의 캐패시터부(2200, 2400)와 적어도 하나의 ESD 보호부(2300)가 형성될 수 있다. 이러한 적층체(2100)는 일 방향(예를 들어 X 방향) 및 이와 직교하는 타 방향(예를 들어 Y 방향)으로 각각 소정의 길이 및 폭을 각각 갖고, 수직 방향(예를 들어 Z 방향)으로 소정의 높이를 갖는 대략 육면체 형상으로 마련될 수 있다. 즉, 외부 전극(2600)의 형성 방향을 X 방향(즉, 길이)라 할 때, 이와 수평으로 직교하는 방향을 Y 방향(즉, 폭)으로 하고, 수직 방향을 Z 방향(즉, 높이 또는 두께)로 할 수 있다. 여기서, X 방향으로의 길이는 Y 방향으로의 폭 및 Z 방향으로의 높이보다 크거나 같고, Y 방향으로의 폭은 Z 방향으로의 높이와 같거나 다를 수 있다. 예를 들어, 길이, 폭 및 높이의 비는 1∼5:1∼5:1∼5일 수 있다. 즉, 길이, 폭 및 높이가 1배 내지 5배 범위에서 조절될 수 있다. 그러나, 이러한 X, Y 및 Z 방향의 크기는 하나의 예로서 방전 감지 소자가 연결되는 전자기기의 내부 구조, 방전 감지 소자의 형상 등에 따라 다양하게 변형 가능하다. 또한, 적층체(2100) 내부에는 적어도 하나의 캐패시터부(2200, 2400)와 적어도 하나의 ESD 보호부(2300)가 마련될 수 있다. 또한, 더미층(2500)이 마련될 수 있다. 예를 들어, 제 1 캐패시터부(2200), ESD 보호부(2300), 제 2 캐패시터부(2400) 및 더미층(2500)이 Z 방향으로 마련될 수 있다. 복수의 절연 시트(100)는 MLCC 등의 유전체 재료 분말, BaTiO3, BaCO3, TiO2, Nd2O3, Bi2O3, Zn0, Al2O3 중의 하나 이상을 포함하는 물질로 형성될 수 있다. 따라서, 절연 시트(100)는 재질에 따라 각각 소정의 유전율, 예를 들어 5∼20000, 바람직하게는 7∼5000, 더욱 바람직하게는 200∼3000의 유전율을 가질 수 있다. 또한, 복수의 절연 시트(100)는 모두 동일 두께로 형성될 수 있고, 적어도 어느 하나가 다른 것들에 비해 두껍거나 얇게 형성될 수 있다. 즉, ESD 보호부(2300)의 절연 시트는 제 1 및 제 2 캐패시터부(2200, 2400)의 절연 시트와 다른 두께로 형성될 수 있고, ESD 보호부(2300)와 제 1 및 제 2 캐패시터(2200, 2400) 사이에 형성된 절연 시트가 다른 시트들과 다른 두께로 형성될 수 있다. 예를 들어, ESD 보호부(2300)와 제 1 및 제 2 캐패시터부(2200, 2400) 사이의 절연 시트, 즉 제 5 및 제 7 절연 시트(105, 107)의 두께는 ESD 보호부(2300)의 절연 시트, 즉 제 6 절연 시트(106)보다 얇거나 같은 두께로 형성되거나, 제 1 및 제 2 캐패시터부(2200, 2400)의 내부 전극 사이의 절연 시트(102 내지 104, 108 내지 110)보다 얇거나 같은 두께로 형성될 수 있다. 즉, ESD 보호부(2300)와 제 1 및 제 2 캐패시터부(2200, 2400) 사이의 간격은 제 1 및 제 2 캐패시터부(2200, 2400)의 내부 전극 사이의 간격보다 얇거나 같게 형성되거나, ESD 보호부(2300)의 두께보다 얇거나 같게 형성될 수 있다. 물론, 제 1 및 제 2 캐패시터(2200, 2400)의 절연 시트(102 내지 104, 108 내지 110)은 동일 두께로 형성될 수 있고, 어느 하나가 다른 하나보다 얇거나 두꺼울 수도 있다. 제 1 및 제 2 캐패시터부(2200, 2400)의 절연 시트(102 내지 104, 108 내지 110) 중의 어느 하나의 두께를 다르게 함으로써 정전용량을 조정할 수 있다. 한편, 절연 시트들(100)은 예를 들어 1㎛∼5000㎛의 두께로 형성될 수 있고, 2500㎛ 이하의 두께로 형성될 수 있다. 이때, 절연 시트들(100)은 ESD 인가 시 파괴되지 않는 두께로 형성될 수 있다. 즉, 절연 시트들(100)은 사이즈가 작은 감전 방지부(2000)에 적용되는 경우 얇은 두께로 형성될 수 있고, 사이즈가 큰 감전 방지부(2000)에 적용되는 경우 두꺼운 두께로 형성될 수 있는데, 모든 경우에서 ESD 인가 시 파괴되지 않는 두께로 형성될 수 있다. 예를 들어, 절연 시트들(100)이 동일한 수로 적층되는 경우 감전 방지부(2000)의 사이즈가 작을수록 두께가 얇아지고 감전 방지부(2000)이 사이즈가 커질수록 두께가 두꺼울 수 있다. 물론, 얇은 절연 시트(100)가 큰 사이즈의 감전 방지부(2000)에도 적용될 수 있는데, 이 경우 절연 시트(100)의 적층 수가 증가하게 된다. 또한, 적층체(2100)는 제 1 캐패시터부(2200)의 하부 및 더미층(2500)의 상부에 각각 마련된 하부 커버층(미도시) 및 상부 커버층(미도시)을 더 포함할 수 있다. 물론, 제 1 절연 시트(101)가 하부 커버층으로 기능하고 더미층(2500)의 적어도 일부가 상부 커버층으로 기능할 수도 있다. 하부 및 상부 커버층은 적어도 하나의 자성체 시트가 적층되어 마련될 수 있으며, 동일 두께로 형성될 수 있다. 예를 들어, 제 1 절연 시트(101)의 하측 및 더미층(2500)의 상측에 적어도 하나의 자성체 시트가 마련될 수 있다. 물론, 제 1 절연 시트(101)가 자성체로 이루어질 수 있고, 더미층(2500)의 상측 적어도 일부가 자성체로 이루어질 수 있다. 또한, 자성체 시트로 이루어진 하부 및 상부 커버층의 최외곽, 즉 하부 및 상부 표면에 비자성 시트, 예를 들어 유리질의 시트가 더 형성될 수 있다. 또한, 하부 및 상부 커버층은 내부의 절연 시트들(100)보다 두꺼울 수 있다. 따라서, 제 1 절연 시트(101)가 하부 커버층으로 기능하는 경우 제 2 내지 제 10 절연 시트(102 내지 110) 각각보다 두껍게 형성될 수 있다.
2.2. 제 1 캐패시터부
제 1 캐패시터부(2200)는 ESD 보호부(2300)의 하측에 마련되며, 적어도 둘 이상의 내부 전극과, 이들 사이에 마련된 적어도 둘 이상의 절연 시트를 포함할 수 있다. 예를 들어, 제 1 캐패시터부(2200)는 제 1 내지 4 절연 시트(101 내지 104)와, 제 1 내지 4 절연 시트(101 내지 104) 상에 각각 형성된 제 1 내지 제 4 내부 전극(201 내지 204)를 포함할 수 있다. 제 1 내지 제 4 내부 전극(201 내지 204)는 예를 들어 1㎛∼10㎛의 두께로 형성할 수 있다. 여기서, 제 1 내지 제 4 내부 전극(201 내지 204)은 X 방향으로 서로 대향되도록 형성된 외부 전극(2610, 2620; 2600)과 일측이 연결되고 타측이 이격되도록 형성된다. 제 1 및 제 3 내부 전극(201, 203)은 제 1 및 제 3 절연 시트(101, 103) 상에 각각 소정 면적으로 형성되며, 일측이 제 1 외부 전극(2610)과 연결되고 타측이 제 2 외부 전극(2620)과 이격되도록 형성된다. 제 2 및 제 4 내부 전극(202, 204)는 제 2 및 제 4 절연 시트(102, 104) 상에 각각 소정 면적으로 형성되며 일측이 제 2 외부 전극(2620)과 연결되고 타측이 제 1 외부 전극(2610)과 이격되도록 형성된다. 즉, 제 1 내지 제 4 내부 전극(201 내지 204)는 외부 전극(2600)의 어느 하나와 교대로 연결되며 제 2 내지 제 4 절연 시트(202 내지 204)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 제 1 내지 제 4 내부 전극(201, 204)은 제 1 내지 제 4 절연 시트(101 내지 104) 각각의 면적 대비 10% 내지 95%의 면적으로 각각 형성된다. 또한, 제 1 내지 제 4 내부 전극(201 내지 204)은 이들 전극 각각의 면적 대비 10% 내지 95%의 면적으로 중첩되도록 형성된다. 한편, 제 1 내지 제 4 내부 전극(201 내지 204)은 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다. 이러한 제 1 캐패시터부(2200)는 제 1 내지 제 4 내부 전극(201 내지 204) 사이에 캐패시턴스가 각각 형성되며, 캐패시턴스는 제 1 내지 제 4 내부 전극(201 내지 204)의 길이 또는 중첩 면적, 절연 시트들(101 내지 104)의 두께 등에 따라 조절될 수 있다. 한편, 제 1 캐패시터부(2200)는 제 1 내지 제 4 내부 전극(201 내지 204) 이외에 적어도 하나 이상의 내부 전극이 더 형성되고, 적어도 하나의 내부 전극이 형성되는 적어도 하나의 절연 시트가 더 형성될 수도 있다. 또한, 제 1 캐패시터부(2200)는 두개의 내부 전극이 형성될 수도 있다. 즉, 본 실시 예는 제 1 캐패시터(2000)의 내부 전극이 네개 형성되는 것을 예로 설명하였으나, 내부 전극은 둘 이상 복수로 형성될 수 있다.
2.3. ESD 보호부
ESD 보호부(2300)는 수직 방향으로 이격되어 형성된 적어도 두개의 방전 전극(310; 311, 312)과, 적어도 두개의 방전 전극(310) 사이에 마련된 적어도 하나의 ESD 보호층(320)을 포함할 수 있다. 예를 들어, ESD 보호부(2300)는 제 5 및 제 6 절연 시트(105, 106)와, 제 5 및 제 6 절연 시트(105, 106) 상에 각각 형성된 제 1 및 제 2 방전 전극(311, 312)과, 제 6 절연 시트(106)를 관통하여 형성된 ESD 보호층(320)을 포함할 수 있다. 여기서, ESD 보호층(320)은 적어도 일부가 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 제 1 및 제 2 방전 전극(311, 312)은 캐패시터부(2000, 4000)의 내부 전극들(200)과 동일 두께로 형성될 수 있다. 예를 들어, 제 1 및 제 2 방전 전극(311, 312)은 1㎛∼10㎛의 두께로 형성할 수 있다. 그러나, 제 1 및 제 2 방전 전극(311, 312)은 캐패시터부(2000, 4000)의 내부 전극(200)보다 얇거나 두껍게 형성될 수도 있다. 제 1 방전 전극(311)은 제 1 외부 전극(2610)과 연결되어 제 5 절연 시트(105) 상에 형성되며 말단부가 ESD 보호층(320)과 연결되도록 형성된다. 제 2 방전 전극(312)은 제 2 외부 전극(2620)과 연결되어 제 6 절연 시트(106) 상에 형성되며 말단부가 ESD 보호층(320)과 연결되도록 형성된다. 여기서, 제 1 및 제 2 방전 전극(311, 312)의 ESD 보호층(320)과 접촉되는 영역은 ESD 보호층(320)과 동일 크기 또는 이보다 작게 형성될 수 있다. 또한, 제 1 및 제 2 방전 전극(311, 312)은 ESD 보호층(320)을 벗어나지 않고 완전히 중첩되어 형성될 수도 있다. 즉, 제 1 및 제 2 방전 전극(311, 312)의 가장자리는 ESD 보호층(320)의 가장자리와 수직 성분을 이룰 수 있다. 물론, 제 1 및 제 2 방전 전극(311, 312)은 ESD 보호층(320)의 일부에 중첩되도록 형성될 수도 있다. 예를 들어, 제 1 및 제 2 방전 전극(311, 312)는 ESD 보호층(320)의 수평 면적의 10% 내지 100% 중첩되도록 형성될 수 있다. 즉, 제 1 및 제 2 방전 전극(311, 312)은 ESD 보호층(320)을 벗어나게 형성되지 않는다. 한편, 제 1 및 제 2 방전 전극(311, 312)은 ESD 보호층(320)과 접촉되는 일 영역이 접촉되지 않은 영역보다 크게 형성될 수 있다. ESD 보호층(320)은 제 6 절연 시트(106)의 소정 영역, 예를 들어 중심부에 형성되어 제 1 및 제 2 방전 전극(311, 312)과 연결될 수 있다. 이때, ESD 보호층(320)은 제 1 및 제 2 방전 전극(311, 312)과 적어도 일부 중첩되도록 형성될 수 있다. 즉, ESD 보호층(320)은 제 1 및 제 2 방전 전극(311, 312)과 수평 면적의 10% 내지 100% 중첩되도록 형성될 수 있다. ESD 보호층(320)은 제 6 절연 시트(106)의 소정 영역, 예를 들어 중심부에 소정 크기의 관통홀을 형성하고 인쇄 공정을 이용하여 관통홀의 적어도 일부를 도포하거나 매립하도록 형성될 수 있다. ESD 보호층(320)은 적층체(2100) 두께의 1%∼20%의 두께로 형성되고, 적층체(2100)의 일 방향 길이의 3%∼50%의 길이로 형성될 수 있다. 이때, ESD 보호층(320)이 복수로 형성되는 경우 복수의 ESD 보호층(320)의 두께의 합은 적층체(2100) 두께의 1%∼50%로 형성될 수 있다. 또한, ESD 보호층(320)은 적어도 일 방향, 예를 들어 X 방향으로 길이가 긴 장공형으로 형성될 수 있고, X 방향의 길이 는 절연 시트(100)의 X 방향 길이의 5%∼75%로 형성될 수 있다. 그리고, ESD 보호층(320)은 Y 방향으로의 폭이 절연 시트(100)의 Y 방향 폭의 3%∼50%로 형성될 수 있다. 이러한 ESD 보호층(320)은 예를 들어 50㎛∼1000㎛의 직경과 5㎛∼200㎛의 두께로 형성될 수 있다. 이때, ESD 보호층(320)의 두께가 얇을수록 방전 개시 전압이 낮아진다. ESD 보호층(320)은 도전 물질과 절연 물질을 이용하여 형성할 수 있다. 이때, 절연 물질은 복수의 기공(pore)을 갖는 다공성의 절연 물질일 수 있다. 예를 들어, 도전성 세라믹과 절연성 세라믹의 혼합 물질을 제 6 절연 시트(106) 상에 인쇄하여 ESD 보호층(320)을 형성할 수 있다. 한편, ESD 보호층(320)은 적어도 하나의 절연 시트(100) 상에 형성될 수도 있다. 즉, 수직 방향으로 적층된 적어도 하나, 예를 들어 두개의 절연 시트(100)에 ESD 보호층(320)이 각각 형성되고, 그 절연 시트(100) 상에 서로 이격되도록 방전 전극이 형성되어 ESD 보호층(320)과 연결될 수 있다. ESD 보호층(320)의 구조, 재료 등의 보다 자세한 설명은 후술하도록 하겠다.
2.4. 제 2 캐패시터부
