KR20170142393A - Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same - Google Patents
Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same Download PDFInfo
- Publication number
- KR20170142393A KR20170142393A KR1020160075798A KR20160075798A KR20170142393A KR 20170142393 A KR20170142393 A KR 20170142393A KR 1020160075798 A KR1020160075798 A KR 1020160075798A KR 20160075798 A KR20160075798 A KR 20160075798A KR 20170142393 A KR20170142393 A KR 20170142393A
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- core
- active material
- shell
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 239000002245 particle Substances 0.000 title claims description 76
- 239000007774 positive electrode material Substances 0.000 title claims description 15
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 title claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 73
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 72
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 62
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims abstract description 26
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 19
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 11
- 239000000126 substance Substances 0.000 claims abstract description 10
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 8
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 7
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 5
- 150000002367 halogens Chemical class 0.000 claims abstract description 5
- 239000011572 manganese Substances 0.000 claims description 40
- 239000006182 cathode active material Substances 0.000 claims description 34
- 239000002243 precursor Substances 0.000 claims description 33
- 229910052759 nickel Inorganic materials 0.000 claims description 22
- 229910012851 LiCoO 2 Inorganic materials 0.000 claims description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000011247 coating layer Substances 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 10
- 229910017052 cobalt Inorganic materials 0.000 claims description 7
- 239000010941 cobalt Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 7
- 239000003792 electrolyte Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 150000002697 manganese compounds Chemical class 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 7
- 150000002816 nickel compounds Chemical class 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 6
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 claims description 6
- 238000000975 co-precipitation Methods 0.000 claims description 4
- 150000001869 cobalt compounds Chemical class 0.000 claims description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 230000002950 deficient Effects 0.000 claims description 3
- 229910016722 Ni0.5Co0.2Mn0.3 Inorganic materials 0.000 claims description 2
- 229910017069 Ni0.6Co0.2Mn0.2O Inorganic materials 0.000 claims description 2
- 229910015207 Ni1/3Co1/3Mn1/3O Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 229910000428 cobalt oxide Inorganic materials 0.000 claims description 2
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical group [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 claims description 2
- 238000010304 firing Methods 0.000 claims description 2
- 230000037361 pathway Effects 0.000 claims 2
- 230000007704 transition Effects 0.000 abstract description 4
- 239000011257 shell material Substances 0.000 description 42
- 230000000052 comparative effect Effects 0.000 description 25
- 239000011149 active material Substances 0.000 description 16
- 239000010410 layer Substances 0.000 description 15
- -1 lithium tin oxide compound Chemical class 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000004020 conductor Substances 0.000 description 11
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- 229910018060 Ni-Co-Mn Inorganic materials 0.000 description 8
- 229910018209 Ni—Co—Mn Inorganic materials 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 239000011258 core-shell material Substances 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 238000000576 coating method Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 239000008151 electrolyte solution Substances 0.000 description 7
- 239000010936 titanium Substances 0.000 description 7
- 241000080590 Niso Species 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 239000011888 foil Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 description 6
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 6
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 239000007784 solid electrolyte Substances 0.000 description 6
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 239000006185 dispersion Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011255 nonaqueous electrolyte Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 229910003002 lithium salt Inorganic materials 0.000 description 4
- 159000000002 lithium salts Chemical class 0.000 description 4
- 229910021382 natural graphite Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 3
- 229910014689 LiMnO Inorganic materials 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- 239000006229 carbon black Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000013508 migration Methods 0.000 description 3
- 230000005012 migration Effects 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910015645 LiMn Inorganic materials 0.000 description 2
- 229910011322 LiNi0.6Mn0.2Co0.2O2 Inorganic materials 0.000 description 2
- 229910003286 Ni-Mn Inorganic materials 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910003480 inorganic solid Inorganic materials 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000011356 non-aqueous organic solvent Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007969 Li-Co-Ni Inorganic materials 0.000 description 1
- 229910008163 Li1+x Mn2-x O4 Inorganic materials 0.000 description 1
- 229910012722 Li3N-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012716 Li3N-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012734 Li3N—LiI—LiOH Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012047 Li4SiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012075 Li4SiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012057 Li4SiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013709 LiNi 1-x M Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910012573 LiSiO Inorganic materials 0.000 description 1
- 229910012346 LiSiO4-LiI-LiOH Inorganic materials 0.000 description 1
- 229910012345 LiSiO4-LiI—LiOH Inorganic materials 0.000 description 1
- 229910012348 LiSiO4—LiI—LiOH Inorganic materials 0.000 description 1
- 229910006555 Li—Co—Ni Inorganic materials 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- MKYBYDHXWVHEJW-UHFFFAOYSA-N N-[1-oxo-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propan-2-yl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(C(C)NC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 MKYBYDHXWVHEJW-UHFFFAOYSA-N 0.000 description 1
- ZHGDJTMNXSOQDT-UHFFFAOYSA-N NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O Chemical compound NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O.NP(N)(N)=O ZHGDJTMNXSOQDT-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QDDVNKWVBSLTMB-UHFFFAOYSA-N [Cu]=O.[Li] Chemical compound [Cu]=O.[Li] QDDVNKWVBSLTMB-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical class [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000006231 channel black Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- UBEWDCMIDFGDOO-UHFFFAOYSA-N cobalt(II,III) oxide Inorganic materials [O-2].[O-2].[O-2].[O-2].[Co+2].[Co+3].[Co+3] UBEWDCMIDFGDOO-UHFFFAOYSA-N 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000007771 core particle Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- AXDCOWAMLFDLEP-UHFFFAOYSA-N dimethoxyphosphoryl dimethyl phosphate Chemical compound COP(=O)(OC)OP(=O)(OC)OC AXDCOWAMLFDLEP-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- BLBBMBKUUHYSMI-UHFFFAOYSA-N furan-2,3,4,5-tetrol Chemical compound OC=1OC(O)=C(O)C=1O BLBBMBKUUHYSMI-UHFFFAOYSA-N 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- PVADDRMAFCOOPC-UHFFFAOYSA-N germanium monoxide Inorganic materials [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 230000010220 ion permeability Effects 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- HSZCZNFXUDYRKD-UHFFFAOYSA-M lithium iodide Inorganic materials [Li+].[I-] HSZCZNFXUDYRKD-UHFFFAOYSA-M 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- QEXMICRJPVUPSN-UHFFFAOYSA-N lithium manganese(2+) oxygen(2-) Chemical class [O-2].[Mn+2].[Li+] QEXMICRJPVUPSN-UHFFFAOYSA-N 0.000 description 1
- VROAXDSNYPAOBJ-UHFFFAOYSA-N lithium;oxido(oxo)nickel Chemical compound [Li+].[O-][Ni]=O VROAXDSNYPAOBJ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical group 0.000 description 1
- BDZBKCUKTQZUTL-UHFFFAOYSA-N triethyl phosphite Chemical compound CCOP(OCC)OCC BDZBKCUKTQZUTL-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 235000015041 whisky Nutrition 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
- C01G51/40—Complex oxides containing cobalt and at least one other metal element
- C01G51/42—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2
- C01G51/44—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese
- C01G51/50—Complex oxides containing cobalt and at least one other metal element containing alkali metals, e.g. LiCoO2 containing manganese of the type (MnO2)n-, e.g. Li(CoxMn1-x)O2 or Li(MyCoxMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Complex oxides containing nickel and at least one other metal element
- C01G53/42—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2
- C01G53/44—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Complex oxides containing nickel and at least one other metal element containing alkali metals, e.g. LiNiO2 containing manganese of the type (MnO2)n-, e.g. Li(NixMn1-x)O2 or Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H01M2/1016—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y02E60/122—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은 하기 화학식 1로 표현되는 리튬 코발트계 산화물을 포함하는 코어(Core); 및 상기 코어의 표면 상에 코팅되어 있으며, 하기 화학식 2 또는 화학식 3으로 표현되는 리튬 니켈계 산화물을 포함하는 쉘(Shell);을 포함하고,
코어의 리튬 이동 통로(lithium path)와 쉘의 리튬 이동 통로(lithium path)가 연속적으로 연결되어 있는 것을 특징으로 하는 양극 활물질 입자를 제공한다.
LiaCo(1-x)MxO2-hAh
(1)
LibNiyCozMn1-y-zO2-wAw
(2)
LibNiy'Mnz'M'1-y'-z'O2-wAw
(3)
상기 식에서,
M은 Ti, Mg, Al, Zr, Mn 및 Ni로 이루어진 군으로부터 선택되는 적어도 1종이고,
A는 산소 치환형 할로겐이며,
M'는 Ti, Mg, Al 및 Zr로 이루어진 군으로부터 선택되는 적어도 1종이고,
1.00≤a≤1.05, 0.95≤b≤1.00, 0≤x≤0.2, 0.3≤y≤0.8, 0.1≤z≤0.4, 0.1≤1-y-z≤0.4, 0.4≤y'≤0.5, 0.4≤z'≤0.5, 0≤1-y'-z'≤0.2, 0≤h≤0.001, 및 0≤w≤0.001이다.The present invention provides a lithium secondary battery comprising: a core comprising a lithium cobalt oxide represented by the following formula (1); And a shell coated on the surface of the core and comprising a lithium nickel-based oxide expressed by the following Chemical Formula 2 or Chemical Formula 3,
Wherein the lithium transition path of the core and the lithium path of the shell are continuously connected to each other.
Li a Co (1-x) M x O 2 -he h (1)
Li b Ni y Co z Mn 1- y z O 2-w w (2)
Li b Ni y ' Mn z' M '1-y'-z' O 2 -w a w (3)
In this formula,
M is at least one member selected from the group consisting of Ti, Mg, Al, Zr, Mn and Ni,
A is an oxygen-substituted halogen,
M 'is at least one member selected from the group consisting of Ti, Mg, Al and Zr,
Y? 0.8, 0.1? Z? 0.4, 0.1? 1-yz? 0.4, 0.4? Y'? 0.5, 0.4? Z'≤0.5, 0.95? B? 1.00, 0.5, 0? 1-y'-z'0.2, 0? H? 0.001, and 0? W?
Description
본 발명은 리튬 코발트 산화물을 포함하는 코어 및 리튬 니켈계 산화물을 포함하는 쉘을 포함하는 양극 활물질 입자 및 이를 제조하는 방법에 관한 것이다.The present invention relates to a cathode active material particle comprising a core containing a lithium cobalt oxide and a shell containing a lithium nickel-based oxide and a method of producing the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As the technology development and demand for mobile devices have increased, the demand for secondary batteries has increased sharply as an energy source. Among such secondary batteries, lithium secondary batteries having high energy density and operating potential, long cycle life, Have been commercialized and widely used.
