[go: up one dir, main page]

KR20170026276A - 비디오 신호 처리 방법 및 장치 - Google Patents

비디오 신호 처리 방법 및 장치 Download PDF

Info

Publication number
KR20170026276A
KR20170026276A KR1020160109897A KR20160109897A KR20170026276A KR 20170026276 A KR20170026276 A KR 20170026276A KR 1020160109897 A KR1020160109897 A KR 1020160109897A KR 20160109897 A KR20160109897 A KR 20160109897A KR 20170026276 A KR20170026276 A KR 20170026276A
Authority
KR
South Korea
Prior art keywords
intra prediction
current block
prediction
mode
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020160109897A
Other languages
English (en)
Other versions
KR102835073B1 (ko
Inventor
이배근
김주영
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Publication of KR20170026276A publication Critical patent/KR20170026276A/ko
Application granted granted Critical
Publication of KR102835073B1 publication Critical patent/KR102835073B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/85Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression
    • H04N19/86Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using pre-processing or post-processing specially adapted for video compression involving reduction of coding artifacts, e.g. of blockiness

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에 따른 비디오 신호 처리 방법은 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 인트라 예측을 위한 참조 샘플을 유도하며, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측을 수행하는 것을 특징으로 한다.

Description

비디오 신호 처리 방법 및 장치{METHOD AND APPARATUS FOR PROCESSING A VIDEO SIGNAL}
본 발명은 비디오 신호 처리 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.
영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
한편, 고해상도 영상에 대한 수요가 증가함과 함께, 새로운 영상 서비스로서 입체 영상 컨텐츠에 대한 수요도 함께 증가하고 있다. 고해상도 및 초고해상도의 입체 영상 콘텐츠를 효과적으로 제공하기 위한 비디오 압축 기술에 대하여 논의가 진행되고 있다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 코딩 블록을 계층적으로 분할하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 부호화/복호화 대상 블록의 인트라 예측 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 부호화/복호화 대상 블록의 예측 샘플을 보정하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명에 따른 비디오 신호 디코딩 방법 및 장치는, 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 인트라 예측을 위한 참조 샘플을 유도하며, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측을 수행할 수 있다.
본 발명에 따른 비디오 신호 디코딩 방법 및 장치에 있어서, 상기 현재 블록은 쿼트 트리 또는 바이너리 트리 중 적어도 하나에 기반하여 분할되는 비정방형의 코딩 블록일 수 있다.
본 발명에 따른 비디오 신호 디코딩 방법 및 장치에 있어서, 상기 인트라 예측 모드를 결정하는 단계는, 복수의 후보자를 포함한 후보 리스트를 생성하는 단계와 상기 후보 리스트와 인덱스에 기반하여 상기 현재 블록의 인트라 예측 모드를 결정하는 단계를 포함할 수 있다.
본 발명에 따른 비디오 신호 디코딩 방법 및 장치에 있어서, 상기 후보 리스트에 포함 가능한 후보자의 최대 개수는 3개보다 많을 수 있다.
본 발명에 따른 비디오 신호 디코딩 방법 및 장치에 있어서, 상기 결정된 인트라 예측 모드는 확장된 인트라 예측 모드 중 어느 하나이며, 상기 확장된 인트라 예측 모드는 플래너 모드, DC 모드 및 33개보다 많은 개수의 방향성 예측 모드로 구성될 수 있다.
본 발명에 따른 비디오 신호 디코딩 방법 및 장치에 있어서, 상기 인트라 예측을 수행하는 단계는, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계와 상기 현재 블록의 주변 샘플들의 차분 정보를 이용하여 상기 획득된 예측 샘플을 보정하는 단계를 포함할 수 있다.
본 발명에 따른 비디오 신호 디코딩 방법 및 장치에 있어서, 상기 인트라 예측을 수행하는 단계는, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계와 상기 획득된 예측 샘플을 소정의 가중치 또는 오프셋 중 적어도 하나를 기반으로 보정하는 단계를 포함할 수 있다.
본 발명에 따른 비디오 신호 인코딩 방법 및 장치는, 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 인트라 예측을 위한 참조 샘플을 유도하며, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측을 수행할 수 있다.
본 발명에 따른 비디오 신호 인코딩 방법 및 장치에 있어서, 상기 현재 블록은 쿼트 트리 또는 바이너리 트리 중 적어도 하나에 기반하여 분할되는 비정방형의 코딩 블록일 수 있다.
본 발명에 따른 비디오 신호 인코딩 방법 및 장치에 있어서, 상기 인트라 예측 모드를 결정하는 단계는, 복수의 후보자를 포함한 후보 리스트를 생성하는 단계와 상기 후보 리스트와 인덱스에 기반하여 상기 현재 블록의 인트라 예측 모드를 결정하는 단계를 포함할 수 있다.
본 발명에 따른 비디오 신호 인코딩 방법 및 장치에 있어서, 상기 후보 리스트에 포함 가능한 후보자의 최대 개수는 3개보다 많을 수 있다.
본 발명에 따른 비디오 신호 인코딩 방법 및 장치에 있어서, 상기 결정된 인트라 예측 모드는 확장된 인트라 예측 모드 중 어느 하나이며, 상기 확장된 인트라 예측 모드는 플래너 모드, DC 모드 및 33개보다 많은 개수의 방향성 예측 모드로 구성될 수 있다.
본 발명에 따른 비디오 신호 인코딩 방법 및 장치에 있어서, 상기 인트라 예측을 수행하는 단계는, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계와 상기 현재 블록의 주변 샘플들의 차분 정보를 이용하여 상기 획득된 예측 샘플을 보정하는 단계를 포함할 수 있다.
본 발명에 따른 비디오 신호 인코딩 방법 및 장치에 있어서, 상기 인트라 예측을 수행하는 단계는, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계와 상기 획득된 예측 샘플을 소정의 가중치 또는 오프셋 중 적어도 하나를 기반으로 보정하는 단계를 포함할 수 있다.
본 발명에 의하면, 코딩 블록의 계층적/적응적 분할을 통해 부호화 효율을 향상시킬 수 있다.
본 발명에 의하면, 부호화/복호화 대상 블록의 인트라 예측 모드를 효과적으로 결정하고, 인트라 예측의 정확도를 높일 수 있다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 3은 본 발명이 적용되는 일실시예로서, 트리 구조(tree structure)에 기반하여 코딩 블록을 계층적으로 분할하는 일예를 도시한 것이다.
도 4는 본 발명이 적용되는 일실시예로서, 영상 부호화기/복호화기에 기-정의된 인트라 예측 모드의 종류를 도시한 것이다.
도 5는 본 발명이 적용되는 일실시예로서, 인트라 예측 방법을 개략적으로 도시한 순서도이다.
도 6은 본 발명이 적용되는 일실시예로서, 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정하는 방법을 도시한 것이다.
도 7과 도 8은 본 발명이 적용되는 일실시예로서, 소정의 보정 필터를 기반으로 예측 샘플을 보정하는 방법을 도시한 것이다.
도 9는 본 발명이 적용되는 일실시예로서, 가중치와 오프셋을 이용하여 예측 샘플을 보정하는 방법을 도시한 것이다.
도 10 내지 도 15는 본 발명이 적용되는 일실시예로서, 가중치 w를 결정하기 위한 템플릿을 구성하는 방법을 도시한 것이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 1을 참조하면, 영상 부호화 장치(100)는 픽쳐 분할부(110), 예측부(120, 125), 변환부(130), 양자화부(135), 재정렬부(160), 엔트로피 부호화부(165), 역양자화부(140), 역변환부(145), 필터부(150) 및 메모리(155)를 포함할 수 있다.
도 1에 나타난 각 구성부들은 영상 부호화 장치에서 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시한 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