제 2 캐패시터부(2400)는 ESD 보호부(2300)의 상측에 마련되며, 적어도 둘 이상의 내부 전극과, 이들 사이에 마련된 적어도 둘 이상의 절연 시트를 포함할 수 있다. 예를 들어, 제 2 캐패시터부(2200)는 제 7 내지 제 10 절연 시트(107 내지 110)와, 제 7 내지 제 10 절연 시트(107 내지 110) 상에 각각 형성된 제 5 내지 제 8 내부 전극(205 내지 208)을 포함할 수 있다. 여기서, 제 5 내지 제 8 내부 전극(205 내지 208)은 X 방향으로 서로 대향되도록 형성된 외부 전극(2610, 2620; 2600)과 일측이 연결되고 타측이 이격되도록 형성된다. 제 5 및 제 7 내부 전극(205, 207)은 제 7 및 제 9 절연 시트(107, 109) 상에 소정 면적으로 형성되며, 일측이 제 1 외부 전극(2610)과 연결되고 타측이 제 2 외부 전극(2620)과 이격되도록 형성된다. 제 6 및 제 8 내부 전극(206, 208)는 제 8 및 제 10 절연 시트(108, 110) 상에 각각 소정 면적으로 형성되며 일측이 제 2 외부 전극(2620)과 연결되고 타측이 제 1 외부 전극(2610)과 이격되도록 형성된다. 즉, 제 5 내지 제 8 내부 전극(205 내지 108)이 외부 전극(2600)의 어느 하나와 교대로 연결되며 제 8 내지 제 10 절연 시트(208 내지 110)를 사이에 두고 소정 영역 중첩되도록 형성된다. 이때, 제 5 내지 제 8 내부 전극(205 내지 208)은 제 7 내지 제 10 절연 시트(107 내지 110) 각각의 면적 대비 10% 내지 85%의 면적으로 각각 형성된다. 또한, 제 5 내지 제 8 내부 전극(205 내지 208)은 이들 전극 각각의 면적 대비 10% 내지 85%의 면적으로 중첩되도록 형성된다. 또한, 제 5 내지 제 8 내부 전극(205 내지 208)은 예를 들어 1㎛∼10㎛의 두께로 형성할 수 있다. 한편, 제 5 내지 제 8 내부 전극(205 내지 208)은 예를 들어 정사각형, 직사각형, 소정의 패턴 형상, 소정 폭 및 간격을 갖는 스파이럴 형상 등 다양한 형상으로 형성될 수 있다. 이러한 제 2 캐패시터부(2400)는 제 5 내지 제 8 내부 전극(205 내지 208) 사이에 캐패시턴스가 각각 형성되며, 캐패시턴스는 제 5 내지 제 8 내부 전극(205 내지 208)의 길이 또는 중첩 면적, 절연 시트들(108 내지 110)의 두께 등에 따라 조절될 수 있다. 한편, 제 2 캐패시터부(2400)는 제 3 및 제 4 내부 전극(203, 204) 이외에 적어도 하나 이상의 내부 전극이 더 형성되고, 적어도 하나의 내부 전극이 형성되는 적어도 하나의 절연 시트가 더 형성될 수도 있다. 또한, 제 2 캐패시터부(2400)는 두개의 내부 전극이 형성될 수도 있다. 즉, 본 실시 예는 제 2 캐패시터(4000)의 내부 전극이 네개 형성되는 것을 예로 설명하였으나, 내부 전극은 둘 이상 복수로 형성될 수 있다.
한편, 제 1 캐패시터부(2200)의 내부 전극들(201 내지 204)과 제 2 캐패시터부(2400)의 내부 전극들(205 내지 208)은 동일 형상 및 동일 면적으로 형성될 수 있고, 중첩 면적 또한 동일할 수 있다. 또한, 제 1 캐패시터부(2200)의 절연 시트들(101 내지 104)와 제 2 캐패시터부(2400)의 절연 시트들(107 내지 110)은 동일 두께를 가질 수 있다. 이때, 제 1 절연 시트(101)가 하부 커버층으로 기능할 경우 제 1 절연 시트(101)는 나머지 절연 시트들에 비해 두껍게 형성될 수 있다. 따라서, 제 1 및 제 2 캐패시터부(2000, 4000)는 캐패시턴스가 동일할 수 있다. 그러나, 제 1 및 제 2 캐패시터부(2000, 4000)는 캐패시턴스가 다를 수 있으며, 이 경우 내부 전극의 면적 또는 길이, 내부 전극의 중첩 면적, 절연 시트의 두께의 적어도 어느 하나가 서로 다를 수 있다. 또한, 캐패시터부(2000, 4000)의 내부 전극(201 내지 208)는 ESD 보호부(2300)의 방전 전극(310)보다 길거나 같게 형성될 수 있고, 면적 또한 크거나 같게 형성될 수 있다.
한편, 캐패시터부(2000, 4000)의 내부 전극들(201 내지 208)의 두께는 적층체(2100) 두께의 0.05%∼50%로 형성될 수 있다. 즉, 내부 전극들(201 내지 208) 각각의 두께의 합은 적층체(2100) 두께의 0.05%∼50%로 형성될 수 있다. 이때, 내부 전극들(201 내지 208) 각각의 두께는 동일할 수도 있고, 적어도 어느 하나가 다를 수 있다. 예를 들어, 내부 전극들(201 내지 208)의 적어도 하나가 나머지보다 두껍거나 얇게 형성될 수 있다. 또한, 내부 전극들(201 내지 208) 각각은 적어도 일 영역의 두께가 다른 영역과 다를 수 있다. 그러나, 내부 전극들(201 내지 208) 중에서 적어도 하나의 두께가 다른 경우와, 내부 전극들(201 내지 208) 각각의 적어도 일 영역의 두께가 다른 경우에도 내부 전극들(201 내지 208)의 두께의 합은 적층체(2100) 두께의 0.05%∼50%로 형성될 수 있다. 또한, 캐패시터부(2000, 4000)의 내부 전극들(201 내지 208)의 단면적은 적층체(2100) 단면적의 0.05%∼50%로 형성될 수 있다. 즉, 내부 전극들(201 내지 208)의 두께 방향, 즉 Z 방향으로의 단면적의 합은 적층체(2100)의 단면적의 0.05%∼50%로 형성될 수 있다. 이때, 내부 전극들(201 내지 208) 각각은 단면적이 동일할 수도 있고, 적어도 어느 하나가 다를 수 있다. 그러나, 내부 전극들(201 내지 208) 중에서 적어도 하나의 단면적이 다른 경우에도 내부 전극들(201 내지 208)의 단면적의 합은 적층체(2100) 단면적의 0.05%∼50%로 형성될 수 있다. 그리고, 캐패시터부(2000, 4000)의 내부 전극들(201 내지 208) 각각의 길이 및 폭은 절연 시트(100)의 길이 및 폭의 95% 이하로 형성될 수 있다. 즉, 내부 전극들(201 내지 208)은 X 방향의 길이가 절연 시트(100)의 X 방향 길이의 10%∼95%로 형성되고, Y 방향의 폭이 절연 시트(100)의 Y 방향 폭의 10%∼95%로 형성될 수 있다. 그러나, 내부 전극들(201 내지 208)은 절연 시트(100)를 사이에 두고 적어도 일부 영역이 중첩되어 형성되어야 하므로 길이 및 폭이 절연 시트(100) 길이 및 폭의 50%∼95%로 형성되는 것이 바람직하고, 80%∼95%로 형성되는 것이 더욱 바람직하다. 여기서, 내부 전극들(210 내지 208) 중에서 적어도 어느 하나의 길이가 다른 내부 전극의 길이와 다를 수 있다. 예를 들어, 하나의 내부 전극의 길이가 다른 내부 전극들의 길이보다 길거나 짧을 수 있다. 하나의 내부 전극의 길이가 다른 내부 전극들보다 길 경우 중첩 면적이 증가하게 되고, 작을 경우 중첩 면적이 줄어들게 된다. 따라서, 적어도 어느 하나의 내부 전극의 길이를 다르게 함으로써 정전용량을 조정할 수 있다.
2.5 더미층
더미층(2500)은 적층체(2100) 내에 마련될 수 있다. 예를 들어, 더미층(2500)은 제 2 캐패시터부(2400)의 상측에 마련될 수 있다. 이러한 더미층(2500)은 복수의 절연 시트(100)와 동일 재질일 수 있다. 즉, 더미층(2500)은 MLCC 등의 유전체 재료 분말, BaTiO3, BaCO3, TiO2, Nd2O3, Bi2O3, Zn0, Al2O3 중의 하나 이상을 포함하는 물질로 형성될 수 있다. 이때, 더미층(2500)은 절연 시트(100)와 동일 재질 및 동일 두께의 시트를 복수 적층하여 형성할 수 있다. 즉, 캐패시터부(2200, 2400) 및 ESD 보호부(2300)를 이루는 절연 시트(100)와 동일 형상 및 동일 두께를 갖는 복수의 시트를 적층하여 더미층(2500)을 형성할 수 있다. 물론, 더미층(2500)은 절연 시트(100)와 다른 재질의 물질로 형성될 수도 있다. 예를 들어, 실리콘 옥사이드 등이 절연 물질, 수지 등의 고분자 물질 등을 이용하여 더미층(2500)을 형성할 수 있다. 그러나, 동일 공정에 의해 적층되고 동시에 소성될 수 있도록 더미층(2500)은 절연 시트(100)와 동일 재질로 형성될 수 있다. 이러한 더미층(2500)의 두께에 의해 감전 방지부(2000)의 높이가 조절될 수 있다. 즉, 더미층(2500)은 캐패시터부(2200, 2400) 및 ESD 보호부(2300) 등이 형성된 소자 형성부와 컨택부(1000) 사이의 높이를 맞추기 위해 마련될 수 있다. 따라서, 감전 방지부(2500)는 소자 형성부와 컨택부(1000) 사이에서 컨택부(1000)가 접촉될 수 있는 높이로 형성될 수 있다. 한편, 더미층(2500)은 ESD 보호부(2300)의 제 1 두께, 캐패시터부(2200, 2400)의 내부 전극(200) 사이의 제 2 두께, ESD 보호층(320)와 내부 전극(200) 사이의 제 3 두께, 제 1 절연 시트(110)의 제 4 두께 중 적어도 어느 하나보다 클 수 있다. 즉, 더미층(2500)은 ESD 보호부(2300)의 두께보다 두꺼울 수 있고, 캐패시터부(2200, 2400)의 내부 전극(200) 사이의 두께보다 두꺼울 수 있으며, ESD 보호층(320)과 내부 전극(200) 사이의 두께보다 두꺼울 수 있으며, 하부 커버층, 즉 제 1 절연 시트(110)의 두께보다 두꺼울 수 있다. 또한, 더미층(2500)은 캐패시터부(2200, 2400)의 어느 하나의 두께보다 두꺼울 수도 있다.
2.6. 외부 전극
외부 전극(2610, 2620; 2600)는 적층체(2100)의 서로 대향되는 두 측면에 마련되어 제 1 및 제 2 캐패시터부(2200, 2400)의 내부 전극(200)과 ESD 보호부(2300)의 방전 전극(310)과 연결된다. 또한, 외부 전극(2600)은 적층체(2100)의 하면으로 연장 형성될 수 있다. 즉, 적층체(2100)의 하면이 내부 회로(20)와 대면하고 외부 전극(2600)이 내부 회로(20) 상에 실장되어야 하므로 적층체(2100)의 서로 대향되는 양 측면에 형성된 제 1 및 제 2 외부 전극(2610, 2620)은 적층체(2100)의 하면으로 연장 형성될 수 있다. 이때, 적층체(2100)의 하면에 연장 형성된 제 1 및 제 2 외부 전극(2610, 2620)은 서로 소정 간격 이격될 수 있다. 또한, 외부 전극(2600)의 적어도 하나는 적층체(2100)의 상면으로 연장 형성될 수 있다. 즉, 적층체(2100)의 상면과 대면하는 컨택부(1000)와 접촉될 수 있도록 외부 전극(2600)의 적어도 하나, 예를 들어 제 2 외부 전극(2620)은 적층체(2100)의 상면에 연장 형성될 수 있다. 이때, 적층체(2100)의 상면에 연장 형성되는 영역은 적층체(2100) 상면에 충분한 길이로 형성되며, 제 1 외부 전극(2610)과 접촉되지 않도록 형성된다. 예를 들어, 제 1 외부 전극(2610)이 적층체(2100)의 상면에는 형성되지 않고 제 2 외부 전극(2620)과 절연되는 경우 제 2 외부 전극(2620)은 적층체(2100) 상면의 전체 영역에 형성될 수 있다. 또한, 외부 전극(2600)의 어느 하나, 예를 들어 제 1 외부 전극(2610)은 더미층(2500)의 측면에는 형성되지 않는다. 즉, 제 1 외부 전극(2610)은 제 1 및 제 2 캐패시터부(2200, 2400) 및 ESD 보호부(2300)이 형성된 소자 형성 영역의 적층체(2100)의 측면에 형성되지만, 더미층(2500)의 측면에는 형성되지 않는다. 이렇게 적층체(2100)의 상면에 제 2 외부 전극(2620)이 연장 형성되어 컨택부(1000)와 접촉될 수 있고, 적층체(2100)의 하면에 제 1 및 제 2 외부 전극(2610, 2620)이 연장 형성되어 내부 회로(20)에 실장될 수 있다. 한편, 제 1 외부 전극(2610)은 내부 회로(20)의 접지 단자와 연결될 수 있고, 제 2 외부 전극(2620)은 내부 회로(20)의 절연 영역과 연결될 수 있다. 따라서, 접지 단자로부터 인가될 수 있는 감전 전압은 감전 방지부(2000)에 의해 차단되고, 외부로부터 인가될 수 있는 ESD 전압은 컨택부(1000), 제 2 외부 전극(2620), ESD 보호부(2300) 및 제 1 외부 전극(2610)을 통해 내부 회로(20)의 접지 단자로 바이패스될 수 있다.
한편, 외부 전극(2600)은 적어도 하나의 층으로 형성될 수 있다. 외부 전극(2600)은 Ag 등의 금속층으로 형성될 수 있고, 금속층 상에 적어도 하나의 도금층이 형성될 수도 있다. 예를 들어, 외부 전극(2600)은 구리층, Ni 도금층 및 Sn 또는 Sn/Ag 도금층이 적층 형성될 수도 있다. 또한, 외부 전극(2600)은 예를 들어 0.5%∼20%의 Bi2O3 또는 SiO2를 주성분으로 하는 다성분계의 글래스 프릿(Glass frit)을 금속 분말과 혼합하여 형성할 수 있다. 이때, 글래스 프릿과 금속 분말의 혼합물은 페이스트 형태로 제조되어 적층체(2100)의 두면에 도포될 수 있다. 이렇게 외부 전극(2600)에 글래스 프릿이 포함됨으로써 외부 전극(2600)과 적층체(2100)의 밀착력을 향상시킬 수 있고, 내부 전극(200)과 외부 전극(2600)의 콘택 반응을 향상시킬 수 있다. 또한, 글래스가 포함된 도전성 페이스트가 도포된 후 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(2600)이 형성될 수 있다. 즉, 글래스가 포함된 금속층과, 그 상부에 적어도 하나의 도금층이 형성되어 외부 전극(2600)이 형성될 수 있다. 예를 들어, 외부 전극(2600)은 글래스 프릿과 Ag 및 Cu의 적어도 하나가 포함된 층을 형성한 후 전해 또는 무전해 도금을 통하여 Ni 도금층 및 Sn 도금층 순차적으로 형성할 수 있다. 이때, Sn 도금층은 Ni 도금층과 같거나 두꺼운 두께로 형성될 수 있다. 물론, 외부 전극(2600)은 적어도 하나의 도금층만으로 형성될 수도 있다. 즉, 페이스트를 도포하지 않고 적어도 1회의 도금 공정을 이용하여 적어도 일층의 도금층을 형성하여 외부 전극(2600)을 형성할 수도 있다. 한편, 외부 전극(2600)은 2㎛∼100㎛의 두께로 형성될 수 있으며, Ni 도금층이 1㎛∼10㎛의 두께로 형성되고, Sn 또는 Sn/Ag 도금층은 2㎛∼10㎛의 두께로 형성될 수 있다.