또한, 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.In addition, as the interest in environmental issues grows, researches on electric vehicles and hybrid electric vehicles that can replace fossil fuel-based vehicles such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution, . Although nickel-metal hydride secondary batteries are mainly used as power sources for such electric vehicles and hybrid electric vehicles, researches using lithium secondary batteries having high energy density and discharge voltage are being actively carried out, and they are in the commercialization stage.
현재 리튬 이차전지의 양극재로는 LiCoO2, 삼성분계(NMC/NCA), LiMnO4, LiFePO4 등이 사용되고 있다. 이중에서 LiCoO2의 경우 코발트의 가격이 고가이고, 삼성분계에 비해 동일 전압에서 용량이 낮은 문제가 있어, 이차전지를 고용량화 하기 위해서 삼성분계 등의 사용량이 점차 늘어나고 있다.At present, LiCoO 2 , ternary system (NMC / NCA), LiMnO 4 , LiFePO 4 and the like are used as a cathode material of a lithium secondary battery. Of these, LiCoO 2 is expensive and has a lower capacity at the same voltage as the ternary system. Therefore, the use of ternary system is increasing to increase the capacity of the secondary battery.
다만, LiCoO2의 경우, 높은 압연밀도 등 제반 물성이 우수하고, 높은 사이클 특성 등 전기화학적 특성이 우수하여 현재까지도 다수 사용되고 있다. 그러나, LiCoO2는 충방전 전류량이 약 150 mAh/g 정도로 낮으며, 4.3V 이상의 전압에서는 결정구조가 불안정하여 수명 특성이 급격히 저하되는 문제가 있고, 전해액과의 반응에 의한 발화의 위험성을 가지고 있다.However, in the case of LiCoO 2 , excellent physical properties such as high rolling density and excellent electrochemical characteristics such as high cycle characteristics have been used to date. However, LiCoO 2 has a low charging / discharging current of about 150 mAh / g and has a problem that its crystal structure is unstable at a voltage of 4.3 V or more, resulting in rapid deterioration of lifetime characteristics and a risk of ignition due to reaction with an electrolyte .
특히, 고용량 이차전지를 개발하기 위한 고전압 적용 시에는, LiCoO2의 Li 사용량이 늘어나게 되면서 표면 불안정 및 구조 불안정의 가능성이 상승한다.In particular, when applying a high voltage to develop a high capacity secondary battery, the Li usage of LiCoO 2 increases, and the possibility of surface instability and structural instability increases.
이를 해결하기 위해, 종래에는 LiCoO2의 표면에 Al, Ti, Mg, Zr과 같은 금속을 코팅 또는 도핑하거나, LiCoO2과 리튬 니켈계 산화물의 삼성분계를 혼합하는 기술, 및 LiCoO2의 표면에 리튬 니켈계 산화물의 삼성분계를 코팅하는 기술이 제안되어 있다. 그러나, 종래에는 LiCoO2의 입자에 삼성분계 전구체를 코팅하고 열처리하는 습식방법 또는 LiCoO2 입자와 금속 또는 삼성분계 입자를 건식 혼합하는 방법만을 개시하고 있고, 이러한 제조방법에 의해 제조된 결과물은 LiCoO2와 금속 또는 리튬 삼성분계 화합물 입자가 별개의 입자로 존재하여, 리튬 이동 통로의 격자 정합성이 좋지 않고, 입자들 사이의 계면 사이에 빈 공간이 존재하게 되어 리튬 이동성이 저하되고 계면 저항이 상승하므로 출력 특성이 급격히 감소하는 문제가 있다.To solve this problem, conventionally, coated or doped with a metal such as Al, Ti, Mg, Zr, or on the surface of LiCoO 2, and LiCoO 2 A technique of mixing a ternary system of a lithium nickel oxide and a technique of coating a ternary system of a lithium nickel oxide on the surface of LiCoO 2 have been proposed. However, conventionally, only a wet method in which a ternary precursor is coated on a particle of LiCoO 2 and heat treatment, or a method in which LiCoO 2 particles and a metal or ternary phase particles are dry-mixed are disclosed, and the resultant product produced by this method is LiCoO 2 And the metal or lithium tin oxide compound particles are present as separate particles, the lattice coherence of the lithium transfer path is not good, the void space exists between the interfaces between the particles, the lithium mobility decreases, There is a problem that the characteristics are rapidly reduced.
따라서, 고전압에서도 성능저하 없이 안정적으로 사용할 수 있는 리튬 코발트 산화물 기반의 양극활물질 개발의 필요성이 높은 실정이다.Therefore, there is a high demand for development of cathode active material based on lithium cobalt oxide which can be used stably at high voltage without deteriorating performance.
본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art and the technical problems required from the past.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 이후 설명하는 바와 같이, 리튬 코발트 산화물을 포함하는 코어 표면에 리튬 니켈계 산화물의 쉘을 형성된 양극활물질 입자에서 코어와 쉘의 리튬 이동 통로가 60% 이상의 격자 정합율로 연결되어 있는 경우, 소망하는 효과를 발휘할 수 있음을 확인하고 본 발명을 완성하기에 이르렀다.The inventors of the present application have conducted intensive research and various experiments, and have found that, as will be described later, in the cathode active material particle having the shell of the lithium nickel-based oxide formed on the surface of the core including the lithium cobalt oxide, Is connected at a lattice matching ratio of 60% or more, the desired effect can be exhibited, and the present invention has been accomplished.
따라서, 본 발명에 따른 이차전지용 양극활물질 입자는, 하기 화학식 1로 표현되는 리튬 코발트계 산화물을 포함하는 코어(Core); 및Accordingly, the cathode active material particle for a secondary battery according to the present invention comprises: a core comprising a lithium cobalt-based oxide represented by the following formula (1); And
상기 코어의 표면 상에 코팅되어 있으며, 하기 화학식 2 또는 화학식 3으로 표현되는 리튬 니켈계 산화물을 포함하는 쉘(Shell);A shell coated on the surface of the core and comprising a lithium-nickel-based oxide expressed by the following Chemical Formula 2 or Chemical Formula 3;
을 포함하고,/ RTI >
코어의 리튬 통로(path)와 쉘의 리튬 통로(lithium path)가 연속적으로 연결되어 있는 것을 특징으로 한다.And the lithium path of the core and the lithium path of the shell are continuously connected to each other.
LiaCo(1-x)MxO2-hAh (1)Li a Co (1-x) M x O 2 -he h (1)
LibNiyCozMn1-y-zO2-wAw (2)Li b Ni y Co z Mn 1- y z O 2-w w (2)
LibNiy'Mnz'M'1-y'-z'O2-wAw (3)Li b Ni y ' Mn z' M '1-y'-z' O 2 -w a w (3)
상기 식에서, In this formula,
M은 Ti, Mg, Al, Zr, Mn 및 Ni로 이루어진 군으로부터 선택되는 적어도 1종이고, M is at least one member selected from the group consisting of Ti, Mg, Al, Zr, Mn and Ni,
A는 산소 치환형 할로겐이며,A is an oxygen-substituted halogen,
M'는 Ti, Mg, Al 및 Zr로 이루어진 군으로부터 선택되는 적어도 1종이고, M 'is at least one member selected from the group consisting of Ti, Mg, Al and Zr,
1.00≤a≤1.05, 0.95≤b≤1.00, 0≤x≤0.2, 0.3≤y≤0.8, 0.1≤z≤0.4, 0.1≤1-y-z≤0.4, 0.4≤y'≤0.5, 0.4≤z'≤0.5, 0≤1-y'-z'≤0.2, 0≤h≤0.001, 및 0≤w≤0.001이다.Y? 0.8, 0.1? Z? 0.4, 0.1? 1-yz? 0.4, 0.4? Y'? 0.5, 0.4? Z'≤0.5, 0.95? B? 1.00, 0.5, 0? 1-y'-z'0.2, 0? H? 0.001, and 0? W?
상기 화학식에서 A는 상세하게는, F, S, 또는 N일 수 있다.In the above formulas, A may be F, S, or N in detail.
일반적으로 양극활물질로서 리튬 코발트 산화물을 고전압으로 사용하는 경우, 다량의 리튬 이온이 리튬 코발트 산화물 입자로부터 방출되면서 결정 구조가 결손되며, 이에 불안정해진 결정 구조가 붕괴되어 가역성이 저하되는 문제가 있다. 이와 더불어, 리튬 이온이 방출된 상태에서 리튬 코발트 산화물 입자 표면에 존재하는 Co3+ 또는Co4+ 이온이 전해액에 의해 환원될 때, 결정 구조로부터 산소가 탈리되어 상기한 구조 붕괴는 더욱 촉진된다. Generally, when a lithium cobalt oxide is used as a cathode active material at a high voltage, a large amount of lithium ions are released from the lithium cobalt oxide particles, resulting in the crystal structure being defective. As a result, the unstable crystal structure is collapsed and reversibility is degraded. In addition, when Co 3+ or Co 4+ ions present on the surface of the lithium cobalt oxide particles are reduced by the electrolytic solution in the state in which lithium ions are released, oxygen is desorbed from the crystal structure and the above-described structural collapse is further promoted.
따라서, 고전압 하에 리튬 코발트 산화물을 안정적으로 사용하기 위해서는, 다량의 리튬 이온이 방출되더라도 그것의 결정 구조가 안정적으로 유지되면서도 Co이온과 전해액의 부반응이 억제되어야 한다.Therefore, in order to stably use the lithium cobalt oxide under a high voltage, even when a large amount of lithium ions are released, its crystal structure is stably maintained, and side reactions of the Co ions and the electrolyte must be suppressed.
이에 본 발명에서는 리튬 코발트 산화물을 포함하는 코어 표면에 리튬 니켈계 산화물을 포함하는 쉘을 형성시키면서 코어와 쉘의 리튬 이동 통로를 연속적으로 연결되도록 제조함으로써, 고전압 하에서, 표면 구조 변화를 억제하여, 양극 활물질 입자의 구조적 안정성을 향상시키는 동시에, 리튬 이온의 이동을 상대적으로 용이하게 하여 이차전지의 출력 특성 저하를 방지하였다.Accordingly, the present invention provides a lithium nickel-based oxide-containing shell formed on a surface of a lithium-cobalt oxide-containing core, wherein the core and the shell are continuously connected to each other so that the lithium- The structural stability of the active material particles is improved and the migration of lithium ions is relatively facilitated to prevent deterioration of output characteristics of the secondary battery.
