KR20170106662A - Agricultural and fishery dry using the aluminum solar panels and thermodynamic solar hot water system - Google Patents
Agricultural and fishery dry using the aluminum solar panels and thermodynamic solar hot water system Download PDFInfo
- Publication number
- KR20170106662A KR20170106662A KR1020160030027A KR20160030027A KR20170106662A KR 20170106662 A KR20170106662 A KR 20170106662A KR 1020160030027 A KR1020160030027 A KR 1020160030027A KR 20160030027 A KR20160030027 A KR 20160030027A KR 20170106662 A KR20170106662 A KR 20170106662A
- Authority
- KR
- South Korea
- Prior art keywords
- drying
- heat
- aluminum
- hot water
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 53
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 37
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 37
- 238000001035 drying Methods 0.000 claims abstract description 52
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims description 22
- 230000005855 radiation Effects 0.000 abstract description 2
- 239000006096 absorbing agent Substances 0.000 abstract 3
- 239000008236 heating water Substances 0.000 abstract 1
- 239000003507 refrigerant Substances 0.000 description 12
- 238000007602 hot air drying Methods 0.000 description 10
- 238000001704 evaporation Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000005611 electricity Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000007791 dehumidification Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 240000004160 Capsicum annuum Species 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- 235000007862 Capsicum baccatum Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000001728 capsicum frutescens Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/06—Controlling, e.g. regulating, parameters of gas supply
- F26B21/08—Humidity
-
- F24J2/02—
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/001—Drying-air generating units, e.g. movable, independent of drying enclosure
- F26B21/002—Drying-air generating units, e.g. movable, independent of drying enclosure heating the drying air indirectly, i.e. using a heat exchanger
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/02—Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure
- F26B21/022—Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure with provisions for changing the drying gas flow pattern, e.g. by reversing gas flow, by moving the materials or objects through subsequent compartments, at least two of which have a different direction of gas flow
- F26B21/028—Circulating air or gases in closed cycles, e.g. wholly within the drying enclosure with provisions for changing the drying gas flow pattern, e.g. by reversing gas flow, by moving the materials or objects through subsequent compartments, at least two of which have a different direction of gas flow by air valves, movable baffles or nozzle arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/06—Controlling, e.g. regulating, parameters of gas supply
- F26B21/08—Humidity
- F26B21/086—Humidity by condensing the moisture in the drying medium, which may be recycled, e.g. using a heat pump cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B21/00—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
- F26B21/14—Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
- F26B21/145—Condensing the vapour onto the surface of the materials to be dried
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B3/00—Drying solid materials or objects by processes involving the application of heat
- F26B3/02—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air
- F26B3/04—Drying solid materials or objects by processes involving the application of heat by convection, i.e. heat being conveyed from a heat source to the materials or objects to be dried by a gas or vapour, e.g. air the gas or vapour circulating over or surrounding the materials or objects to be dried
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F26—DRYING
- F26B—DRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
- F26B2200/00—Drying processes and machines for solid materials characterised by the specific requirements of the drying good
- F26B2200/06—Grains, e.g. cereals, wheat, rice, corn
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Drying Of Solid Materials (AREA)
Abstract
Description
알루미늄 태양열 집열판을 이용한 열역학 태양열 온수생산 시스템을 활용하여, 농수산물을 대량으로 건조하는, 건조기술 분야.Thermodynamics using aluminum solar collectors Drying technology to dry large quantities of agricultural and marine products using solar hot water production system.
농산물 건조는 직접 또는 간접적으로 에너지를 투입하여 피 건조물에 함유된 수분이나 용제 등을 제거하는 단위조작으로서, 자연건조방식인 태양열, 해풍을 이용하는 방법과 가스, 기름 전기 등 에너지를 이용하는 방법이 있다. 에너지 이용 건조방법 중, 전기나 가스, 기름을 이용한 열풍건조방식은, 에너지 소모가 과다하고, 상품의 품질도 떨어지는 편이다.Drying of agricultural products is a unit operation to remove water or solvent contained in the dried products by directly or indirectly applying energy. There are methods using natural drying methods such as solar heat and sea breeze, and methods using energy such as gas and oil electricity. Among energy drying methods, hot air drying methods using electricity, gas, and oil tend to consume a large amount of energy and deteriorate product quality.
