[go: up one dir, main page]

KR20170114802A - Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy - Google Patents

Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy Download PDF

Info

Publication number
KR20170114802A
KR20170114802A KR1020160042360A KR20160042360A KR20170114802A KR 20170114802 A KR20170114802 A KR 20170114802A KR 1020160042360 A KR1020160042360 A KR 1020160042360A KR 20160042360 A KR20160042360 A KR 20160042360A KR 20170114802 A KR20170114802 A KR 20170114802A
Authority
KR
South Korea
Prior art keywords
absorbent
carbon dioxide
tower
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020160042360A
Other languages
Korean (ko)
Inventor
서진석
함태규
김현경
Original Assignee
주식회사 포스코건설
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코건설 filed Critical 주식회사 포스코건설
Priority to KR1020160042360A priority Critical patent/KR20170114802A/en
Publication of KR20170114802A publication Critical patent/KR20170114802A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02C10/06
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

본 발명은 탈거탑 탑상증기의 열에너지를 재활용한 이산화탄소 포집공정과 그 장치에 관한 것으로, 그 목적은 흡수제의 재생에 필요한 열에너지의 소비가 저감되면서도 탈거탑 내의 환경이 이산화탄소의 탈거반응에 적합한 환경으로 조성될 수 있는 탈거탑 탑상증기의 열에너지를 재활용한 이산화탄소 포집공정과 그 장치를 제공하는 것이다.
본 발명은 흡수탑을 통해 이산화탄소가 흡수된 흡수제가, 탈거탑에서 발생되는 탑상증기와의 열교환에 의해 1차 예비가열되고, 1차 예비가열된 흡수제(이산화탄소 흡수)는 다시 탈거탑에서 재생된 후 흡수탑으로 공급되는 재생된 흡수제(이산화탄소가 분리된 흡수제)와 열교환되어 2차 예비가열된 다음, 탈거탑으로 유입되어, 탈거탑에서의 재생에너지의 소비가 절감되면서도 이산화탄소와 흡수제의 분리가 효율적으로 이루어지도록 되어 있다.
The present invention relates to a process for collecting carbon dioxide by recycling thermal energy of steam on a stripping tower and its object is to reduce the consumption of heat energy required for the regeneration of the absorbent, The present invention also provides a process for collecting carbon dioxide which recycles the thermal energy of steam on a stripping tower,
In the present invention, the absorbent having absorbed carbon dioxide through the absorption tower is firstly preheated by heat exchange with the overhead vapor generated in the deairing tower, and the first preheated absorbent (carbon dioxide absorption) is regenerated again in the deairing tower The second regeneration heat is exchanged with the regenerated absorbent (carbon dioxide separated absorbent) supplied to the absorption tower, and then the second preheating is conducted to the deodorization tower to reduce the consumption of renewable energy in the deodorization tower, Respectively.

Description

탈거탑 탑상증기의 열에너지를 재활용한 이산화탄소 포집공정과 그 장치{Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy}Technical Field [0001] The present invention relates to a process for recovering thermal energy of vapor over a stripping tower,

본 발명은 탈거탑 탑상증기의 열에너지를 재활용한 이산화탄소 포집공정과 그 장치에 관한 것으로, 이산화탄소와 결합한 후 흡수탑 하단으로 나온 흡수제를 탈거탑에서 발생되는 고온의 탑상증기에 의해 1차 예비가열하고, 이후 탈거탑에서 재생된 고온의 흡수제에 의해 2차 예비가열하여 흡수제의 온도를 향상시킨 후, 탈거탑 내로 유입되도록 하여, 탈거탑에서의 재생에너지 소비를 저감시킬 수 있는 이산화탄소 포집공정과 그 장치에 관한 것이다. The present invention relates to a process for collecting carbon dioxide which recycles the thermal energy of steam on a stripping tower and an apparatus therefor. The sorbent discharged from the bottom of the absorption tower after being combined with carbon dioxide is subjected to primary preheating by high- A carbon dioxide capture step capable of reducing the consumption of the regenerated energy in the stripping tower by allowing the temperature of the absorbent to be secondarily preheated by the high temperature absorbent regenerated in the stripping tower and then being introduced into the stripping tower, .

일반적으로 온실가스는 태양열을 대기 중에 가두는 역할을 하며, 전 세계적으로 이러한 온실가스를 줄이기 위한 노력이 수행되고 있으며, 이러한 온실가스를 줄이기 위하여, 이산화탄소 포집 및 저장(CCS; Carbon Dioxide Capture & Storage) 기술에 대한 연구가 활발하게 진행되고 있다. In general, greenhouse gases are responsible for keeping solar heat in the atmosphere. Efforts are being made to reduce these greenhouse gases worldwide. In order to reduce greenhouse gases, Carbon Dioxide Capture & Storage (CCS) Research on technology is actively under way.

상기 이산화탄소 포집 및 저장(CCS; Carbon Dioxide Capture & Storage) 기술은 화석연료 사용으로 인해 발전소, 철강, 시멘트 공장 등 대량 배출원으로부터 배출되는 이산화탄소를 대기 중으로부터 격리시키는 기술로, CCS 기술 중 이산화탄소 포집기술은 크게 ‘연소 후 포집기술(Postcombustion technology)’, ‘연소 전 포집기술(Pre-combustion technology)’ 및 ‘산소 연소기술(Oxy-fuel combustion technology)’로 구분된다.The carbon dioxide capture and storage (CCS) technology is a technology to isolate carbon dioxide emitted from mass emission sources such as power plants, steel and cement plants from the atmosphere due to the use of fossil fuels. It is divided into 'Postcombustion technology', 'Pre-combustion technology' and 'Oxy-fuel combustion technology'.

그 중에서, 연소 후 포집기술은 흡수법, 흡착법, 막분리법, 심냉법이 있으며, 이중, Monoethanolamine(MEA)를 이용하여 천연가스나 연도가스 내의 이산화탄소를 흡수하여 포집하는 화학적 흡수법이 가장 널리 사용되어지고 있다. Among them, the post-combustion trapping techniques include absorption, adsorption, membrane separation, and deep-sea cooling. Among them, the chemical absorption method in which monoethanolamine (MEA) is used to absorb and capture carbon dioxide in natural gas or flue gas is most widely used ought.

상기 MEA 를 이용한 화학적 흡수법은 흡수탑 내에서 MEA와 연도가스의 접촉에 의해 MEA에 이산화탄소가 흡수되고, 이산화탄소가 흡수된 Rich-MEA(농후-MEA)는 탈거탑으로 공급되어 가열 및 분해되어, 이산화탄소 가스를 방출하고 Lean-MEA(부족-MEA)으로 재생 변환되며, 상기 재생 변환된 Lean-MEA는 다시 흡수탑으로 공급되어 흡수탑 내에서 연도가스와 접촉된다. 이와 같은 흡수탑과 탈거탑 사이의 MEA 순환에 의해 연도 가스 내의 이산화탄소(CO2)가 포집, 분리, 및 정화된다. In the chemical absorption method using the MEA, carbon dioxide is absorbed into the MEA by the contact between the MEA and the flue gas in the absorption tower, and the rich-MEA (rich-MEA) in which the carbon dioxide is absorbed is supplied to the demolition tower, The lean-MEA is regenerated into Lean-MEA (Lean-MEA) by releasing carbon dioxide gas, and the regenerated Lean-MEA is again supplied to the absorption tower to be contacted with the flue gas in the absorption tower. Carbon dioxide (CO2) in the flue gas is collected, separated, and purified by the MEA circulation between the absorption tower and the stripping tower.