여기서, 상기 코어와 쉘에서의 리튬 이동 통로가 연속적으로 연결되었다 함은, 코어와 쉘의 리튬층이 입자의 중심부에서 표면부까지 어긋나 있지 않고 대체적으로 연결되어 있는 구성을 의미한다. 따라서, 하기에서 설명할 리튬 이동 통로의 격자 정합성(lattice matching)은 코어의 리튬층과 쉘의 리튬층이 비슷하게 위치하여 리튬 이온이 입자의 중심부에서 표면부까지 용이하게 이동할 수 있도록 구성된 경우 격자 정합성을 갖는다, 높은 격자 정합성을 나타낸다 등으로 서술된다. 이에 대해서는 도 6에 모식도를 도시하였으므로, 이를 참조한다.Here, the lithium transition passages in the core and the shell are continuously connected, which means that the lithium layers of the core and the shell are generally connected without being shifted from the central portion to the surface portion of the particles. Therefore, the lattice matching of the lithium transfer path, which will be described below, is such that when the lithium layer of the core and the lithium layer of the shell are positioned so that the lithium ions can easily move from the center portion to the surface portion of the particle, And exhibits high lattice matching. This is shown in FIG. 6 as a schematic diagram.
이러한 격자 정합성은 TEM사진을 통해 확인할 수 있으며, 이러한 정의를 기반으로, 하기에서 명시할 격자 정합(lattice matching)율은, TEM 사진으로 확인하였을 때, 코어에 형성된 리튬층과 쉘에 형성된 리튬층의 총 부피에서 코어의 리튬층과 쉘의 리튬층이 연속적으로 연결된 부분의 부피를 백분율 한 값이다. 즉 하기 수식 1로 표현된다.Based on this definition, the lattice matching ratio to be described below is determined by TEM photographs. The lattice matching ratio of the lithium layer formed on the core and the lithium layer formed on the shell The total volume is the percentage of the volume at which the core's lithium layer and the shell's lithium layer are connected in series. (1).
격자 정합율(lattice matching ratio, %) = (연속 리튬층의 부피/전체 리튬층의 부피)*100 (1)Lattice matching ratio (%) = (volume of continuous lithium layer / volume of total lithium layer) * 100 (One)
이에 기반하여 측정된 본원발명의 양극 활물질은, 상기 코어의 리튬 통로(path)와 쉘의 리튬 통로(path)가 60% 이상의 격자 정합율(lattice matching ratio)로 연속적으로 연결되어 있을 수 있고, 상세하게는 70% 이상, 더욱 상세하게는 80%이상 연속적으로 연결되어 있을 수 있다.The cathode active material of the present invention measured on the basis thereof may be continuously connected with the lithium path of the core and the lithium path of the shell at a lattice matching ratio of 60% or more, , More than 70%, and more particularly, more than 80%.
더 나아가, 본원발명의 양극 활물질 입자는 코어와 쉘 사이에 계면 공간(boundary space)이 존재하지 않을 수 있고, 다시 말해, 본원발명 양극 활물질 입자를 이루는 코어와 쉘은 그들의 결정 구조가 연속적인 층상 구조를 가질 수 있다.Furthermore, the cathode active material particles of the present invention may have no boundary space between the core and the shell. In other words, the core and shell of the cathode active material particles of the present invention may have a continuous layer structure Lt; / RTI >
따라서 계면 저항의 증가가 거의 없어, 코팅에 따른 출력 특성의 저하가 방지되는 효과가 있다. Therefore, there is almost no increase in the interfacial resistance, and there is an effect that deterioration of the output characteristics due to the coating is prevented.
반면에, 종래의 제조방법에 따라 쉘을 형성하는 경우에는, 구조적 안정성은 확보할 수 있다 하더라도, 도 6에 도시한 모식도와 같이 쉘을 이루는 코팅 물질이 코어 입자와 별개의 입자로 존재함에 따라, 코어와 쉘이 모두 층상 구조를 가지더라도 리튬층이 대부분 어긋나 있고, 리튬 코발트계 산화물로 완성된 코어를 사용하고, 쉘을 추후 제조함에 따라 이들 사이에 빈공간이 존재할 수 밖에 없는 바, 리튬 이온이 계면에 형성된 공간을 건너 이동해야하고, 리튬층 역시 어긋나 있어 더 긴 이동 경로를 가질 수 밖에 없어, 계면 저항이 증가하고, 리튬 이동이 원활하지 않아 출력 특성이 크게 저하되는 문제를 갖는다.On the other hand, in the case of forming the shell according to the conventional manufacturing method, although the structural stability can be ensured, as the shell material constituting the shell is present as particles separate from the core particles as shown in the schematic diagram shown in FIG. 6, Even if the core and the shell both have a layered structure, the lithium layer mostly deviates, and a core made of a lithium cobalt oxide is used. As the shell is later produced, there is a void space therebetween. It is necessary to move across the space formed at the interface, and the lithium layer is also out of order and has a longer travel path, so that the interfacial resistance is increased and the lithium movement is not smooth and the output characteristic is greatly deteriorated.
즉 본원발명은, 종래 방법으로 제조된 코어-쉘 구조의 양극 활물질 입자를 사용하는 경우에 나타나는 문제점 또한 해결한 것이다.That is, the present invention also solves the problems in the case of using the cathode active material particles of the core-shell structure manufactured by the conventional method.
한편, 하나의 구체적인 예에서, 상기 코어(A) 대비 쉘(B)의 중량비(B/A)는 0.001 내지 0.3일 수 있다.Meanwhile, in one specific example, the weight ratio (B / A) of the shell (B) to the core (A) may be 0.001 to 0.3.
상기 코어 대비 쉘의 중량비가 0.001 미만일 경우에는, 상기 양극 활물질 입자에서 쉘의 비율이 지나치게 적어, 소망하는 효과를 충분히 발휘하지 못할 수 있으며, 이와 반대로, 상기 코어 대비 쉘의 중량비가 0.3을 초과할 경우에는, 상기 양극 활물질 입자에서 쉘의 비율이 지나치게 높아져, 상대적으로 리튬 코발트 산화물계 산화물만을 사용하는 경우보다 압연밀도가 저하되어 실제 셀에서 부피당 에너지밀도가 낮아지고, 출력특성이 현저히 저하되는 문제가 있다.When the weight ratio of the shell to the core is less than 0.001, the ratio of the shells in the cathode active material particles is too small, and the desired effect may not be sufficiently exhibited. On the contrary, There is a problem that the ratio of the shell in the cathode active material particles becomes excessively high and the rolling density becomes lower than that in the case where only lithium cobalt oxide based oxide is used so that the energy density per volume is lowered in the actual cell and the output characteristic is significantly lowered .
또한, 하나의 구체적인 예에서, 상기 쉘은 코어의 표면적에 대해 50% 내지 100%의 면적에 코팅되어 있을 수 있다.Further, in one specific example, the shell may be coated in an area of 50% to 100% with respect to the surface area of the core.
상기 쉘이 코어의 표면적에 대해 상기 범위를 벗어나 50% 미만의 면적에 코팅되어 있을 경우에는, 상기 쉘의 코팅 면적이 지나치게 적어, 소망하는 효과를 충분히 발휘하지 못해 바람직하지 않다.When the shell is coated with an area of less than 50% out of the above range with respect to the surface area of the core, the coating area of the shell is too small and the desired effect is not sufficiently exhibited.
본 발명에 따른 양극 활물질 입자는, 이하에서 설명하는 바와 같이, 전구체 단계에서 코어와 쉘을 이루고 이후 리튬이 첨가되어 투과 반응되는 과정을 거치므로, 코어와 쉘에서의 리튬의 농도가 농도 구배를 이룰 수 있고, 상세하게는, 쉘의 표면에서 리튬의 결핍이 있는 경우, 리튬이 일부 결핍된 쉘의 부위는 리튬 이온의 이동속도가 빠른 스피넬 상이 표면에 일부 형성되어, 코어의 리튬 코발트계 산화물로부터 리튬 이온이 이동하기 위한 통로로서의 역할을 보다 효과적으로 수행할 수 있는 바, 이차전지의 출력 특성 저하를 더욱 방지할 수 있으므로, 쉘로부터 코어의 중심으로 갈수록 연속적 또는 비연속적으로 증가하는 농도 구배를 나타낼 수 있으며, 더욱 상세하게는, 이에 따라, 화학양론적으로, 상기 코어는 리튬 과량 상태, 쉘은 리튬 결핍 상태일 수 있다.As described below, the cathode active material particles according to the present invention undergo a process of forming a core and a shell in the precursor stage and then adding lithium and being subjected to a permeation reaction, so that the concentration of lithium in the core and the shell becomes a concentration gradient Specifically, in the case where there is a lithium deficiency on the surface of the shell, the portion of the shell where lithium is partially deficient is partially formed on the surface of the spinel phase having a fast moving speed of lithium ion, so that lithium from the lithium cobalt- It is possible to more effectively perform the role as the passage for the ions to move, and it is possible to further prevent the degradation of the output characteristics of the secondary battery, so that the concentration gradient can be continuously or discontinuously increased from the shell toward the center of the core , And more particularly, therefore, stoichiometrically, the core is in a lithium overdose state, the shell is in a lithium deficiency state Can.
하나의 구체적인 예에서, 상기 리튬 코발트계 산화물은 LiCoO2일 수 있고, 상기 리튬 니켈계 산화물은 화학식 2의 화합물일 수 있으며, 더욱 상세하게는, 상기 리튬 니켈계 산화물은 LibNi1/3Co1/3Mn1/3O2, LibNi0.5Co0.2Mn0.3O2, 또는 LibNi0.6Co0.2Mn0.2O2 (여기서, b는 상기 제 1 항에서 정의한 바와 같다)일 수 있다.In one specific example, the lithium cobalt-based oxide may be LiCoO 2 , and the lithium nickel-based oxide may be a compound of formula (2). More specifically, the lithium nickel-based oxide may be Li b Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li b Ni 0.5 Co 0.2 Mn 0.3 O 2, or Li b Ni 0.6 Co 0.2 Mn 0.2 O 2 (where b is as defined in the above-mentioned 1).
상기 구성으로 한정되는 것은 아니지만, 상기 조합이 용량적인 측면에서 가장 우수한 효과를 나타낸다.Although the present invention is not limited to the above configuration, the combination exhibits the most excellent effect in terms of capacity.