일반적인 열풍건조공정은, 보유열량의 대부분을 피 건조물의 온도상승과 수분증발에 사용한 후, 방열손실을 제외한 열풍의 대부분이 그대로 배출 되기 때문에, 다른 건조방식에 비해 습공기의 배기 방출량이 많고, 나가는 열량도 크므로, 에너지 손실이 큰 단점이 있다.In the general hot air drying process, since most of the hot air, except the heat radiation loss, is directly discharged as it is after most of the heat retained is used for temperature rise and moisture evaporation of the drying object, There is a disadvantage that energy loss is large.
따라서 열풍건조공정에서 배기가스가 갖고 나가는 건(乾) 공기와 수증기의 손실 열을 효과 적으로 회수 이용하는 것이 에너지절약의 중요한 요인이라 할 수 있으며, 배기가스의 손실 열을 효과적으로 회수 이용하기 위한 응축열교환기 및 열 펌프(Heat pump) 등을 이용하는 제습 건조기술이 적용되고 있다. 열 펌프에 의한 건조기술은 가스, 기름보일러에 의한 건조방식보다 에너지를 크게 절약(60% 이상)하는, 장점 및 특징이 있다.Therefore, it is an important factor of energy saving to effectively recover and utilize the heat loss of dry air and steam in the hot air drying process, and it is also possible to use a condensation heat exchanger And a dehumidification drying technique using a heat pump or the like is applied. The heat pump drying technique has advantages and characteristics that it saves energy (more than 60%) than the drying method by gas or oil boiler.
알루미늄 태양열 집열판을 이용한 열역학 온수생산 시스템에 의한 농수산물 건조방식은, 태양열 또는 대기열을 포집하여 온수를 생산하며, 온수에 의한 건조를 하는 것은 물론, 건조실 내에 수증기를 응축시키는 증발기(알루미늄 태양열 집열판)를 설치하여 수증기를 제거하므로 에너지를 크게 절약할 수 있다.The method of drying the agricultural and marine products by the thermodynamic hot water production system using the aluminum solar collecting plate produces hot water by collecting the solar heat or the queue, and the evaporator (aluminum solar heat collecting plate) for condensing the water vapor in the drying chamber is installed So that the energy can be saved greatly.
전기, 가스, 기름을 사용하여 농수산물을 건조하는 일반적인 열풍건조 방식은, 가열공기의 온도와 습도에 따라 건조속도가 결정되는데, 가열공기의 체류시간이 짧고 배기가스가 갖고 나가는 열량(건 공기의 현열 및 수증기의 잠 열)이 크므로 에너지손실이 큰 단점이 있다. 이러한 열풍건조의 단점을 고려하여 개발한 건조방법이 열 펌프(Heat pump) 건조방식이다.In a general hot air drying method of drying agricultural and marine products using electricity, gas and oil, the drying rate is determined by the temperature and humidity of the heated air. The heating time of the heated air is short and the heat amount of the exhaust gas And the latent heat of water vapor) is large, so that there is a disadvantage that energy loss is large. The drying method developed in consideration of the disadvantage of the hot air drying is a heat pump drying method.
열 펌프 건조방식은, 저온에서 열에너지를 흡수하여 고온에서 방열하는 냉동사이클로서, 건조공정에서는 냉매 등의 매체를 사용하는 냉매 압축식 열 펌프를 주로 사용하며, 이 시스템은 증발, 압축, 응축 및 팽창 과정을 반복하는 사이클을 형성 한다. 이러한 열 펌프 이용 건조시스템은 피 건조물을 통과한 후에 수증기를 포함한 공기로부터, 열 펌프의 흡열부분(증발기)에서 수증기가 잠열로서 가지고 있는 열에너지를 회수하면, 공기 중에 동반한 수증기가 응축되어 제거된다. 수증기가 제거된 공기를 열 펌프의 방열부(응축기)에서 다시 가열하여 온도를 올리면 공기의 상대습도는 낮아지게 된다. 이것을 건조부로 순환시킴으로써 열 펌프에 의한, 제습형의 건조기를 구성할 수 있다.The heat pump drying method is a refrigeration cycle in which heat energy is absorbed at a low temperature to dissipate heat at a high temperature. In the drying step, a refrigerant compression type heat pump using a medium such as a refrigerant is mainly used. The system uses evaporation, compression, Forming a cycle that repeats the process. The drying system using the heat pump collects the heat energy which is contained in the air as a latent heat from the air containing water vapor and passes through the endothermic part (evaporator) of the heat pump. When the temperature is raised by reheating the steam-depleted air in the heat-radiating part (condenser) of the heat pump, the relative humidity of the air is lowered. By circulating it to the drying section, a dehumidifying type dryer can be constituted by a heat pump.