픽쳐 분할부(110)는 입력된 픽쳐를 적어도 하나의 처리 단위로 분할할 수 있다. 이때, 처리 단위는 예측 단위(Prediction Unit: PU)일 수도 있고, 변환 단위(Transform Unit: TU)일 수도 있으며, 부호화 단위(Coding Unit: CU)일 수도 있다. 픽쳐 분할부(110)에서는 하나의 픽쳐에 대해 복수의 부호화 단위, 예측 단위 및 변환 단위의 조합으로 분할하고 소정의 기준(예를 들어, 비용 함수)으로 하나의 부호화 단위, 예측 단위 및 변환 단위 조합을 선택하여 픽쳐를 부호화 할 수 있다.
예를 들어, 하나의 픽쳐는 복수개의 부호화 단위로 분할될 수 있다. 픽쳐에서 부호화 단위를 분할하기 위해서는 쿼드 트리 구조(Quad Tree Structure)와 같은 재귀적인 트리 구조를 사용할 수 있는데 하나의 영상 또는 최대 크기 부호화 단위(largest coding unit)를 루트로 하여 다른 부호화 단위로 분할되는 부호화 유닛은 분할된 부호화 단위의 개수만큼의 자식 노드를 가지고 분할될 수 있다. 일정한 제한에 따라 더 이상 분할되지 않는 부호화 단위는 리프 노드가 된다. 즉, 하나의 코딩 유닛에 대하여 정방형 분할만이 가능하다고 가정하는 경우, 하나의 부호화 단위는 최대 4개의 다른 부호화 단위로 분할될 수 있다.
이하, 본 발명의 실시예에서는 부호화 단위는 부호화를 수행하는 단위의 의미로 사용할 수도 있고, 복호화를 수행하는 단위의 의미로 사용할 수도 있다.
예측 단위는 하나의 부호화 단위 내에서 동일한 크기의 적어도 하나의 정사각형 또는 직사각형 등의 형태를 가지고 분할된 것일 수도 있고, 하나의 부호화 단위 내에서 분할된 예측 단위 중 어느 하나의 예측 단위가 다른 하나의 예측 단위와 상이한 형태 및/또는 크기를 가지도록 분할된 것일 수도 있다.
부호화 단위를 기초로 인트라 예측을 수행하는 예측 단위를 생성시 최소 부호화 단위가 아닌 경우, 복수의 예측 단위 NxN 으로 분할하지 않고 인트라 예측을 수행할 수 있다.
예측부(120, 125)는 인터 예측을 수행하는 인터 예측부(120)와 인트라 예측을 수행하는 인트라 예측부(125)를 포함할 수 있다. 예측 단위에 대해 인터 예측을 사용할 것인지 또는 인트라 예측을 수행할 것인지를 결정하고, 각 예측 방법에 따른 구체적인 정보(예컨대, 인트라 예측 모드, 모션 벡터, 참조 픽쳐 등)를 결정할 수 있다. 이때, 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 다를 수 있다. 예컨대, 예측의 방법과 예측 모드 등은 예측 단위로 결정되고, 예측의 수행은 변환 단위로 수행될 수도 있다. 생성된 예측 블록과 원본 블록 사이의 잔차값(잔차 블록)은 변환부(130)로 입력될 수 있다. 또한, 예측을 위해 사용한 예측 모드 정보, 모션 벡터 정보 등은 잔차값과 함께 엔트로피 부호화부(165)에서 부호화되어 복호화기에 전달될 수 있다. 특정한 부호화 모드를 사용할 경우, 예측부(120, 125)를 통해 예측 블록을 생성하지 않고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다.
인터 예측부(120)는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐의 정보를 기초로 예측 단위를 예측할 수도 있고, 경우에 따라서는 현재 픽쳐 내의 부호화가 완료된 일부 영역의 정보를 기초로 예측 단위를 예측할 수도 있다. 인터 예측부(120)는 참조 픽쳐 보간부, 모션 예측부, 움직임 보상부를 포함할 수 있다.
참조 픽쳐 보간부에서는 메모리(155)로부터 참조 픽쳐 정보를 제공받고 참조 픽쳐에서 정수 화소 이하의 화소 정보를 생성할 수 있다. 휘도 화소의 경우, 1/4 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 8탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다. 색차 신호의 경우 1/8 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 4탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다.
모션 예측부는 참조 픽쳐 보간부에 의해 보간된 참조 픽쳐를 기초로 모션 예측을 수행할 수 있다. 모션 벡터를 산출하기 위한 방법으로 FBMA(Full search-based Block Matching Algorithm), TSS(Three Step Search), NTS(New Three-Step Search Algorithm) 등 다양한 방법이 사용될 수 있다. 모션 벡터는 보간된 화소를 기초로 1/2 또는 1/4 화소 단위의 모션 벡터값을 가질 수 있다. 모션 예측부에서는 모션 예측 방법을 다르게 하여 현재 예측 단위를 예측할 수 있다. 모션 예측 방법으로 스킵(Skip) 방법, 머지(Merge) 방법, AMVP(Advanced Motion Vector Prediction) 방법, 인트라 블록 카피(Intra Block Copy) 방법 등 다양한 방법이 사용될 수 있다.
인트라 예측부(125)는 현재 픽쳐 내의 화소 정보인 현재 블록 주변의 참조 픽셀 정보를 기초로 예측 단위를 생성할 수 있다. 현재 예측 단위의 주변 블록이 인터 예측을 수행한 블록이어서, 참조 픽셀이 인터 예측을 수행한 픽셀일 경우, 인터 예측을 수행한 블록에 포함되는 참조 픽셀을 주변의 인트라 예측을 수행한 블록의 참조 픽셀 정보로 대체하여 사용할 수 있다. 즉, 참조 픽셀이 가용하지 않는 경우, 가용하지 않은 참조 픽셀 정보를 가용한 참조 픽셀 중 적어도 하나의 참조 픽셀로 대체하여 사용할 수 있다.
인트라 예측에서 예측 모드는 참조 픽셀 정보를 예측 방향에 따라 사용하는 방향성 예측 모드와 예측을 수행시 방향성 정보를 사용하지 않는 비방향성 모드를 가질 수 있다. 휘도 정보를 예측하기 위한 모드와 색차 정보를 예측하기 위한 모드가 상이할 수 있고, 색차 정보를 예측하기 위해 휘도 정보를 예측하기 위해 사용된 인트라 예측 모드 정보 또는 예측된 휘도 신호 정보를 활용할 수 있다.
인트라 예측을 수행할 때 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 인트라 예측을 수행할 수 있다. 그러나 인트라 예측을 수행할 때 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 인트라 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 N x N 분할을 사용하는 인트라 예측을 사용할 수 있다.
인트라 예측 방법은 예측 모드에 따라 참조 화소에 AIS(Adaptive Intra Smoothing) 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 화소에 적용되는 AIS 필터의 종류는 상이할 수 있다. 인트라 예측 방법을 수행하기 위해 현재 예측 단위의 인트라 예측 모드는 현재 예측 단위의 주변에 존재하는 예측 단위의 인트라 예측 모드로부터 예측할 수 있다. 주변 예측 단위로부터 예측된 모드 정보를 이용하여 현재 예측 단위의 예측 모드를 예측하는 경우, 현재 예측 단위와 주변 예측 단위의 인트라 예측 모드가 동일하면 소정의 플래그 정보를 이용하여 현재 예측 단위와 주변 예측 단위의 예측 모드가 동일하다는 정보를 전송할 수 있고, 만약 현재 예측 단위와 주변 예측 단위의 예측 모드가 상이하면 엔트로피 부호화를 수행하여 현재 블록의 예측 모드 정보를 부호화할 수 있다.
또한, 예측부(120, 125)에서 생성된 예측 단위를 기초로 예측을 수행한 예측 단위와 예측 단위의 원본 블록과 차이값인 잔차값(Residual) 정보를 포함하는 잔차 블록이 생성될 수 있다. 생성된 잔차 블록은 변환부(130)로 입력될 수 있다.
변환부(130)에서는 원본 블록과 예측부(120, 125)를 통해 생성된 예측 단위의 잔차값(residual)정보를 포함한 잔차 블록을 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT와 같은 변환 방법을 사용하여 변환시킬 수 있다. 잔차 블록을 변환하기 위해 DCT를 적용할지, DST를 적용할지 또는 KLT를 적용할지는 잔차 블록을 생성하기 위해 사용된 예측 단위의 인트라 예측 모드 정보를 기초로 결정할 수 있다.
양자화부(135)는 변환부(130)에서 주파수 영역으로 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화부(135)에서 산출된 값은 역양자화부(140)와 재정렬부(160)에 제공될 수 있다.
재정렬부(160)는 양자화된 잔차값에 대해 계수값의 재정렬을 수행할 수 있다.
재정렬부(160)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 재정렬부(160)에서는 지그-재그 스캔(Zig-Zag Scan)방법을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원 벡터 형태로 변경시킬 수 있다. 변환 단위의 크기 및 인트라 예측 모드에 따라 지그-재그 스캔 대신 2차원의 블록 형태 계수를 열 방향으로 스캔하는 수직 스캔, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔이 사용될 수도 있다. 즉, 변환 단위의 크기 및 인트라 예측 모드에 따라 지그-재그 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.
엔트로피 부호화부(165)는 재정렬부(160)에 의해 산출된 값들을 기초로 엔트로피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법을 사용할 수 있다.
엔트로피 부호화부(165)는 재정렬부(160) 및 예측부(120, 125)로부터 부호화 단위의 잔차값 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 단위 정보 및 전송 단위 정보, 모션 벡터 정보, 참조 프레임 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 부호화할 수 있다.
엔트로피 부호화부(165)에서는 재정렬부(160)에서 입력된 부호화 단위의 계수값을 엔트로피 부호화할 수 있다.
역양자화부(140) 및 역변환부(145)에서는 양자화부(135)에서 양자화된 값들을 역양자화하고 변환부(130)에서 변환된 값들을 역변환한다. 역양자화부(140) 및 역변환부(145)에서 생성된 잔차값(Residual)은 예측부(120, 125)에 포함된 움직임 추정부, 움직임 보상부 및 인트라 예측부를 통해서 예측된 예측 단위와 합쳐져 복원 블록(Reconstructed Block)을 생성할 수 있다.
필터부(150)는 디블록킹 필터, 오프셋 보정부, ALF(Adaptive Loop Filter)중 적어도 하나를 포함할 수 있다.
디블록킹 필터는 복원된 픽쳐에서 블록간의 경계로 인해 생긴 블록 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행 처리되도록 할 수 있다.
오프셋 보정부는 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽쳐에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
ALF(Adaptive Loop Filtering)는 필터링한 복원 영상과 원래의 영상을 비교한 값을 기초로 수행될 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 하나의 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. ALF를 적용할지 여부에 관련된 정보는 휘도 신호는 부호화 단위(Coding Unit, CU) 별로 전송될 수 있고, 각각의 블록에 따라 적용될 ALF 필터의 모양 및 필터 계수는 달라질 수 있다. 또한, 적용 대상 블록의 특성에 상관없이 동일한 형태(고정된 형태)의 ALF 필터가 적용될 수도 있다.
메모리(155)는 필터부(150)를 통해 산출된 복원 블록 또는 픽쳐를 저장할 수 있고, 저장된 복원 블록 또는 픽쳐는 인터 예측을 수행 시 예측부(120, 125)에 제공될 수 있다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 2를 참조하면, 영상 복호화기(200)는 엔트로피 복호화부(210), 재정렬부(215), 역양자화부(220), 역변환부(225), 예측부(230, 235), 필터부(240), 메모리(245)가 포함될 수 있다.
영상 부호화기에서 영상 비트스트림이 입력된 경우, 입력된 비트스트림은 영상 부호화기와 반대의 절차로 복호화될 수 있다.
엔트로피 복호화부(210)는 영상 부호화기의 엔트로피 부호화부에서 엔트로피 부호화를 수행한 것과 반대의 절차로 엔트로피 복호화를 수행할 수 있다. 예를 들어, 영상 부호화기에서 수행된 방법에 대응하여 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 방법이 적용될 수 있다.
엔트로피 복호화부(210)에서는 부호화기에서 수행된 인트라 예측 및 인터 예측에 관련된 정보를 복호화할 수 있다.
재정렬부(215)는 엔트로피 복호화부(210)에서 엔트로피 복호화된 비트스트림을 부호화부에서 재정렬한 방법을 기초로 재정렬을 수행할 수 있다. 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부(215)에서는 부호화부에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 해당 부호화부에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다.
역양자화부(220)는 부호화기에서 제공된 양자화 파라미터와 재정렬된 블록의 계수값을 기초로 역양자화를 수행할 수 있다.
역변환부(225)는 영상 부호화기에서 수행한 양자화 결과에 대해 변환부에서 수행한 변환 즉, DCT, DST, 및 KLT에 대해 역변환 즉, 역 DCT, 역 DST 및 역 KLT를 수행할 수 있다. 역변환은 영상 부호화기에서 결정된 전송 단위를 기초로 수행될 수 있다. 영상 복호화기의 역변환부(225)에서는 예측 방법, 현재 블록의 크기 및 예측 방향 등 복수의 정보에 따라 변환 기법(예를 들어, DCT, DST, KLT)이 선택적으로 수행될 수 있다.
예측부(230, 235)는 엔트로피 복호화부(210)에서 제공된 예측 블록 생성 관련 정보와 메모리(245)에서 제공된 이전에 복호화된 블록 또는 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.
전술한 바와 같이 영상 부호화기에서의 동작과 동일하게 인트라 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 인트라 예측을 수행하지만, 인트라 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 인트라 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 N x N 분할을 사용하는 인트라 예측을 사용할 수도 있다.
예측부(230, 235)는 예측 단위 판별부, 인터 예측부 및 인트라 예측부를 포함할 수 있다. 예측 단위 판별부는 엔트로피 복호화부(210)에서 입력되는 예측 단위 정보, 인트라 예측 방법의 예측 모드 정보, 인터 예측 방법의 모션 예측 관련 정보 등 다양한 정보를 입력 받고 현재 부호화 단위에서 예측 단위를 구분하고, 예측 단위가 인터 예측을 수행하는지 아니면 인트라 예측을 수행하는지 여부를 판별할 수 있다. 인터 예측부(230)는 영상 부호화기에서 제공된 현재 예측 단위의 인터 예측에 필요한 정보를 이용해 현재 예측 단위가 포함된 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 정보를 기초로 현재 예측 단위에 대한 인터 예측을 수행할 수 있다. 또는, 현재 예측 단위가 포함된 현재 픽쳐 내에서 기-복원된 일부 영역의 정보를 기초로 인터 예측을 수행할 수도 있다.
인터 예측을 수행하기 위해 부호화 단위를 기준으로 해당 부호화 단위에 포함된 예측 단위의 모션 예측 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), AMVP 모드(AMVP Mode), 인트라 블록 카피 모드 중 어떠한 방법인지 여부를 판단할 수 있다.
인트라 예측부(235)는 현재 픽쳐 내의 화소 정보를 기초로 예측 블록을 생성할 수 있다. 예측 단위가 인트라 예측을 수행한 예측 단위인 경우, 영상 부호화기에서 제공된 예측 단위의 인트라 예측 모드 정보를 기초로 인트라 예측을 수행할 수 있다. 인트라 예측부(235)에는 AIS(Adaptive Intra Smoothing) 필터, 참조 화소 보간부, DC 필터를 포함할 수 있다. AIS 필터는 현재 블록의 참조 화소에 필터링을 수행하는 부분으로써 현재 예측 단위의 예측 모드에 따라 필터의 적용 여부를 결정하여 적용할 수 있다. 영상 부호화기에서 제공된 예측 단위의 예측 모드 및 AIS 필터 정보를 이용하여 현재 블록의 참조 화소에 AIS 필터링을 수행할 수 있다. 현재 블록의 예측 모드가 AIS 필터링을 수행하지 않는 모드일 경우, AIS 필터는 적용되지 않을 수 있다.
참조 화소 보간부는 예측 단위의 예측 모드가 참조 화소를 보간한 화소값을 기초로 인트라 예측을 수행하는 예측 단위일 경우, 참조 화소를 보간하여 정수값 이하의 화소 단위의 참조 화소를 생성할 수 있다. 현재 예측 단위의 예측 모드가 참조 화소를 보간하지 않고 예측 블록을 생성하는 예측 모드일 경우 참조 화소는 보간되지 않을 수 있다. DC 필터는 현재 블록의 예측 모드가 DC 모드일 경우 필터링을 통해서 예측 블록을 생성할 수 있다.
복원된 블록 또는 픽쳐는 필터부(240)로 제공될 수 있다. 필터부(240)는 디블록킹 필터, 오프셋 보정부, ALF를 포함할 수 있다.
영상 부호화기로부터 해당 블록 또는 픽쳐에 디블록킹 필터를 적용하였는지 여부에 대한 정보 및 디블록킹 필터를 적용하였을 경우, 강한 필터를 적용하였는지 또는 약한 필터를 적용하였는지에 대한 정보를 제공받을 수 있다. 영상 복호화기의 디블록킹 필터에서는 영상 부호화기에서 제공된 디블록킹 필터 관련 정보를 제공받고 영상 복호화기에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다.
오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값 정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다.
ALF는 부호화기로부터 제공된 ALF 적용 여부 정보, ALF 계수 정보 등을 기초로 부호화 단위에 적용될 수 있다. 이러한 ALF 정보는 특정한 파라메터 셋에 포함되어 제공될 수 있다.
메모리(245)는 복원된 픽쳐 또는 블록을 저장하여 참조 픽쳐 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽쳐를 출력부로 제공할 수 있다.
전술한 바와 같이 이하, 본 발명의 실시예에서는 설명의 편의상 코딩 유닛(Coding Unit)을 부호화 단위라는 용어로 사용하지만, 부호화뿐만 아니라 복호화를 수행하는 단위가 될 수도 있다.
도 3은 본 발명이 적용되는 일실시예로서, 트리 구조(tree structure)에 기반하여 코딩 블록을 계층적으로 분할하는 일예를 도시한 것이다.
입력 영상 신호는 소정의 블록 단위로 복호화되며, 이와 같이 입력 영상 신호를 복호화하기 위한 기본 단위를 코딩 블록이라 한다. 코딩 블록은 인트라/인터 예측, 변환, 양자화를 수행하는 단위가 될 수 있다. 코딩 블록은 8x8 내지 64x64 범위에 속하는 임의의 크기를 가진 정방형 또는 비정방형 블록일 수 있고, 128x128, 256x256 또는 그 이상의 크기를 가진 정방형 또는 비정방형 블록일 수 있다.
구체적으로, 코딩 블록은 쿼드 트리(quad tree)와 바이너리 트리(binary tree) 중 적어도 하나에 기초하여 계층적으로 분할될 수 있다. 여기서, 쿼드 트리 기반의 분할은 2Nx2N 코딩 블록이 4개의 NxN 코딩 블록으로 분할되는 방식을, 바이너리 트리 기반의 분할은 하나의 코딩 블록이 2개의 코딩 블록으로 분할되는 방식을 각각 의미할 수 있다. 바이너리 트리 기반의 분할은 대칭적으로 수행될 수도 있고, 비대칭적으로 수행될 수도 있다. 바이너리 트리 기반으로 분할된 코딩 블록은 정방형 블록일 수도 있고, 직사각형과 같은 비정방형 블록일 수도 있다. 바이너리 트리 기반의 분할은 쿼드 트리 기반의 분할이 더 이상 수행되지 않는 코딩 블록에 대해서 수행될 수 있다. 바이너리 트리 기반으로 분할된 코딩 블록에 대해서는 쿼드 트리 기반의 분할이 더 이상 수행되지 않을 수 있다.
상기 쿼드 트리 또는 바이너리 트리 기반의 적응적 분할을 구현하기 위해 쿼드 트리 기반의 분할을 지시하는 정보, 쿼드 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 관한 정보, 바이너리 트리 기반의 분할을 지시하는 정보, 바이너리 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 대한 정보, 바이너리 트리 기반의 분할이 허용되지 않는 코딩 블록의 크기/깊이에 대한 정보 또는 바이너리 트리 기반의 분할이 세로 방향인지 또는 가로 방향인지에 관한 정보 등이 이용될 수 있다.
도 3에 도시된 바와 같이, 분할 깊이(split depth)가 k인 제1 코딩 블록 300은 쿼드 트리(quad tree)에 기반하여 복수의 제2 코딩 블록으로 분할될 수 있다. 예를 들어, 제2 코딩 블록 310 내지 340은 제1 코딩 블록의 너비와 높이의 절반 크기를 가진 정방형 블록이며, 제2 코딩 블록의 분할 깊이는 k+1로 증가될 수 있다.
분할 깊이가 k+1인 제2 코딩 블록 310은 분할 깊이가 k+2인 복수의 제3 코딩 블록으로 분할될 수 있다. 제2 코딩 블록 310의 분할은 분할 방식에 따라 쿼트 트리 또는 바이너리 트리 중 어느 하나를 선택적으로 이용하여 수행될 수 있다. 여기서, 분할 방식은 쿼드 트리 기반으로의 분할을 지시하는 정보 또는 바이너리 트리 기반의 분할을 지시하는 정보 중 적어도 하나에 기초하여 결정될 수 있다.
제2 코딩 블록 310이 쿼트 트리 기반으로 분할되는 경우, 제2 코딩 블록 310은 제2 코딩 블록의 너비와 높이의 절반 크기를 가진 4개의 제3 코딩 블록 310a으로 분할되며, 제3 코딩 블록 310a의 분할 깊이는 k+2로 증가될 수 있다. 반면, 제2 코딩 블록 310이 바이너리 트리 기반으로 분할되는 경우, 제2 코딩 블록 310은 2개의 제3 코딩 블록으로 분할될 수 있다. 이때, 2개의 제3 코딩 블록 각각은 제2 코딩 블록의 너비와 높이 중 어느 하나가 절반 크기인 비정방형 블록이며, 분할 깊이는 k+2로 증가될 수 있다. 제2 코딩 블록은 분할 방향에 따라 가로 방향 또는 세로 방향의 비정방형 블록으로 결정될 수 있고, 분할 방향은 바이너리 트리 기반의 분할이 세로 방향인지 또는 가로 방향인지에 관한 정보에 기초하여 결정될 수 있다.
한편, 제2 코딩 블록 310은 쿼드 트리 또는 바이너리 트리에 기반하여 더 이상 분할되지 않는 말단 코딩 블록으로 결정될 수도 있고, 이 경우 해당 코딩 블록은 예측 블록 또는 변환 블록으로 이용될 수 있다.
제3 코딩 블록 310a은 제2 코딩 블록 310의 분할과 마찬가지로 말단 코딩 블록으로 결정되거나, 쿼드 트리 또는 바이너리 트리에 기반하여 추가적으로 분할될 수 있다.
한편, 바이너리 트리 기반으로 분할된 제3 코딩 블록 310b은 추가적으로 바이너리 트리에 기반하여 세로 방향의 코딩 블록(310b-2) 또는 가로 방향의 코딩 블록(310b-3)으로 더 분할될 수도 있고, 해당 코딩 블록의 분할 깊이는 k+3으로 증가될 수 있다. 또는, 제3 코딩 블록 310b는 바이너리 트리에 기반하여 더 이상 분할되지 않는 말단 코딩 블록(310b-1)으로 결정될 수 있고, 이 경우 해당 코딩 블록(310b-1)은 예측 블록 또는 변환 블록으로 이용될 수 있다. 다만, 상술한 분할 과정은 쿼드 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 관한 정보, 바이너리 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 대한 정보 또는 바이너리 트리 기반의 분할이 허용되지 않는 코딩 블록의 크기/깊이에 대한 정보 중 적어도 하나에 기초하여 제한적으로 수행될 수 있다.
도 4는 본 발명이 적용되는 일실시예로서, 영상 부호화기/복호화기에 기-정의된 인트라 예측 모드의 종류를 도시한 것이다.
영상 부호화기/복호화기는 기-정의된 인트라 예측 모드 중 어느 하나를 이용하여 인트라 예측을 수행할 수 있다. 인트라 예측을 위한 기-정의된 인트라 예측 모드는 비방향성 예측 모드(예를 들어, Planar mode, DC mode) 및 33개의 방향성 예측 모드(directional prediction mode)로 구성될 수 있다.
또는, 인트라 예측의 정확도를 높이기 위해 33개의 방향성 예측 모드보다 더 많은 개수의 방향성 예측 모드가 이용될 수 있다. 즉, 방향성 예측 모드의 각도(angle)를 더 세분화하여 M개의 확장된 방향성 예측 모드를 정의할 수도 있고(M>33), 기-정의된 33개의 방향성 예측 모드 중 적어도 하나를 이용하여 소정의 각도를 가진 방향성 예측 모드를 유도하여 사용할 수도 있다.
도 4는 확장된 인트라 예측 모드의 일예이며, 확장된 인트라 예측 모드는 2개의 비방향성 예측 모드와 65개의 확장된 방향성 예측 모드로 구성될 수 있다. 확장된 인트라 예측 모드는 휘도 성분과 색차 성분에 대해서 동일하게 사용할 수도 있고, 성분 별로 서로 상이한 개수의 인트라 예측 모드를 사용할 수도 있다. 예를 들어, 휘도 성분에서는 67개의 확장된 인트라 예측 모드를 사용하고, 색차 성분에서는 35개의 인트라 예측 모드를 사용할 수도 있다.
또는, 색차 포맷(format)에 따라 서로 다른 개수의 인트라 예측 모드를 사용하여 인트라 예측을 수행할 수도 있다. 예를 들어, 4:2:0 format인 경우에는 휘도 성분에서는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행하고 색차 성분에서는 35개의 인트라 예측 모드를 사용할 수 있고, 4:4:4 format인 경우에는 휘도 성분과 색차 성분 모두에서 67개의 인트라 예측 모드를 이용하여 인트라 예측을 사용할 수도 있다.
또는, 블록의 크기 및/또는 형태에 따라 서로 다른 개수의 인트라 예측 모드를 사용하여 인트라 예측을 수행할 수도 있다. 즉, PU 또는 CU의 크기 및/또는 형태에 따라 35개의 인트라 예측 모드 또는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수도 있다. 예를 들어, CU 또는 PU의 크기가 64x64보다 작거나 비대칭 파티션(asymmetric partition)인 경우에는 35개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수 있고, CU 또는 PU의 크기가 64x64보다 같거나 큰 경우에는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수도 있다. Intra_2Nx2N에서는 65개의 방향성 인트라 예측 모드를 허용할 수도 있으며, Intra_NxN에서는 35개의 방향성 인트라 예측 모드만 허용할 수도 있다.
도 5는 본 발명이 적용되는 일실시예로서, 인트라 예측 방법을 개략적으로 도시한 순서도이다.
도 5를 참조하면, 현재 블록의 인트라 예측 모드를 결정할 수 있다(S500).
구체적으로, 현재 블록의 인트라 예측 모드는 후보 리스트와 인덱스를 기반으로 유도될 수 있다. 여기서, 후보 리스트는 복수의 후보자를 포함하며, 복수의 후보자는 현재 블록에 인접한 주변 블록의 인트라 예측 모드에 기반하여 결정될 수 있다. 주변 블록은 현재 블록의 상단, 하단, 좌측, 우측 또는 코너에 위치한 블록 중 적어도 하나를 포함할 수 있다. 상기 인덱스는 후보 리스트에 속한 복수의 후보자 중 어느 하나를 특정할 수 있다. 상기 인덱스에 의해 특정된 후보자는 현재 블록의 인트라 예측 모드로 설정될 수 있다.
주변 블록이 인트라 예측에 사용한 인트라 예측 모드가 후보자로 설정될 수 있다. 또한, 주변 블록의 인트라 예측 모드와 유사한 방향성을 가진 인트라 예측 모드가 후보자로 설정될 수도 있다. 여기서, 유사한 방향성을 가진 인트라 예측 모드는 주변 블록의 인트라 예측 모드에 소정의 상수값을 더하거나 뺀 값으로 결정될 수 있다. 소정의 상수값은 1, 2 또는 그 이상의 정수일 수 있다.
상기 후보 리스트는 디폴트 모드를 더 포함할 수도 있다. 디폴트 모드는 플래너 모드, DC 모드, 수직 모드, 수평 모드 중 적어도 하나를 포함할 수 있다. 디폴트 모드는 현재 블록의 후보 리스트에 포함 가능한 후보자의 최대 개수를 고려하여 적응적으로 추가될 수 있다.
후보 리스트에 포함 가능한 후보자의 최대 개수는 3개, 4개, 5개, 6개 또는 그 이상일 수 있다. 후보 리스트에 포함 가능한 후보자의 최대 개수는 영상 부호화기/복호화기에 기-설정된 고정된 값일 수 있고, 현재 블록의 속성에 기초하여 가변적으로 결정될 수도 있다. 속성은 블록의 위치/크기/형태, 블록이 사용 가능한 인트라 예측 모드의 개수/종류 등을 의미할 수 있다. 또는, 후보 리스트에 포함 가능한 후보자의 최대 개수를 나타내는 정보가 별도로 시그날링될 수도 있으며, 이를 이용하여 후보 리스트에 포함 가능한 후보자의 최대 개수가 가변적으로 결정될 수도 있다. 상기 후보자의 최대 개수를 나타내는 정보는 시퀀스 레벨, 픽쳐 레벨, 슬라이스 레벨 또는 블록 레벨 중 적어도 하나에서 시그날링될 수 있다.
확장된 인트라 예측 모드와 기-정의된 35개의 인트라 예측 모드가 선택적으로 사용되는 경우, 주변 블록의 인트라 예측 모드를 확장된 인트라 예측 모드에 대응하는 인덱스로 변환하거나, 또는 35개의 인트라 예측 모드에 대응하는 인덱스로 변환하여 후보자를 유도할 수 있다. 인덱스의 변환을 위해 기-정의된 테이블이 이용될 수도 있고, 소정의 값에 기반한 스케일링 연산이 이용될 수도 있다. 여기서, 기-정의된 테이블은 서로 상이한 인트라 예측 모드 그룹 (예를 들어, 확장된 인트라 예측 모드와 35개의 인트라 예측 모드) 간의 매핑 관계를 정의한 것일 수 있다.
예를 들어, 좌측 주변 블록이 35개의 인트라 예측 모드를 사용하고, 좌측 주변 블록의 인트라 예측 모드가 10(horizontal mode)인 경우, 이를 확장된 인트라 예측 모드에서 horizontal mode에 대응하는 인덱스 16으로 변환할 수 있다.
또는, 상단 주변 블록이 확장된 인트라 예측 모드를 사용하고, 상단 주변 블록의 인트라 예측 모드 인덱스가 50(vertical mode)인 경우, 이를 35개의 인트라 예측 모드에서 vertical mode에 대응하는 인덱스 26으로 변환할 수 있다.
상술한 인트라 예측 모드 결정 방법에 기반하여 휘도 성분과 색차 성분 각각에 대해서 상호 독립적으로 인트라 예측 모드가 유도될 수도 있고, 색차 성분은 휘도 성분의 인트라 예측 모드에 종속성으로 유도될 수도 있다.
구체적으로, 색차 성분의 인트라 예측 모드는 다음 표 1과 같이 휘도 성분의 인트라 예측 모드에 기반하여 결정될 수 있다.
Figure pat00001
표 1에서 intra_chroma_pred_mode는 색차 성분의 인트라 예측 모드를 특정하기 위해 시그날링되는 정보를 의미하며, IntraPredModeY는 휘도 성분의 인트라 예측 모드를 나타낸다.
도 5를 참조하면, 현재 블록의 인트라 예측을 위한 참조 샘플을 유도할 수 있다(S510).
구체적으로, 현재 블록의 주변 샘플에 기반하여 인트라 예측을 위한 참조 샘플을 유도할 수 있다. 주변 샘플은 상술한 주변 블록의 복원 샘플을 의미할 수 있고, 이는 인루프 필터가 적용되기 이전의 복원 샘플 또는 인루프 필터가 적용된 이후의 복원 샘플일 수 있다.
현재 블록 이전에 복원된 주변 샘플이 참조 샘플로 이용될 수도 있고, 소정의 인트라 필터를 기반으로 필터링된 주변 샘플이 참조 샘플로 이용될 수도 있다. 상기 인트라 필터는 동일한 수평 라인에 위치한 복수의 주변 샘플에 적용되는 제1 인트라 필터 또는 동일한 수직 라인에 위치한 복수의 주변 샘플에 적용되는 제2 인트라 필터 중 적어도 하나를 포함할 수 있다. 주변 샘플의 위치에 따라 제1 인트라 필터 또는 제2 인트라 필터 중 어느 하나가 선택적으로 적용될 수도 있고, 2개의 인트라 필터가 중복적으로 적용될 수도 있다.
상기 필터링은 현재 블록의 인트라 예측 모드 또는 현재 블록에 관한 변환 블록의 크기 중 적어도 하나에 기초하여 적응적으로 수행될 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드가 DC 모드, 수직 모드 또는 수평 모드인 경우 필터링은 수행되지 않을 수 있다. 상기 변환 블록의 크기가 NxM인 경우, 필터링은 수행되지 않을 수 있다. 여기서, N과 M은 동일하거나 서로 상이한 값일 수 있고, 4, 8, 16 또는 그 이상의 값 중 어느 하나일 수 있다. 또는, 현재 블록의 인트라 예측 모드와 수직 모드(또는 수평 모드)의 차이와 기-정의된 임계치(threshold) 간의 비교 결과에 기초하여 필터링을 선택적으로 수행할 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드와 수직 모드의 차이가 임계치보다 큰 경우에 한하여 필터링을 수행할 수 있다. 상기 임계치는 표 2와 같이 변환 블록의 크기 별로 정의될 수 있다.
8x8 transform 16x16 transform 32x32 transform
Threshold 7 1 0
상기 인트라 필터는 영상 부호화기/복호화기에 기-정의된 복수의 인트라 필터 후보 중 어느 하나로 결정될 수 있다. 이를 위해 복수의 인트라 필터 후보 중 현재 블록의 인트라 필터를 특정하는 별도의 인덱스가 시그날링될 수 있다. 또는, 현재 블록의 크기/형태, 변환 블록의 크기/형태, 필터 강도(strength)에 관한 정보, 또는 주변 샘플들의 변화량(variation) 중 적어도 하나에 기초하여 인트라 필터가 결정될 수도 있다.
도 5를 참조하면, 현재 블록의 인트라 예측 모드와 참조 샘플을 이용하여 인트라 예측을 수행할 수 있다(S520).
즉, S500에서 결정된 인트라 예측 모드와 S510에서 유도된 참조 샘플을 이용하여 현재 블록의 예측 샘플을 획득할 수 있다. 다만, 인트라 예측의 경우 주변 블록의 경계 샘플을 이용하기 때문에 예측 영상의 화질이 떨어지는 문제가 발생할 수 있다. 따라서, 상술한 예측 과정을 통해 생성된 예측 샘플에 대한 보정 과정을 더 수반할 수 있으며, 이하 도 6 내지 도 15를 참조하여 자세히 살펴 보기로 한다. 다만, 후술할 보정 과정은 인트라 예측 샘플에 대해서만 적용되는 것으로 한정되는 것은 아니며, 인터 예측 샘플 또는 복원 샘플에도 적용될 수 있음은 물론이다.
도 6은 본 발명이 적용되는 일실시예로서, 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정하는 방법을 도시한 것이다.
현재 블록에 대한 복수의 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정할 수 있다. 상기 보정은 현재 블록에 속한 모든 예측 샘플에 대해서 수행될 수도 있고, 소정의 일부 영역에 속한 예측 샘플에 대해서만 수행될 수도 있다. 일부 영역은 하나의 행/열 또는 복수의 행/열일 수 있고, 이는 영상 부호화기/복호화기에서 보정을 위해 기-설정된 영역일 수도 있고, 현재 블록의 크기/형태 또는 인트라 예측 모드 중 적어도 하나에 기초하여 가변적으로 결정될 수도 있다.
주변 샘플들은 현재 블록의 상단, 좌측, 좌상단 코너에 위치한 주변 블록 중 적어도 하나에 속할 수 있다. 보정을 위해 이용되는 주변 샘플들의 개수는 2개, 3개, 4개 또는 그 이상일 수 있다. 주변 샘플들의 위치는 현재 블록 내 보정 대상인 예측 샘플의 위치에 따라 가변적으로 결정될 수 있다. 또는, 주변 샘플들 중 일부는 보정 대상인 예측 샘플의 위치와 관계없이 고정된 위치를 가지고, 나머지는 보정 대상인 예측 샘플의 위치에 따른 가변적인 위치를 가질 수도 있다.
주변 샘플들의 차분 정보는 주변 샘플들 간의 차분 샘플을 의미할 수도 있고, 상기 차분 샘플을 소정의 상수값 (예를 들어, 1, 2, 3 등)으로 스케일링한 값을 의미할 수도 있다. 여기서, 소정의 상수값은 보정 대상인 예측 샘플의 위치, 보정 대상인 예측 샘플이 속한 열 또는 행의 위치, 열 또는 행 내에서 예측 샘플의 위치 등을 고려하여 결정될 수 있다.
예를 들어, 현재 블록의 인트라 예측 모드가 수직 모드인 경우, 현재 블록의 좌측 경계에 인접한 주변 샘플 p(-1,y)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 다음 수학식 1과 같이 최종 예측 샘플을 획득할 수 있다.(y=0 ... N-1)
Figure pat00002
예를 들어, 현재 블록의 인트라 예측 모드가 수평 모드인 경우, 현재 블록의 상단 경계에 인접한 주변 샘플 p(x,-1)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 다음 수학식 2와 같이 최종 예측 샘플을 획득할 수 있다. (x=0 ... N-1)
Figure pat00003
예를 들어, 현재 블록의 인트라 예측 모드가 수직 모드인 경우, 현재 블록의 좌측 경계에 인접한 주변 샘플 p(-1,y)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 최종 예측 샘플을 획득할 수 있다. 이때, 상기 차분 샘플을 예측 샘플에 가산할 수도 있고, 상기 차분 샘플을 소정의 상수값으로 스케일링한 후, 이를 예측 샘플에 가산할 수도 있다. 스케일링에 이용되는 소정의 상수값은 열 및/또는 행에 따라 상이하게 결정될 수 있다. 일예로, 다음 수학식 3과 수학식 4와 같이 예측 샘플을 보정할 수 있다. (y=0 ... N-1)
Figure pat00004
Figure pat00005
예를 들어, 현재 블록의 인트라 예측 모드가 수평 모드인 경우, 현재 블록의 상단 경계에 인접한 주변 샘플 p(x,-1)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 최종 예측 샘플을 획득할 수 있으며, 이는 수직 모드에서 상술한 바와 같다. 일예로, 다음 수학식 5와 수학식 6과 같이 예측 샘플을 보정할 수 있다. (x=0 .... N-1)
Figure pat00006
Figure pat00007
도 7과 도 8은 본 발명이 적용되는 일실시예로서, 소정의 보정 필터를 기반으로 예측 샘플을 보정하는 방법을 도시한 것이다.
보정 대상인 예측 샘플의 주변 샘플과 소정의 보정 필터를 기반으로 예측 샘플을 보정할 수 있다. 이때 주변 샘플은 현재 블록의 방향성 예측 모드의 각도 라인(angular line)에 의해 특정될 수 있고, 보정 대상인 예측 샘플과 동일한 각도 라인에 위치한 하나 또는 그 이상의 샘플일 수 있다. 또한, 주변 샘플은 현재 블록에 속하는 예측 샘플일 수도 있고, 현재 블록 이전에 복원된 주변 블록에 속하는 복원 샘플일 수도 있다.
보정 필터의 탭수, 강도(strength) 또는 필터 계수 적어도 하나는 보정 대상인 예측 샘플의 위치, 보정 대상인 예측 샘플이 현재 블록의 경계에 위치하는지 여부, 현재 블록의 인트라 예측 모드, 방향성 예측 모드의 각도, 주변 블록의 예측 모드(인터 또는 인트라 모드) 또는 현재 블록의 크기/형태 중 적어도 하나에 기초하여 결정될 수 있다.
도 7을 참조하면, 방향성 예측 모드 중 인덱스가 2 또는 34인 경우에는 도 7과 같이 보정 대상인 예측 샘플의 좌하단에 위치한 적어도 하나의 예측/복원 샘플과 소정의 보정 필터를 이용하여 최종 예측 샘플을 획득할 수 있다. 여기서, 좌하단의 예측/복원 샘플은 보정 대상인 예측 샘플이 속한 라인의 이전 라인에 속한 것일 수 있고, 이는 현재 샘플과 동일한 블록에 속한 것일 수도 있고, 현재 블록에 인접한 주변 블록에 속한 것일 수도 있다.
예측 샘플에 대한 필터링은 블록 경계에 위치한 라인에서만 수행할 수도 있고, 복수의 라인에서 수행할 수도 있다. 각 라인마다 필터 탭수 또는 필터 계수 중 적어도 하나가 상이한 보정 필터가 사용될 수도 있다. 예를 들어, 블록 경계와 가장 가까운 왼쪽 첫번째 라인의 경우 (1/2,1/2) 필터를 사용할 수 있고, 두번째 라인의 경우 (12/16, 4/16) 필터를 사용할 수 있고, 세번째 라인의 경우 (14/16, 2/16) 필터를 사용하며, 네번째 라인의 경우 (15/16, 1/16) 필터를 사용할 수도 있다.
또는, 방향성 예측 모드 중 인덱스가 3 내지 6사이 또는 30 내지 33 사이의 값일 경우, 도 8과 같이 블록 경계에서 필터링을 수행할 수 있으며, 3-tap의 보정 필터를 사용하여 예측 샘플을 보정할 수 있다. 보정 대상인 예측 샘플의 좌하단 샘플, 좌하단 샘플의 하단 샘플 및 보정 대상인 예측 샘플을 입력으로 하는 3-tap의 보정 필터를 사용하여 필터링을 수행할 수 있다. 보정 필터에 이용되는 주변 샘플의 위치는 방향성 예측 모드에 기반하여 상이하게 결정될 수 있다. 방향성 예측 모드에 따라 보정 필터의 필터 계수가 상이하게 결정될 수도 있다.
주변 블록이 인터 모드인지 인트라 모드인지에 따라 서로 다른 보정 필터가 적용될 수 있다. 주변 블록이 인트라 모드로 부호화된 경우에는 인터 모드로 부호화된 경우보다 예측 샘플에 가중치를 더 주는 필터링 방법을 사용할 수 있다. 예를 들어, 인트라 예측 모드가 34인 경우, 주변 블록이 인터 모드로 부호화된 경우에는 (1/2,1/2) 필터를 사용하고, 주변 블록이 인트라 모드로 부호화된 경우에는 (4/16, 12/16) 필터를 사용할 수 있다.
현재 블록(예를 들어, 코딩 블록, 예측 블록)의 크기/형태에 따라 현재 블록 내 필터링되는 라인의 개수는 상이할 수 있다. 예를 들어, 현재 블록의 크기가 32x32보다 작거나 같은 경우에는 블록 경계에 있는 하나의 라인만 필터링을 수행하고, 그렇지 않은 경우에는 블록 경계에 있는 하나의 라인을 포함한 복수의 라인에 필터링을 수행할 수도 있다.
도 7과 도 8은 도 4에서 언급한 35개의 인트라 예측 모드를 이용하는 경우를 기반으로 설명하나, 확장된 인트라 예측 모드를 이용하는 경우에도 동일/유사하게 적용될 수 있다.
도 9는 본 발명이 적용되는 일실시예로서, 가중치와 오프셋을 이용하여 예측 샘플을 보정하는 방법을 도시한 것이다.
현재 블록과 이전 프레임의 대응 블록이 유사함에도 불구하고, 이전 프레임과 현재 프레임 간의 조도 변화가 발생하여 인트라 예측 또는 인터 예측으로 부호화되지 않거나, 인트라 예측 또는 인터 예측으로 부호화된 예측 영상의 화질이 상대적으로 낮은 경우가 발생할 수 있다. 이러한 경우, 조도 보상을 위한 가중치와 오프셋을 예측 샘플에 적용함으로써 예측 영상의 화질을 향상시킬 수 있다.
도 9를 참조하면, 가중치 w와 오프셋 f 중 적어도 하나를 결정할 수 있다(S900).
가중치 w 또는 오프셋 f 중 적어도 하나는 시퀀스 파라미터 세트, 픽쳐 파라미터 세트 또는 슬라이스 헤더 중 적어도 하나에서 시그날링될 수 있다. 또는, 가중치 w와 오프셋 f 중 적어도 하나는 이를 공유하는 소정의 블록 단위로 시그날링될 수도 있고, 소정의 블록 단위에 속하는 복수의 블록(예를 들어, CU, PU, TU)은 시그날링되는 하나의 가중치 w 및/또는 오프셋 f을 공유할 수 있다.
가중치 w 또는 오프셋 f 중 적어도 하나는 현재 블록의 예측 모드와 관계없이 시그날링될 수도 있고, 예측 모드를 고려하여 선택적으로 시그날링될 수도 있다. 예를 들어, 현재 블록의 예측 모드가 인터 모드인 경우, 가중치 w 및/또는 오프셋 f을 시그날링하고, 그렇지 않은 경우에는 시그날링하지 않을 수 있다. 여기서, 인터 모드는 스킵 모드, 머지 모드, AMVP 모드 또는 현재 픽쳐 참조 모드 중 적어도 하나를 포함할 수 있다. 현재 픽쳐 참조 모드는 현재 블록이 속한 현재 픽쳐 내의 기-복원된 영역을 이용한 예측 모드를 의미할 수 있다. 상기 기-복원된 영역을 특정하기 위해 현재 픽쳐 참조 모드를 위한 움직임 벡터가 이용될 수 있다. 현재 블록이 현재 픽쳐 참조 모드로 부호화된 블록인지 여부를 나타내는 플래그 혹은 인덱스가 시그날링될 수도 있고, 현재 블록의 참조 영상 색인을 통해 유추될 수도 있다. 현재 픽쳐 참조 모드를 위한 현재 픽쳐는 현재 블록의 참조 영상 리스트 내에서 고정된 위치(예를 들어, refIdx=0인 위치 또는 가장 마지막 위치)에 존재할 수 있다. 또는, 참조 영상 리스트 내에 가변적으로 위치할 수도 있으며, 이를 위해 현재 픽쳐의 위치를 나타내는 별도의 참조 영상 색인이 시그날링될 수도 있다.
상기 가중치는 현재 블록에 이웃한 특정 형태의 제1 템플릿과 이에 대응하는 이전 블록에 이웃한 제2 템플릿 사이의 조도 변화를 이용해서 유도될 수 있다. 상기 제2 템플릿에 비가용 샘플이 포함될 수 있으며, 이 경우 비가용 샘플의 위치에 가용 샘플을 복사하여 이용할 수도 있고, 복수의 가용 샘플 간의 보간을 통해 가용 샘플을 유도하여 이용할 수도 있다. 이때 이용되는 가용 샘플은 제2 템플릿에 속한 것일 수도 있고, 주변 블록에 속한 것일 수도 있다. 보간에 이용되는 필터의 계수, 형태 또는 탭수 중 적어도 하나는 템플릿의 크기 및/또는 형태에 기반하여 가변적으로 결정될 수 있다. 템플릿을 구성하는 방법에 대해서는 도 10 내지 도 15를 참조하여 자세히 살펴 보기로 한다.
예를 들어, 현재 블록의 주변 샘플을 yi (i는 0 부터 N-1), 대응 블록의 주변 샘플을 xi(i 는 0 부터 N-1)라고 할 때, 가중치 w와 오프셋 f은 다음과 같이 유도될 수 있다.
현재 블록에 이웃한 특정 형태의 템플릿을 이용하여 가중치 w와 오프셋 f은 다음 수학식 7의 E(w,f)의 최소값을 구하여 유도될 수 있다.
Figure pat00008
수학식 7의 최소값을 구하는 방법은 수학식 8과 같이 변형될 수 있다.
Figure pat00009
수학식 8로부터 가중치 w를 유도하는 수학식 9와 오프셋 f을 유도하는 수학식 10을 획득할 수 있다.
Figure pat00010
Figure pat00011
도 9를 참조하면, S900에서 결정된 가중치와 오프셋 중 적어도 하나를 이용하여 예측 샘플을 보정할 수 있다.
예를 들어, 프레임 전체에서 조도 변화가 발생한 경우, 다음 수학식 11과 같이 인트라 예측을 통해 생성된 예측 샘플 P에 가중치(w)와 오프셋(f)을 적용하여 보정된 예측 샘플 P'을 획득할 수 있다.
Figure pat00012
여기서, 가중치(w)와 오프셋(f)은 인터 예측을 통해 생성된 예측 샘플에 적용될 수도 있고, 복원 샘플에 적용될 수도 있음은 물론이다.
도 10 내지 도 15는 본 발명이 적용되는 일실시예로서, 가중치 w를 결정하기 위한 템플릿을 구성하는 방법을 도시한 것이다.
도 10의 좌측 도면을 참조하면, 현재 블록과 인접한 모든 주변 샘플을 템플릿으로 구성할 수도 있고, 현재 블록과 인접한 주변 샘플 중에서 서브-샘플링(sub-sampling)된 일부 샘플로 템플릿을 구성할 수 있다. 도 10의 중앙 도면은 1/2 sub-sampling한 예시로서 회색 부분의 샘플로만 템플릿을 구성할 수 있다. 1/2 sub-sampling 대신에 1/4 sub-sampling, 1/8 sub-sampling을 이용하여 템플릿을 구성할 수도 있다. 도 10의 우측 도면처럼 현재 블록과 인접한 모든 주변 샘플에서 좌상단에 위치한 샘플을 제외하고 템플릿을 구성할 수도 있다. 도 10에 도시되어 있지는 아니하나, 픽쳐 또는 코딩 트리 블록(Largest Coding Unit) 내 현재 블록의 위치를 고려하여 좌측에 위치한 샘플만으로 구성된 템플릿을 이용하거나, 상단에 위치한 샘플만으로 구성된 템플릿을 이용할 수도 있다.
도 11을 참조하면, 주변 샘플의 개수를 확장하여 템플릿을 구성할 수도 있다. 즉, 도 11의 템플릿은 현재 블록의 경계와 인접한 제1 주변 샘플들 및 제1 주변 샘플들에 인접한 제2 주변 샘플들로 구성할 수도 있다.
도 11의 좌측 도면처럼 현재 블록의 경계로부터 인접한 2개 라인에 속하는 주변 샘플 모두를 템플릿으로 사용할 수도 있고, 중앙 도면처럼 좌측 도면의 템플릿을 sub-sampling하여 템플릿을 구성할 수 있다. 도 11의 우측 도면처럼 좌상단에 속하는 4개의 샘플을 제외하고 템플릿을 구성할 수도 있다. 도 11에 도시되어 있지는 아니하나, 픽쳐 또는 코딩 트리 블록(Largest Coding Unit) 내 현재 블록의 위치를 고려하여 좌측에 위치한 샘플만으로 구성된 템플릿을 이용하거나, 상단에 위치한 샘플만으로 구성된 템플릿을 이용할 수도 있다.
또는, 현재 블록의 크기 및/또는 형태(정방형인지 여부, 대칭형 파티션인지 여부)에 따라 서로 다른 템플릿을 구성할 수도 있다. 예를 들어, 도 12와 같이 현재 블록의 크기에 따라 템플릿의 서브-샘플링의 비율(sub-sampling rate)을 다르게 적용할 수도 있다. 예를 들어, 크기가 64x64 보다 작거나 같은 블록에서는 도 12의 좌측 도면처럼 1/2 sub-sampling한 템플릿을 구성하고, 크기가 128x128 보다 크거나 같은 블록에서는 도 12의 우측 도면처럼 1/4 sub-sampling한 템플릿을 구성할 수 있다.
도 13을 참조하면, 현재 블록의 크기에 따라 인접한 주변 샘플의 개수를 확장한 템플릿을 사용할 수도 있다.
시퀀스 또는 슬라이스에서 사용 가능한 복수의 템플릿 후보자를 결정하고, 이 중 어느 하나를 선택적으로 이용할 수도 있다. 상기 복수의 템플릿 후보자는 서로 상이한 형태 및/또는 크기를 템플릿으로 구성될 수 있다. 템플릿의 형태 및/또는 크기에 관한 정보를 시퀀스 헤더 또는 슬라이스 헤더에서 시그날링할 수도 있다. 영상 부호화기/복호화기에서는 템플릿 후보자마다 인덱스를 할당할 수 있다. 그리고, 복수의 템플릿 후보자 중에서 현재 시퀀스, 픽쳐 또는 슬라이스에서 사용되는 템플릿 후보자를 식별하기 위해 신택스 type_weight_pred_template_idx를 부호화할 수 있다. 영상 복호화기는 신택스 type_weight_pred_template_idx에 기반하여 템플릿 후보자를 선택적으로 이용할 수 있다.
예를 들어, 도 14와 같이, 도 10의 중앙 도면의 템플릿을 0으로 할당하고, 도 10의 우측 도면의 템플릿을 1로 할당하고, 도 11의 중앙 도면의 템플릿을 2로 할당하고, 도 11의 우측 도면의 템플릿을 3으로 할당할 수 있으며, 그 중에서 시퀀스에서 사용한 템플릿을 시그날링 할 수 있다.
비정방형 블록을 이용하여 가중 예측을 수행하는 경우 템플릿의 총 개수가 2^N이 될 수 있도록, 길이가 긴 쪽과 짧은 쪽의 서브-샘플링 비율(sub-sampling rate)을 다르게 적용하여 템플릿을 구성할 수도 있다. 예를 들어, 도 15와 같이 길이가 짧은 쪽에서는 1/2 sub-sampling을, 길이가 긴 쪽에서는 1/4 sub-sampling을 각각 수행하여 템플릿을 구성할 수 있다.

Claims (15)

  1. 현재 블록의 인트라 예측 모드를 결정하는 단계;
    상기 현재 블록의 인트라 예측을 위한 참조 샘플을 유도하는 단계; 및
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측을 수행하는 단계를 포함하되,
    상기 현재 블록은 쿼트 트리 또는 바이너리 트리 중 적어도 하나에 기반하여 분할된 코딩 블록이고,
    상기 현재 블록은 비정방형 블록인 비디오 디코딩 방법.
  2. 제1항에 있어서, 상기 인트라 예측 모드를 결정하는 단계는,
    복수의 후보자를 포함한 후보 리스트를 생성하는 단계; 및
    상기 후보 리스트와 인덱스에 기반하여 상기 현재 블록의 인트라 예측 모드를 결정하는 단계를 포함하되,
    상기 후보 리스트에 포함 가능한 후보자의 최대 개수는 3개보다 많고,
    상기 결정된 인트라 예측 모드는 확장된 인트라 예측 모드 중 어느 하나이며,
    상기 확장된 인트라 예측 모드는 플래너 모드, DC 모드 및 33개보다 많은 개수의 방향성 예측 모드로 구성되는 비디오 디코딩 방법.
  3. 제1항에 있어서, 상기 인트라 예측을 수행하는 단계는,
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계; 및
    상기 현재 블록의 주변 샘플들의 차분 정보를 이용하여 상기 획득된 예측 샘플을 보정하는 단계를 포함하는 비디오 디코딩 방법.
  4. 제1항에 있어서, 상기 인트라 예측을 수행하는 단계는,
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계; 및
    상기 획득된 예측 샘플을 소정의 가중치 또는 오프셋 중 적어도 하나를 기반으로 보정하는 단계를 포함하는 비디오 디코딩 방법.
  5. 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 인트라 예측을 위한 참조 샘플을 유도하며, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측을 수행하는 예측부를 포함하되,
    상기 현재 블록은 쿼트 트리 또는 바이너리 트리 중 적어도 하나에 기반하여 분할된 코딩 블록이고,
    상기 현재 블록은 비정방형 블록인 비디오 디코딩 장치.
  6. 제5항에 있어서, 상기 예측부는,
    복수의 후보자를 포함한 후보 리스트를 생성하고, 상기 후보 리스트와 인덱스에 기반하여 상기 현재 블록의 인트라 예측 모드를 결정하되,
    상기 후보 리스트에 포함 가능한 후보자의 최대 개수는 3개보다 많고,
    상기 결정된 인트라 예측 모드는 확장된 인트라 예측 모드 중 어느 하나이며,
    상기 확장된 인트라 예측 모드는 플래너 모드, DC 모드 및 33개보다 많은 개수의 방향성 예측 모드로 구성되는 비디오 디코딩 장치.
  7. 제5항에 있어서, 상기 예측부는,
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하고, 상기 현재 블록의 주변 샘플들의 차분 정보를 이용하여 상기 획득된 예측 샘플을 보정하는 비디오 신호 디코딩 장치.
  8. 제5항에 있어서, 상기 예측부는,
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하고, 상기 획득된 예측 샘플을 소정의 가중치 또는 오프셋 중 적어도 하나를 기반으로 보정하는 비디오 신호 디코딩 장치.
  9. 현재 블록의 인트라 예측 모드를 결정하는 단계;
    상기 현재 블록의 인트라 예측을 위한 참조 샘플을 유도하는 단계; 및
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측을 수행하는 단계를 포함하되,
    상기 현재 블록은 쿼트 트리 또는 바이너리 트리 중 적어도 하나에 기반하여 분할된 코딩 블록이고,
    상기 현재 블록은 비정방형 블록인 비디오 인코딩 방법.
  10. 제9항에 있어서, 상기 인트라 예측 모드를 결정하는 단계는,
    복수의 후보자를 포함한 후보 리스트를 생성하는 단계; 및
    상기 후보 리스트와 인덱스에 기반하여 상기 현재 블록의 인트라 예측 모드를 결정하는 단계를 포함하되,
    상기 후보 리스트에 포함 가능한 후보자의 최대 개수는 3개보다 많고,
    상기 결정된 인트라 예측 모드는 확장된 인트라 예측 모드 중 어느 하나이며,
    상기 확장된 인트라 예측 모드는 플래너 모드, DC 모드 및 33개보다 많은 개수의 방향성 예측 모드로 구성되는 비디오 인코딩 방법.
  11. 제9항에 있어서, 상기 인트라 예측을 수행하는 단계는,
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계; 및
    상기 현재 블록의 주변 샘플들의 차분 정보를 이용하여 상기 획득된 예측 샘플을 보정하는 단계를 포함하는 비디오 인코딩 방법.
  12. 제9항에 있어서, 상기 인트라 예측을 수행하는 단계는,
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하는 단계; 및
    상기 획득된 예측 샘플을 소정의 가중치 또는 오프셋 중 적어도 하나를 기반으로 보정하는 단계를 포함하는 비디오 인코딩 방법.
  13. 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 인트라 예측을 위한 참조 샘플을 유도하며, 상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 인트라 예측을 수행하는 예측부를 포함하되,
    상기 현재 블록은 쿼트 트리 또는 바이너리 트리 중 적어도 하나에 기반하여 분할된 코딩 블록이고,
    상기 현재 블록은 비정방형 블록인 비디오 인코딩 장치.
  14. 제13항에 있어서, 상기 예측부는,
    복수의 후보자를 포함한 후보 리스트를 생성하고, 상기 후보 리스트와 인덱스에 기반하여 상기 현재 블록의 인트라 예측 모드를 결정하되,
    상기 후보 리스트에 포함 가능한 후보자의 최대 개수는 3개보다 많고,
    상기 결정된 인트라 예측 모드는 확장된 인트라 예측 모드 중 어느 하나이며,
    상기 확장된 인트라 예측 모드는 플래너 모드, DC 모드 및 33개보다 많은 개수의 방향성 예측 모드로 구성되는 비디오 인코딩 장치.
  15. 제13항에 있어서, 상기 예측부는,
    상기 인트라 예측 모드와 상기 참조 샘플을 기반으로 상기 현재 블록의 예측 샘플을 획득하고, 상기 현재 블록의 주변 샘플들의 차분 정보를 이용하여 상기 획득된 예측 샘플을 보정하는 비디오 인코딩 장치.
KR1020160109897A 2015-08-28 2016-08-29 비디오 신호 처리 방법 및 장치 Active KR102835073B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20150121629 2015-08-28
KR1020150121629 2015-08-28
KR20150122975 2015-08-31
KR20150122976 2015-08-31
KR1020150122976 2015-08-31
KR1020150122975 2015-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020250094092A Division KR20250111277A (ko) 2015-08-28 2025-07-11 비디오 신호 처리 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20170026276A true KR20170026276A (ko) 2017-03-08
KR102835073B1 KR102835073B1 (ko) 2025-07-17

Family

ID=

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180126384A (ko) * 2017-05-17 2018-11-27 주식회사 케이티 비디오 신호 처리 방법 및 장치
WO2019009620A1 (ko) * 2017-07-04 2019-01-10 엘지전자 주식회사 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
WO2019083284A1 (ko) * 2017-10-24 2019-05-02 주식회사 윌러스표준기술연구소 비디오 신호 처리 방법 및 장치
WO2019221472A1 (ko) * 2018-05-12 2019-11-21 주식회사 윌러스표준기술연구소 참조 샘플을 이용하는 비디오 신호 처리 방법 및 장치
US11051011B2 (en) 2017-05-17 2021-06-29 Kt Corporation Method and device for video signal processing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11051011B2 (en) 2017-05-17 2021-06-29 Kt Corporation Method and device for video signal processing
US12267483B2 (en) 2017-05-17 2025-04-01 Kt Corporation Method and device for video signal processing
US12250403B2 (en) 2017-05-17 2025-03-11 Kt Corporation Method and device for video signal processing
KR20180126384A (ko) * 2017-05-17 2018-11-27 주식회사 케이티 비디오 신호 처리 방법 및 장치
WO2019009620A1 (ko) * 2017-07-04 2019-01-10 엘지전자 주식회사 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
US11743495B2 (en) 2017-10-24 2023-08-29 Samsung Electronics Co., Ltd. Video signal processing method and apparatus
CN111373750A (zh) * 2017-10-24 2020-07-03 韦勒斯标准与技术协会公司 视频信号处理方法和装置
US11284108B2 (en) 2017-10-24 2022-03-22 Wilus Institute Of Standards And Technology Inc. Video signal processing method and apparatus
CN111373750B (zh) * 2017-10-24 2025-01-14 三星电子株式会社 视频信号处理方法和装置
KR20190045885A (ko) * 2017-10-24 2019-05-03 주식회사 윌러스표준기술연구소 비디오 신호 처리 방법 및 장치
WO2019083284A1 (ko) * 2017-10-24 2019-05-02 주식회사 윌러스표준기술연구소 비디오 신호 처리 방법 및 장치
US11044470B2 (en) 2018-05-12 2021-06-22 Wilus Institute Of Standards And Technology Inc. Video signal processing method and device using reference sample
WO2019221472A1 (ko) * 2018-05-12 2019-11-21 주식회사 윌러스표준기술연구소 참조 샘플을 이용하는 비디오 신호 처리 방법 및 장치

Also Published As

Publication number Publication date
CN108353185B (zh) 2022-09-13
US11470317B2 (en) 2022-10-11
US10750174B2 (en) 2020-08-18
ES2677193R1 (es) 2018-10-09
WO2017039256A1 (ko) 2017-03-09
ES2677193A2 (es) 2018-07-30
US20210067780A1 (en) 2021-03-04
US20210067781A1 (en) 2021-03-04
GB202114959D0 (en) 2021-12-01
US11563943B2 (en) 2023-01-24
GB2596767A (en) 2022-01-05
CA2997097A1 (en) 2017-03-09
GB2557809A (en) 2018-06-27
US11368690B2 (en) 2022-06-21
GB2596767B (en) 2022-07-06
EP3343926A1 (en) 2018-07-04
US11477452B2 (en) 2022-10-18
CN115278236A (zh) 2022-11-01
GB2557809B (en) 2021-12-01
GB201805036D0 (en) 2018-05-09
ES2719132A2 (es) 2019-07-08
US20210067779A1 (en) 2021-03-04
US20200275100A1 (en) 2020-08-27
ES2719132R1 (es) 2019-07-19
ES2677193B1 (es) 2019-06-19
CN115278236B (zh) 2025-04-15
EP3343926A4 (en) 2019-01-30
US20180255299A1 (en) 2018-09-06
ES2719132B1 (es) 2020-05-05
CN108353185A (zh) 2018-07-31
CA2997097C (en) 2022-06-07

Similar Documents

Publication Publication Date Title
US11343499B2 (en) Method and apparatus for processing video signal
KR102383104B1 (ko) 비디오 신호 처리 방법 및 장치
KR102416257B1 (ko) 비디오 신호 처리 방법 및 장치
KR102410032B1 (ko) 비디오 신호 처리 방법 및 장치
CN108353185B (zh) 用于处理视频信号的方法和设备
KR102776943B1 (ko) 비디오 신호 처리 방법 및 장치
CN108702509B (zh) 用于处理视频信号的方法和设备
KR20180126382A (ko) 비디오 신호 처리 방법 및 장치
KR20180065953A (ko) 비디오 신호 처리 방법 및 장치
KR102424420B1 (ko) 비디오 신호 처리 방법 및 장치
KR102435000B1 (ko) 비디오 신호 처리 방법 및 장치
KR20180025284A (ko) 비디오 신호 처리 방법 및 장치
KR20180123674A (ko) 비디오 신호 처리 방법 및 장치
KR20180005119A (ko) 비디오 신호 처리 방법 및 장치
KR20180126384A (ko) 비디오 신호 처리 방법 및 장치
KR20180037599A (ko) 비디오 신호 처리 방법 및 장치
KR20180031615A (ko) 비디오 신호 처리 방법 및 장치
KR20180103732A (ko) 비디오 신호 처리 방법 및 장치
KR20180033030A (ko) 적응적 블록 분할에 기반한 비디오 신호 처리 방법 및 장치
KR102835073B1 (ko) 비디오 신호 처리 방법 및 장치
KR20250111277A (ko) 비디오 신호 처리 방법 및 장치
KR20210082877A (ko) 영상 신호 부호화/복호화 방법 및 이를 위한 장치
KR20210082876A (ko) 영상 신호 부호화/복호화 방법 및 이를 위한 장치
KR20180000886A (ko) 비디오 신호 처리 방법 및 장치

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20160829

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20210827

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20160829

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20240821

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20250410