2.7. 절연 부재
한편, 외부 전극(2600)을 형성하기 이전에 적층체(2100)의 표면에 산화물을 분포시켜 절연 부재(2700)를 형성할 수 있다. 즉, 도 4에 도시된 바와 같이 적층체(10)의 표면에 절연 부재(2700)가 형성될 수 있다. 이때, 산화물은 결정 상태 또는 비결정 상태로 적층체(2100)의 표면에 분산되어 분포될 수 있다. 또한, 산화물은 외부 전극(2600)의 일부를 인쇄 공정으로 형성하기 이전에 분포시킬 수도 있고, 도금 공정을 실시하기 이전에 분포시킬 수도 있다. 즉, 산화물은 도금 공정으로 외부 전극(2600)을 형성할 때 도금 공정 이전에 적층체(2100) 표면에 분포될 수 있다. 표면에 분포된 산화물은 적어도 일부가 용융될 수 있다. 따라서, 절연 부재(2700)는 2 외부 전극(2600)을 형성하기 이전에 형성되고 적층체(2100)의 표면에 형성될 수 있다. 이때, 산화물은 도 4의 (a)에 도시된 바와 같이 적어도 일부가 적층체(2100) 표면에 고르게 분포될 수 있고, 도 4의 (b)에 도시된 바와 같이 적어도 일부가 서로 다른 크기로 불규칙적으로 분포될 수도 있다. 또한, 도 4의 (c)에 도시된 바와 같이 적층체(2100)의 적어도 일부 표면에는 오목부가 형성될 수도 있다. 즉, 산화물이 형성되어 볼록부가 형성되고 산화물이 형성되지 않은 영역의 적어도 일부가 패여 오목부가 형성될 수도 있다. 이렇게 도금 공정 이전에 산화물을 분포시킴으로써 적층체(2100) 표면의 저항을 균일하게 할 수 있고, 그에 따라 도금 공정이 균일하게 실시될 수 있다. 즉, 적층체(2100)의 표면은 적어도 일 영역의 저항이 다른 영역의 저항과 다를 수 있는데, 저항이 불균일한 상태에서 도금 공정을 실시하면 저항이 낮은 영역에 저항이 높은 영역보다 도금이 잘 진행되어 도금층의 성장 불균일이 발생된다. 따라서, 이러한 문제를 해결하기 위해 적층체(2100)의 표면 저항을 균일하게 유지해야 하고, 이를 위해 적층체(2100)의 표면에 결정 상태 또는 비결정 상태의 산화물을 분산시켜 절연 부재를 형성할 수 있다. 이때, 산화물은 적층체(2100)의 표면에 부분적으로 분포될 수도 있으며, 적층체(2100)의 표면에 전체적으로 분포되어 막 형태로 형성될 수 있고, 적어도 일 영역에 막 형태로 형성되고 적어도 일 영역에 부분적으로 분포될 수도 있다. 예를 들어, 산화물이 적층체의 표면에 섬(island) 형태로 분포되어 절연 부재(2700)가 형성될 수 있다. 즉, 적층체(2100) 표면에 입자 상태 또는 용융 상태의 산화물이 서로 이격되어 섬 형태로 분포될 수 있고, 그에 따라 적층체(2100) 표면의 적어도 일부가 노출될 수 있다. 또한, 산화물이 적층체(2100)의 전체 표면에 분포되고, 입자 상태 또는 용융 상태의 산화물이 서로 연결되어 소정 두께의 산화물 막이 형성될 수 있다. 이때, 적층체(2100) 표면에 산화물 막이 형성되므로 적층체(2100)의 표면은 노출되지 않을 수 있다. 그리고, 산화물은 적어도 일 영역에는 막 형태로 형성되고, 적어도 일부에는 섬 형태로 분포될 수 있다. 즉, 적어도 둘 이상의 산화물이 연결되어 적어도 일 영역에는 막으로 형성되고, 적어도 일부에는 섬 형태로 형성될 수 있다. 따라서, 적층체 표면의 적어도 일부가 산화물에 의해 노출될 수 있다. 적어도 일부에 섬 형태로 분포되는 산화물로 이루어진 절연 부재(400)의 총 면적은 적층체(2100) 표면 전체 면적의 예를 들어 10% 내지 90%일 수 있다. 여기서, 적층체(2100)의 표면 저항을 균일하게 하기 위한 입자 상태 또는 용융 상태의 산화물은 적어도 하나 이상의 산화물이 이용될 수 있는데, 예를 들어 Bi2O3, BO2, B2O3, ZnO, Co3O4, SiO2, Al2O3, MnO, H2BO3, H2BO3, Ca(CO3)2, Ca(NO3)2, CaCO3 중 적어도 하나 이상을 이용할 수 있다.
2.8. 내부 전극 및 방전 전극의 구성
한편, 캐패시터부(2200, 2400)의 내부 전극들(201 내지 208)과 ESD 보호부(2300)의 방전 전극(311, 312)은 도전성 물질로 형성될 수 있는데, 예를 들어 Al, Cu, Ag, Pt, Au 등의 금속 또는 금속 합금으로 형성될 수 있다. 즉, 내부 전극들(201 내지 208)과 방전 전극(310)은 하나의 금속 또는 적어도 둘 이상의 금속 합금으로 형성될 수 있다. 물론, 내부 전극들(201 내지 208)과 방전 전극(310)은 도전성을 갖는 금속 산화물, 금속 질화물 등으로 형성될 수도 있다. 내부 전극들(201 내지 208)과 방전 전극(310)은 이러한 금속, 금속 합금 또는 금속 화합물의 페이스트를 도포하여 형성할 수 있고, 스퍼터, CVD 등의 증착 방법으로 형성할 수도 있다. 또한, 내부 전극들(201 내지 208)과 방전 전극(310)은 적층체(2100)를 이루는 성분이 포함될 수 있다. 즉, 내부 전극들(201 내지 208)과 방전 전극(310)은 도전성 물질 뿐만 아니라 절연 시트(100)를 이루는 성분이 포함될 수 있다. 즉, MLCC 등의 유전체 재료 분말, BaTiO3, BaCO3, TiO2, Nd2O3, Bi2O3, Zn0, Al2O3 중의 하나 이상을 포함하는 물질이 포함된 도전성 물질을 이용하여 내부 전극들(201 내지 208)과 방전 전극(310)을 형성할 수 있다. 이때, 적층체 성분, 즉 절연 시트의 성분은 20% 이하로 도전성 물질에 포함될 수 있는데, 예를 들어 절연 시트의 성분와 도전성 물질의 혼합물을 100이라 할 때 절연 시트 성분이 1∼20 정도 포함될 수 있다. 이렇게 절연 시트 성분이 포함됨으로써 내부 전극들(201 내지 208)과 방전 전극(310)의 수축률을 적층체(2100)와 유사하게 할 수 있고, 전극들과 절연 시트(100)의 결합력을 향상시킬 수 있다.
2.9. 캐패시터부와 ESD 보호부의 두께
여기서, ESD 보호부(2300)와 캐패시터부(2000, 4000) 사이의 거리는 캐패시터부(2000, 4000) 내의 두 내부 전극 사이의 거리보다 짧거나 같을 수 있다. 즉, ESD 보호부(2300)와 캐패시터부(2000, 4000) 사이에 위치한 제 5 및 제 7 절연 시트(105, 107)의 각각의 두께는 캐패시터부(2000, 4000) 내의 내부 전극(200) 사이에 위치한 절연 시트들(102 내지 104, 107 내지 110)의 두께보다 얇거나 같을 수 있다. 또한, ESD 보호부(2300)와 캐패시터부(2000, 4000) 사이의 거리는 ESD 보호부(2300)의 두 방전 전극(310) 사이의 거리보다 짧거나 같을 수 있다. 즉, ESD 보호부(2300)와 캐패시터부(2000, 4000) 사이에 위치한 제 5 및 제 7 절연 시트(105, 107)의 각각의 두께는 ESD 보호층(320)이 형성된 제 6 절연 시트(106)의 두께보다 얇거나 같을 수 있다. 결국, ESD 보호부(2300)와 캐패시터부(2000, 4000) 사이에 위치한 제 5 및 제 7 절연 시트(105, 107)의 각각의 두께는 캐패시터부(2000, 4000) 내의 내부 전극(200) 사이에 위치한 절연 시트들(102 내지 104, 107 내지 110)의 두께보다 얇거나 같은 두께로 형성되거나, ESD 보호부(2300)의 두 방전 전극(310) 사이의 거리(B)보다 얇거나 같은 두께로 형성될 수 있다. 즉, ESD 보호부(2300)와 캐패시터부(2000, 4000) 사이의 거리를 A1 및 A2, 캐패시터부(2000, 4000) 내의 두 내부 전극 사이의 거리를 C1 및 C2, 그리고 ESD 보호부(2300)의 두 방전 전극(300) 사이의 거리를 B라 할 때 A1=A2≤C1=C2 또는 A1=A2≤B일 수 있다. 물론, A1과 A2, 그리고 C1과 C2는 같지 않을 수도 있다. 한편, 최하층 및 최상층의 절연 시트, 즉 제 1 및 제 11 절연 시트(101, 111)의 두께는 각각 10㎛ 이상 적층체(2100) 두께의 50% 이하일 수 있다. 이때, 제 1 및 제 11 절연 시트(101, 111)의 두께를 각각 D1 및 D2라 할 때 B≤D1=D2일 수 있으며, D1과 D2가 다를 수도 있다.
한편, 본 발명의 제 1 실시 예는 적층체(2100) 내에 하나의 ESD 보호층(320)을 구비하는 ESD 보호부(2300)가 마련된 경우를 설명하였으나, ESD 보호층(320)이 둘 이상 복수 마련될 수도 있어 ESD 보호부(2300)가 복수 마련될 수도 있다. 예를 들어, 수직 방향으로 ESD 보호층(320)이 적어도 둘 이상 형성되고 ESD 보호층(320) 사이에 방전 전극이 더 형성되어 하나의 감전 방지부(2000)가 적어도 하나의 캐패시터와 둘 이상의 ESD 보호부로 이루어질 수 있다. 또한, 캐패시터부(2000, 4000)의 내부 전극들(200)과 ESD 보호부(2300)의 방전 전극(310) 및 ESD 보호층(320)이 Y 방향으로 적어도 둘 이상 형성될 수 있다. 따라서, 하나의 적층체(2100) 내에 복수의 감전 방지부(2000)가 병렬로 마련될 수도 있다.
도 6은 본 발명의 일 실시 예의 감전 방지부의 ESD 보호층(320)의 단면 개략도이다.
도 6의 (a)에 도시된 바와 같이, ESD 보호층(320)은 도전 물질과 절연 물질을 혼합하여 형성할 수 있다. 즉, ESD 보호층(320)은 도전 물질과 절연 물질이 혼합된 ESD 보호 물질이 적어도 하나의 시트(100)에 형성된 관통홀의 적어도 일부에 도포되거나 매립되어 형성될 수 있다. 예를 들어, ESD 보호층(320)은 도전성 세라믹과 절연성 세라믹을 혼합한 ESD 보호 물질을 이용하여 형성할 수 있다. 이 경우 ESD 보호층(320)은 도전성 세라믹과 절연성 세라믹을 예를 들어 10:90 내지 90:10의 혼합 비율로 혼합하여 형성할 수 있다. 절연성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 높아지고, 도전성 세라믹의 혼합 비율이 증가할수록 방전 개시 전압이 낮아질 수 있다. 따라서, 소정의 방전 개시 전압을 얻을 수 있도록 도전성 세라믹과 절연성 세라믹의 혼합 비율을 조절할 수 있다. 이때, ESD 보호층(320)에는 복수의 기공(미도시)이 형성될 수 있다. 즉, ESD 보호층(320)은 다공성의 절연 물질을 이용하므로 복수의 기공이 형성될 수 있다. 기공이 형성됨으로써 ESD 전압을 더욱 용이하게 접지 단자로 바이패스시킬 수 있다.
또한, ESD 보호층(300)은 도전층과 절연층을 적층하여 소정의 적층 구조로 형성할 수 있다. 즉, ESD 보호층(300)은 도전층과 절연층을 적어도 1회 적층하여 도전층과 절연층이 구분되어 형성할 수 있다. 예를 들어, ESD 보호층(320)은 도전층과 절연층이 적층되어 2층 구조로 형성될 수 있고, 도전층, 절연층 및 도전층이 적층되어 3층 구조로 형성될 수 있다. 또한, 도전층(321)과 절연층(322)이 복수회 반복 적층되어 3층 이상의 적층 구조로 형성될 수도 있다. 예를 들어, 도 6의 (b)에 도시된 바와 같이 제 1 도전층(321a), 절연층(322) 및 제 2 도전층(321b)이 적층된 3층 구조의 ESD 보호층(300)이 형성될 수 있다. 도 6의 (b)는 절연 시트 사이의 내부 전극 사이에 3층 구조의 ESD 보호층이 형성된 사진이다. 한편, 도전층과 절연층을 복수회 적층하는 경우 최상층 및 최하층은 도전층이 위치할 수 있다. 이때, 도전층(321)과 절연층(322)의 적어도 일부에는 복수의 기공(미도시)이 형성될 수 있다. 예를 들어, 도전층(321) 사이에 형성된 절연층(322)은 다공성 구조로 형성되므로 절연층(322) 내에 복수의 기공이 형성될 수 있다.
또한, ESD 보호층(320)은 소정 영역에 공극(void)이 더 형성될 수도 있다. 예를 들어, 도전 물질과 절연 물질이 혼합된 층의 사이에 공극이 형성될 수 있고, 도전층과 절연층 사이에 공극이 형성될 수도 있다. 즉, 도전 물질과 절연 물질의 제 1 혼합층, 공극 및 제 2 혼합층이 적층 형성될 수 있고, 도전층, 공극 및 절연층이 적층 형성될 수도 있다. 예를 들어, ESD 보호층(320)은 도 6의(c)에 도시된 바와 같이 제 1 도전층(321a), 제 1 절연층(322a), 공극(323), 제 2 절연층(322b) 및 제 2 도전층(321b)이 적층되어 형성될 수 있다. 즉, 도전층(321) 사이에 절연층(322)이 형성되고, 절연층(322) 사이에 공극(323)이 형성될 수 있다. 물론, 도전층, 절연층, 공극이 반복 적층되어 ESD 보호층(320)이 형성될 수도 있다. 한편, 도전층(321), 절연층(322) 및 공극(323)이 적층되는 경우 이들 모두의 두께가 모두 동일할 수 있고, 적어도 어느 하나의 두께가 다른 것들에 비해 얇을 수 있다. 예를 들어, 공극(323)이 도전층(321) 및 절연층(322)보다 얇을 수 있다. 또한, 도전층(321)은 절연층(322)과 동일 두께로 형성될 수도 있고, 절연층(322)보다 두껍거나 얇게 형성될 수도 있다. 한편, 공극(323)은 고분자 물질을 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 형성할 수 있다. 예를 들어, 도전성 세라믹이 포함된 제 1 고분자 물질, 절연성 세라믹이 포함된 제 2 고분자 물질, 그리고 도전성 세라믹 또는 절연성 세라믹 등이 포함되지 않은 제 3 고분자 물질을 비아홀 내에 충진한 후 소성 공정을 실시하여 고분자 물질을 제거함으로써 도전층, 절연층 및 공극이 형성될 수 있다. 한편, 공극(323)은 층이 구분되지 않고 형성될 수도 있다. 예를 들어, 도전층(321a, 321b) 사이에 절연층(322)이 형성되고 절연층(322) 내에 수직 방향 또는 수평 방향으로 복수의 기공이 연결되어 공극(323)이 형성될 수 있다. 즉, 공극(323)은 절연층(322) 내에 복수의 기공으로 형성될 수 있다. 물론, 공극(323)이 복수의 기공에 의해 도전층(321)에 형성될 수도 있다.