열 펌프의 건조방식은 열풍건조에 비해 60% 이상의 에너지 절약을 할 수 있지만, 현재의 열 펌프 건조는 많은 에너지를 사용하기 때문에 추가적인 에너지 절약이 요구됨은 물론, 농수산물을 건조하는데 필수인 온도 조절이 어려운 것이 개선을 필히 해야 할 점이다. 온도조절이 안되면 피 건조물의 품질이 떨어진다.The drying method of the heat pump can save more than 60% of energy compared to the hot air drying. However, since the current heat pump uses a lot of energy, additional energy saving is required and temperature control which is necessary for drying the agricultural and marine products is difficult One thing that must be improved. If the temperature is not controlled, the quality of the laundry is deteriorated.
본 발명의 수단은, 집열 성능이 탁월한 알루미늄 태양열 집열판과 본 알루미늄 태양열 집열판을 이용한 열역학 태양열 온수생산 시스템을 농수산물을 건조하는데 적용하여 에너지를 절약하고 피 건조물의 품질을 개선하는 것이다.The means of the present invention is to apply an aluminum solar panel having excellent heat collection performance and a thermodynamic solar hot water production system using the aluminum solar panel to the agricultural and marine products to save energy and improve the quality of the product.
롤본드 제조방식에 의해 만들어진 알루미늄 태양열 집열판을 증발기로 사용하고, 압축기, 응축기, 팽창밸브로 열역학 태양열 온수생산 시스템을 구성한다.An aluminum solar panel made by roll bond manufacturing method is used as evaporator, and a thermodynamic solar hot water production system is constituted by compressor, condenser and expansion valve.
알루미늄 태양열 집열판(증발기)의 일부 수량은 건조부의 외부에 설치하여, 태양열 및 대기열을 포집하여 온수를 생산하고, 태양열 집열판(증발기)의 일부 수량은 건조부의 내부에 설치하여 제습 역할을 담당하도록 한다.Part of the aluminum solar collecting plate (evaporator) is installed outside the drying unit to collect hot water by collecting the solar heat and the queue, and a part of the solar heat collecting plate (evaporator) is installed in the drying unit to perform dehumidification.
열역학 태양열 온수 생산시스템에 의한 건조방식은, 온수로 만들어진 열풍이 피 건조물을 통과하면서 수증기를 발생시킨다. 수증기를 포함한 공기가 알루미늄 태양열 집열판(증발기)을 통과하면서 수증기가 잠열로서 가지고 있는 열에너지를 회수하게 되고, 공기 중에 동반한 수증기가 응축되어 제거된다. 수증기가 제거된 공기를 방열부에서 가열하여 온도를 올리면 공기의 상대습도는 낮아지게 된다. 이런 과정을 반복하므로써 열역학 태양열 온수생산시스템에 의한 제습 형의 건조기를 구성할 수 있다.Thermodynamics In the drying method by the solar hot water production system, hot air made of hot water generates water vapor while passing through the drying object. As the air including water vapor passes through the aluminum solar collecting plate (evaporator), the heat energy recovered from the latent heat of the steam is recovered, and the water vapor accompanying the air condenses and is removed. When the temperature is raised by heating the air from which steam has been removed from the heat dissipating section, the relative humidity of the air is lowered. By repeating this process, it is possible to construct a dehumidifying type dryer by thermodynamic solar hot water production system.
농수산물을 건조하는 방법 중, 가장 많이 사용하고 보편화된 방법이 열풍건조방식이다.Among the methods of drying agricultural and marine products, the most popular method is the hot air drying method.