또한, 본 발명은 상기 양극 활물질 입자를 제조하는 방법을 제공하고, 상기 제조방법은,Further, the present invention provides a method of producing the above-mentioned cathode active material particles,
(a) 입자 상태의 리튬 코발트계 산화물 전구체에 니켈(Ni)-망간(Mn)의 수산화물 또는 니켈(Ni)-코발트(Co)-망간(Mn)의 수산화물을 포함하는 코팅층을 형성하는 과정; 및(a) forming a coating layer containing a hydroxide of nickel (Ni) -manganese (Mn) or a hydroxide of nickel (Ni) -cobalt (Co) -manganese (Mn) on a lithium cobalt oxide precursor in a particle state; And
(b) 상기 코팅층이 형성된 리튬 코발트계 산화물 전구체에 리튬 전구체를 혼합하고 소성하는 과정;(b) mixing and firing a lithium precursor with a lithium cobalt oxide precursor having the coating layer formed thereon;
을 포함할 수 있다.. ≪ / RTI >
즉, 상기 제조방법에 따르면, 본원발명의 양극 활물질 입자는 리튬 코발트계 산화물 자체에 니켈계 수산화물을 형성하고, 리튬 전구체와 반응시키는 것이 아니라, 리튬 코발트계 산화물 전구체에, 니켈(Ni)-망간(Mn)-기타 금속(M')의 수산화물(여기서, 상기 M'는 화학식 3에서 정의한 바와 같다.) 또는 니켈(Ni)-코발트(Co)-망간(Mn)의 수산화물을 코팅하고, 이후에 리튬 전구체와 반응시켜 제조하는 것으로, 다시 말해, 코어와 쉘을 형성하는 입자들이 전구체 단계에서 코어-쉘 구조를 형성하고 이후 리튬 소스가 코어 및 쉘 내로 침투함으로써 제조되는 것으로, 상기에서 설명한 바와 같이 리튬 이동 통로(lithium path)가 되는 리튬층이 코어와 쉘 층에서 연속적으로 형성될 수 있으며, 코어와 쉘을 이루는 물질들이 모두 전구체 단계에서 코어-쉘 구조를 이루는 것이므로 코어와 쉘 사이에 계면 공간이 형성되지 않는다. 따라서, 리튬 니켈계 산화물이 코어에 더 안정적으로 부착되어 있을 수 있고, 더 나아가 종래 코팅물질을 리튬 코발트계 산화물에 코팅한 구성에 비해 출력 특성의 저하가 적다.That is, according to the above production method, the cathode active material particles of the present invention can be obtained by forming a nickel-based hydroxide on the lithium cobalt oxide itself and not reacting with the lithium precursor, but reacting the lithium cobalt oxide precursor with nickel (Ni) (M ') is coated with a hydroxide of nickel (Ni) - cobalt (Co) - manganese (Mn) That is to say that the particles forming the core and the shell form a core-shell structure in the precursor stage and then the lithium source penetrates into the core and the shell, as described above, A lithium layer as a lithium path can be continuously formed in the core and the shell layer, and the materials forming the core and the shell both form a core-shell structure at the precursor stage As does the interface space is not formed between the core and the shell. Therefore, the lithium nickel-based oxide may be more stably attached to the core, and further, the deterioration of the output characteristics is less than that of the conventional coating material coated on the lithium cobalt oxide.
여기서, 상기 과정(a)는, 입자 상태의 리튬 코발트계 산화물 전구체를 니켈 화합물과 망간 화합물 및 기타 금속(M') 화합물이 용해된 용액에 분산시킨 후 공침반응 시킴으로써 수행되거나, 입자 상태의 리튬 코발트계 산화물 전구체를 니켈 화합물과 코발트 화합물 및 망간 화합물이 용해된 용액에 분산시킨 후 공침반응 시킴으로써 수행될 수 있다. 이는 코어의 표면에 쉘로서 형성하고자 하는 물질에 따라 적절히 선택될 수 있다.The process (a) may be performed by dispersing a lithium cobalt oxide precursor in a particulate state in a solution in which a nickel compound, a manganese compound, or another metal (M ') compound is dissolved, and then conducting a coprecipitation reaction. And dispersing the system oxide precursor in a solution in which a nickel compound, a cobalt compound and a manganese compound are dissolved, followed by coprecipitation reaction. Which can be suitably selected depending on the material to be formed as a shell on the surface of the core.
이때, 상기 용액에 포함되는 화합물들의 혼합비는 원하는 쉘의 조성에 따라 화학양론적으로 적절히 선택되어 포함될 수 있고, 상세하게는, 니켈 화합물, 망간 화합물, 기타 금속(M') 화합물을 용해시키는 경우, 이들의 혼합비는 니켈, 망간, 기타 금속(M')의 몰비로 4~5 : 4~5 : 0~2, 상기 니켈 화합물, 코발트 화합물 및 망간 화합물을 모두 용해시키는 경우, 이들의 혼합비는 니켈, 코발트, 망간의 몰비로 3~8 :1~4 : 1~4이 되는 범위일 수 있다.At this time, the mixing ratio of the compounds contained in the solution may be appropriately selected stoichiometrically according to the composition of the desired shell. In detail, when the nickel compound, the manganese compound and the other metal (M ') compound are dissolved, When the nickel compound, the cobalt compound and the manganese compound are all dissolved in a molar ratio of nickel, manganese and other metal (M ') of 4: 5: 4 to 5: 0 to 2, Cobalt, and manganese in the range of 3 to 8: 1 to 4: 1 to 4.
또한, 상기 과정(b)에서, 코팅층이 형성된 리튬 코발트계 산화물 전구체와 리튬 전구체의 혼합비도 화학양론적 고려에 의해 선택될 수 있고, 상세하게는 리튬 전구체가, 전구체에 포함된 금속들의 총 몰비를 기준으로 리튬의 양이 0.95 내지 1.05배가 되도록, 또는 조금 더 과량으로 혼합될 수 있다.In addition, in the step (b), the mixing ratio of the lithium cobalt oxide precursor and the lithium precursor in which the coating layer is formed may be selected by stoichiometric considerations. Specifically, the lithium precursor may have a total molar ratio of the metals contained in the precursor The amount of lithium may be 0.95 to 1.05 times the amount of lithium as a standard, or may be mixed with a little excess.
한편, 상기 과정(b)의 열처리는 섭씨 850도 내지 1100도의 범위에서 2 시간 내지 20 시간 동안 수행될 수 있다.Meanwhile, the heat treatment in the process (b) may be performed at a temperature in the range of 850 to 1100 degrees Celsius for 2 to 20 hours.
상기 과정(iii)의 열처리가 상기 범위를 벗어나 지나치게 낮은 온도에서 수행되거나, 지나치게 짧은 시간 동안 수행될 경우에는, 상기 양극 활물질 입자의 코어-쉘 구조가 안정적으로 형성되지 못하고, 리튬 소스가 충분히 침투하지 못할 수 있고, 이와 반대로, 상기 과정(iii)의 열처리가 상기 범위를 벗어나 지나치게 높은 온도에서 수행되거나, 지나치게 긴 시간 동안 수행될 경우에는, 상기 양극 활물질 입자를 구성하는 리튬 코발트계 산화물과 리튬 니켈계 화합물의 물리적, 화학적 특성을 변화시켜, 오히려 성능 저하를 유발할 수 있어 바람직하지 않다.If the heat treatment in the step (iii) is carried out at an excessively low temperature beyond the above range, or if the heat treatment is carried out for an excessively short time, the core-shell structure of the cathode active material particles can not be stably formed, In contrast, when the heat treatment in the step (iii) is carried out at an excessively high temperature beyond the above range, or when the heat treatment is performed for an excessively long time, the lithium cobalt oxide constituting the cathode active material particles and the lithium nickel The physical and chemical properties of the compound may be changed, which may cause deterioration in performance, which is not preferable.
하나의 구체적인 예에서, 본 발명에 따른 제조방법에서 사용되는, 상기 리튬 코발트계 산화물 전구체는 코발트 산화물일 수 있고, 그 종류가 한정되는 것은 아니지만, 상세하게는, Co3O4일 수 있다.In one specific example, the lithium cobalt-based oxide precursor used in the production method according to the present invention may be cobalt oxide, and its kind is not limited, but may be Co3O4 in detail.
또한, 상기 니켈(Ni)-망간(Mn)-기타 금속(M')의 수산화물은 상세하게는, LibNiy'Mnz'M'1-y'-z'(OH1-t)2, 니켈(Ni)-코발트(Co)-망간(Mn)의 수산화물은 상세하게는, NiyCozMn1-y-z(OH1-t)2 (여기서, 0.3≤y≤0.8, 0.1≤z≤0.4, 0.1≤1-y-z≤0.4, 0.4≤y'≤0.5, 0.4≤z'≤0.5, 0≤1-y'-z'≤0.2 및 0≤t≤0.5이다)일 수 있다.In addition, the nickel (Ni) - manganese (Mn) - Other metals (M ') of the hydroxide is particularly, Li b Ni y' Mn z 'M'1-y'-z'(OH 1-t) 2 , And the hydroxide of nickel (Ni) -cobalt (Co) -manganese (Mn) is specifically Ni y Co z Mn 1 -yz (OH 1 -t ) 2 (where 0.3≤y≤0.8, 0.1≤z≤ 0.4, 0.1? 1-yz? 0.4, 0.4? Y'? 0.5, 0.4? Z'0.5, 0? 1-y'-z'0.2 and 0? T? 0.5).
상기 리튬 전구체는 리튬 소스를 포함하는 화합물이라면 한정되지 아니하나, 상세하게는, LiOH 또는 Li2CO3일 수 있다.The lithium precursor is not limited as long as it is a compound containing a lithium source, specifically, it may be LiOH or Li 2 CO 3 .
이와 같이, 습식의 제조방법에 의해 제조되는 경우에는 보다 균일한 코팅층을 형성할 수 있고, 본 발명의 제조방법에 따르면 전구체 단계에서 코팅이 이루어지므로 코어와 쉘 사이의 리튬층의 연속성으로 보다 코팅층이 안정할 수 있으며, 리튬 이동 통로의 연결로 계면 저항을 낮춰 출력 특성 저하를 방지할 수 있는 효과가 있음은 상기에서도 설명한 바 있다.In this way, a more uniform coating layer can be formed by the wet production method, and according to the manufacturing method of the present invention, since the coating is performed in the precursor step, the continuity of the lithium layer between the core and the shell allows the coating layer And it is possible to prevent the deterioration of the output characteristic by reducing the interfacial resistance due to the connection of the lithium transfer path.