또한, ESD 보호층(320)은 다공성 절연 물질 및 도전 물질을 포함하는 ESD 보호 물질이 홀의 일부에 도포되고 나머지 영역은 ESD 보호 물질이 도포되지 않아 공극이 형성될 수 있다. 물론, ESD 보호층(320)은 관통홀 내부에 ESD 보호 물질이 형성되지 않고 도 6의 (d)에 도시된 바와 같이 두 방전 전극(311, 312) 사이에 공극(323)이 형성될 수도 있다.
한편, ESD 보호층(320)에 이용되는 도전층(321)은 소정의 저항을 갖고 전류를 흐르게 할 수 있다. 예를 들어, 도전층(321)은 수Ω 내지 수백㏁을 갖는 저항체일 수 있다. 이러한 도전층(321)은 ESD 등이 과전압이 유입될 경우 에너지 레벨을 낮춰 과전압에 의한 감전 방지부의 구조적인 파괴가 일어나지 않도록 한다. 즉, 도전층(321)은 전기 에너지를 열 에너지로 변환시키는 히트 싱크(heat sink)의 역할을 한다. 이러한 도전층(321)은 도전성 세라믹을 이용하여 형성할 수 있으며, 도전성 세라믹은 La, Ni, Co, Cu, Zn, Ru, Ag, Pd, Pt, W, Fe, Bi 중의 하나 이상을 포함한 혼합물을 이용할 수 있다. 또한, 도전층(321)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 도전층(321)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.
또한, ESD 보호층(320)에 이용되는 절연층(322)은 방전 유도 물질로 이루어질 수 있고, 다공성 구조를 가진 전기 장벽으로 기능할 수 있다. 이러한 절연층(322)은 절연성 세라믹으로 형성될 수 있고, 절연성 세라믹은 50∼50000 정도의 유전율을 갖는 강유전체 물질이 이용될 수 있다. 예를 들어, 절연성 세라믹은 MLCC 등의 유전체 재료 분말, SiO2, Fe2O3, Co3O4, BaTiO3, BaCO3, TiO2, Nd, Bi, Zn, Al2O3 중의 하나 이상을 포함한 혼합물을 이용하여 형성할 수 있다. 이러한 절연층(322)은 1㎚∼30㎛ 정도 크기의 기공이 복수 형성되어 30%∼80%의 기공률로 형성된 다공성 구조로 형성될 수 있다. 이때, 기공 사이의 최단 거리의 평균은 1㎚∼50㎛ 정도일 수 있다. 즉, 절연층(322)은 기공률이 클수록 기공 사이의 거리가 짧아지고 기공의 크기가 클수록 기공 사이의 거리가 가까울 수 있다. 절연층(322)은 전류가 흐르지 못하는 전기 절연 물질로 형성되지만, 기공이 형성되므로 기공을 통해 전류가 흐를 수 있다. 이때, 기공의 크기가 커지거나 기공률이 커질수록 방전 개시 전압이 낮아질 수 있고, 이와 반대로 기공의 크기가 작아지거나 기공률이 낮아지면 방전 개시 전압이 높아질 수 있다. 그러나, 기공의 크기가 30㎛를 초과하거나 기공률이 80%를 초과하면 ESD 보호층(320)의 형상 유지가 어려울 수 있다. 따라서, ESD 보호층(320)의 형상을 유지하면서 방전 개시 전압을 조절하도록 절연층(322)의 기공 크기 및 기공률을 조절할 수 있다. 한편, ESD 보호층(320)이 절연 물질과 도전 물질의 혼합 물질로 형성되는 경우 절연 물질은 미세 기공 및 기공률을 갖는 절연성 세라믹을 이용할 수 있다. 또한, 절연층(322)은 미세 기공에 의해 절연 시트(100)의 저항보다 낮은 저항을 갖고, 미세 기공을 통해 부분 방전이 이루어질 수 있다. 즉, 절연층(322)은 미세 기공이 형성되어 미세 기공을 통해 부분 방전이 이루어진다. 이러한 절연층(322)은 1㎛∼50㎛의 두께로 형성할 수 있다. 즉, 절연층(322)이 복수의 층으로 형성될 경우 전체 두께의 합이 1㎛∼50㎛로 형성될 수 있다.
상기한 바와 같은 본 발명의 일 실시 예에 따른 감전 방지 컨택터는 도 1에 도시된 바와 같이 전자기기의 금속 케이스 등의 사용자가 접촉 가능한 도전체(10)와 내부 회로(20) 사이에 마련될 수 있다. 즉, 외부 전극(2600)의 어느 하나가 내부 회로(20)의 접지 단자에 연결되고, 다른 하나가 도전체(10)와 연결된 컨택부(1000)와 연결될 수 있다. 예를 들어, 제 1 외부 전극(2610)이 내부 회로(20)의 접지 단자에 연결되고, 제 2 외부 전극(2620)이 상측으로 연장되어 전자기기의 도전체(10)와 연결된 컨택부(1000)와 연결될 수 있다. 이때, 내부 회로(20) 중에서 제 2 외부 전극(2620)이 접촉되는 영역을 절연 상태를 유지할 수 있다. 따라서, 본 발명의 일 실시 예에 따른 감전 방지 컨택터는 방전 개시 전압 이하에서 절연 상태를 유지하여 내부 회로(20)의 접지 단자로부터 도전체(10)로 전달되는 감전 전압을 차단할 수 있고, 방전 개시 전압 이상에서 도통되어 외부로부터 도전체(10)를 통해 내부 회로(20)로 인가되는 ESD 전압을 접지 단자로 바이패스시킬 수 있다. 즉, 본 발명의 감전 방지부는 정격 전압 및 감전 전압에서는 외부 전극(2600) 사이에서 전류가 흐르지 못하고, ESD 전압에서는 ESD 보호부(2300)를 통해 전류가 흘러 ESD 전압이 접지 단자로 바이패스된다. 한편, 감전 방지부(2000)는 방전 개시 전압이 정격 전압보다 높고 ESD 전압보다 낮을 수 있다. 예를 들어, 감전 방지부(2000)는 정격 전압이 100V 내지 240V일 수 있고, 감전 전압은 회로의 동작 전압과 같거나 높을 수 있으며, 외부의 정전기 등에 의해 발생되는 ESD 전압은 감전 전압보다 높을 수 있고, 방전 개시 전압은 350V∼15kV일 수 있다. 또한, 캐패시터부(2200, 2400)에 의해 외부와 내부 회로(20) 사이에 통신 신호가 전달될 수 있다. 즉, 외부로부터의 통신 신호, 예를 들어 RF 신호는 캐패시터부(2200, 2400)에 의해 내부 회로(20)로 전달될 수 있고, 내부 회로(20)로부터의 통신 신호는 캐패시터부(2200, 2400)에 의해 외부로 전달될 수 있다. 따라서, 별도의 안테나가 마련되지 않고 도전체(10)를 안테나로 이용하는 경우에도 캐패시터부(2200, 2400)를 이용하여 외부와의 통신 신호를 주고받을 수 있다. 또한, 캐패시터부(2200, 2400)가 안테나 역할을 할 수 있으므로 감전 방지부는 예를 들어 700㎒ 이상의 휴대용 통신 장치에서 통신용 주파수의 안테나 매칭용으로 이용되는 캐패시터의 역할을 수행하거나 대체할 수 있다. 즉, 감전 방지부는 700㎒ 이상의 주파수 영역에서 통신용 안테나를 구성하는 회로에 사용되는 캐패시터를 대체하거나 병행하여 사용할 수 있다. 다시 말하면, 감전 방지부가 700㎒ 이상의 주파수 영역에서 통신용 안테나를 구성하는 회로에 필요한 정전용량을 대체할 수 있다. 결국, 본 발명의 일 실시 예에 따른 감전 방지부는 내부 회로의 접지 단자로부터 인가되는 감전 전압을 차단하고, 외부로부터 인가되는 ESD 전압을 접지 단자로 바이패스시키며, 외부와 전자기기 사이에 통신 신호를 전달할 수 있다. 또한, 감전 방지부(2000)가 컨택부(100)와 내부 회로(20) 사이에 마련되어 컨택부(1000)와 내부 회로(20) 사이에 DC 블럭킹(blocking) 및 AC 커플링(coupling) 기능을 하며 ESD 또는 외부 전압의 1 내지 1.5배에 해당하는 전압에 파괴되지 않는다. 여기서, 외부 전압은 가정용 전원의 정격 전압 또는 충전기의 출력 전압이고, 정상 전압 및 비정상 전압을 포함할 수 있다.
또한, 본 발명의 일 실시 예에 따른 감전 방지 컨택터는 감전 방지부(2000)는 내압 특성이 높은 절연 시트를 복수 적층하여 캐패시터부를 형성함으로써 불량 충전기에 의한 내부 회로(20)에서 금속 케이스 등의 도전체(10)로의 예를 들어 310V 의 감전 전압이 유입될 때 누설 전류가 흐르지 않도록 절연 저항 상태를 유지할 수 있고, ESD 보호부(2300) 역시 도전체(10)에서 내부 회로(20)로의 ESD 전압 유입 시 ESD 전압을 바이패스시켜 소자의 파손없이 높은 절연 저항 상태를 유지할 수 있다. 즉, ESD 보호부(2300)는 에너지 레벨을 낮춰 전기 에너지를 열 에너지로 변환시키는 도전층(321)과 다공성 구조로 이루어져 미세 기공을 통해 전류를 흐르게 하는 절연층(322)으로 이루어진 ESD 보호층(320)을 포함함으로써 외부로부터 유입되는 ESD 전압을 바이패스시켜 회로를 보호할 수 있다. 따라서, ESD 전압에 의해서도 절연 파괴되지 않고, 그에 따라 금속 케이스를 구비하는 전자기기 내에 마련되어 불량 충전기에서 발생된 감전 전압이 전자기기의 금속 케이스를 통해 사용자에게 전달되는 것을 지속적으로 방지할 수 있다. 한편, 일반적인 MLCC(Multi Layer Capacitance Circuit)는 감전 전압은 보호하지만 ESD에는 취약한 소자로 이는 반복적인 ESD 인가 시 전하 차징(Charging)에 의한 누설 포인트(Leak point)로 스파크(Spark)가 발생하여 소자 파손 현상이 발생될 수 있다. 그러나, 본 발명은 캐패시터부 사이에 도전층과 절연층을 포함하는 ESD 보호층이 형성됨으로써 ESD 전압을 ESD 보호층을 통해 패스시킴으로써 캐패시터부가 파괴되지 않는다.
한편, 감전 방지부(2000)의 제 1 실시 예는 ESD 보호층(320)이 절연 시트(106)에 형성된 관통홀에 ESD 보호 물질이 매립 또는 도포되어 형성되었다. 그러나, ESD 보호층(320)은 절연 시트의 소정 영역에 형성되고, ESD 보호층(320)에 각각 접촉되도록 방전 전극(310)이 형성될 수 있다. 즉, 도 7의 제 2 실시 예의 단면도에 도시된 바와 같이 절연 시트(106) 상에 두 방전 전극(311, 312)이 수평 방향으로 소정 간격 이격되어 형성되고, 두 방전 전극(311, 312) 사이에 ESD 보호층(320)이 형성될 수 있다. 여기서, 제 1 및 제 2 캐패시터부(2200, 2400), 외부 전극(2500) 등의 구성은 본 발명의 제 1 실시 예의 설명과 동일하므로 상세한 설명을 생략하며, ESD 보호부(2300)의 설명 중에서 중복되는 내용 또한 상세한 설명을 생략한다.
ESD 보호부(2300)는 동일 평면 상에 이격되어 형성된 적어도 두개의 방전 전극(311, 312)과, 적어도 두개의 방전 전극(311, 312) 사이에 마련된 적어도 하나의 ESD 보호층(320)을 포함할 수 있다. 즉, 시트의 소정 영역, 예를 들어 중앙부에서 서로 이격되도록 외부 전극(2500)이 형성된 방향, 즉 X 방향으로 두개의 방전 전극(311, 312)이 마련될 수 있고, 또한 이와 직교하는 방향으로 적어도 둘 이상의 방전 전극(미도시)이 더 마련될 수도 있다. 따라서, 외부 전극(2500)이 형성된 방향과 직교하는 방향으로 적어도 하나의 방전 전극이 형성되고, 소정 간격 이격되어 대향되도록 적어도 하나의 방전 전극이 형성될 수 있다. 예를 들어, ESD 보호부(2300)는 도 26에 도시된 바와 같이 제 6 절연 시트(106)와, 제 6 절연 시트(106) 상에 이격되어 형성된 제 1 및 제 2 방전 전극(311, 312)과, 제 6 절연 시트(106) 상에 형성된 ESD 보호층(320)을 포함할 수 있다. 여기서, ESD 보호층(320)은 적어도 일부가 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 제 1 방전 전극(311)은 외부 전극(5100)과 연결되어 제 6 절연 시트(106) 상에 형성되며 말단부가 ESD 보호층(320)과 연결되도록 형성된다. 제 2 방전 전극(312)은 외부 전극(5200)과 연결되어 제 6 절연 시트(106) 상에 제 1 방전 전극(311)과 이격되어 형성되며 말단부가 ESD 보호층(320)과 연결되도록 형성된다. 물론, 제 1 및 제 2 방전 전극(311, 322)과 이격되고 외부 전극(2500)이 형성된 방향과 직교하는 방향으로 각각 적어도 하나의 방전 전극이 더 형성될 수 있다. ESD 보호층(320)은 제 6 절연 시트(106)의 소정 영역, 예를 들어 중심부에 제 1 및 제 2 방전 전극(311, 312)과 연결되도록 형성될 수 있다. 이때, ESD 보호층(320)은 제 1 및 제 2 방전 전극(311, 312)과 일부 중첩되도록 형성될 수 있다. ESD 보호층(320)이 제 1 및 제 2 방전 전극(311, 312) 사이의 노출된 제 6 절연 시트(106) 상에 형성되어 제 1 및 제 2 방전 전극(311, 312)의 측면과 연결될 수도 있다. 그러나, 이 경우 ESD 보호층(320)이 제 1 및 제 2 방전 전극(311, 312)과 접촉되지 않고 이격될 수 있으므로 제 1 및 제 2 방전 전극(311, 312)과 중첩되도록 ESD 보호층(320)을 형성하는 것이 바람직하다. 또한, ESD 보호층(300)은 제 1 및 제 2 방전 전극(311, 312)와 동일 두께로 형성되거나 이보다 두껍게 형성될 수도 있다. ESD 보호층(320)은 예를 들어 100㎛∼500㎛의 직경과 10㎛∼50㎛의 두께로 형성될 수 있다.
도 8은 본 발명의 제 3 실시 예에 따른 감전 방지부의 단면도이다.
도 8을 참조하면, 본 발명의 제 3 실시 예에 따른 감전 방지부는 복수의 절연 시트(100; 101 내지 111)가 적층된 적층체(1000)와, 적층체(1000) 내에 마련되며 복수의 내부 전극(200; 201 내지 208)을 구비하는 적어도 하나의 캐패시터부(2200, 2400)와, 적어도 하나의 방전 전극(310)과 ESD 보호층(320)을 구비하는 ESD 보호부(2300)와, 적층체(1000)의 서로 대향하는 두 측면에 형성되어 제 1 및 제 2 캐패시터부(2200, 2400)와 ESD 보호부(2300)와 연결되는 외부 전극(5100, 5200; 2500)을 포함할 수 있다.
여기서, ESD 보호부(2300)와 캐패시터부(2200, 2400) 사이의 거리(A1, A2)는 캐패시터부(2200, 2400) 내의 두 내부 전극 사이의 거리(C1, C2)보다 짧거나 같을 수 있다. 즉, ESD 보호부(2300)와 캐패시터부(2200, 2400) 사이에 위치한 제 5 및 제 7 절연 시트(105, 107)의 각각의 두께는 캐패시터부(2200, 2400) 내의 내부 전극(200) 사이에 위치한 절연 시트들(102 내지 104, 107 내지 110)의 두께보다 얇거나 같을 수 있다. 또한, ESD 보호부(2300)와 캐패시터부(2200, 2400) 사이의 거리(A1, A2)는 ESD 보호부(2300)의 두 방전 전극(310) 사이의 거리(B)보다 짧거나 같을 수 있다. 즉, ESD 보호부(2300)와 캐패시터부(2200, 2400) 사이에 위치한 제 5 및 제 7 절연 시트(105, 107)의 각각의 두께는 ESD 보호층(320)이 형성된 제 6 절연 시트(106)의 두께보다 얇거나 같을 수 있다. 결국, ESD 보호부(2300)와 캐패시터부(2200, 2400) 사이에 위치한 제 5 및 제 7 절연 시트(105, 107)의 각각의 두께는 캐패시터부(2200, 2400) 내의 내부 전극(200) 사이에 위치한 절연 시트들(102 내지 104, 107 내지 110)의 두께보다 얇거나 같은 두께로 형성되거나, ESD 보호부(2300)의 두 방전 전극(310) 사이의 거리(B)보다 얇거나 같은 두께로 형성될 수 있다. 즉, ESD 보호부(2300)와 캐패시터부(2200, 2400) 사이의 거리(A1, A2), 캐패시터부(2200, 2400) 내의 두 내부 전극 사이의 거리(C1, C2) 및 ESD 보호부(2300)의 두 방전 전극(300) 사이의 거리(B)는 A1=A2≤C1=C2 또는 A1=A2≤B일 수 있다. 물론, A1과 A2, 그리고 C1과 C2는 같지 않을 수도 있다. 한편, 최하층 및 최상층의 절연 시트, 즉 제 1 및 제 11 절연 시트(101, 111)의 두께(D1, D2)는 각각 10㎛ 이상 적층체(1000) 두께의 50% 이하일 수 있다. 이때, B≤D1=D2일 수 있으며, D1과 D2가 다를 수도 있다.
또한, 본 발명의 제 3 실시 예에 따른 감전 방지부는 방전 전극(311, 312)와 인접한 두 내부 전극, 즉 제 4 및 제 5 내부 전극(204, 205)이 방전 전극(311, 312)과 동일 외부 전극(2500)과 연결될 수 있다. 즉, 제 1, 제 3, 제 5 및 제 7 내부 전극(201, 203, 205, 207)은 제 2 외부 전극(5200)과 연결되고, 제 2, 제 4, 제 6 및 제 8 내부 전극(202, 204, 206, 208)은 제 1 외부 전극(5100)과 연결된다. 또한, 제 1 방전 전극(311)은 제 1 외부 전극(5100)과 연결되고, 제 2 방전 전극(312)은 제 2 외부 전극(5200)과 연결된다. 따라서, 제 1 방전 전극(311)과 이와 인접한 제 4 내부 전극(204)은 제 1 외부 전극(5100)과 연결되고, 제 2 방전 전극(312)과 이와 인접한 제 5 내부 전극(205)은 제 2 외부 전극(5200)과 연결된다.
상기한 바와 같이 방전 전극(310)과 이와 인접한 내부 전극(200)이 동일 외부 전극(2500)과 연결됨으로써 절연 시트(100)가 열화, 즉 절연 파괴되는 경우에도 ESD 전압이 전자기기 내부로 인가되지 않는다. 즉, 방전 전극(310)과 인접한 내부 전극(200)이 서로 다른 외부 전극(2500)과 연결된 경우 절연 시트(100)가 절연 파괴되면 일 외부 전극(2500)을 통해 인가되는 ESD 전압이 방전 전극(310)과 인접한 내부 전극(200)을 통해 타 외부 전극(2500)으로 흐르게 된다. 예를 들어, 도 8에 도시된 바와 같이 제 1 방전 전극(311)이 제 1 외부 전극(5100)과 연결되고 이와 인접한 제 4 내부 전극(204)이 제 2 외부 전극(5200)과 연결된 경우 절연 시트(100)가 절연 파괴되면 제 1 방전 전극(311)과 제 4 내부 전극(204) 사이에 도전 경로가 형성되어 제 1 외부 전극(5100)을 통해 인가되는 ESD 전압이 제 1 방전 전극(311), 절연 파괴된 제 5 절연 시트(105) 및 제 2 내부 전극(202)으로 흐르게 되고, 그에 따라 제 2 외부 전극(5200)을 통해 내부 회로로 인가될 수 있다. 이러한 문제를 해결하기 위해서는 절연 시트(100)의 두께를 두껍게 형성할 수 있지만, 이 경우 감전 방지부의 사이즈가 커지는 문제가 있다. 그러나, 도 8에 도시된 바와 같이 방전 전극(310)과 이와 인접한 내부 전극(200)이 동일 외부 전극(2500)과 연결됨으로써 절연 시트(100)가 절연 파괴되는 경우에도 ESD 전압이 전자기기 내부로 인가되지 않는다. 또한, 절연 시트(100)의 두께를 두껍게 형성하지 않고도 ESD 전압이 인가되는 것을 방지할 수 있다.
한편, 감전 방지부는 스마트 폰 등의 전자기기의 사이즈에 따라 다양한 사이즈로 제작될 수 있다. 즉, 스마트 폰 등의 전자기기의 소형화에 따라 감전 방지부의 사이즈가 작아질 수 있고, 전자기기의 다기능화에 따라 감전 방지부의 사이즈는 증가할 수도 있다. 예를 들어, 본 발명의 실시 예들에 따른 감전 방지부는 일 방향, 즉 X 방향으로의 길이(L)가 0.15㎜∼7.5㎜이고, 이와 직교하는 타 방향, 즉 Y 방향으로의 너비(W)가 0.15㎜∼7.5㎜이며, 높이, 즉 Z 방향으로의 두께가 0.15㎜∼7.5㎜일 수 있다. 예를 들어, 감전 방지부는 길이, 너비 및 두께가 각각 0.9㎜∼5.0㎜, 0.45㎜∼1.0㎜ 및 0.25㎜∼5.0㎜일 수 있고, 0.55㎜∼1.75㎜, 0.25㎜∼0.35㎜ 및 0.1㎜∼1.75㎜일 수 있으며, 0.3㎜∼1.75㎜, 0.15㎜∼0.25㎜ 및 0.08㎜∼1.75㎜일 수 있다. 또한, 감전 방지부는 길이, 너비 및 두께가 각각 1.4㎜∼5.0㎜, 0.6㎜∼1.0㎜ 및 0.3㎜∼5.0㎜일 수 있고, 1.8㎜∼7.0㎜, 1.0㎜∼1.4㎜ 및 0.5㎜∼7.0㎜일 수 있으며, 1.8㎜∼7.5㎜, 0.9㎜∼1.5㎜ 및 0.45㎜∼7.5㎜일 수 있다. 물론, 감전 방지부는 길이, 너비 및 두께가 각각 2.6㎜∼7.5㎜, 1.3㎜∼1.9㎜ 및 0.6㎜∼7.5㎜일 수 있고, 4.0㎜∼7.5㎜, 2.8㎜∼3.6㎜ 및 1.4㎜∼7.5㎜일 수 있으며, 5.2㎜∼6.2㎜, 4.5㎜∼5.5㎜ 및 2.0㎜∼5.5㎜일 수 있다. 이렇게 감전 방지부는 길이:너비:두께의 비율이 1∼5:1∼5:1∼5로 구성될 수 있으며, 예를 들어 2∼5:1:0.5∼5로 구성될 수 있다. 즉, 감전 방지부는 길이, 너비 및 높이가 동일할 수 있고, 길이 및 높이가 너비보다 클 수도 있다. 예를 들어, 너비를 기준으로 길이가 너비보다 2배 내지 5배 정도 클 수 있으며, 두께가 0.5배 내지 5배일 수 있다. 이러한 소자의 디멘젼(dimension)은 전형적인 SMT용 소자 규격을 따른다. 이때, ESD 보호층(320)은 감전 방지부의 사이즈에 따라 예를 들어 50㎛∼1000㎛의 폭과 5㎛∼500㎛의 두께로 형성될 수 있다.
구체적으로, 감전 방지부는 길이×너비×두께가 1.0㎜×0.5㎜×0.5㎜(이하, 제 1 감전 방지부)에서 0.6㎜×0.3㎜×0.3㎜(이하, 제 2 감전 방지부) 및 0.4㎜×0.2㎜×0.2㎜(이하, 제 3 감전 방지부)로 줄어들 수 있다. 즉, 길이가 1.0㎜이고 너비가 0.5㎜인 직사각형의 시트가 복수 적층되어 0.5㎜ 두께의 제 1 감전 방지부가 제작될 수 있고, 길이가 0.6㎜이고 너비가 0.3㎜인 직사각형의 시트가 복수 적층되어 0.3㎜ 두께의 제 2 감전 방지부가 제작될 수 있으며, 길이가 0.4㎜이고 너비가 0.2㎜인 직사각형의 시트가 복수 적층되어 0.2㎜ 두께의 제 3 감전 방지부가 제작될 수 있다. 이때, 감전 방지부의 캐패시터부(2200, 2400)의 시트들은 15㎛∼300㎛, 바람직하게는 15㎛∼250㎛의 두께를 가질 수 있고, ESD 보호층(320)은 50㎛∼450㎛의 폭과 5㎛∼50㎛의 두께로 형성될 수 있다.
또한, 감전 방지부는 길이, 너비 및 두께가 각각 1.6㎜×0.8㎜×0.5㎜, 2.0㎜×1.2㎜×0.6㎜, 3.0㎜×1.2㎜×0.6㎜, 3.2㎜×1.6㎜×0.6㎜, 4.5㎜×3.2㎜×1.2㎜ 및 5.7㎜×5.0㎜×2.0㎜ 등의 사이즈로 제작될 수 있다. 즉, 길이, 너비 및 두께가 증가하여 감전 방지부의 사이즈가 제 1 감전 방지부에 비해 증가할 수 있다. 이때, 감전 방지부의 캐패시터부(2200, 2400)의 시트들은 300㎛∼2500㎛, 바람직하게는 400㎛∼4000㎛의 두께를 가질 수 있고, ESD 보호층(320)은 100㎛∼1000㎛의 폭과 10㎛∼200㎛의 두께로 형성될 수 있다.
한편, 감전 방지부의 사이즈가 감소하는 경우, 그에 따른 디멘젼(dimension)이 감소하면서 내부 전극의 면적이 동시에 감소하게 된다. 내부 전극의 면적은 시트 면적의 10%∼95% 사이에서 유지될 수 있다. 그런데, 감전 방지부의 사이즈가 감소하더라도 감전 방지부의 정전용량은 0.3㎊ 내지 500㎊를 유지해야 한다. 즉, 제 1 감전 방지부와 그보다 사이즈가 작은 제 2 및 제 3 감전 방지부가 동일한 정전용량을 가져야 한다. 제 2 및 제 3 감전 방지부에서 제 1 감전 방지부와 동일한 정전용량을 구현하기 위해서는 복수의 시트들, 즉 유전체들의 두께를 감소시키거나 시트들이 더 높은 유전율을 갖도록 고유전율 재료를 이용해야 한다. 정전용량은 다음의 식 1에 의해 산출될 수 있다.
[식 1]
정전용량=공기 유전율×소재의 유전율×내부 전극의 중첩 총면적/내부 전극 사이의 유전체의 두께
사이즈에 관계없이 동일 정전용량을 구현하는 또다른 방법은 유전체의 적층 두께를 감소시키는 것이다. 그런데, 감전 방지부는 ESD 전압에 대한 파괴 내성을 가져야 하고, 이를 위해서는 유전체의 최소한의 두께가 필요하므로 유전체의 적층 두께를 감소시켜 정전용량을 유지하는데 한계가 있다. 따라서, 일정 두께 이상에서 동일한 정전용량을 구현하려면 높은 유전율을 갖는 재료를 선택해야 한다. 그런데, 높은 유전율의 재료를 이용하면 내부 전극의 면적을 최소화하거나 유전체 두께를 두껍게 해야 한다. 그러나, 이는 최소 인쇄 면적 한계 및 감전 방지부 사이즈의 두께 규격에 의해서 유전체 두께를 두껍게 할 수 없어 너무 높은 유전율 재료 역시 이용하기 어렵다.
따라서, 본 발명은 사이즈가 작은 제 2 및 제 3 감전 방지부에서 내부 전극 사이의 유전체 두께를 15㎛∼300㎛로 하고, 내부 전극의 면적은 소자 사이즈 내(즉 0.6㎜×0.3㎜ 또는 0.4㎜×0.2㎜)에서 평면 면적 기준 10%∼95%로 하며, 외곽 마진(즉 내부 전극의 가장자리에서 유전체의 가장자리 까지의 거리)을 25㎛∼100㎛로 하고, 유전체의 유전율은 제 2 감전 방지부에서 200 내지 2300, 제 3 감전 방지부에서 600 내지 2300으로 한다. 내부 전극의 면적이 10% 이하에서는 스크린 프린팅의 해상도가 낮아져 정전용량의 산포가 넓어지며, 95% 이상에서는 인쇄 면적이 너무 넓어 내부 전극의 표면 돌출 등 적층 불량 및 디라미네이션(delamination) 등의 갈라짐 불량이 다수 발생될 수 있어 소자의 신뢰성에 상당한 영향을 줄 수 있다.
한편, 내부 전극 사이의 시트들, 즉 유전체의 두께가 두꺼우면 정전용량이 낮아지고 한정된 공간에서 적층 수의 한계가 있기 때문에 정전용량을 높이지 못하고, 그에 따라 감전 방지부에 부합되는 정전용량을 구현할 수 없다. 반대로, 내부 전극 사이의 유전체, 즉 시트들의 두께를 낮춰 정전용량을 증가시키고 다중 적층하여 정전용량을 상승시킬 수 있다. 그러나, 감전 방지부의 신뢰성 특성 상 ESD에 대한 규제 규격인 ICE61000-4-2 Level 4보다 가혹한 기준을 만족해야 하고, 이때의 테스트 기준에 유전체의 두께가 15㎛ 이하에서는 ESD 전압의 반복 인가 시 ESD 보호부가 존재함에도 불구하고 유전체의 절연 저항이 파괴된다. 유전체의 절연 저항이 파괴되는 원인은 ESD 전압 유입 시점부터 감전 방지부의 반응 시간까지의 공백기에 ESD 보호부로 바이패스되지 않고 캐패시터층의 유전체층에 500V 이상의 전압이 1ns 내지 30ns동안 인가될 수 있어 유전체의 내압 특성이 이에 버티지 못하면 절연 저항이 파괴될 수 있다.
한편, 칩 사이즈가 작아지면서 설계 가능한 공간이 적어지게 된다. 따라서, 좁은 공간에서도 높은 ESD 내압 특성을 갖는 감전 방지부의 내부 구조가 필요하다. 그런데, 감전 방지부의 사이즈가 작아지게 되면 공간 부족으로 인하여 절연 시트의 두께가 얇아질 수 밖에 없고, 이는 절연 시트 자체의 내압 특성이 저하되어 낮은 레벨의 ESD를 인가하여도 쉽게 절연 시트의 절연 저항이 파괴되는 현상이 발생된다. 이러한 문제를 해결하기 위해 복수 형상의 플로팅 타입(floating type) 구조를 이용하여 일반적인 적층 타입보다 동일 공간 내에서 ESD 내압 특성을 개선할 수 있다. 즉, 캐패시터부의 내부 전극의 형상을 변형하여 내부 전극 사이의 일 영역에서 절연 시트의 두께가 2배 이상 증가되기 때문에 ESD 내압 특성이 유지될 수 있다. 이는 감전 방지부가 갖는 ESD 보호부의 설계와 맞물려 보다 높은 ESD 내성 개선 효과를 보인다. 결국, ESD 보호부의 반복적인 ESD 전압에 의한 기능 저하로 인하여 ESD가 ESD 보호부의 ESD 보호층으로 패스되지 않을 경우 캐패시터부가 데미지를 입어 절연 파괴가 발생될 수 있고, ESD 보호부의 기능 저하가 없더라고 ESD 전압 유입 시 감전 방지부의 ESD 보호부의 반응 시간까지의 1ns 내지 30ns 공백 시간에 캐패시터부에 ESD 전압 부하가 잠시 동안 발생되어 절연 파괴가 발생될 수 있다. 그러나, 캐패시터부를 플로팅 타입으로 형성함으로써 캐패시터층의 ESD 내압 특성을 높혀 절연 저항이 파괴되어 쇼트가 발생되는 현상을 개선할 수 있다.
물론, 제 1 및 제 2 방전 전극(311, 312)이 수평 방향으로 형성되고 ESD 보호층(320)이 이들과 접촉되도록 형성되는 경우에도 캐패시터부(2200, 2400)는 적어도 하나의 내부 전극이 플로팅 타입으로 형성될 수 있다.
한편, 본 발명의 실시 예들에 따른 감전 방지부는 ESD 보호부(3000)의 ESD 보호층(320)을 적어도 하나 이상 형성할 수 있다. 즉, 외부 전극이 형성된 방향으로 ESD 보호층(300)을 하나 형성할 수도 있고, 외부 전극 형성 방향으로 ESD 보호층(320)을 둘 이상 복수로 형성할 수 있다. 이때, 이와 직교하는 방향으로도 ESD 보호층(320)이 복수 형성될 수 있다. 예를 들어, 동일 평면 상에 두개의 ESD 보호층을 형성할 수도 있고, 동일 평면 상에 세개의 ESD 보호층을 형성할 수도 있다. 적어도 두개 이상의 ESD 보호층은 방전 전극에 의해 연결될 수 있다. 또한, 네개의 ESD 보호층가 두개씩 상하로 나뉘어 형성될 수도 있고, 여섯개의 ESD 보호층가 세개씩 상하로 나뉘어 형성될 수 있다. 상하 이격되어 형성된 ESD 보호층들(320)은 상측 ESD 보호층들이 서로 연결되고 하측 ESD 보호층들이 서로 연결될 수 있다. 이렇게 복수의 ESD 보호층(320)이 형성되는 경우에도 각 ESD 보호층(320)은 동일 구조로 형성될 수 있고, 서로 다른 구조로 형성될 수 있다.
또한, 본 발명에 따른 감전 방지부는 적층체(1000) 내에 수평 방향으로 복수의 캐패시터부(2200, 2400)와 복수의 ESD 보호부(2300)가 형성될 수 있다. 즉, 수직 방향으로 적층된 적어도 하나의 캐패시터부(2200, 2400)와 ESD 보호부(2300)가 수평 방향으로 적어도 둘 이상 배열되고, 수평 방향으로 배열된 적어도 둘 이상의 외부 전극(2500)와 연결됨으로써 복수의 캐패시터와 복수의 ESD 보호부로 이루어진 복수의 감전 방지부가 병렬로 마련될 수 있다. 따라서, 하나의 적층체(1000) 내에 두개 이상이 감전 방지부가 구현될 수 있다. 한편, 복수의 캐패시터부는 적어도 어느 하나의 적어도 어느 하나의 내부 전극이 다른 길이로 형성될 수 있다. 즉, 수평 방향으로 형성되어 서로 다른 캐패시터부를 이루는 복수의 내부 전극 중에서 적어도 하나의 내부 전극이 다른 내부 전극보다 짧거나 길게 형성될 수 있다. 물론, 내부 전극의 길이 뿐만 아니라 내부 전극의 중첩 면적, 내부 전극의 적층 수의 적어도 하나를 조절하여 캐패시턴스를 조절할 수 있다. 따라서, 복수의 캐패시터 중에서 적어도 어느 하나의 캐패시턴스를 다르게 할 수 있다. 즉, 하나의 적층체 내에 적어도 어느 하나가 다른 캐패시턴스를 갖는 복수의 캐패시터를 구현할 수 있다.
한편, 도 9 및 도 10에 도시된 바와 같이 ESD 보호부(3000)은 둘 이상의 방전 전극(310)과, 방전 전극(310) 사이에 형성된 ESD 보호층(320)과, 방전 전극(310)과 ESD 보호층(320) 사이에 형성된 방전 유도층(330)을 포함할 수 있다. 즉, 방전 전극(310)과 ESD 보호층(320) 사이에 방전 유도층(330)이 더 형성될 수 있다. 이때, 방전 전극(310)은 도전층(311a, 312a)과, 도전층(311a, 312a)의 적어도 일 표면에 형성된 다공성 절연층(311b, 312b)을 포함할 수 있다. 물론, 방전 전극(310)은 표면에 다공성 절연층이 형성되지 않은 도전층일 수도 있다. 이러한 방전 유도층(330)은 ESD 보호층(320)을 다공성 절연 물질을 이용하여 형성하는 경우 형성될 수 있다. 이때, 방전 유도층(330)은 ESD 보호층(320)보다 밀도가 높은 유전체층으로 형성될 수 있다. 즉, 방전 유도층(330)은 도전 물질로 형성될 수도 있고, 절연 물질로 형성될 수도 있다. 예를 들어, 다공성 ZrO를 이용하여 ESD 보호층(320)을 형성하고 Al을 이용하여 방전 전극(310)을 형성하는 경우 ESD 보호층(320)과 방전 전극(310) 사이에 AlZrO의 방전 유도층(330)이 형성될 수 있다. 한편, ESD 보호층(320)으로서 ZrO 대신에 TiO를 이용할 수 있고, 이 경우 방전 유도층(330)은 TiAlO로 형성될 수 있다. 즉, 방전 유도층(330)은 방전 전극(310)과 ESD 보호층(320)의 반응으로 형성될 수 있다. 물론, 방전 유도층(330)은 절연 시트(100) 물질이 더 반응하여 형성될 수 있다. 이 경우 방전 유도층(330)은 방전 전극 물질(예를 들어 Al), ESD 보호층 물질(예를 들어 ZrO), 그리고 절연 시트 물질(예를 들어 BaTiO3)의 반응에 의해 형성될 수 있다. 또한, 방전 유도층(330)은 절연 시트(100) 물질과 반응하여 형성될 수 있다. 즉, ESD 보호층(320)이 절연 시트(100)와 접촉되는 영역에는 ESD 보호층(320)과 절연 시트(100)의 반응으로 방전 유도층(330)이 형성될 수 있다. 따라서, 방전 유도층(330)은 ESD 보호층(320)을 둘러싸도록 형성될 수 있다. 이때, ESD 보호층(320)과 방전 전극(310) 사이의 방전 유도층(330)과 ESD 보호층(320)과 절연 시트(100) 사이의 방전 유도층(330)은 서로 다른 조성을 가질 수 있다. 한편, 방전 유도층(330)은 적어도 일 영역이 제거되어 형성될 수 있고, 적어도 일 영역의 두께가 다른 영역과 다르게 형성될 수도 있다. 즉, 방전 유도층(330)은 적어도 일 영역이 제거되어 불연속적으로 형성될 수 있고, 두께가 적어도 일 영역의 두께가 다르게 불균일하게 형성될 수 있다. 이러한 방전 유도층(330)은 소성 공정 시 형성될 수 있다. 즉, 소정의 온도에서 소성 공정 시 방전 전극 물질, ESD 보호 물질 등이 상호 확산하여 방전 전극(310)과 ESD 보호층(320) 사이에 방전 유도층(330)이 형성될 수 있다. 한편, 방전 유도층(330)은 ESD 보호층(320) 두께의 10%∼70%의 두께로 형성될 수 있다. 즉, ESD 보호층(320)의 일부 두께가 방전 유도층(330)으로 변화될 수 있다. 따라서, 방전 유도층(330)은 ESD 보호층(320)보다 얇게 형성될 수 있고, 방전 전극(310)보다 두껍거나 같거나 얇은 두께로 형성될 수 있다. 이러한 방전 유도층(330)에 의해 ESD 전압이 ESD 보호층(320)으로 유도되거나 ESD 보호층(320)으로 유도되는 방전 에너지의 레벨을 저하시킬 수 있다. 따라서, ESD 전압을 더욱 용이하게 방전하여 방전 효율을 향상시킬 수 있다. 또한, 방전 유도층(330)이 형성됨으로써 이종의 물질의 ESD 보호층(320)으로의 확산을 방지할 수 있다. 즉, 절연 시트 물질과 방전 전극 물질의 ESD 보호층(320)으로의 확산을 방지할 수 있고, ESD 보호층 물질의 외부 확산을 방지할 수 있다. 따라서, 방전 유도층(330)이 확산 배리어(diffusion barrier)로서 이용될 수 있고, 그에 따라 ESD 보호층(320)의 파괴를 방지할 수 있다. 한편, ESD 보호층(320)에 도전성 물질을 더 포함할 수 있는데, 이 경우 도전성 물질은 절연성 세라믹으로 코팅할 수 있다. 예를 들어, ESD 보호층(320)이 다공성 절연 물질과 도전성 물질이 혼합되어 형성되는 경우 도전 물질은 NiO, CuO, WO 등을 이용하여 코팅할 수 있다. 따라서, 도전성 물질이 다공성 절연 물질과 함께 ESD 호보층(320)의 재료로서 이용될 수 있다. 또한, ESD 보호층(320)으로 다공성의 절연 물질 이외에 도전 물질을 더 이용하는 경우, 예를 들어 두개의 도전층(321a, 321b) 사이에 절연층(322)이 형성되는 경우 방전 유도층(330)은 도전층(321)과 절연층(322) 사이에 형성될 수 있다. 한편, 방전 전극(310)은 도 30에 도시된 바와 같이 일부 영역이 제거된 형상으로 형성될 수 있다. 즉, 방전 전극(310)은 부분적으로 제거되고 제거된 영역에 방전 유도층(330)이 형성될 수 있다. 그러나, 방전 전극(310)이 부분적으로 제거되더라도 평면 상으로 전체적으로 연결된 형상을 유지하므로 전기적인 특성이 저하되지는 않는다. 물론, 내부 전극(200) 또한 부분적으로 제거된 영역이 존재할 수 있지만, 이 경우에도 전기적 특성이 저하되지 않는다.
한편, 상기 본 발명의 실시 예들에 따른 감전 방지부는 적층체 내에 ESD 보호 물질 또는 공극을 포함하는 ESD 보호층이 형성된 ESD 보호부를 예시하였다. 그러나, 본 발명의 감전 방지 컨택터는 감전 방지부를 배리스터 타입으로 형성할 수도 있다. 즉, 감전 방지부는 별도의 ESD 보호층이 구비되지 않고 배리스터 또는 다이오드 특성을 가지는 재료로 이루어질 수 있다. 이를 위해 적층체(2100)의 적어도 일부는 항복 전압(breakdown voltage) 이상의 전압이 인가될 때 전류가 흐르고, 반대로 항복 전압 이하의 전압이 인가될 때 전류가 흐르지 않는 비선형 전기적 특성을 가지는 재료로 형성된다. 즉, 적층체(2100)의 복수의 절연 시트(100) 중 적어도 어느 하나는 Pr계, Bi계 및 Si계 중 적어도 하나를 이용하여 형성할 수 있다. 예를 들어, 도 11에 도시된 바와 같이 적층체(2100)가 복수의 내부 전극(201 내지 204 : 200)이 형성된 캐패시터부(2200)과 더미층(2500)이 적층되어 형성될 수 있고, 복수의 절연 시트(101 내지 105) 중 적어도 어느 하나는 배리스터 특성 또는 다이오드 특성을 갖는 재료로 형성될 수 있다. 구체적으로, 제 2 및 제 3 내부 전극(202, 203) 사이의 제 3 절연 시트(103)이 배리스터 특성 또는 다이어드 특성을 갖는 재료로 형성될 수 있다. 이때, 나머지 절연 시트들(101, 102, 104, 105)는 상기 본 발명의 일 실시 예에서 설명된 재료로 이루어질 수도 있고, 제 3 절연 시트(103)과 마찬가지로 배리스터 특성 또는 다이오드 특성을 갖는 물질로 이루어질 수도 있다. 한편, 더미층(2500)은 배리스터 또는 다이오드 특성을 갖는 물질로 형성될 수도 있고, 본 발명의 일 실시 예에서 설명된 절연 물질로 형성될 수도 있다. 이러한 본 발명의 다른 실시 예에 따른 배리스터 타입의 감전 방지부는 인접하는 두 내부 전극, 즉 제 2 및 제 3 내부 전극(202, 203) 사이의 중첩된 영역을 통해 ESD 전압이 방전될 수 있다.
한편, 본 발명의 상기 실시 예들은 더미층(2500)이 적층체(2100) 내의 상측에 마련된 경우를 설명하였다. 그러나, 더미층(2500)은 적층체(2100) 내의 하측에 마련될 수도 있다. 즉, 도 12에 도시된 바와 같이 더미층(2500) 상에 복수의 절연 시트(100)가 적층되고, 복수의 절연 시트(100) 내에 적어도 하나의 캐패시터부(2200, 2400)과 적어도 하나의 ESD 보호부(2300)이 형성될 수 있다. 이때, 외부 전극(2610, 2620)은 적층체(2100)의 대향되는 두 측면에 형성되고, 내부 회로(20)와 대면하는 적층체(2100)의 하면으로 연장 형성되어 소정 간격 이격될 수 있다. 또한, 제 2 외부 전극(2620)은 적층체(2100)의 상면에 연장 형성되며, 제 1 외부 전극(2610)은 적층체(2100)의 상면에는 형성되지 않는다.
또한, 본 발명의 상기 실시 예들은 컨택부(1000)가 도전체(10)에 접촉되고 감전 방지부(2000)가 내부 회로(20)에 접촉되도록 형성되었다. 그러나, 도 13에 도시된 바와 같이 컨택부(1000)가 내부 회로(20)에 접촉되고 감전 방지부(2000)가 도전체(10)에 접촉될 수 있다. 이때, 컨택부(1000)는 적어도 일부가 내부 회로(20)의 접지 단자와 접촉될 수 있고, 컨택부(1000)와 접촉된 내부 회로(20)가 접지 단자와 연결될 수도 있다. 또한, 감전 방지부(2000)는 복수의 절연 시트(100)와 복수의 절연 시트(100) 상부 및 하부의 적어도 일 영역에 마련된 더미층(2500)을 포함할 수 있다. 예를 들어, 도 13에 도시된 바와 같이 적층체(2100)의 하부 및 상부에 제 1 및 제 2 더미층(2510, 2520)이 마련되고, 그 사이에 복수의 절연 시트(100)가 마련될 수 있다. 물론, 절연 시트(100)에는 적어도 하나의 캐패시터부(2200, 2400)와 적어도 하나의 ESD 보호부(2300)이 형성될 수 있다. 또한, 제 1 외부 전극(2610)은 적층체(2100)의 측면 및 하면에 형성되는데, 적층체(2100) 측면의 제 2 더미층(2510) 아래까지만 형성될 수 있다. 즉, 제 11 절연 시트(111)까지만 제 1 외부 전극(2610)이 형성될 수 있다. 그리고, 제 2 외부 전극(2620)은 적층체(2100)의 측면 및 하면에 형성되는데, 적층체(2100) 측면의 제 1 더미층(2520)의 위쪽부터 형성될 수 있다. 즉, 제 1 절연 시트(101)부터 제 2 외부 전극(2620)이 형성될 수 있다. 제 1 외부 전극(2610)은 적층체(2100)의 하면에 형성되어 컨택부(1000)와 접촉되고, 제 2 외부 전극(2620)은 적층체(2100)의 상면에 형성되어 도전체(10)와 접촉될 수 있다.
본 발명은 상기에서 서술된 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있다. 즉, 상기의 실시 예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명의 범위는 본원의 특허 청구 범위에 의해서 이해되어야 한다.
10 : 도전체 20 : 내부 회로
1000 : 컨택부 2000 : 감전 방지부
2100 : 적층체 2200 : 제 1 캐패시터부
2300 : ESD 보호부 2400 : 제 2 캐패시터부
2500 : 더미층 2600 : 외부 전극

Claims (10)

  1. 전자기기의 사용자가 접촉 가능한 도전체와 내부 회로 사이에 마련된 감전 방지 컨택터이고,
    서로 대향되어 마련되며 상기 도전체 및 상기 내부 회로에 적어도 일부가 각각 접촉되는 컨택부 및 감전 방지부를 포함하고,
    상기 감전 방지부는 복수의 절연 시트가 적층된 적층체와, 상기 적층체의 외부에 형성되며 적어도 일부가 상기 컨택부의 하측에 마련된 외부 전극을 포함하며,
    상기 적층체는 복수의 절연 시트 중 선택된 절연 시트 상에 형성된 복수의 도전층과, 최외층 절연 시트 상에 형성된 더미층을 포함하고,
    상기 외부 전극은 상기 적층체의 일 측면 및 타 측면에 각각 형성된 제 1 및 제 2 영역과, 상기 제 1 및 제 2 영역으로부터 상기 적층체의 일면으로 연장 형성되며 서로 이격된 제 3 및 제 4 영역과, 상기 제 2 영역으로부터 상기 적층체의 일면과 대향되는 타면으로 연장 형성된 제 5 영역을 포함하며,
    상기 제 1 영역은 상기 소자 형성층의 측면에만 형성되고 상기 더미층의 측면에는 형성되지 않고, 상기 제 2 영역은 상기 소자 형성층 및 상기 더미층의 측면에 형성된 감전 방지 컨택터.
  2. 청구항 1에 있어서, 상기 컨택부가 상기 도전체에 고정되고 상기 감전 방지부가 상기 내부 회로에 고정되거나, 상기 컨택부가 상기 내부 회로에 고정되고 상기 감전 방지부가 상기 컨택부에 고정되는 감전 방지 컨택터.
  3. 청구항 2에 있어서, 상기 컨택부는 전도성을 가지며 탄성력을 갖는 감전 방지 컨택터.
  4. 청구항 3에 있어서, 상기 컨택부는 상기 도전체에 고정된 영역으로부터 적어도 일부가 상기 감전 방지부를 향해 돌출된 돌출부를 포함하는 감전 방지 컨택터.
  5. 청구항 3에 있어서, 상기 컨택부는 탄성체와, 상기 탄성체를 감싸는 도전층을 포함하는 감전 방지 컨택터.
  6. 청구항 1에 있어서, 상기 적층체 내에 형성된 캐패시터부 및 ESD 보호부 중 저겅도 하나를 포함하는 감전 방지 컨택터.
  7. 청구항 6에 있어서, 상기 ESD 보호부는 수직 또는 수평 방향으로 이격된 적어도 둘 이상의 방전 전극과, 상기 방전 전극 사이에 마련되며 다공성 절연 물질, 도전 물질, 상기 다공성 절연 물질과 상기 도전 물질의 혼합물 및 공극 중 적어도 하나를 포함하는 ESD 보호층을 포함하는 감전 방지 컨택터.
  8. 청구항 6에 있어서, 상기 ESD 보호부는 감전 전압보다 높고 ESD 전압보다 낮은 항복 전압을 갖는 배리스터 또는 다이오드를 포함하는 감전 방지 컨택터.
  9. 청구항 7에 있어서, 상기 더미층은 복수의 절연 시트의 최상층 시트 및 최하층 시트 중 적어도 하나 상에 형성된 감전 방지 컨택터.
  10. 청구항 9에 있어서, 상기 더미층은 상기 ESD 보호층의 두께, 상기 캐패시터부의 내부 전극 사이의 두께, 상기 ESD 보호층과 상기 내부 전극 사이의 두께, 최하층 절연 시트의 두께 중 적어도 어느 하나보다 두껍게 형성된 감전 방지 컨택터.
KR1020180065005A 2018-06-05 2018-06-05 감전 방지 컨택터 Withdrawn KR20180066003A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180065005A KR20180066003A (ko) 2018-06-05 2018-06-05 감전 방지 컨택터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180065005A KR20180066003A (ko) 2018-06-05 2018-06-05 감전 방지 컨택터

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160066602A Division KR20170135146A (ko) 2016-05-30 2016-05-30 감전 방지 컨택터

Publications (1)

Publication Number Publication Date
KR20180066003A true KR20180066003A (ko) 2018-06-18

Family

ID=62765710

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180065005A Withdrawn KR20180066003A (ko) 2018-06-05 2018-06-05 감전 방지 컨택터

Country Status (1)

Country Link
KR (1) KR20180066003A (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876206B1 (ko) 2007-04-11 2008-12-31 주식회사 이노칩테크놀로지 회로 보호 소자 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876206B1 (ko) 2007-04-11 2008-12-31 주식회사 이노칩테크놀로지 회로 보호 소자 및 그 제조 방법

Similar Documents

Publication Publication Date Title
KR101808797B1 (ko) 적층형 소자 및 이를 구비하는 전자기기
KR20170135146A (ko) 감전 방지 컨택터
WO2018105912A1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
KR101958775B1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
KR101808796B1 (ko) 적층형 소자
KR101789243B1 (ko) 복합 보호 소자 및 이를 구비하는 전자기기
KR20180065008A (ko) 복합 보호 소자 및 이를 구비하는 전자기기
KR20180066003A (ko) 감전 방지 컨택터
WO2016178524A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
KR102053355B1 (ko) 적층형 소자 및 이를 구비하는 전자기기
KR101842211B1 (ko) 감전 방지 컨택터 및 이를 구비하는 전자기기
WO2016178529A1 (ko) 감전 방지 소자 및 이를 구비하는 전자기기
KR20170126840A (ko) 적층형 소자 및 이를 구비하는 전자기기

Legal Events

Date Code Title Description
A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20180605

Patent event code: PA01071R01D

Filing date: 20160530

Application number text: 1020160066602

PG1501 Laying open of application
PC1203 Withdrawal of no request for examination