열풍건조방식이 가장 많이 보급된 이유는, 건조기 제작이 쉽고, 제작 단가가 낮기 때문이다.The reason that the hot air drying method is most widely used is that the dryer is easy to manufacture and the manufacturing cost is low.
그러나 열풍건조는 에너지 낭비가 워낙 크기 때문에 대형 건조장 방식으로는 합당하지 않다.However, hot air drying is not suitable for large-scale drying method because energy waste is so large.
에너지를 절약하고 큰 규모로 건조할 수 있는 방안으로 안출된 방식이 열 펌프 건조방식이다.Heat pump drying is the way to save energy and dry it on a large scale.
열 펌프 건조방식은, 열풍건조 방식에 비해 무려 60% 이상 에너지를 절감할 수가 있는 장점이 있다. 반면, 냉동고추 같은 냉동식품을 건조할 때는 반드시 보조 히터를 사용해야 하므로 에너지 낭비를 초래하며, 농수산물을 건조할 때는 열과 습을 제어해야 하는데, 열 펌프 방식의 건조는 온도 제어가 어렵다.The heat pump drying method is advantageous in that it can save energy by as much as 60% compared to the hot air drying method. On the other hand, when a frozen food such as frozen red pepper is to be dried, an auxiliary heater must be used, resulting in waste of energy. When drying agricultural and marine products, heat and humidity must be controlled.
알루미늄 태양열 집열판 열역학 온수생산 시스템에 의한 건조방식은, 외부에 설치한 태양열 집열판에 의해 온수를 생산하여 온수탱크에 저장하며, 저장된 온수를 사용하여 건조부에 열풍을 가하므로 보조히터가 필요 없고, 큰 면적의 알루미늄 집열판에 의해 습기를 제거하므로 습기 방출에 의한 손실을 줄임은 물론, 온도제어를 자유자재로 할 수 있으므로, 피 건조물의 품질을 최상으로 할 수 있는 특징이 있다. 알루미늄 태양열 집열판 열역학 온수생산 시스템에 의한 농산물 건조는, 열 펌프 건조방식에 비해 에너지 비용을 50% 이상 절감할 수 있는 큰 장점이 있다.Aluminum Solar Collector Plate The thermoelectric hot plate production system uses hot water produced by an external solar panel to store hot water in a hot water tank. Hot water is used to store hot air in the drying unit, Since the moisture is removed by the aluminum heat collecting plate of the area, loss due to moisture release can be reduced, and temperature control can be freely performed. Therefore, the quality of the object to be dried can be maximized. Aluminum solar panels The thermodynamic hot water production system has the great advantage of reducing energy costs by more than 50% compared to heat pump drying.
도 1은 본 발명의 기술이 적용된 알루미늄 태양열 집열판(증발기) 평면도.
도 2는 본 발명의 기술이 적용된 농수산물 건조기 평면도.1 is a plan view of an aluminum solar collector plate (evaporator) to which the technique of the present invention is applied.
2 is a plan view of the agricultural and marine product dryer to which the technique of the present invention is applied.