본 발명은 또한, 상기 양극활물질 입자를 포함하는 이차전지용 양극을 제공한다.The present invention also provides a positive electrode for a secondary battery comprising the positive electrode active material particles.
상기 양극은, 예를 들어, 양극 집전체에 양극활물질 입자들로 구성된 양극활물질과, 도전재 및 바인더가 혼합된 양극 합제를 도포하여 제조될 수 있고, 필요에 따라서는 상기 양극 합제에 충진제를 더 첨가할 수 있다.The positive electrode may be manufactured by, for example, applying a positive electrode mixture mixed with a positive electrode active material composed of positive electrode active material particles to a positive electrode collector, and a conductive material and a binder, and if necessary, adding a filler to the positive electrode mixture Can be added.
상기 양극 집전체는 일반적으로 3 ~ 500 ㎛의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티타늄, 및 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티타늄 또는 은으로 표면처리 한 것 중에서 선택되는 하나를 사용할 수 있고, 상세하게는 알루미늄이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The cathode current collector is generally formed to a thickness of 3 to 500 탆 and is not particularly limited as long as it has high conductivity without causing chemical change in the battery. For example, stainless steel, aluminum, nickel, titanium , And a surface treated with carbon, nickel, titanium or silver on the surface of aluminum or stainless steel can be used. Specifically, aluminum can be used. The current collector may have fine irregularities on the surface thereof to increase the adhesive force of the cathode active material, and various forms such as a film, a sheet, a foil, a net, a porous body, a foam, and a nonwoven fabric are possible.
상기 양극활물질은, 예를 들어, 상기 양극활물질 입자 외에, 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 디설파이드 화합물; Fe2(MoO4)3 등으로 구성될 수 있으며, 이들만으로 한정되는 것은 아니다.The cathode active material may be, for example, a layered compound such as lithium nickel oxide (LiNiO 2 ) or a compound substituted with one or more transition metals in addition to the cathode active material particle; Lithium manganese oxides such as Li 1 + x Mn 2 -x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 and the like; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , LiV 3 O 4 , V 2 O 5 and Cu 2 V 2 O 7 ; A Ni-site type lithium nickel oxide expressed by the formula LiNi 1-x M x O 2 (where M = Co, Mn, Al, Cu, Fe, Mg, B or Ga and x = 0.01 to 0.3); Formula LiMn 2-x M x O 2 ( where, M = Co, Ni, Fe , Cr, and Zn, or Ta, x = 0.01 ~ 0.1 Im) or Li 2 Mn 3 MO 8 (where, M = Fe, Co, Ni, Cu, or Zn); LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion; Disulfide compounds; Fe 2 (MoO 4 ) 3 , and the like, but is not limited thereto.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 0.1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 0.1 to 30% by weight based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 양극에 포함되는 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder contained in the positive electrode is a component that assists in bonding of the active material and the conductive material and bonding to the current collector, and is usually added in an amount of 0.1 to 30 wt% based on the total weight of the mixture containing the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
본 발명은 또한, 상기 양극과 음극 및 전해액을 포함하는 것을 특징으로 하는 이차전지를 제공한다. 상기 이차전지는 그것의 종류가 특별히 한정되는 것은 아니지만, 구체적인 예로서, 높은 에너지 밀도, 방전 전압, 출력 안정성 등의 장점을 가진 리튬이온 전지, 리튬이온 폴리머 전지 등과 같은 리튬 이차전지일 수 있다.The present invention also provides a secondary battery comprising the positive electrode, the negative electrode, and an electrolytic solution. The secondary battery may be a lithium secondary battery such as a lithium ion battery or a lithium ion polymer battery having advantages such as high energy density, discharge voltage, and output stability, though the kind thereof is not particularly limited.
일반적으로, 리튬 이차전지는 양극, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성되어 있다.Generally, a lithium secondary battery is composed of a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte containing a lithium salt.
이하에서는, 상기 리튬 이차전지의 기타 성분에 대해 설명한다.Hereinafter, other components of the lithium secondary battery will be described.
상기 음극은 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 성분들이 선택적으로 더 포함될 수도 있다.The negative electrode is manufactured by applying and drying a negative electrode active material on a negative electrode collector, and if necessary, the above-described components may be selectively included.
상기 음극 집전체는 일반적으로 3 내지 500 마이크로미터의 두께로 만들어진다. 이러한 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode collector is generally made to have a thickness of 3 to 500 micrometers. Such an anode current collector is not particularly limited as long as it has electrical conductivity without causing a chemical change in the battery. For example, the anode current collector may be formed on the surface of copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel Carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
상기 음극 활물질로는, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, and Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.Examples of the negative electrode active material include carbon such as non-graphitized carbon and graphite carbon; Li x Fe 2 O 3 (0≤x≤1 ), Li x WO 2 (0≤x≤1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2,
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 분리막의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 분리막으로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용된다. 전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.The separation membrane is interposed between the anode and the cathode, and an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m. Such separation membranes include, for example, olefinic polymers such as polypropylene, which are chemically resistant and hydrophobic; A sheet or nonwoven fabric made of glass fiber, polyethylene or the like is used. When a solid electrolyte such as a polymer is used as an electrolyte, the solid electrolyte may also serve as a separation membrane.
상기 리튬염 함유 비수계 전해액은, 비수 전해액과 리튬염으로 이루어져 있다. 비수 전해액으로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.The lithium salt-containing nonaqueous electrolyte solution is composed of a nonaqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, and the like are used, but the present invention is not limited thereto.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma -Butyrolactone, 1,2-dimethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane , Acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxymethane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate Nonionic organic solvents such as tetrahydrofuran derivatives, ethers, methyl pyrophosphate, ethyl propionate and the like can be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI,
또한, 비수 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.For the purpose of improving the charge-discharge characteristics and the flame retardancy, the nonaqueous electrolytic solution is preferably a solution prepared by dissolving or dispersing in a solvent such as pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, hexaphosphoric triamide, N, N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride and the like may be added have. In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (Fluoro-Ethylene Carbonate, PRS (Propene sultone), and the like.
본 발명은 또한, 상기 이차전지를 포함하는 전지팩 및 상기 전지팩을 포함하는 디바이스를 제공하는 바, 상기와 같은 전지팩 및 디바이스는 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 구체적인 설명을 생략한다.The present invention also provides a battery pack including the secondary battery and a device including the battery pack. Since the battery pack and the device are known in the art, a detailed description thereof will be omitted herein. do.
상기 디바이스는, 예를 들어, 노트북 컴퓨터, 넷북, 태블릿 PC, 휴대폰, MP3, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전기 자전거(E-bike), 전기 스쿠터(E-scooter), 전기 골프 카트(electric golf cart), 또는 전력저장용 시스템일 수 있지만, 이들만으로 한정되지 않음은 물론이다.The device may be, for example, a notebook computer, a netbook, a tablet PC, a mobile phone, MP3, a wearable electronic device, a power tool, an electric vehicle (EV), a hybrid electric vehicle (HEV) , A plug-in hybrid electric vehicle (PHEV), an electric bike (E-bike), an electric scooter (E-scooter), an electric golf cart, However, the present invention is not limited thereto.
상기에서 설명한 바와 같이, 본 발명에 따른 양극활물질 입자는, 리튬 코발트 산화물을 포함하는 코어와 상기 코어의 표면에 형성된 리튬 니켈계 산화물의 쉘을 포함하고, 코어와 쉘의 리튬 이동 통로가 연속적으로 연결되어 있는 구조로 이루어짐으로써, 코어 외측 표면으로부터의 결정 구조 붕괴를 억제하면서 코어 표면과 전해액의 접촉 면적을 현저히 감소시킴으로써 고전압에서의 구조적 안정성을 확보할 수 있을 뿐만 아니라, 코어와 쉘 사이의 리튬 이동 통로의 격자 정합성(lattice matching)이 높아 리튬 이온의 이동이 원활하게 이루어질 수 있는 바, 계면 저항성도 낮춰 출력 특성 등의 리튬 이차전지의 전반적인 성능 저하를 방지할 수 있다.As described above, the cathode active material particle according to the present invention comprises a core containing lithium cobalt oxide and a shell of a lithium nickel-based oxide formed on the surface of the core, wherein the lithium moving passages of the core and the shell are continuously connected The structural stability at high voltage can be secured by significantly reducing the contact area between the core surface and the electrolyte while suppressing the crystal structure collapse from the outer surface of the core, The lattice matching of the lithium secondary battery can be smoothly carried out and the interface resistance can be lowered to prevent the overall performance deterioration of the lithium secondary battery such as the output characteristics.
도 1은 실시예 1에 따른 양극 활물질 입자의 SEM 사진이다;
도 2는 비교예 1에 따른 양극 활물질 입자의 SEM 사진이다;
도 3은 비교예 2에 따른 양극 활물질 입자의 SEM 사진이다;
도 4는 실험예 2에 따른 실시예들과 비교예들의 고온 연속 충전의 실험결과 그래프이다;
도 5는 실험예 3에 따른 실시예들과 비교예들의 과충전시 셀의 온도를 비교한 그래프이다;
도 6은 코어와 쉘의 리튬 이동 통로의 격자 정합성을 보여주는 모식도이다.1 is an SEM photograph of a cathode active material particle according to Example 1;
2 is an SEM photograph of a cathode active material particle according to Comparative Example 1;
3 is an SEM photograph of the cathode active material particles according to Comparative Example 2;
4 is a graph of experimental results of high-temperature continuous filling of Examples and Comparative Examples according to Experimental Example 2;
5 is a graph comparing the temperatures of the cells according to Experimental Example 3 with those of Comparative Examples in the case of overcharge;
6 is a schematic diagram showing the lattice matching of the lithium transition passage of the core and the shell.
이하에서는, 본 발명에 따른 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to embodiments thereof, but it should be understood that the scope of the present invention is not limited thereto.
<실시예 1>≪ Example 1 >
Co3O4 입자들 50g을 Ni:Co:Mn=6:2:2의 몰비가 되도록 황산니켈(NiSO4)과 황산코발트(CoSO4)와 황산망간(MnSO4)이 혼합된 혼합 수용액 500ml에 분산시키고 수산화 나트륨을 사용하여 Co3O4 입자들에 Ni-Co-Mn계 수산화물을 공침하였다. 이러한 분산계를 여과 세정하고, 120℃에서 건조시켜. Ni-Co-Mn계 수산화물이 Co3O4 입자들 표면에 형성된 전구체 시료를 얻었다.The nickel sulfate so that the molar ratio of 2 (NiSO 4) and cobalt sulfate (CoSO 4) and manganese sulfate (MnSO 4) are mixed a mixed aqueous solution 500ml: Co 3 O 4 particles to 50g Ni: Co: Mn = 6 : 2 Ni-Co-Mn hydroxide was coprecipitated to Co 3 O 4 particles using sodium hydroxide. These dispersion systems were filtered and dried at 120 < 0 > C. A precursor sample in which Ni-Co-Mn based hydroxide was formed on the surface of Co 3 O 4 particles was obtained.