그러나, 상기 MEA 를 이용한 화학적 흡수법은 탈거탑에서 Lean-MEA를 재생시키기 위하여, 탈거탑 내로 유입된 Rich-MEA에 다량의 재생에너지를 공급하여야 하므로, MEA의 재생을 위한 재생에너지 소비가 높은 문제점이 있으며, 이로 인하여 공정비용이 증가되는 문제점이 있었다. However, since the chemical absorption method using the MEA requires a large amount of renewable energy to be supplied to the rich-MEA introduced into the stripping column in order to regenerate the lean-MEA in the stripping column, there is a problem of high renewable energy consumption for regeneration of the MEA There is a problem that the process cost is increased.

또한, 탈거탑에서 발생되는 탑상증기 즉, 이산화탄소를 함유하는 탑상증기는 탈거탑 내의 재생에너지에 의해 높은 온도를 구비하고 있으나 별도의 열 활용 없이 응축기로 가서 바로 냉각되는 측면이 있었다. In addition, the overhead vapor generated in the deairing tower, that is, the overhead vapor containing carbon dioxide, has a high temperature due to the renewed energy in the deairing tower, but there is a side to go directly to the condenser without using any heat.

공개특허공보 공개번호 10-2014-0042088(2014.04.07)Published Patent Publication No. 10-2014-0042088 (Apr. 04, 2014)

본 발명의 목적은 흡수제의 재생에 필요한 열에너지의 소비가 저감되면서도 탈거탑 내의 환경이 이산화탄소의 탈거반응에 적합한 환경으로 조성될 수 있는 탈거탑 탑상증기의 열에너지를 재활용한 이산화탄소 포집공정과 그 장치를 제공하는 것이다. It is an object of the present invention to provide a carbon dioxide capture process and a device for recycling heat energy of a stripping tower vapor which can reduce the consumption of heat energy required for regeneration of an absorbent and which can provide an environment suitable for the carbon dioxide removal reaction .

본 발명은 흡수탑을 통해 이산화탄소가 흡수된 흡수제가, 탈거탑에서 발생되는 탑상증기와의 열교환에 의해 1차 예비 가열되고, 1차 예비 가열된 흡수제(이산화탄소 흡수)는 다시 탈거탑에서 재생된 후 흡수탑으로 공급되는 재생된 흡수제(이산화탄소가 분리된 흡수제)와 열교환되어 2차 예비 가열된 다음, 탈거탑으로 유입되어, 탈거탑에서의 재생에너지의 소비가 절감되면서도 이산화탄소와 흡수제의 분리가 효율적으로 이루어지도록 되어 있다. In the present invention, the absorbent having absorbed carbon dioxide through the absorption tower is firstly preheated by heat exchange with the overhead vapor generated in the deairing tower, and the first preheated absorbent (carbon dioxide absorption) is regenerated again in the deairing tower The second regeneration heat is exchanged with the regenerated absorbent (carbon dioxide separated absorbent) supplied to the absorption tower, and then the second preheating is conducted to the deodorization tower to reduce the consumption of renewable energy in the deodorization tower, Respectively.

본 발명은 이산화탄소가 흡수된 흡수제가 제1,2열교환기에서의 열교환에 의해 1,2차 예비가열되어 온도가 100℃ 이상으로 상승된 후, 탈거탑 내로 유입되도록 되어 있어, 탈거탑의 재생에너지를 감소시키고, 이를 통해 공정 에너지 효율을 개선하는 효과가 있다. In the present invention, the absorbent absorbed carbon dioxide is preliminarily heated by heat exchange in the first and second heat exchangers, the temperature is raised to 100 ° C or more, and then the carbon dioxide is introduced into the deodorization tower. , Thereby improving the process energy efficiency.

본 발명은 탈거탑에서 발생되는 고온의 탑상증기가 응축기로 유입되기 전에 제1열교환기로 공급되어 열교환되도록 되어 있어, 탑상증기의 유용한 열에너지를 효율적으로 활용할 수 있다. In the present invention, since the high-temperature overhead vapor generated in the stripping tower is supplied to the first heat exchanger to be heat-exchanged before flowing into the condenser, useful heat energy of the overhead vapor can be efficiently utilized.

또한, 본 발명은 이산화탄소가 흡수된 흡수제가 탑상증기에 의해 1차 예비 가열된 후, 다시 재생 흡수제에 의해 2차 예비 가열되도록 되어 있어, 탑상증기의 열에너지와 재생흡수제의 열에너지를 효율적으로 활용할 수 있을 뿐 아니라, 이산화탄소가 흡수된 흡수제와 탑상증기의 온도차, 1차 예비가열된 흡수제와 재생된 흡수제와의 온도차에 따른 효율적인 열교환을 통해, 이산화탄소가 흡수된 흡수제의 온도를 짧은 시간 내에 100℃ 이상으로 상승시킬 수 있어, 전체공정설계를 용이하게 할 수 있는 효과가 있다. Further, in the present invention, the absorbent absorbed with carbon dioxide is subjected to the first preliminary heating by the overhead vapor and then the second preliminary heating by the regenerated absorbent, so that the thermal energy of the overhead vapor and the heat energy of the regenerable absorbent can be utilized efficiently In addition, the temperature of the absorbent absorbed by carbon dioxide can be raised to 100 ° C or more within a short time through efficient heat exchange according to the temperature difference between the absorbent absorbed with carbon dioxide and the overhead vapor, and the temperature difference between the first preheated absorbent and the regenerated absorbent. So that it is possible to facilitate the entire process design.

또한, 본 발명은 탑상증기(Overhead vapor)의 열을 재활용하도록 되어 있어, 리보일러(Reboiler)의 열량변화(Heat Duty)를 감소시킬 뿐 아니라, 탑상증기(Overhead vapor)를 냉각응축(cooling)하는데 필요한 응축기(Condenser) 열량변화(Heat Duty)도 감소시킬 수 있다. In addition, the present invention is adapted to recycle the overhead vapor heat, thereby reducing the heat duty of the reboiler and cooling the overhead vapor. Condenser Heat Duty can also be reduced.

또한, 본 발명은 이산화탄소를 흡수한 흡수제가 두 번의 예비가열을 통해 충분히 온도가 높아진 상태에서 탈거탑에 유입되므로 리보일러(Reboiler)가 부담해야 하는 Heat Duty를 절감할 수 있는 등 많은 효과가 있다. In addition, the present invention has many effects such that the absorbent absorbing the carbon dioxide is introduced into the deodorizing tower in a state in which the temperature is sufficiently raised through two preliminary heating, thereby reducing the heat duty that the reboiler should bear.