알루미늄 태양열 집열판(증발기)(10)을 제작하기 위한 소재는, 열 전도가 우수하고, 내식성이 강하며, 가공이 용이한, 순도 99.5% 이상 알루미늄 판(Sheet)으로 하고, 두께는 1.5~2.0mm가 적당하다. 태양열 집열판(10) 규격은, 가로 2,000mm, 세로 1,000mm 이내가 바람직하다,The material for producing the aluminum solar collector plate (evaporator) 10 is an aluminum sheet having a purity of 99.5% or more, which is excellent in heat conduction, strong in corrosion resistance and easy to be processed and has a thickness of 1.5 to 2.0 mm Is appropriate. The size of the solar
알루미늄 태양열 집열판(10)에 형성된 냉매 유동관(23)과 유동관 간격은, 30mm ~ 60mm가 되도록하며, 냉매 유동관(23) 외경은 3mm ~ 6mm 의 범위가 되도록 한다.The distance between the
태양열 집열판(10) 사면(四面)은, "ㄷ" 자(27) 형태로 마무리하여 집열판의 구조를 보강하며, 취급을 용이하게 한다. 사면(四面)의 "ㄷ" 자 구부림의 두께는 20mm ~ 25mm가 적절하며, 긴 면 에는 구경 8mm의 볼트구멍을 각 3개씩(양면 6개) 만들어, 태양열 집열판(증발기)(10)을 건조부(50)의 구조물에 설치 시, 지지대 부착용으로 활용한다.The solar
알루미늄 태양열 집열판(증발기)(10)은, 양극산하, 고 내식성의 흑색 도장을 한다. 알루미늄 태양열 집열판(증발기)(10)의 입구(26)와 출구(25)는 동(銅)재질의 파이프를 용접하여 온수생산시스템(30)과의 배관(34)연결을 용이하게 한다.The aluminum solar collector plate (evaporator) 10 is coated with a black coating of a high corrosion resistance. The
위에 기술한 알루미늄 태양열 집열판(증발기)(10)에 대한 내용은, 본 발명의 첫째로 안출된 내용이고, 알루미늄 태양열 집열판 열역학 태양열 온수생산 시스템을 이용한 농수산물 건조시스템은, 압축, 응축, 팽창, 증발 과정(Cycle)을 반복 함으로서 구현된다. 이러 과정의 역할을 담당하는 각 구성 품은, 알루미늄 태양열 집열판(증발기)(10), 압축기(31) 응축기(32) 그리고 팽창밸브(33)이며, 태양열 집열판(증발기)(10)을 비롯한 각 구성품 연결은 동관(銅管)으로 한다.The aluminum solar collecting plate (evaporator) 10 described above is the first content of the present invention, and the aluminum solar collecting plate thermodynamic solar hot water producing system using the system for producing agricultural and marine products is capable of compressing, condensing, expanding, (Cycle). The components responsible for this process are the aluminum solar collectors (evaporators) 10, the
건조부 외부에 설치된 알루미늄 태양열 집열판(증발기)(10)과 건조부 내부에 설치된 집열판(증발기)(10) 그리고 온수생산 시스템(30)의 가동으로 온수가 생산된다. 생산된 온수는 온수탱크(40)에 저장되며, 온수탱크의 수온이 낮아지면 온수생산 시스템은 재 가동을 하여 설정 온도를 유지한다. 알루미늄 태양열 집열판(10)은, 태양열을 직접 받아 집열 하므로, 이를 이용한 열역학 태양열 온수생산 시스템의 에너지 효율은 대단히 높아, 열성적 계수(COP)는 6 이상을 얻을 수 있다.Hot water is produced by the operation of an aluminum solar collecting plate (evaporator) 10 installed outside the drying unit, a collecting plate (evaporator) 10 installed inside the drying unit, and a hot
온수탱크(40)의 온수는 물 순환 펌프(41)에 의해 방열부(42)로 보내지고, 방열부는 발열을 시작한다. 방열기와 함께 장착된 공기순환 팬(43)이 작동을 하여 공기를 순환 시킨다. 열풍은 대차(52)에 가득 채워진 채반과 채반 사이를 지나 건조부(50) 천정 쪽으로 순환을 하며, 천정 쪽에 설치된 알루미늄 태양열 집열판(증발기)(10) 사이를 통과하여 순환하며, 열풍의 순환은 채반에 담긴 농수산물의 건조가 끝날 때까지 계속된다. 계속되는 열풍에 의해 농수산 피 건조물은 가열되고 수분의 증발이 시작된다. 증발된 수증기는 열풍과 함께 건조부(50)를 계속 순환한다.The hot water in the
열역학 태양열 온수생산 시스템의 집열판(증발기)(10)은 증발을 하여 급속도로 냉각된다.The heat collecting plate (evaporator) 10 of the thermodynamic solar hot water production system evaporates and is rapidly cooled.
집열판(증발기)(10)의 냉각은, 건조부(50)를 순환하는 수증기가 잠열로서 가지고 있는 열에너지를 회수하게 되며, 공기 중에 동반한 수증기가 응축되어 배수구(51)를 통해 밖으로 배출된다.The cooling of the heat collecting plate (evaporator) 10 recovers the thermal energy that the steam circulating in the
수증기가 제거된 공기를 방열기(42)에 의해 계속적으로 가열하여 온도를 올리면, 공기의 상대습도는 점차적으로 계속해서 낮아지게 된다. 이런 과정을 반복 함으로서 알루미늄 태양열 집열판을 이용한 열역학 온수생산 시스템에 의한 농수산물의 건조를 이룩할 수 있다.When the steam-removed air is continuously heated by the
알루미늄 태양열 집열판을 이용한 온수생산 시스템에 의한 농산물 건조방식은, 현재 농 수산물 건조에 널리 사용되는 열 펌프를 이용한 건조방식과 유사하지만, 태양열보일러의 장점과 열 펌프의 특징을 결합(Hybrid)한 시스템에 의한 건조이므로, 열 펌프에 비해 에너지 효율이 탁월함은 물론, 공급 열을 온도를 조절할 수 있으므로, 피 건조물의 품질을 극대화 할 수 있다. 따라서 본 건조 방식은 에너지절약을 위해서라도 시급히 시행해야한다.The method of drying the agricultural product by the hot water production system using the aluminum solar collector is similar to the drying method using the heat pump widely used in agricultural and marine products drying, It is possible to maximize the quality of the laundry, since the drying efficiency of the laundry can be improved. Therefore, this drying method should be implemented urgently even for energy saving.
10 : 알루미늄 태양열 집열판(증발기)
20 : 냉매유동 분할공급부
21 : 냉매유동 보상관
22 : 냉매유동 모세관
23 : 냉매증발 확산관
24: 기체냉매 취합부
25 : 기체냉매 출구
26 : 액체냉매 입구
27 : "ㄷ" 구조
30 : 온수생산 시스템
31 : 압축기
32 : 응축기
33 : 팽창밸브
34: 냉매배관
40 : 온수탱크
41 : 물 순환펌프
42 : 방열부
43 : 공기순환 팬
50 : 건조부
51 : 배수구
52 : 대차(채반)10: Aluminum solar panel (evaporator)
20: Refrigerant flow dividing supply section
21: Refrigerant flow compensation tube
22: refrigerant flow capillary
23: refrigerant evaporation diffuser
24: gas refrigerant collecting part
25: gas refrigerant outlet
26: liquid refrigerant inlet
27: Structure of "c"
30: Hot water production system
31: Compressor
32: Condenser
33: Expansion valve
34: Refrigerant piping
40: Hot water tank
41: Water circulation pump
42:
43: Air circulation fan
50: drying section
51: drain
52: Balance
Claims (1)
알루미늄 태양열 집열판(증발기) 온수생산 시스템을 이용한 농수산물 건조시스템 구성은,
온수생산시스템(30)과 온수탱크(40) 그리고 알루미늄 집열판(증발기)(10)의 일부 수량을 건조부(50) 외부에 설치하여 태양열과 대기열을 포집하는대 사용하고, 알루미늄 태양열 집열판(증발기)(10) 일부 수량은 건조부(50) 내부에 설치하여 수증기를 응축시키는데 사용한다.
롤본드 방식으로 알루미늄 태양열 집열판(증발기)(10)을 제작하고, 알루미늄 태양열 집열판을 사용한 열역학 온수생산 시스템을 이용한 농수산물 건조방식은 농산물 외 모든 건조에 사용한다.An aluminum solar collector (evaporator) (10) is manufactured by the roll-bond method and constitutes a thermodynamic hot water production system using an aluminum solar collector.
Aluminum Solar Collector (Evaporator) The structure of the agricultural and marine products drying system using hot water production system,
A part of the water of the hot water production system 30, the hot water tank 40 and the aluminum heat collecting plate (evaporator) 10 is installed outside the drying unit 50 to collect the solar heat and the queue and the aluminum solar collecting plate (evaporator) 10) Some of the water is used to condense the water vapor in the drying unit (50).
An aluminum solar panel (evaporator) (10) is manufactured by the roll-bond method, and the agricultural and marine product drying method using the thermodynamic hot water production system using the aluminum solar heat collecting plate is used for all drying except agricultural products.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160030027A KR20170106662A (en) | 2016-03-14 | 2016-03-14 | Agricultural and fishery dry using the aluminum solar panels and thermodynamic solar hot water system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160030027A KR20170106662A (en) | 2016-03-14 | 2016-03-14 | Agricultural and fishery dry using the aluminum solar panels and thermodynamic solar hot water system |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20170106662A true KR20170106662A (en) | 2017-09-22 |
Family
ID=60034954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160030027A Withdrawn KR20170106662A (en) | 2016-03-14 | 2016-03-14 | Agricultural and fishery dry using the aluminum solar panels and thermodynamic solar hot water system |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20170106662A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109099696A (en) * | 2018-06-12 | 2018-12-28 | 东南大学 | A solar-assisted heat pump drying system method and device |
CN109399891A (en) * | 2018-12-28 | 2019-03-01 | 浙江天行健水务有限公司 | Energy-saving belt sludge at low temperature desiccation apparatus |
CN115615153A (en) * | 2022-08-09 | 2023-01-17 | 珠海格力电器股份有限公司 | Drying system control method and device and drying system |
-
2016
- 2016-03-14 KR KR1020160030027A patent/KR20170106662A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109099696A (en) * | 2018-06-12 | 2018-12-28 | 东南大学 | A solar-assisted heat pump drying system method and device |
CN109399891A (en) * | 2018-12-28 | 2019-03-01 | 浙江天行健水务有限公司 | Energy-saving belt sludge at low temperature desiccation apparatus |
CN109399891B (en) * | 2018-12-28 | 2024-03-12 | 浙江天行健水务有限公司 | Energy-saving belt type sludge low-temperature drying device |
CN115615153A (en) * | 2022-08-09 | 2023-01-17 | 珠海格力电器股份有限公司 | Drying system control method and device and drying system |
CN115615153B (en) * | 2022-08-09 | 2024-06-07 | 珠海格力电器股份有限公司 | Drying system control method and device and drying system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sheng et al. | Review of restraint frost method on cold surface | |
Kabeel et al. | Performance evaluation of a solar energy assisted hybrid desiccant air conditioner integrated with HDH desalination system | |
US4171619A (en) | Compressor assisted absorption refrigeration system | |
CN102506564B (en) | Condensed water waste heat one-effect flash evaporation natural air dehumidification preheating drying oven system | |
CN101363682A (en) | Energy-conserving drying system | |
JP2001208442A (en) | Heat pump type air conditioner | |
CN208458379U (en) | The enclosed dehumidifying more drying chamber drying systems of water-water heat pump | |
CN103900289A (en) | System and method for preventing air source heat pump water heater from frosting by using solid dehumidification | |
CN103983095B (en) | Heat-recovery heat pump and the heat pump united drying system of energy-storage solar and control method | |
Su et al. | Simulation analysis of a novel no-frost air-source heat pump with integrated liquid desiccant dehumidification and compression-assisted regeneration | |
CN201368542Y (en) | Heat-pipe type fresh air dehumidifier | |
CN201297829Y (en) | Energy-saving drying system | |
KR100700220B1 (en) | Local radiation cooling device | |
CN103900310A (en) | Solution desiccant system and method for preventing air source heat pump water heater from frosting | |
CN111023790A (en) | A Chinese herbal medicine heat pump drying system with heat pipe regenerator | |
CN102908879B (en) | A kind of energy-efficient air dehumidification system | |
Hua et al. | An exergy analysis and parameter optimization of solid desiccant heat pumps recovering the condensation heat for desiccant regeneration and heat transfer enhancement | |
KR20170106662A (en) | Agricultural and fishery dry using the aluminum solar panels and thermodynamic solar hot water system | |
KR20100035740A (en) | A indoor air conditioner using induction working coil | |
CN204085119U (en) | Heat-recovery heat pump and the heat pump united drying system of energy-storage solar | |
CN100489416C (en) | Central air conditioning system with two-pipe heat pump | |
CN220552252U (en) | Fresh air dehumidifying and drying system of heat pump dryer | |
JPS5986846A (en) | Hot water supply device of heat pump type | |
CN101650094A (en) | Refrigerating and air conditioning device | |
CN205119682U (en) | Double-temperature type closed heat pump drying device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20160314 |
|
N231 | Notification of change of applicant | ||
PN2301 | Change of applicant |
Patent event date: 20160622 Comment text: Notification of Change of Applicant Patent event code: PN23011R01D |
|
PG1501 | Laying open of application | ||
PC1203 | Withdrawal of no request for examination |