상기 전구체 50g에 입자내 총 원소들의 몰비가 Li:M(Ni, Co, Mn)=1:1의 몰비가 되도록 LiOH.H2O를 26.4g 첨가하여 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 혼합물을 공기 분위기하에서 1050℃에서 15시간 고온에서 소성하여,수행하여 코어-쉘 구조의 활물질을 합성하였다.26.4 g of LiOH.H 2 O was added to 50 g of the precursor such that the molar ratio of the total elements in the particle was Li: M (Ni, Co, Mn) = 1: 1, and the mixture was mixed with the zirconia balls using a ball mill, The mixture was calcined at 1050 DEG C for 15 hours at a high temperature in an air atmosphere to obtain an active material of a core-shell structure.
<실시예 2>≪ Example 2 >
혼합 수용액에서, Ni:Co:Mn=5:2:3의 몰비가 되도록 황산니켈(NiSO4)과 황산코발트(CoSO4)와 황산망간(MnSO4)이 혼합한 것을 제외하고는 실시예 1과 동일하게 활물질을 합성하였다.In the mixed aqueous solution, Ni: Co: Mn = 5 : 2: 3 nickel sulfate so that the molar ratio of (NiSO 4) and cobalt sulfate (CoSO 4) and manganese sulfate (MnSO 4) as in Example 1 except that the mixed The active material was synthesized in the same manner.
<실시예 3>≪ Example 3 >
혼합 수용액에서, Ni:Co:Mn=1:1:1의 몰비가 되도록 황산니켈(NiSO4)과 황산코발트(CoSO4)와 황산망간(MnSO4)이 혼합한 것을 제외하고는 실시예 1과 동일하게 활물질을 합성하였다.Except that nickel sulfate (NiSO 4 ), cobalt sulfate (CoSO 4 ) and manganese sulfate (MnSO 4 ) were mixed in a molar ratio of Ni: Co: Mn = 1: The active material was synthesized in the same manner.
<실시예 4><Example 4>
Co3O4 입자들 50g, Al2O3 0.038g을 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 혼합물을 공기 분위기하에서 1010℃에서 15시간 고온에서 소성하여, Al이 도핑된 Co3O4 전구체를 합성하였다.50 g of Co 3 O 4 particles and 0.038 g of Al 2 O 3 were mixed together with a zirconia ball using a ball mill and then the mixture was calcined at 1010 ° C. for 15 hours in an air atmosphere to obtain a Co 3 O 4 precursor Were synthesized.
Ni:Co:Mn=6:2:2의 몰비가 되도록 황산니켈(NiSO4)과 황산코발트(CoSO4)와 황산망간(MnSO4)이 혼합된 혼합 수용액 500ml에 분산시키고 수산화 나트륨을 사용하여 Co3O4 입자들에 Ni-Co-Mn계 수산화물을 공침하였다. 이러한 분산계를 여과 세정하고, 120℃에서 건조시켜. Ni-Co-Mn계 수산화물이 Co3O4 입자들 표면에 형성된 전구체 시료를 얻었다.Ni: Co: Mn = 6: 2: nickel sulfate so that the molar ratio of 2 (NiSO 4) and cobalt sulfate (CoSO 4) and manganese sulfate (MnSO 4) Co using the dispersion and sodium hydroxide in the mixed aqueous mixed solution 500ml 3 O 4 Ni-Co-Mn hydroxide was coprecipitated to the particles. These dispersion systems were filtered and dried at 120 < 0 > C. A precursor sample in which Ni-Co-Mn based hydroxide was formed on the surface of Co 3 O 4 particles was obtained.
상기 전구체 50g에 입자내 총 원소들의 몰비가 Li:M(Ni, Co, Mn, Al)=1:1의 몰비가 되도록 LiOH.H2O를 26.4g 첨가하여 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 혼합물을 공기 분위기하에서 1050℃에서 15시간 고온에서 소성하여,수행하여 코어-쉘 구조의 활물질을 합성하였다.26.4 g of LiOH.H 2 O was added to 50 g of the precursor so that the molar ratio of the total elements in the particle was Li: M (Ni, Co, Mn, Al) = 1: 1 and mixed with the zirconia balls using a ball mill After that, the mixture was calcined at 1050 DEG C for 15 hours at a high temperature in an air atmosphere to obtain a core-shell structure active material.
<실시예 5> ≪ Example 5 >
Co3O4 입자들 50g을 Ni:Mn=1:1의 몰비가 되도록 황산니켈(NiSO4)과 황산망간(MnSO4)이 혼합된 혼합 수용액 500ml에 분산시키고 수산화 나트륨을 사용하여 Co3O4 입자들에 Ni-Mn계 수산화물을 공침하였다. 이러한 분산계를 여과 세정하고, 120℃에서 건조시켜. Ni-Mn계 수산화물이 Co3O4 입자들 표면에 형성된 전구체 시료를 얻었다.Co 3 O 4 particles, 50g of Ni: Mn = 1: nickel sulfate so that the molar ratio of 1 (NiSO 4) and manganese sulfate (MnSO 4) dispersed in a mixed aqueous mixed solution 500ml and using sodium hydroxide Co 3 O 4 Ni-Mn hydroxide was co-precipitated with the particles. These dispersion systems were filtered and dried at 120 < 0 > C. A precursor sample having Ni-Mn based hydroxide formed on the surface of Co 3 O 4 particles was obtained.
상기 전구체 50g에 입자내 총 원소들의 몰비가 Li:M(Ni, Co, Mn)=1:1의 몰비가 되도록 LiOH.H2O를 26.4g 첨가하여 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 혼합물을 공기 분위기하에서 1050℃에서 15시간 고온에서 소성하여,수행하여 코어-쉘 구조의 활물질을 합성하였다.26.4 g of LiOH.H 2 O was added to 50 g of the precursor such that the molar ratio of the total elements in the particle was Li: M (Ni, Co, Mn) = 1: 1, and the mixture was mixed with the zirconia balls using a ball mill, The mixture was calcined at 1050 DEG C for 15 hours at a high temperature in an air atmosphere to obtain an active material of a core-shell structure.
<비교예 1>≪ Comparative Example 1 &
평균조성이 LiCoO2 인 입자 50g를 Ni:Co:Mn=6:2:2의 몰비가 되도록 황산니켈(NiSO4)과 황산코발트(CoSO4)와 황산망간(MnSO4)이 혼합된 혼합 수용액 500ml에 분산시키고 수산화 나트륨을 사용하여 Co3O4 입자들에 Ni-Co-Mn계 수산화물을 공침하였다. 이러한 분산계를 여과 세정하고, 120℃에서 건조시켜. Ni-Co-Mn계 수산화물이 LiCoO2 입자 표면에 형성된 전구체 시료를 얻었다. 상기 전구체 50g에 Ni-Co-Mn계 수산화물의 금속 총 함량과 리튬의 몰비가 Li:M(Ni-Co-Mn)=1:1의 몰비가 되도록 LiOH.H2O를 26.4g을 첨가하여 지르코니아 볼과 함께 볼밀을 이용해 혼합한 후, 혼합물을 공기 분위기하에서 1050℃에서 15시간 고온에서 소성하여,수행하여 코어-쉘 구조의 활물질을 합성하였다.The average composition of the LiCoO 2 particles 50g Ni: Co: Mn = 6 : 2: nickel sulfate so that the molar ratio of 2 (NiSO 4) and cobalt sulfate (CoSO 4) and manganese sulfate (MnSO 4) are mixed a mixed aqueous solution 500ml And Ni-Co-Mn hydroxide was coprecipitated to Co 3 O 4 particles using sodium hydroxide. These dispersion systems were filtered and dried at 120 < 0 > C. A precursor sample in which Ni-Co-Mn based hydroxide was formed on the surface of LiCoO 2 particles was obtained. 26.4 g of LiOH.H 2 O was added to 50 g of the precursor to give a molar ratio of Li: M (Ni-Co-Mn) = 1: 1 of the total metal content of the Ni-Co-Mn hydroxide to the lithium, The mixture was mixed with a ball mill using a ball mill, and then the mixture was calcined at 1050 DEG C for 15 hours at a high temperature in an air atmosphere. Thus, a core-shell structure active material was synthesized.
<비교예 2>≪ Comparative Example 2 &
LiCoO2 입자들과, LiNi0.6Mn0.2Co0.2O2 입자들을 중량비로 90:10로 칭량해 건식 혼합하면서 가압력을 가하여 LiCoO2 입자들의 표면에 LiNi0.6Mn0.2Co0.2O2 을 피복시켜 활물질을 합성하였다.LiCoO 2 particles and LiNi 0.6 Mn 0.2 Co 0.2 O 2 particles were weighed at a weight ratio of 90:10 and dry pressed to apply LiNi 0.6 Mn 0.2 Co 0.2 O 2 to the surface of the LiCoO 2 particles to synthesize the active material Respectively.
<비교예 3>≪ Comparative Example 3 &
Al2O3를 소스로 사용하여, Al이 코팅된 LiCoO2 인 입자를 활물질로서 사용하였다.Using Al 2 O 3 as a source, particles of LiCoO 2 coated with Al were used as an active material.
<실험예 1><Experimental Example 1>
실시예 1 및 비교예 1 내지 2에서 제조된 활물질 입자들의 SEM 사진들을 도 1 내지 3에 도시하였고, 상기 제조된 활물질 입자들의 리튬 이동 통로 격자 정합율을 본원발명에서 제시한 기준에 따라 구하여 그 결과를 하기 표 1에 나타내었다.SEM photographs of the active material particles prepared in Example 1 and Comparative Examples 1 and 2 are shown in FIGS. 1 to 3, and the lithium transition channel lattice matching ratios of the prepared active material particles were determined according to the criteria of the present invention, Are shown in Table 1 below.
이들 도면 및 표 1을 참조하면, 도면들로부터 본 발명에 따라 제조된 실시예 1의 활물질들은 쉘이 코어의 표면에 보다 고르게 도포되어 있고, coverage가 높음을 알 수 있으며, 표 1로부터 실시예 1에 따른 양극 활물질 내의 리튬 이동이 원활함을 확인할 수 있다.Referring to these figures and Table 1, it can be seen from the drawings that the active materials of Example 1 prepared according to the present invention are more uniformly coated on the surface of the core and have a high coverage, It can be confirmed that the lithium movement in the positive electrode active material is smooth.