도 1 은 본 발명에 따른 공정을 보인 블록 예시도
도 2 는 본 발명에 따른 전체 공정을 보인 장치예시도
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is an exemplary block diagram of a process according to the present invention.
FIG. 2 is a schematic view of an apparatus showing an overall process according to the present invention.

도 1 은 본 발명에 따른 공정을 보인 블록 예시도를, 도 2 는 본 발명에 따른 전체 공정을 보인 장치예시도를 도시한 것으로, FIG. 1 is a block diagram showing a process according to the present invention, FIG. 2 is a diagram illustrating an example of a device showing an entire process according to the present invention,

본 발명은 흡수탑을 통해 이산화탄소가 흡수된 흡수제가, 탈거탑에서 발생되는 탑상증기와의 열교환에 의해 1차 예비가열되고, 1차 예비가열된 흡수제(이산화탄소 흡수)는 다시 탈거탑에서 재생된 후 흡수탑으로 공급되는 재생된 흡수제(이산화탄소가 분리된 흡수제)와 열교환되어 2차 예비가열된 다음, 탈거탑으로 유입되도록 되어, 탈거탑에서의 재생에너지의 소비가 절감되면서도 이산화탄소의 분리와 아민계열 흡수제의 재생이 원활하게 이루어지도록 되어 있다. In the present invention, the absorbent having absorbed carbon dioxide through the absorption tower is firstly preheated by heat exchange with the overhead vapor generated in the deairing tower, and the first preheated absorbent (carbon dioxide absorption) is regenerated again in the deairing tower The recovered absorbent (carbon dioxide separated absorbent) supplied to the absorption tower is heat-exchanged to be secondarily preheated and then introduced into the stripping tower to reduce the consumption of renewable energy in the stripping tower, Is smoothly reproduced.

즉, 본 발명은 흡수탑(30)내에서 이산화탄소가 함유된 연도가스(Flue gas,100)를 흡수제와 접촉시키는 이산화탄소 흡수단계; 이산화탄소가 흡수된 흡수제가 제1열교환기(10)로 공급되어 탈거탑(40)의 탑상증기(200)와 1차 열교환되는 1차 예비가열단계; 제1열교환기(10)에서 열교환된 흡수제가 제2열교환기(20)로 공급되어, 탈거탑(40)에서 리보일러(50)의 고온 스팀을 통해 이산화탄소와 분리되어 제2열교환기(20)로 공급되는 재생된 흡수제와 2차 열교환되는 2차 예비가열단계; 제2열교환기(20)를 통해 2차 예비가열된 흡수제가 탈거탑(40)으로 공급되어 이산화탄소와 이산화탄소의 분리에 의해 재생된 흡수제로 나누어지는 재생단계; 탈거탑(40)내에서 재생된 흡수제가 흡수탑(30)으로 공급되어 순환되는 흡수제 순환단계; 탈거탑 내의 이산화탄소가 포함된 탑상증기(200)가 제1열교환기(10)를 거쳐 열교환된 후 응축기(41)로 공급되는 탑상증기 이송단계; 응축기(41)에 의해 탑상증기가 냉각되고 리플럭스 드럼(reflux drum,42)에서 응축수, 응축된 흡수제 및 이산화탄소로 분리되어 이산화탄소가 포집되는 포집단계;를 포함하여, 탈거탑(40)의 재생에너지, 리보일러(50)의 열량변화, 응축기(41)의 열량변화저감을 통해 전체 공정의 에너지 효율이 향상되도록 되어 있다. That is, the present invention includes a carbon dioxide absorbing step of contacting a flue gas (100) containing carbon dioxide with an absorbent in an absorption tower (30); A primary preliminary heating step in which the absorbent having absorbed carbon dioxide is supplied to the first heat exchanger (10) and subjected to primary heat exchange with the overhead vapor (200) of the deodorizer (40); The absorbent that has been heat-exchanged in the first heat exchanger 10 is supplied to the second heat exchanger 20 and separated from the carbon dioxide through the high temperature steam of the reboiler 50 in the demolition tower 40, A second preliminary heating step of performing a second heat exchange with the regenerated absorbent supplied to the second preliminary heating step; A regeneration step of supplying a secondary preheated absorbent through the second heat exchanger (20) to the stripping tower (40) and dividing the recovered absorbent by separation of carbon dioxide and carbon dioxide; An absorbent circulation step in which the absorbent regenerated in the stripping tower (40) is supplied to the absorption tower (30) and circulated; An overhead vapor transfer step of supplying overhead vapor (200) containing carbon dioxide in a demixing tower to the condenser (41) after heat exchange through the first heat exchanger (10); And a collecting step in which the overhead vapor is cooled by the condenser 41 and separated from the reflux drum 42 by condensed water, condensed absorbent and carbon dioxide to collect carbon dioxide, The change in the amount of heat of the reboiler 50, and the change in the amount of heat of the condenser 41, thereby improving the energy efficiency of the entire process.

상기 흡수제로는 MEA(Monoethanolamine), DEA(Diethanolamine), MDEA(Methyl diethanolamine), TEA(Triethanolamine) 등의 아민계열 화합물 혹은 상기 아민계열 화합물에 무기염계 물질이 포함되어 있고, 물을 용매로 하여 10~50wt%의 농도를 만족하는 것을 사용한다. Examples of the absorbent include amine type compounds such as MEA (Monoethanolamine), DEA (Diethanolamine), MDEA (Methyl diethanolamine) and TEA (Triethanolamine), or amine type compounds, And a concentration of 50 wt% is used.

이하, 본 발명에 기재된 흡수제를 MEA(Monoethanolamine)로, 이산화탄소가 흡수된 흡수제를 'Rich-MEA'로, 이산화탄소가 분리된 흡수제를 'Lean-MEA'로 하여 상세히 설명한다. 이는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명에 기재된 흡수제가 MEA에 한정되는 것은 아니다. 다만, 본 발명에 따른 흡수제는 아민계열 흡수제를 사용하는 것이 바람직하다. Hereinafter, the absorbent according to the present invention will be described in detail with MEA (monoethanolamine), carbon dioxide-absorbed absorbent as 'Rich-MEA' and carbon dioxide separated absorbent as Lean-MEA. This is for the purpose of helping understanding of the present invention, and the absorbent described in the present invention is not limited to MEA. However, the absorbent according to the present invention preferably uses an amine-based absorbent.

상기 이산화탄소 흡수단계는 흡수탑(30)내에서 연도가스(100)와 MEA의 접촉에 의해 연도가스(100)내의 이산화탄소를 흡수하는 단계로, 흡수탑(30)의 상단에서 하단방향으로 MEA(Lean-MEA)가 용액상태로 분사되고, 흡수탑(30)의 하단에서 상단방향으로 연도가스(100)가 유입되며, MEA와 연도가스의 향류 접촉에 의해 연소가스내의 이산화탄소가 MEA에 흡수된다. The carbon dioxide absorbing step absorbs carbon dioxide in the flue gas 100 by contacting the flue gas 100 with the MEA in the absorption tower 30. The carbon dioxide absorbing step absorbs carbon dioxide in the flue gas 100 by contacting the MEA -MEA) is injected in a solution state, the flue gas 100 flows in the upper end direction from the lower end of the absorption tower 30, and carbon dioxide in the combustion gas is absorbed into the MEA by countercurrent contact of the flue gas with the MEA.

또한, 상기 흡수탑(30)내에서 이산화탄소가 제거된 가스(101)는 흡수탑 상단을 통해 배출되고, 이산화탄소가 흡수된 Rich-MEA는 흡수탑(30) 하단을 통해 제1열교환기(10)로 유입된다.The rich-MEA, in which carbon dioxide has been absorbed, is discharged through the lower end of the absorption column 30 to the first heat exchanger 10, Lt; / RTI >

상기 1차 예비가열단계는 이산화탄소가 흡수된 MEA가 탈거탑(40)으로 유입되기 전에 탈거탑의 탑상증기(200)에 의해 예비가열하여 Rich-MEA의 온도를 높이는 단계로, In the first preliminary heating step, the temperature of the rich-MEA is increased by preheating the MEA absorbed by carbon dioxide by the overhead vapor 200 of the stripping tower before the MEA is introduced into the stripping tower 40,

흡수탑(30) 하단으로 배출되는 Rich-MEA가 제1열교환기(10)로 유입되고, 탈거탑(40)의 상단에서 배출되는 고온의 탑상증기(200)가 응축기(41)로 유입되기 전에 제1열교환기(10)로 공급되어, 제1열교환기(10) 내에서 Rich-MEA와 열교환에 의해 Rich-MEA를 예비가열하게 된다. The rich-MEA discharged to the bottom of the absorption tower 30 flows into the first heat exchanger 10 and the high-temperature overhead vapor 200 discharged from the top of the stripping tower 40 flows into the condenser 41 Is supplied to the first heat exchanger (10), and the rich-MEA is preliminarily heated by heat exchange with the rich-MEA in the first heat exchanger (10).

즉, 상기 흡수탑(30)에서의 이산화탄소 흡수반응은 발열반응으로, 흡수탑(30) 하단으로 배출되는 Rich-MEA는 약 50∼56℃를 유지하고 있으며, 탈거탑(40)에서의 이산화탄소 분리반응은 흡열반응으로, 탈거탑(40) 상단으로 배출되는 탑상증기(200)는 약 90∼120℃의 고온을 유지하고 있으므로, 제1열교환기(10)내에서 30℃ 이상의 온도차이에 따른 효율적인 열교환에 의해 Rich-MEA가 예비가열되어 약 68∼80℃ 범위로 상승되게 된다. That is, the carbon dioxide absorption reaction in the absorption tower 30 is an exothermic reaction, and the rich MEA discharged to the lower end of the absorption tower 30 is maintained at about 50 to 56 DEG C, and the carbon dioxide separation Since the reaction is an endothermic reaction and the overhead vapor 200 discharged to the top of the stripping column 40 maintains a high temperature of about 90 to 120 DEG C, By heat exchange, the rich-MEA is preheated and raised to a temperature in the range of about 68-80 < 0 > C.

상기 2차 예비가열단계는 제1열교환기(10)에서의 열교환에 의해 약 68∼80℃ 범위로 1차 예비가열된 Rich-MEA가, 리보일러(50)의 고온 스팀으로 인해 이산화탄소와 분리된 후 흡수탑(30)으로 공급되는 Lean-MEA에 의해 제2열교환기(20)내에서 열교환되는 것이다.The second preliminary heating step is a step in which the rich pre-heated Rich-MEA in the range of about 68 to 80 DEG C by heat exchange in the first heat exchanger 10 is separated from the carbon dioxide by the high temperature steam of the reboiler 50 And the heat is exchanged in the second heat exchanger 20 by the lean-MEA supplied to the absorption tower 30.

즉, 흡수탑(30)으로 공급되는 Lean-MEA는 약 100∼120℃의 고온을 유지하고 있어, 1차 예비가열된 Rich-MEA(약 68∼80℃)는 제2열교환기(20)내에서 Lean-MEA의 열을 흡수하여 약 100℃ 이상의 온도를 유지하며 탈거탑(40)으로 유입되게 된다.That is, the lean-MEA supplied to the absorption tower 30 maintains a high temperature of about 100 to 120 ° C., and the first preheated Rich-MEA (about 68 to 80 ° C.) flows into the second heat exchanger 20 Absorbing the heat of the lean-MEA at a temperature of about 100 ° C or more and flowing into the demolition tower 40.

이와 같이, 본 발명은 Rich-MEA가 30℃ 이상의 온도차이에 따른 효율적인 열교환에 의해 1,2차 예비가열되어 100℃이상으로 충분히 온도가 높아진 후 탈거탑(40)내로 유입되도록 되어 있어, 탈거탑(40)이 보다 높은 온도에서 운전될 수 있으며, 이로 인하여 탈거탑 내의 환경이 흡열반응인 탈거반응에 적합한 환경으로 조성되게 된다. As described above, in the present invention, the rich-MEA is subjected to first and second preliminary heating by efficient heat exchange according to a temperature difference of 30 ° C or more, so that the temperature of the rich- (40) can be operated at a higher temperature, so that the environment in the demixing column is formed as an environment suitable for the endothermic reaction.

상기 재생단계는 탈거탑(40)내로 유입된 Rich-MEA를 가열하여, 이산화탄소와 Lean-MEA로 분리되는 단계로, 제2열교환기(20)에 의해 약 100℃ 이상의 온도를 유지하는 Rich-MEA가 탈거탑(40)내로 공급된 후, 리보일러(50)를 통해 탈거탑내로 공급되는 스팀 열에너지에 의해 가열되어 이산화탄소와 Lean-MEA으로 분리됨으로써, MEA가 재생된다. The regeneration step is a step of heating the rich-MEA introduced into the stripping tower 40 and separating it into carbon dioxide and Lean-MEA. The rich-MEA is maintained at a temperature of about 100 ° C or more by the second heat exchanger 20, Is supplied into the stripping tower 40 and then heated by steam heat energy supplied into the stripping tower through the reboiler 50 to be separated into carbon dioxide and Lean-MEA, thereby regenerating the MEA.

이때, 상기 리보일러(50)를 통해 탈거탑(40)내로 공급되는 열에너지는 MEA의 열화가 발생되지 않도록 약 120℃ 보다 낮은 온도로 공급되도록 되어 있다. 즉, 본 발명은 탈거탑(40)내로 유입되는 Rich-MEA 가 1,2차 예비가열에 의해 100℃ 이상의 온도를 구비하도록 되어 있어, 리보일러(50)를 통해 탈거탑(40)내로 공급되는 열에너지가 120℃ 보다 낮은 온도를 구비하고 있어도, 탈거탑(40)내에서 이산화탄소의 분리반응이 원활하게 일어나게 된다. At this time, the thermal energy supplied into the deodorizer 40 through the reboiler 50 is supplied at a temperature lower than about 120 ° C so as not to cause deterioration of the MEA. That is, according to the present invention, the rich-MEA introduced into the stripping tower 40 has a temperature of 100 ° C or more by first and second preliminary heating and is supplied into the stripping tower 40 through the reboiler 50 Even if the thermal energy is lower than 120 캜, the separation reaction of carbon dioxide in the deodorization tower 40 is smoothly performed.

상기 흡수제 순환단계는 탈거탑(40)내에서 재생된 Lean-MEA를 흡수탑(30)으로 재공급하여 순환시키는 단계로, 탈거탑(40)내에서 재생된 Lean-MEA는 제2열교환기(20)내로 약 100∼120℃ 온도로 공급되고, 제2열교환기(20)내에서 1차 예비가열된 Rich-MEA와의 열교환에 의해 약 68∼80℃로 냉각된 후, 냉각기를 거쳐 40℃로 추가 냉각되어 흡수탑(30)으로 공급된다. The lean-MEA regenerated in the stripping column 40 is circulated through the second heat exchanger (not shown). The lean-MEA is regenerated in the stripping column 40, 20), cooled to about 68 to 80 占 폚 by heat exchange with the first preheated Rich-MEA in the second heat exchanger 20, and then cooled to 40 占 폚 Is further cooled and supplied to the absorption tower (30).

다시 말하면, 본 발명은 제2열교환기(20)에서의 효율적인 열교환에 의해 100∼120℃의 Lean-MEA가 약 68∼80℃로 냉각된 후 흡수탑(30)으로 Lean-MEA를 공급하는 흡수제 공급라인(82)에 별도의 냉각기(83)를 설치하여 흡수탑(30) 내로 공급되는 Lean-MEA의 온도를 40℃ 가량으로 낮춘다. 이는 흡수탑의 응축기 온도가 냉각수로 해수를 활용하는 경우를 고려하여 40℃로 고려된 데에 따른 것이다. In other words, the present invention is characterized in that the lean-MEA at 100 to 120 ° C is cooled to about 68 to 80 ° C by efficient heat exchange in the second heat exchanger 20, A separate cooler 83 is provided in the supply line 82 to lower the temperature of the Lean-MEA supplied into the absorption tower 30 to about 40 ° C. This is due to the fact that the condenser temperature of the absorber is considered at 40 ° C in consideration of the case where seawater is used as cooling water.

또한, 상기 흡수제 공급라인(82)에는 저장조(84)가 더 설치될 수 있으며, 상기 저장조는 MEA 및 물(H2O)의 makeup 기능을 구비한다. Further, the absorbent supply line 82 may further include a reservoir 84, which has a makeup function of MEA and water (H 2 O).

상기 탑상증기 이송단계는 탈거탑(40)의 상단으로 배출되는 이산화탄소를 포함하는 고온의 탑상증기(200)가 제1열교환기(10)로 공급되고, 제1열교환기(10)내에서 제1열교환기(10)내로 유입되는 Rich-MEA와 열교환되며, 열교환에 의해 온도가 낮아진 탑상증기는 응축기(41)로 공급된다. In the overhead vapor transfer step, a high temperature overhead vapor (200) containing carbon dioxide discharged to the upper end of the stripping tower (40) is supplied to the first heat exchanger (10) Exchanged with the rich-MEA flowing into the heat exchanger 10, and the overhead vapor whose temperature is lowered by heat exchange is supplied to the condenser 41. [

이때, 상기 탈거탑(40)의 상단으로 배출되는 약 90∼120℃의 탑상증기는 제1열교환기내에서 Rich-MEA와의 열교환에 의해 약 70℃ 가량으로 냉각된 후, 응축기(41)로 공급되게 된다. At this time, the overhead vapor discharged to the upper end of the stripping tower 40 is cooled to about 70 ° C by heat exchange with the rich-MEA in the first heat exchanger, and then supplied to the condenser 41 do.

상기 포집단계는 응축기(41)에 의해 탑상증기가 냉각된 후, 리플럭스 드럼(42)에서 응축수 ,응축된 흡수제 및 이산화탄소로 분리되어 포집된다. 상기 포집단계는 공지의 기술에 해당되므로, 이에 대한 상세한 설명은 생략한다. After the overhead vapor is cooled by the condenser 41, the collecting step is separated and collected in the reflux drum 42 as condensed water, condensed absorbent, and carbon dioxide. Since the collecting step corresponds to a known technique, a detailed description thereof will be omitted.

상기와 같은 이산화탄소 포집공정에 의해 본 발명은 연도가스내 이산화탄소를 약 90% 이상 제거할 수 있다. According to the above-described carbon dioxide capture process, the present invention can remove about 90% or more of carbon dioxide in the flue gas.

이와 같이, 본 발명은 흡수탑(30)에서 이산화탄소(CO2)와 MEA의 반응 결과물인 Rich amine stream(Rich-MEA)이 탈거탑(40)으로 유입되기 전에, 탈거탑(40)에서 배출되는 고온의 탑상증기(200) 및 탈거탑(40)내에서 재생된 고온의 Lean-MEA와의 순차적인 열교환에 의해 1,2차 예비가열되어 높은 온도를 유지하며 탈거탑(40)내로 유입되도록 되어 있어, 탈거탑(40)이 보다 효율적으로 운전될 수 있도록 되어 있다. As described above, according to the present invention, the rich amine stream (Rich-MEA), which is the reaction product of carbon dioxide (CO 2 ) and MEA, is discharged from the stripping tower 40 before entering the stripping tower 40 in the absorption tower 30 MEA preheated by high-temperature overhead vapor (200) and high-temperature lean-MEA regenerated in the demoulding tower (40) to be introduced into the demoulding tower (40) while maintaining a high temperature And the demoulding tower 40 can be operated more efficiently.

즉, 본 발명은 탈거탑(40) 내부에서의 재생에너지 소비가 저감되고, 리보일러(50)의 열량변화(Heat Duty)가 감소되며, 탑상증기(Overhead vapor)를 냉각(cooling)시키는데 필요한 응축기(41)의 열량변화(Condenser Duty)도 감소되므로, 전체적으로 공정 에너지 효율을 개선되는 특징이 있다. That is, the present invention is advantageous in that the consumption of the regenerated energy in the deodorizer 40 is reduced, the heat duty of the reboiler 50 is reduced, and the condenser, which is required to cool the overhead vapor, Since the condenser duty of the heat exchanger 41 is also reduced, the process energy efficiency as a whole is improved.

도 2 는 본 발명에 따른 전체 공정을 보인 장치예시도를 도시한 것으로, 본 발명에 따른 이산화탄소 포집장치는, 이산화탄소가 함유된 연도가스가 유입되고 흡수제가 공급되는 흡수탑(30)과, 흡수탑 하단과 제1유로(61)에 의해 연결되어 흡수탑(30)내에서 이산화탄소가 흡수된 흡수제가 유입되고, 탈거탑(40)의 제1증기배출라인(71)과 연결되어 탑상증기(200)가 공급되는 제1열교환기(10)와, 제1열교환기(10)의 흡수제 출구와 제2유로(62)에 의해 연결되어 제1열교환기(10)에 의해 1차 예비가열된 흡수제가 유입되고, 탈거탑(40)의 흡수제 배출라인(81)과 연결되어 재생된 흡수제가 공급되는 제2열교환기(20)와, 제2열교환기(20)의 흡수제 출구와 제3유로(63)에 의해 연결되어 제2열교환기(20)에 의해 2차 예비가열된 흡수제가 유입되고, 리보일러(50)를 통해 열에너지가 공급되는 탈거탑(40)과, 제2열교환기(20)의 재생된 흡수제 출구와 연결되어 흡수탑(30)으로 재생된 흡수제를 공급하는 흡수제 공급라인(82)과, 제1열교환기(10)의 탑상증기 출구와 제2증기배출라인(72)에 의해 연결되어 제1열교환기(10)에 의해 열교환되어 온도가 낮아진 탑상증기가 유입되는 응축기(41)와, 상기 응축기(41)와 연결되는 리플럭스 드럼(reflux drum,42)을 포함한다.FIG. 2 is a view illustrating an example of an apparatus showing an entire process according to the present invention. The carbon dioxide collecting apparatus according to the present invention includes an absorption tower 30 into which flue gas containing carbon dioxide flows and is supplied with an absorbent, Absorbing agent absorbed in carbon dioxide absorbed in the absorption tower 30 and connected to the first vapor discharge line 71 of the stripping tower 40 and connected to the overhead vapor 200 by the first flow path 61, A first heat exchanger 10 connected to the absorbent outlet of the first heat exchanger 10 by a second flow path 62 so that the first preheated absorbent is introduced by the first heat exchanger 10, A second heat exchanger 20 connected to the absorbent discharge line 81 of the stripping tower 40 and supplied with regenerated absorbent and a second heat exchanger 20 connected to the absorbent outlet of the second heat exchanger 20 and the third flow path 63 The second preheated absorbent is introduced by the second heat exchanger 20, and the heat energy is supplied through the reboiler 50 An absorber supply line 82 connected to the regenerated absorber outlet of the second heat exchanger 20 to supply the regenerated absorbent to the absorber 30, a first heat exchanger 10, A condenser 41 which is connected to the overhead vapor outlet of the condenser 41 by a second vapor discharge line 72 and into which the overhead vapor whose temperature has been lowered by the first heat exchanger 10 is introduced, And a reflux drum (42).

상기 흡수제, 재생된 흡수제의 순환은 펌프에 의해 이루어지게 되며 이와 같은 펌프의 설치는 공지의 구성이므로, 이에 대한 설명은 생략한다. The circulation of the absorbent and the regenerated absorbent is performed by a pump. The installation of such a pump is well known in the art, and a description thereof will be omitted.

또한, 본 발명은 제1,2,3유로, 제1,2증기배출라인, 흡수제 배출라인, 흡수제 공급라인, 흡수탑, 탈거탑과 연결하여 냉각기, 응축기, 저장조가 더 설치될 수 있으며, 이와 같은 구성의 추가는 공지의 기술사항을 추가하는 것이므로, 이에 대한 설명 역시 생략한다. Further, the present invention may further include a cooler, a condenser, and a storage tank connected to the first, second, and third flow paths, the first and second vapor discharge lines, the absorbent discharge line, the absorbent supply line, the absorption tower, The addition of the same configuration adds known technology, so a description thereof will be omitted.

이하, 본 발명을 실시예에 의해 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail with reference to the following examples.

실시예 1Example 1

흡수탑을 통해 이산화탄소가 흡수된 Rich-MEA를 탈거탑에서 발생되는 탑상증기에 의해 열교환되어 1차 예비가열되고, 1차 예비가열된 Rich-MEA가 탈거탑에서 흡수탑으로 공급되는 Lean-MEA와 열교환되어 2차 예비가열된 후, 탈거탑으로 유입되도록 구성하여 연도가스내의 이산화탄소를 포집하였다. The lean-MEA, in which the rich-MEA in which carbon dioxide is absorbed through the absorption tower is heat-exchanged by the overhead vapor generated in the stripping tower and is first preheated, and the first preheated Rich-MEA is supplied from the stripping tower to the absorption tower Exchanged to be secondarily preheated, and then introduced into the stripping tower to collect carbon dioxide in the flue gas.

이때, 흡수탑과 탈거탑은 아래 [표1]에 따른 조건으로 공정모사하였으며, 포집공정 중, 제1열교환기의 열교환매체(Rich-MEA와 탑상증기)와 제2열교환기의 열교환매체(1차 예비가열된 Rich-MEA와 Lean-MEA)의 인/아웃온도를 측정한 후, 그 결과는 [표2]에 나타내었다. At this time, the absorption tower and the stripping tower were subjected to a process simulation under the conditions shown in Table 1 below. During the collection process, the heat exchange medium (Rich-MEA and overhead vapor) of the first heat exchanger and the heat exchange medium 1 The pre-heated Rich-MEA and Lean-MEA) in / out temperatures were measured and the results are shown in Table 2.

[표1] [Table 1]

Figure pat00001
Figure pat00001

[표2] [Table 2]

Figure pat00002
Figure pat00002

위의 [표2]에서와 같이, 본 발명은 1,2차 예비가열을 통해 흡수탑에서 배출되는 Rich-MEA의 온도가 약 104℃ 의 온도로 탈거탑내로 유입되고, 탈거탑의 탑상증기는 70℃로 냉각되어 응축기로 공급되며, 탈거탑에서 흡수탑으로 공급되는 Lean-MEA는 약 72.1℃로 낮아지며 추가 냉각기를 거쳐 40℃ 가량의 온도로 흡수탑에 공급됨을 알 수 있다. As shown in Table 2 above, the present invention is characterized in that the temperature of the rich-MEA discharged from the absorption tower through the first and second preheating is introduced into the de-stripping tower at a temperature of about 104 ° C, and the overhead vapor of the de- 70 ° C and supplied to the condenser. The lean-MEA supplied to the absorption tower from the stripping tower is lowered to about 72.1 ° C and supplied to the absorber at a temperature of about 40 ° C through the additional cooler.

실시예 2Example 2

실시예1에 따른 포집공정에 의해 이산화탄소 포집량, 리보일러 열량변화를 측정한 후, 이를 대비군과 대비하였으며, 그 결과는 [표3]에 나타내었다. The carbon dioxide capture amount and the calorific value of the reboiler were measured by the collecting process according to Example 1, and compared with the control group, and the results are shown in Table 3.

상기 대비군은 흡수탑과 탈거탑 사이에 하나의 열교환기를 설치하고 상기 열교환기에 의해 이산화탄소가 흡수된 Rich-MEA와 흡수탑으로 공급되는 Lean-MEA를 열교환하도록 구성된 포집공정에 의해 연도가스내의 이산화탄소를 포집하는 구조이다.In the contrast group, one heat exchanger is installed between the absorption tower and the stripping tower, and carbon dioxide in the flue gas is collected by a collection process configured to heat-exchange the rich-MEA in which the carbon dioxide is absorbed by the heat exchanger and the lean- It is a structure to collect.

[표3][Table 3]

Figure pat00003
Figure pat00003

위의 [표3]에서와 알 수 있듯이, 본 발명은 리보일러의 열량변화가 대비군과 비교할 때 약 7% 정도 감소되는 것을 알 수 있으며, 이를 통해 본 발명은 탈거탑내에서 MEA의 재생을 위한 재생에너지 소비가 저감되어 에너지효율이 증대됨을 알 수 있다. As can be seen from the above Table 3, the present invention shows that the heat change of the reboiler is reduced by about 7% as compared with the control group. Thus, the present invention can improve the regeneration of the MEA in the de- And the energy efficiency is increased.

본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위내에 있게 된다. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims and their equivalents. Of course, such modifications are within the scope of the claims.

(10) : 제1열교환기 (20) : 제2열교환기
(30) : 흡수탑 (31) : 응축기
(40) : 탈거탑 (41) : 응축기
(42) : 리프럭스 드럼(Refux drum) (50) : 리보일러(Reboiler)
(61) : 제1유로 (62) : 제2유로
(63) : 제3유로 (71) : 제1증기배출라인
(72) : 제2증기배출라인 (81) : 흡수제 배출라인
(82) : 흡수제 공급라인 (83) : 냉각기
(84) : 저장조 (100) : 연도가스
(200) : 탑상증기(overhead vapor)
(10): first heat exchanger (20): second heat exchanger
(30): absorption tower (31): condenser
(40): demounting tower (41): condenser
(42): Refux drum (50): Reboiler
(61): first flow path (62): second flow path
(63): third flow path (71): first vapor discharge line
(72): second vapor discharge line (81): absorbent discharge line
(82): absorbent supply line (83): cooler
(84): Storage tank (100): Flue gas
(200): overhead vapor

Claims (5)

흡수탑을 통해 이산화탄소가 흡수된 흡수제가, 탈거탑에서 발생되는 탑상증기와의 열교환에 의해 1차 예비가열되고, 1차 예비가열된 흡수제는, 탈거탑에서 재생된 후 흡수탑으로 공급되는 재생된 흡수제와 열교환되어 2차 예비가열된 다음, 탈거탑으로 유입되어, 탈거탑에서의 재생에너지의 소비가 절감되면서도 이산화탄소와 흡수제의 분리가 원활하게 이루어지도록 한 것을 특징으로 하는 탈거탑 탑상증기의 열에너지를 재활용하는 이산화탄소 포집공정.
The absorbent having absorbed carbon dioxide through the absorption tower is firstly preheated by heat exchange with the overhead vapor generated in the demixing tower and the primary preheated absorbent is recovered from the regenerated Heat exchanged with the absorbent to be secondarily preheated, and then introduced into the deodorization tower, thereby reducing the consumption of renewable energy in the deodorization tower, and separating the carbon dioxide and the absorbent smoothly. Recycling CO2 capture process.
청구항 1 에 있어서;
상기 이산화탄소 포집공정은,
흡수탑(30)내에서 이산화탄소가 함유된 연도가스(Flue gas,100)를 흡수제와 향류 접촉시키는 이산화탄소 흡수단계;
이산화탄소가 흡수된 흡수제가 제1열교환기(10)로 공급되어 탈거탑(40)의 탑상증기(200)와 1차열교환되는 1차 예비가열단계;
제1열교환기(10)에서 열교환된 흡수제가 제2열교환기(20)로 공급되어, 탈거탑(40)에서 제2열교환기(20)로 공급되는 재생된 흡수제와 2차 열교환되는 2차 예비가열단계;
제2열교환기(20)를 통해 2차 예비가열된 흡수제가 탈거탑(40)으로 유입되고 리보일러를 통해 공급된 열에너지에 의해 가열되어 이산화탄소와 흡수제가 분리되는 재생단계;
탈거탑(40)내에서 재생된 흡수제가 제2열교환기(20)를 거쳐 열교환된 후 흡수탑(30)으로 공급되어 순환되는 흡수제 순환단계;
탈거탑내의 이산화탄소가 포함된 탑상증기(200)가 제1열교환기(10)를 거쳐 열교환된 후 응축기(41)로 공급되는 탑상증기 이송단계;
응축기(41)에 의해 탑상증기가 냉각되고 리플럭스 드럼(reflux drum,42)에서 응축수, 응축된 흡수제 및 이산화탄소로 분리되어 포집되는 포집단계;를 포함하도록 되어 있어,
탈거탑(40)의 재생에너지, 리보일러(50)의 열량변화, 응축기(41)의 열량변화저감을 통해 전체 공정의 에너지 효율이 향상되도록 한 것을 특징으로 하는 탈거탑 탑상증기의 열에너지를 재활용하는 이산화탄소 포집공정.
The method of claim 1,
In the carbon dioxide capture step,
A carbon dioxide absorption step of bringing a flue gas (100) containing carbon dioxide into a countercurrent contact with the absorbent in the absorption tower (30);
A primary preliminary heating step in which the absorbent having absorbed carbon dioxide is supplied to the first heat exchanger (10) and subjected to primary heat exchange with the overhead vapor (200) of the deodorizer (40);
The absorbent that has been heat-exchanged in the first heat exchanger 10 is supplied to the second heat exchanger 20 and the second absorbent that is subjected to the second heat exchange with the regenerated absorbent supplied from the demoulding tower 40 to the second heat exchanger 20 Heating step;
A regeneration step in which the secondary preheated absorbent is introduced into the stripping tower 40 through the second heat exchanger 20 and heated by the heat energy supplied through the reboiler to separate the carbon dioxide and the absorbent;
An absorbent circulation step in which the absorbent regenerated in the stripping tower 40 is heat-exchanged via the second heat exchanger 20 and then supplied to the absorption tower 30 and circulated;
An overhead vapor transfer step of supplying overhead vapor (200) containing carbon dioxide in a demixing tower to the condenser (41) after heat exchange through the first heat exchanger (10);
And a collecting step in which the overhead vapor is cooled by the condenser 41 and separated from the reflux drum 42 by the condensed water, the condensed absorbent, and the carbon dioxide,
The energy efficiency of the entire process is improved through the regenerated energy of the stripping tower 40, the change in the amount of heat of the reboiler 50, and the change in the amount of heat of the condenser 41, Carbon dioxide capture process.
청구항1 또는 청구항 2 에 있어서;
Rich-MEA는 1,2차 예비가열에 의해 100℃ 이상의 고온을 구비하며 탈거탑으로 유입되는 것을 특징으로 하는 탈거탑 탑상증기의 열에너지를 재활용하는 이산화탄소 포집공정.
The method according to claim 1 or 2,
Wherein the rich-MEA has a high temperature of 100 ° C or higher by first and second preliminary heating, and is introduced into the deodorization tower, and the step of collecting the carbon dioxide which recycles the thermal energy of the steam on the stripping tower.
청구항 2 에 있어서;
리보일러를 통해 탈거탑(40)내로 공급되는 열에너지는 MEA의 열화가 발생되지 않도록 120℃ 보다 낮은 온도로 공급되는 것을 특징으로 하는 탈거탑 탑상증기의 열에너지를 재활용하는 이산화탄소 포집공정.
The method of claim 2,
Wherein the thermal energy supplied into the stripping tower (40) through the reboiler is supplied at a temperature lower than 120 ° C so as not to cause deterioration of the MEA, thereby recovering the thermal energy of the vaporized steam.
이산화탄소가 함유된 연도가스가 유입되고 흡수제가 공급되는 흡수탑(30)과,
흡수탑 하단과 제1유로(61)에 의해 연결되어 흡수탑(30)내에서 이산화탄소가 흡수된 흡수제가 유입되고, 탈거탑(40)의 제1증기배출라인(71)과 연결되어 탑상증기(200)가 공급되는 제1열교환기(10)와,
제1열교환기(10)의 흡수제 출구와 제2유로(62)에 의해 연결되어 제1열교환기(10)에 의해 1차 예비가열된 흡수제가 유입되고, 탈거탑(40)의 흡수제 배출라인(81)과 연결되어 재생된 흡수제가 공급되는 제2열교환기(20)와,
제2열교환(20)의 흡수제 출구와 제3유로(63)에 의해 연결되어 제2열교환기(20)에 의해 2차 예비가열된 흡수제가 유입되고, 리보일러(50)를 통해 열에너지가 공급되는 탈거탑(40)과,
제2열교환기(20)의 재생된 흡수제 출구와 연결되어 흡수탑(30)으로 재생된 흡수제를 공급하는 흡수제 공급라인(82)과,
제1열교환기(10)의 탑상증기 출구와 제2증기배출라인(72)에 의해 연결되어 제1열교환기(10)에 의해 열교환되어 온도가 낮아진 탑상증기가 유입되는 응축기(41)와,
상기 응축기(41)와 연결되는 리플럭스 드럼(reflux drum,42)을 포함하는 것을 특징으로 하는 탈거탑 탑상증기의 열에너지를 재활용하는 이산화탄소 포집장치.
An absorption tower (30) into which flue gas containing carbon dioxide flows and which is supplied with an absorbent,
The absorbent absorbed by the carbon dioxide in the absorption tower 30 is connected to the lower end of the absorption tower by the first flow path 61 and connected to the first steam discharge line 71 of the stripping tower 40, A first heat exchanger (10) to which the first heat exchanger (200)
The first absorbent outlet of the first heat exchanger 10 is connected to the second flow path 62 so that the first preheated absorbent is introduced by the first heat exchanger 10 and the absorbent discharge line A second heat exchanger (20) connected to the adsorbent (81) and supplied with the regenerated absorbent,
The absorbent outlet of the second heat exchanger 20 is connected to the third flow channel 63 so that the second preheated absorbent is introduced by the second heat exchanger 20 and the heat energy is supplied through the reboiler 50 A demounting tower 40,
An absorber supply line 82 connected to the regenerated absorber outlet of the second heat exchanger 20 to supply regenerated absorber to the absorber 30,
A condenser 41 connected to the overhead vapor outlet of the first heat exchanger 10 by the second vapor discharge line 72 to receive the overhead vapor whose temperature is lowered by the first heat exchanger 10,
And a reflux drum (42) connected to the condenser (41). The apparatus according to claim 1 or 2, wherein the condenser (41) is a condenser (41).
KR1020160042360A 2016-04-06 2016-04-06 Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy Ceased KR20170114802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160042360A KR20170114802A (en) 2016-04-06 2016-04-06 Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160042360A KR20170114802A (en) 2016-04-06 2016-04-06 Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy

Publications (1)

Publication Number Publication Date
KR20170114802A true KR20170114802A (en) 2017-10-16

Family

ID=60295629

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160042360A Ceased KR20170114802A (en) 2016-04-06 2016-04-06 Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy

Country Status (1)

Country Link
KR (1) KR20170114802A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022606A1 (en) * 2018-07-23 2020-01-30 한국전력공사 Apparatus for capturing acid gas and method for capturing acid gas by using same
KR102608674B1 (en) * 2022-08-17 2023-12-05 (주)원이엔지 CO2 capture system in flue gas of ship including regeneration of CO2 adsorbent using waste heat of flue gas and method for colleting the same
WO2025024522A1 (en) * 2023-07-24 2025-01-30 Schlumberger Technology Corporation Carbon capture systems and methods including heat transfer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022606A1 (en) * 2018-07-23 2020-01-30 한국전력공사 Apparatus for capturing acid gas and method for capturing acid gas by using same
KR102608674B1 (en) * 2022-08-17 2023-12-05 (주)원이엔지 CO2 capture system in flue gas of ship including regeneration of CO2 adsorbent using waste heat of flue gas and method for colleting the same
WO2025024522A1 (en) * 2023-07-24 2025-01-30 Schlumberger Technology Corporation Carbon capture systems and methods including heat transfer

Similar Documents

Publication Publication Date Title
JP4690659B2 (en) CO2 recovery device
JP4745682B2 (en) CO2 recovery apparatus and method
JP5875245B2 (en) CO2 recovery system and CO2 gas-containing moisture recovery method
JP2007061777A (en) CO2 recovery apparatus and method
JP2005254212A5 (en)
JP2008062165A (en) CO2 recovery apparatus and method
JP2010088982A (en) Carbon dioxide recovering system
JP2012192403A (en) Co2 recovery apparatus
KR101751723B1 (en) Acid gas scrubbing system and method for acid gas scrubbing using thereof
JP2014036942A (en) Co2 recovery device and method
JP2008307520A (en) Co2 or h2s removal system, co2 or h2s removal method
JP5591075B2 (en) CO2 and H2S containing gas recovery system and method
JP5591083B2 (en) CO2 recovery system
KR101498460B1 (en) Energy Saving Acidic gas Capture System and Method Using Separate Water
JP5737916B2 (en) CO2 recovery system
KR101190725B1 (en) Apparatus for separating acid gas from mixed gas
CN104936678B (en) Containing CO2And H2The recovery system and recovery method of the gas of S
KR20170114802A (en) Apparatus and method for carbon dioxide capturing by reusing the stripper`s overhead vapor thermal energy
JP2011062700A (en) Co2 recovery apparatus and method
US20160296879A1 (en) System and method for separation and recovery of acid gas
WO2004073838A1 (en) Method for recovery of carbon dioxide from a gaseous source
KR101583463B1 (en) Energy Efficient Acidic gas Capture System and Methods
KR101583462B1 (en) Energy Saving Acidic gas Capture System and Method
KR101630054B1 (en) System for collecting acid gas and method for collecting the same
KR20180024464A (en) Method for collecting acid gas using demineralized water

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160406

PA0201 Request for examination
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170131

Patent event code: PE09021S01D

N231 Notification of change of applicant
PN2301 Change of applicant

Patent event date: 20170309

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

PG1501 Laying open of application
E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20190328

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20170131

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I