<실험예 2><Experimental Example 2>
상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조된 활물질 입자들을 양극 활물질로서 사용하고, 바인더로서 PVdF 및 도전재로서 천연 흑연을 사용하였다. 양극활물질: 바인더: 도전재를 중량비로 96: 2 : 2가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Al 호일에 도포한 후 130℃에서 건조하여 양극을 제조하였다. 음극으로는 리튬 호일을 사용하고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 하프 코인 셀을 제조하였다.The active material particles prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were used as a cathode active material, and PVdF as a binder and natural graphite as a conductive material were used. The positive electrode active material: binder: conductive material was mixed well with NMP so as to have a weight ratio of 96: 2: 2, and then applied to Al foil having a thickness of 20 탆 and dried at 130 캜 to prepare a positive electrode. Lithium foil was used as the cathode, and an electrolyte solution containing 1 M of LiPF 6 in a solvent of EC: DMC: DEC = 1: 2: 1 was used to prepare a half coin cell.
이와 같이 제조된 하프 코인 셀을, 60℃에서 상한 전압 4.55V로 CC/CV 모드로 연속충전하여 최대전류에 도달하는 시간을 비교하여 그 결과를 하기 표 2 및 도 4에 나타내었다.The half-cell thus manufactured was continuously charged in an CC / CV mode at an upper limit voltage of 4.55 V at 60 ° C., and the time for reaching the maximum current was compared. The results are shown in Table 2 and FIG.
상기 표 2을 참조하면, 고온 연속 충전시 실시예들의 최대전류 도달시간이 비교예들의 그것보다 훨씬 긴 것을 확인할 수 있다. 고온 연속 충전시 시간에 따라 전류가 증가하는 이유는 고온/고전압하에서 양극재와 전해액 계면에서의 부반응으로 인한 leak current 가 증가하기 때문이다. 따라서, 최대전류 도달시간이 길다는 것은 고온/고전압하에서 양극재/전해액 부반응이 적다는 것이고, 이것은 LCO 를 고전압에서 사용할 때 안정성이 더 높다는 것을 의미한다. 특히, LCO 표면이 NCM 로 코팅된 실시예 1-4 의 경우 Al 코팅된 LCO 인 비교예 3 에 비해 최대 전류 도달시간이 월등히 높은데, 이것은 NCM 코팅층이 고전압으로 충전된 LCO 표면과 전해액 사이의 계면적을 효과적으로 감소시킴으로써 리튬 이차전지의 안전성을 향상시킨다는 것을 의미하고, 비교예 1 및 2에 비해 높은 것으로부터 본 발명에 따른 제조방법으로 NCM 코팅층을 형성하면 보다 고른 코팅층의 형성이 가능한 것을 알 수 있다.Referring to Table 2, it can be seen that the maximum current arrival time of the embodiments at the time of high-temperature continuous charging is much longer than that of the comparative examples. The reason why the current increases with time at the high temperature continuous charging is because the leakage current due to the side reaction at the interface between the cathode material and the electrolyte is increased under high temperature / high voltage. Therefore, a long maximum current reaching time means that the anode / electrolyte side reaction is low at a high temperature / high voltage, which means that the stability is higher when the LCO is used at a high voltage. In particular, the maximum current reaching time is much higher than that of Comparative Example 3 where the LCO surface is coated with NCM, which is an Al coated LCO in the case of Examples 1-4. This is because the NCM coating layer has a surface area between the LCO surface charged with high voltage and the electrolytic solution It can be seen that a more uniform coating layer can be formed by forming the NCM coating layer according to the manufacturing method according to the present invention from the fact that the safety of the lithium secondary battery is improved.
<실험예 3><Experimental Example 3>
상기 실시예 1 및 비교예 3에서 제조된 양극 활물질 입자들을 양극 활물질로서 사용하고, 바인더로서 PVdF 및 도전재로서 천연 흑연을 사용하였다. 양극활물질: 바인더: 도전재를 중량비로 96: 2 : 2가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Al 호일에 도포한 후 130℃에서 건조하여 양극을 제조하였다. The cathode active material particles prepared in Example 1 and Comparative Example 3 were used as a cathode active material, and PVdF as a binder and natural graphite as a conductive material were used. The positive electrode active material: binder: conductive material was mixed well with NMP so as to have a weight ratio of 96: 2: 2, and then applied to Al foil having a thickness of 20 탆 and dried at 130 캜 to prepare a positive electrode.
음극으로는 인조흑연, PVd, 카본블랙을 중량비로 96: 2 : 2가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Cu 호일에 도포한 후 130℃에서 건조하여 음극을 제조하였다. The negative electrode was prepared by mixing artificial graphite, PVd and carbon black at a weight ratio of 96: 2: 2 in NMP, followed by coating on a 20 μm thick Cu foil and drying at 130 ° C. to prepare a negative electrode.
이들 사이에 분리막(Celgard)을 개재하여 전극조립체를 제조한 후 파우치형 전지케이스에 넣고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 전지셀을 제조하였다.An electrode assembly was manufactured therebetween through a celgard and then placed in a pouch-type battery case. Using an electrolyte solution containing 1M of LiPF 6 in a solvent of EC: DMC: DEC = 1: 2: 1, .
이와 같이 제조된 전지셀을, 상한 전압 10V까지 CC/CV 모드로 24시간동안 충전하여 셀 온도 변화를 비교하고, 그 결과를 하기 도 5에 나타내었다.The thus prepared battery cells were charged in a CC / CV mode for 24 hours up to an upper limit voltage of 10 V to compare cell temperature changes. The results are shown in FIG.
도 5을 참조하면, 실시예 1의 활물질 입자를 사용한 전지의 셀 온도가 비교예 3의 활물질 입자를 사용한 전지의 셀 온도에 비해 더 낮게 유지되므로 고전압 안정성이 더 높음을 알 수 있다 Referring to FIG. 5, it can be seen that the cell temperature of the battery using the active material particles of Example 1 is lower than the cell temperature of the battery using the active material particles of Comparative Example 3, so that the high voltage stability is higher
<실험예 4><Experimental Example 4>
상기 실시예 1 내지 4, 및 비교예 1 내지 3에서 제조된 양극 활물질 입자들을 양극 활물질로서 사용하고, 바인더로서 PVdF 및 도전재로서 천연 흑연을 사용하였다. 양극활물질: 바인더: 도전재를 중량비로 96: 2 : 2가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Al 호일에 도포한 후 130℃에서 건조하여 양극을 제조하였다. The cathode active material particles prepared in Examples 1 to 4 and Comparative Examples 1 to 3 were used as a cathode active material, and PVdF as a binder and natural graphite as a conductive material were used. The positive electrode active material: binder: conductive material was mixed well with NMP so as to have a weight ratio of 96: 2: 2, and then applied to Al foil having a thickness of 20 탆 and dried at 130 캜 to prepare a positive electrode.
음극으로는 인조흑연, PVdF, 카본블랙을 중량비로 96: 2 : 2가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Cu 호일에 도포한 후 130℃에서 건조하여 음극을 제조하였다. As negative electrode, artificial graphite, PVdF, and carbon black were mixed well with NMP so that the weight ratio thereof was 96: 2: 2, and then coated on a Cu foil having a thickness of 20 탆 and dried at 130 캜 to prepare a negative electrode.
이들 사이에 분리막(Celgard)을 개재하여 전극조립체를 제조한 후 파우치형 전지케이스에 넣고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 전지셀들을 제조하였다.An electrode assembly was manufactured therebetween through a celgard and then placed in a pouch-type battery case. Using an electrolyte solution containing 1M of LiPF 6 in a solvent of EC: DMC: DEC = 1: 2: 1, .
이와 같이 제조된 전지셀들을 이용하여 0.1C 대비 2.0C의 비율로 출력 특성(레이트 특성)을 확인하고 그 결과를 하기 표 3에 나타내었다. C-rate 측정 기준은 1C을 40mA으로 하였다. 충방전은 2.5V 내지 4.55V 사이에서 진행되었으며 충전은 CC/CV, 방전은 CC로 측정되었다.The output characteristics (rate characteristics) were confirmed at a ratio of 2.0 C to 0.1 C using the thus-prepared battery cells, and the results are shown in Table 3 below. The C-rate measurement criterion was 1 C of 40 mA. Charging and discharging was performed between 2.5V and 4.55V, charging was measured by CC / CV, and discharging was measured by CC.
상기 표 3을 참조하면, LCO 표면이 NCM 로 코팅된 실시예 1-4의 경우, Al이 코팅된 LCO인 비교예 3과 출력 특성이 거의 동등한 것을 확인할 수 있다. 이는 상기 실험예 1에서 확인한 바와 같이, 실시예 1의 NCM 코팅층과 LCO 코어의 리튬 이동 통로가 60% 이상의 격자 정합율을 가져 비교예 1 및 2에 비해 더 원활한 리튬 이동이 가능하기 때문이다. 이로부터 실시예 1-4의 NCM 코팅방법이 비교예 1 또는 2의 방법에 비해 출력 특성 면에서 큰 장점을 가짐을 확인할 수 있다.Referring to Table 3, it can be seen that in the case of Examples 1-4 in which the LCO surface is coated with NCM, the output characteristics are almost the same as those in Comparative Example 3 in which the LCO is coated with Al. This is because the lithium migration path of the NCM coating layer and the LCO core of Example 1 has a lattice matching ratio of 60% or more as seen in Experimental Example 1, so that lithium migration can be performed more smoothly than Comparative Examples 1 and 2. From this, it can be seen that the NCM coating method of Example 1-4 has a great advantage in terms of the output characteristics as compared with the method of Comparative Example 1 or 2.
이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.While the present invention has been described in connection with what is presently considered to be practical exemplary embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
Claims (21)
상기 코어의 표면 상에 코팅되어 있으며, 하기 화학식 2 또는 화학식 3으로 표현되는 리튬 니켈계 산화물을 포함하는 쉘(Shell);
을 포함하고,
코어의 리튬 이동 통로(lithium path)와 쉘의 리튬 이동 통로(lithium path)가 연속적으로 연결되어 있는 것을 특징으로 하는 양극 활물질 입자:
LiaCo(1-x)MxO2-hAh (1)
LibNiyCozMn1-y-zO2-wAw (2)
LibNiy'Mnz'M'1-y'-z'O2-wAw (3)
상기 식에서,
M은 Ti, Mg, Al, Zr, Mn 및 Ni로 이루어진 군으로부터 선택되는 적어도 1종이고,
A는 산소 치환형 할로겐이며,
M'는 Ti, Mg, Al 및 Zr로 이루어진 군으로부터 선택되는 적어도 1종이고,
1.00≤a≤1.05, 0.95≤b≤1.00, 0≤x≤0.2, 0.3≤y≤0.8, 0.1≤z≤0.4, 0.1≤1-y-z≤0.4, 0.4≤y'≤0.5, 0.4≤z'≤0.5, 0≤1-y'-z'≤0.2, 0≤h≤0.001, 및 0≤w≤0.001이다.A core comprising a lithium cobalt oxide expressed by the following formula (1); And
A shell coated on the surface of the core and comprising a lithium-nickel-based oxide expressed by the following Chemical Formula 2 or Chemical Formula 3;
/ RTI >
Wherein a lithium pathway of the core and a lithium pathway of the shell are continuously connected to each other.
Li a Co (1-x) M x O 2 -he h (1)
Li b Ni y Co z Mn 1- y z O 2-w w (2)
Li b Ni y ' Mn z' M '1-y'-z' O 2 -w a w (3)
In this formula,
M is at least one member selected from the group consisting of Ti, Mg, Al, Zr, Mn and Ni,
A is an oxygen-substituted halogen,
M 'is at least one member selected from the group consisting of Ti, Mg, Al and Zr,
Y? 0.8, 0.1? Z? 0.4, 0.1? 1-yz? 0.4, 0.4? Y'? 0.5, 0.4? Z'≤0.5, 0.95? B? 1.00, 0.5, 0? 1-y'-z'0.2, 0? H? 0.001, and 0? W?
(a) 입자 상태의 리튬 코발트계 산화물 전구체에 니켈(Ni)-망간(Mn)-기타금속(M')의 수산화물(여기서, 상기 M'는 제 1 항에 정의한 바와 같다.) 또는 니켈(Ni)-코발트(Co)-망간(Mn)의 수산화물을 포함하는 코팅층을 형성하는 과정; 및
(b) 상기 코팅층이 형성된 리튬 코발트계 산화물 전구체에 리튬 전구체를 혼합하고 소성하는 과정;
을 포함하는 것을 특징으로 하는 양극 활물질 입자의 제조 방법. A method for producing a cathode active material particle according to claim 1,
(a) a hydroxide of nickel (Ni) -manganese (Mn) -other metal (M ') in a lithium cobalt oxide precursor in a particle state (wherein M' is as defined in claim 1) or nickel ) -Cobalt (Co) -manganese (Mn); And
(b) mixing and firing a lithium precursor with a lithium cobalt oxide precursor having the coating layer formed thereon;
Wherein the positive electrode active material particles have an average particle diameter of not more than 100 nm.
입자 상태의 리튬 코발트계 산화물 전구체를 니켈 화합물과 망간 화합물 및 기타 금속(M') 화합물이 용해된 용액에 분산시킨 후 공침반응 시킴으로써 수행되는 것을 특징으로 하는 양극 활물질 입자의 제조방법.13. The method of claim 12, wherein the step (a)
Dispersing a lithium cobalt oxide precursor in a particle state in a solution in which a nickel compound, a manganese compound and another metal (M ') compound are dissolved, followed by coprecipitation reaction.
입자 상태의 리튬 코발트계 산화물 전구체를 니켈 화합물과 코발트 화합물 및 망간 화합물이 용해된 용액에 분산시킨 후 공침반응 시킴으로써 수행되는 것을 특징으로 하는 양극 활물질 입자의 제조방법.13. The method of claim 12, wherein the step (a)
Dispersing a lithium cobalt oxide precursor in a particulate state in a solution in which a nickel compound, a cobalt compound and a manganese compound are dissolved, and conducting a coprecipitation reaction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160075798A KR102576712B1 (en) | 2016-06-17 | 2016-06-17 | Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160075798A KR102576712B1 (en) | 2016-06-17 | 2016-06-17 | Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170142393A true KR20170142393A (en) | 2017-12-28 |
KR102576712B1 KR102576712B1 (en) | 2023-09-07 |
Family
ID=60939796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160075798A Active KR102576712B1 (en) | 2016-06-17 | 2016-06-17 | Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102576712B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190190060A1 (en) * | 2017-12-19 | 2019-06-20 | 3M Innovative Properties Company | Electrochemical cells |
WO2019132267A1 (en) * | 2017-12-29 | 2019-07-04 | 주식회사 포스코이에스엠 | Positive electrode active material precursor for lithium secondary battery, positive electrode active material using same, and lithium secondary battery comprising same |
KR20210076607A (en) * | 2019-12-16 | 2021-06-24 | 주식회사 엘지화학 | Method for predicting life of positive material, positive mixture comprising the positive material with improved life characteristic, positive electrode, and secondary battery comprising the same |
WO2023038472A1 (en) * | 2021-09-10 | 2023-03-16 | 주식회사 엘지에너지솔루션 | Positive electrode active material powder for lithium secondary battery, method for preparing same, positive electrode for lithium secondary battery, and lithium secondary battery |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010047852A (en) * | 1999-11-23 | 2001-06-15 | 김순택 | Lithium secondary battery |
KR20090115140A (en) * | 2007-01-29 | 2009-11-04 | 유미코르 | Island-covered Lithium Cobalt Oxide |
KR20110027324A (en) * | 2009-09-10 | 2011-03-16 | 주식회사 엘 앤 에프 | Cathode active material for lithium secondary battery having excellent performance, manufacturing method thereof and lithium secondary battery comprising same |
KR20160040118A (en) * | 2014-10-02 | 2016-04-12 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same |
KR20160040117A (en) * | 2014-10-02 | 2016-04-12 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same |
-
2016
- 2016-06-17 KR KR1020160075798A patent/KR102576712B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010047852A (en) * | 1999-11-23 | 2001-06-15 | 김순택 | Lithium secondary battery |
KR20090115140A (en) * | 2007-01-29 | 2009-11-04 | 유미코르 | Island-covered Lithium Cobalt Oxide |
KR20110027324A (en) * | 2009-09-10 | 2011-03-16 | 주식회사 엘 앤 에프 | Cathode active material for lithium secondary battery having excellent performance, manufacturing method thereof and lithium secondary battery comprising same |
KR20160040118A (en) * | 2014-10-02 | 2016-04-12 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same |
KR20160040117A (en) * | 2014-10-02 | 2016-04-12 | 주식회사 엘지화학 | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery comprising the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190190060A1 (en) * | 2017-12-19 | 2019-06-20 | 3M Innovative Properties Company | Electrochemical cells |
WO2019132267A1 (en) * | 2017-12-29 | 2019-07-04 | 주식회사 포스코이에스엠 | Positive electrode active material precursor for lithium secondary battery, positive electrode active material using same, and lithium secondary battery comprising same |
KR20210076607A (en) * | 2019-12-16 | 2021-06-24 | 주식회사 엘지화학 | Method for predicting life of positive material, positive mixture comprising the positive material with improved life characteristic, positive electrode, and secondary battery comprising the same |
WO2023038472A1 (en) * | 2021-09-10 | 2023-03-16 | 주식회사 엘지에너지솔루션 | Positive electrode active material powder for lithium secondary battery, method for preparing same, positive electrode for lithium secondary battery, and lithium secondary battery |
Also Published As
Publication number | Publication date |
---|---|
KR102576712B1 (en) | 2023-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101082468B1 (en) | Lithium secondary battery having enhanced energy density | |
KR101139972B1 (en) | positive-electrode active material for elevation of output in low voltage and Lithium secondary battery including them | |
KR101451196B1 (en) | Cathode Active Material and Lithium Secondary Battery Employed with the Same | |
EP3012890B1 (en) | Method of manufacturing a cathode active material for secondary batteries | |
KR101666402B1 (en) | Electrode Material Improved Energy Density and Lithium Secondary Battery Comprising the Same | |
KR101658503B1 (en) | Cathode Active Material for Secondary Battery and Secondary Battery Containing the Same | |
KR101545886B1 (en) | Multi Layered Electrode and the Method of the Same | |
KR20190046617A (en) | Positive Electrode Active Material Comprising Lithium Rich Lithium Manganese-based Oxide with Coating layer Comprising Lithium-Deficiency Transition Metal Oxide and Positive Electrode Comprising the Same | |
KR102091214B1 (en) | Positive Electrode Active Material for Lithium Secondary Battery Comprising High-voltage Lithium Cobalt Oxide Particle and Method of Manufacturing the Same | |
KR101595333B1 (en) | Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same | |
KR20180002055A (en) | Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same | |
KR102120271B1 (en) | Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same | |
KR101527748B1 (en) | The Method for Preparing Electrodes and the Electrodes Prepared by Using the Same | |
KR101495302B1 (en) | Multi Layered Electrode and the Method of the Same | |
KR102071489B1 (en) | Electrode Comprising Active Material Layers Having Active Material Particles of Different Average Particle Sizes | |
KR20190038314A (en) | Positive Electrode Active Material Comprising Lithium Rich Lithium Manganese-based Oxide and Lithium Tungsten Compound, or Additionally Tungsten Compound and Positive Electrode for Lithium Secondary Battery Comprising the Same | |
KR20180009911A (en) | Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide for Lithium Secondary Battery and Method of Manufacturing the Same | |
KR102576712B1 (en) | Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt-based Oxide and Shell Having Lithium Nickel-based Oxide and Method of Manufacturing the Same | |
KR20160050283A (en) | Preparation Method of Multilayer Electrode for Secondary Battery | |
KR101506451B1 (en) | Anode for Secondary Battery | |
KR102582049B1 (en) | Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt Oxide and Coordination Polymer Coating Layer Having Ligand Compound and Method of Manufacturing the Same | |
KR20180089059A (en) | Positive Electrode Active Material for Lithium Secondary Battery Comprising Lithium Cobalt Oxide with Core-Shell Structure and Method of Manufacturing the Same | |
KR101666391B1 (en) | Cathode Active Material Comprising the double Surface Treatment layer for Secondary Battery and Method of Preparing the Same | |
KR20170124202A (en) | Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same | |
KR20130116033A (en) | The method for preparing electrode mixture and the electrode mixture prepared by using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20160617 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20210111 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20160617 Comment text: Patent Application |
|
PN2301 | Change of applicant |
Patent event date: 20210512 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20230331 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20230711 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20230905 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20230905 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration |