[go: up one dir, main page]

KR20160112766A - Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same - Google Patents

Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same Download PDF

Info

Publication number
KR20160112766A
KR20160112766A KR1020150039039A KR20150039039A KR20160112766A KR 20160112766 A KR20160112766 A KR 20160112766A KR 1020150039039 A KR1020150039039 A KR 1020150039039A KR 20150039039 A KR20150039039 A KR 20150039039A KR 20160112766 A KR20160112766 A KR 20160112766A
Authority
KR
South Korea
Prior art keywords
active material
cathode active
secondary battery
lithium secondary
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
KR1020150039039A
Other languages
Korean (ko)
Inventor
박병천
김지혜
박신영
이대진
전혜림
한기범
정왕모
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020150039039A priority Critical patent/KR20160112766A/en
Priority to PCT/KR2016/002817 priority patent/WO2016153239A1/en
Publication of KR20160112766A publication Critical patent/KR20160112766A/en
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a positive electrode active material for a high voltage and, more specifically, to a positive electrode active material, which exhibits excellent high-temperature properties used in a lithium secondary battery having 5 V. The positive electrode active material for a lithium secondary battery is represented by chemical formula 1, Li_(1+a)Ni_bM1_cMn_[2-(b+c)]O_(4-z-d)A_n. A surface layer is represented by chemical formula 2, Li_(1+a)Ni_bM1_cM2_dMn_[2-(b+c+d)]O_(4-z-d)A_n.

Description

고전압 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지 {Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode active material for a high-voltage lithium secondary battery, and a lithium secondary battery including the cathode active material,

본 발명은 고전압 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것으로, 보다 구체적으로는 5V급 리튬 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지에 관한 것이다.
The present invention relates to a cathode active material for a high voltage lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, to a cathode active material for a 5V class lithium secondary battery and a lithium secondary battery comprising the same.

최근 휴대용 전자기기의 소형화 및 경량화 추세와 관련하여 이들 기기의 전원으로 사용되는 전지의 고성능화 및 대용량화에 대한 필요성이 높아지고 있다.Recently, with regard to the tendency to miniaturize and lighten portable electronic devices, there is an increasing need for high performance and large capacity of batteries used as power sources for these devices.

리튬 이차전지는 리튬 이온의 가역적인 인터칼레이션/디인터칼레이션이 가능한 물질을 양극과 음극의 활물질로 사용하고, 상기 양극과 음극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조한다.The lithium secondary battery is manufactured by using a material capable of reversible intercalation / deintercalation of lithium ions as an active material of the positive electrode and the negative electrode, and filling an organic electrolytic solution or a polymer electrolyte between the positive electrode and the negative electrode.

리튬 이차전지의 양극 활물질로는 리튬 복합금속 화합물이 사용되고 있으며, 그 예로 LiMn2O4, LiMnO2, LiCoO2, LiNiO2 등의 복합금속 산화물들이 연구되고 있다.As a cathode active material of a lithium secondary battery, a lithium composite metal compound is used. For example, composite metal oxides such as LiMn 2 O 4 , LiMnO 2 , LiCoO 2 and LiNiO 2 have been studied.

상기 양극 활물질 중 LiMn2O4, LiMnO2 등의 Mn계 양극 활물질은 합성하기도 쉽고, 값이 비교적 싸며, 과충전시 다른 활물질에 비하여 열적 안정성이 가장 우수하고, 환경에 대한 오염이 낮아 매력이 있는 물질이기는 하나, 용량이 적다는 단점을 가지고 있다.Of the above cathode active materials, Mn-based cathode active materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize and are relatively inexpensive and have excellent thermal stability compared to other active materials in overcharging, However, it has a disadvantage of low capacity.

LiCoO2 는 양호한 전기 전도도와 약 3.7 V 정도의 높은 전지 전압을 가지며, 사이클 수명 특성, 안정성 및 방전 용량 역시 우수하므로, 현재 상업화되어 시판되고 있는 대표적인 양극 활물질이다. 그러나 LiCoO2 는 전지 가격의 30% 이상을 차지하는 고가의 원료이기 때문에, 가격 경쟁력이 떨어지는 문제점이 있다.LiCoO 2 has a good electric conductivity, a high battery voltage of about 3.7 V, excellent cycle life characteristics, stability and discharge capacity, and is a typical cathode active material commercially available at present. However, since LiCoO 2 is an expensive raw material that accounts for more than 30% of the battery price, there is a problem that price competitiveness is poor.

또한, LiNiO2 는 위에서 언급한 양극 활물질 중 가장 높은 방전 용량의 전지 특성을 나타내고 있으나, 합성하기 어려운 단점이 있다. 또한, 니켈의 높은 산화상태는 전지 및 전극 수명 저하의 원인이 되며, 자기 방전이 심하고 가역성이 떨어지는 문제가 있다. 아울러, 안정성 확보가 완전하지 않아서 상용화에 어려움을 겪고 있다.
LiNiO 2 exhibits the battery characteristics of the highest discharge capacity among the above-mentioned cathode active materials, but it has a disadvantage that it is difficult to synthesize. In addition, the high oxidation state of nickel causes a decrease in battery life and electrode life, and there is a problem that self discharge is severe and reversibility is low. In addition, it is difficult to commercialize it because the stability is not completely secured.

본 출원의 발명자들은, 망간과 니켈을 둘다 포함하는 리튬 복합 금속 산화물이 4.6 V 이상의 높은 작동 전위를 가지는 까닭에, 전지의 정상작동 범위에서도 전해액이 분해되고 전해액과의 부반응으로 인해서 전지의 성능이 저하되는 문제가 있음을 확인하였다. 또한, Mn 이온의 용출이 발생함을 확인하였다. 이러한 문제는, 4V 영역의 작동 전압을 가지는 LiMn2O4 에서는 발견할 수 없었던 문제였다.The inventors of the present application have found that the lithium composite metal oxide containing both manganese and nickel has a high operating potential of 4.6 V or more and therefore the performance of the battery is deteriorated due to decomposition of the electrolyte and side reactions with the electrolyte, . Further, it was confirmed that elution of Mn ions occurred. This problem was a problem not found in LiMn 2 O 4 having an operating voltage of 4V.

본 발명은 상기와 같은 문제점을 해결한 5V 급 고전압용 양극 활물질 및 이의 제조방법을 제공하는 것을 목적으로 한다. SUMMARY OF THE INVENTION It is an object of the present invention to provide a cathode active material for a 5V class high voltage and a method of manufacturing the same.

또한, 본 발명은 고온 성능을 극대화시킨 고전압 리튬이차전지용 양극 활물질, 보다 구체적으로는 5V 급 리튬이차전지에서 사용되어 전지의 고온 특성을 향상시키는 양극 활물질 및 이를 포함하는 리튬 이차전지를 제공하고자 한다.
The present invention also provides a cathode active material for a high-voltage lithium secondary battery that maximizes high-temperature performance, more specifically, a cathode active material used in a 5V-class lithium secondary battery to improve the high-temperature characteristics of the battery and a lithium secondary battery comprising the same.

본 발명의 일 양태에서는, 하기 화학식 1로 표시되고, 단, 표층은 하기 화학식 2로 표시되는 리튬 이차전지용 양극 활물질이 제공된다:In one aspect of the present invention, there is provided a cathode active material for a lithium secondary battery represented by the following Chemical Formula 1, wherein the surface layer is represented by Chemical Formula 2:

[화학식 1][Chemical Formula 1]

Li1 + aNibM1cMn2 -(b+c)O4 -z-dA n Li 1 + a Ni b M1 c Mn 2 - (b + c) O 4 -zda n

상기 식에서, In this formula,

M1은, Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 1종 또는 2종 이상이고;M1 is at least one element selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;

A는 -1가 또는 -2가의 음이온이고, 독립적으로 F, Cl, Br, I 과 같은 할로겐, S 및 N으로 이루어진 군에서 선택되는 1종 또는 2종 이상이며;A is an anion having a valence of -1 or -2, and is independently at least one selected from the group consisting of halogens such as F, Cl, Br and I, S and N;

-0.1≤a≤0.1, 0.3≤b≤0.7, 0≤c≤0.1, 0.001≤d≤0.02, 0 ≤ z ≤ 0.1, 0 ≤ n ≤ 0.1 이다.
0.1? 0.3? B? 0.7, 0? C? 0.1, 0.001? D? 0.02, 0? Z? 0.1, 0? N? 0.1.

[화학식 2](2)

Li1 + aNibM1cM2dMn2 -(b+c+d)O4 -z-dA n Li 1 + a Ni b M1 c M2 d Mn 2 - (b + c + d) O 4 -zda n

상기 식에서, In this formula,

M1은, Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 1종 또는 2종 이상이고;M1 is at least one element selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;

M2는 V, Cr, Nb, Mo, Ta 및 W로 이루어진 군에서 선택되는 1종 또는 2종 이상이고;M2 is one or more selected from the group consisting of V, Cr, Nb, Mo, Ta and W;

A는 -1가 또는 -2가의 음이온이고, 독립적으로 F, Cl, Br, I 과 같은 할로겐, S 및 N으로 이루어진 군에서 선택되는 1종 또는 2종 이상이며;A is an anion having a valence of -1 or -2, and is independently at least one selected from the group consisting of halogens such as F, Cl, Br and I, S and N;

-0.1≤a≤0.1, 0.3≤b≤0.7, 0≤c≤0.1, 0.001≤d≤0.02, 0 ≤ z ≤ 0.1, 0 ≤ n ≤ 0.1 이다.
0.1? 0.3? B? 0.7, 0? C? 0.1, 0.001? D? 0.02, 0? Z? 0.1, 0? N? 0.1.

상기 양극 활물질의 총 중량에 대한 전이금속 M2의 중량비(M2/양극 활물질)는 0.05 중량% 내지 5.0 중량%일 수 있다.The weight ratio of the transition metal (M2 / positive electrode active material) to the total weight of the positive electrode active material may be 0.05% by weight to 5.0% by weight.

상기 양극 활물질은 1차 입자 또는 1차 입자가 응집하여 형성된 2차 입자일 수 있다.The cathode active material may be primary particles or secondary particles formed by aggregation of primary particles.

상기 양극 활물질은 5 내지 30 ㎛의 평균 입경(D50)을 갖는 1차 입자 형태일 수 있다.The cathode active material may be in the form of a primary particle having an average particle diameter (D50) of 5 to 30 mu m.

상기 양극 활물질은 5 내지 30 ㎛의 평균 입경(D50)을 갖는 2차 입자 형태일 수 있다.The cathode active material may be in the form of a secondary particle having an average particle diameter (D50) of 5 to 30 mu m.

상기 표층은 5 nm 보다 크고 100 nm 이하의 두께를 가질 수 있다.The surface layer may have a thickness greater than 5 nm and less than 100 nm.

본 발명의 다른 양태에서, 양극, 음극 및 전해질을 포함하는 리튬 이차전지에 있어서, 상기 양극은 전술한 양극 활물질을 포함할 수 있다.In another aspect of the present invention, in a lithium secondary battery including a cathode, a cathode, and an electrolyte, the cathode may include the cathode active material described above.

또한, 상기 리튬 이차전지는 5V 전압용일 수 있다.The lithium secondary battery may be used for a voltage of 5V.

본 발명의 또 다른 양태에서, 니켈 공급원, 망간 공급원, 전이 금속 M1 공급원을 일정한 조성으로 혼합하고, 열처리하여 화학식 1의 입자를 수득하는 단계, 화학식 1의 입자에 전이 금속 M2 공급원을 혼합하고, 열처리하는 단계, 및 열처리된 물질을 어닐링하는 단계를 포함하고, 상기 열처리 공정 각각이 독립적으로 800 내지 950℃의 온도에서 수행되고, 상기 어닐링 공정이 700 내지 1000 ℃에서 수행되는 것을 특징으로 하는 양극 활물질의 제조방법이 제공된다.
In another embodiment of the present invention, there is provided a process for the preparation of a catalyst, comprising mixing nickel source, manganese source, and transition metal M 1 source in a constant composition and heat treating to obtain the particles of Formula 1, mixing the particles of Formula 1 with a source of transition metal M2, And annealing the heat treated material, wherein each of the heat treatment processes is independently performed at a temperature of 800 to 950 占 폚, and the annealing process is performed at 700 to 1000 占 폚. A manufacturing method is provided.

본 발명에 따른 양극 활물질은 고전압 리튬이차전지용 양극 활물질, 보다 구체적으로는 5V급 리튬이차전지용 양극 활물질로 사용될 수 있다. The cathode active material according to the present invention can be used as a cathode active material for a high voltage lithium secondary battery, more specifically, a cathode active material for a 5V class lithium secondary battery.

이러한 양극 활물질을 포함하여 제조된 고전압 리튬이차전지는 우수한 출력 특성, 향상된 고온 수명 특성 및 우수한 고온 저장후 회복율을 나타낸다.
The high-voltage lithium secondary battery produced with such a cathode active material exhibits excellent output characteristics, improved high-temperature lifetime characteristics, and excellent high-temperature storage recovery.

이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, it should be understood that the present invention is not limited thereto, and the present invention is only defined by the scope of the following claims.

본 발명의 일 양태에서는, 하기 화학식 1로 표시되고, 단, 표층은 하기 화학식 2로 표시되는 리튬 이차전지용 양극 활물질이 제공된다:In one aspect of the present invention, there is provided a cathode active material for a lithium secondary battery represented by the following Chemical Formula 1, wherein the surface layer is represented by Chemical Formula 2:

[화학식 1][Chemical Formula 1]

Li1 + aNibM1cMn2 -(b+c)O4 -z-dA n Li 1 + a Ni b M1 c Mn 2 - (b + c) O 4 -zda n

상기 식에서, In this formula,

M1은, Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 1종 또는 2종 이상이고;M1 is at least one element selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;

A는 -1가 또는 -2가의 음이온이고, 독립적으로 F, Cl, Br, I 과 같은 할로겐, S 및 N으로 이루어진 군에서 선택되는 1종 또는 2종 이상이며;A is an anion having a valence of -1 or -2, and is independently at least one selected from the group consisting of halogens such as F, Cl, Br and I, S and N;

-0.1≤a≤0.1, 0.3≤b≤0.7, 0≤c≤0.1, 0.001≤d≤0.02, 0 ≤ z ≤ 0.1, 0 ≤ n ≤ 0.1 이다.
0.1? 0.3? B? 0.7, 0? C? 0.1, 0.001? D? 0.02, 0? Z? 0.1, 0? N? 0.1.

[화학식 2](2)

Li1 + aNibM1cM2dMn2 -(b+c+d)O4 -z-dA n Li 1 + a Ni b M1 c M2 d Mn 2 - (b + c + d) O 4 -zda n

상기 식에서, In this formula,

M1은, Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 하나 이상이고;M1 is at least one selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;

M2는 V, Cr, Nb, Mo, Ta 및 W로 이루어진 군에서 선택되는 1종 또는 2종 이상이고;M2 is one or more selected from the group consisting of V, Cr, Nb, Mo, Ta and W;

A는 -1가 또는 -2가의 음이온이고, 독립적으로 F, Cl, Br, I 과 같은 할로겐, S 및 N으로 이루어진 군에서 선택되는 1종 또는 2종 이상이며;A is an anion having a valence of -1 or -2, and is independently at least one selected from the group consisting of halogens such as F, Cl, Br and I, S and N;

-0.1≤a≤0.1, 0.3≤b≤0.7, 0≤c≤0.1, 0.001≤d≤0.02, 0 ≤ z ≤ 0.1, 0 ≤ n ≤ 0.1 이다.
0.1? 0.3? B? 0.7, 0? C? 0.1, 0.001? D? 0.02, 0? Z? 0.1, 0? N? 0.1.

상기 양극 활물질은 4.6 V 이상 4.9 V 이하의 작동전위를 가지는 점에서, 4V 영역(약 3.7V 내지 4.3V)의 LiMn2O4 와 상이하다. 상기 양극 활물질은 4.6 V 이상 4.9 V 이하의 작동전위를 가지므로, LiMn2O4 에 비해서 고에너지 밀도 특성을 발휘할 수 있다.The positive electrode active material is different from LiMn 2 O 4 in the 4V region (about 3.7V to 4.3V) in that it has an operating potential of 4.6 V or more and 4.9 V or less. Since the cathode active material has an operating potential of 4.6 V or more and 4.9 V or less, LiMn 2 O 4 The high energy density characteristic can be exerted.

상기 양극 활물질에서 M1은 표층을 비롯한 양극 활물질 입자 전체에 균일하게 분포되어 있는 반면, 화학식 2로 표시되는 조성은 양극 활물질 입자의 표층을 구성하여 전해액과의 반응을 억제하는 보호층으로 작용할 수 있다. 상기 보호층은, 고전압 충방전시 전해액과 상기 화학식 1의 화합물 간의 직접 접촉을 차단하여 전해액의 부반응을 억제할 수 있다. 그 결과, 본 발명에 따른 양극 활물질은, 안정한 충방전 사이클 특성을 나타낼 수 있으므로 충방전 가역용량을 증가시킬 수 있다.In the cathode active material M1, M1 is uniformly distributed throughout the cathode active material particle including the surface layer, while the composition represented by the general formula (2) can act as a protective layer for suppressing the reaction with the electrolyte constituting the surface layer of the cathode active material particle. The protective layer may prevent direct contact between the electrolyte solution and the compound of Formula 1 during high-voltage charging and discharging, thereby suppressing side reactions of the electrolyte solution. As a result, the positive electrode active material according to the present invention can exhibit stable charge / discharge cycle characteristics, thereby increasing the charge / discharge reversible capacity.

본원 명세서에서 '표층'이라 함은 활물질에 존재하는 전체 전이금속 M2의 50 중량% 이상이 존재하는 영역으로, 활물질 최외각부를 기준으로 중심 방향으로의 두께 영역을 의미하는 것으로 이해한다.Herein, the term "surface layer" means a region in which at least 50% by weight of the total transition metal M2 present in the active material is present, and a thickness region in the center direction with respect to the outermost portion of the active material.

상기 양극 활물질의 총 중량에 대한 전이금속 M2의 중량비(M2/양극 활물질)는 0.05중량% 내지 5.0중량% 일 수 있다. 상기 중량비가 0.05중량% 미만인 경우 M2의 고온특성 향상 효과를 충분히 기대할 수 없으며 5.0중량% 보다 많으면 충방전 용량의 급격한 저하를 가져와 문제가 된다. The weight ratio of the transition metal (M2 / positive electrode active material) to the total weight of the positive electrode active material may be 0.05% by weight to 5.0% by weight. If the weight ratio is less than 0.05 wt%, the effect of improving the high-temperature characteristics of M2 can not be sufficiently expected. If the weight ratio is more than 5.0 wt%, the charge / discharge capacity is rapidly lowered.

상기 양극 활물질에서 표층은 5 nm 보다 크고 100 nm 이하의 두께를 가질 수 있으며, 상기 범위를 만족하여야만 위와 같은 장점을 기대할 수 있다. 표층의 두께가 5 nm 이하로 얇으면 전이금속 M2의 효과를 기대하기 곤란하게 되고, 표층의 두께가 100nm 보다 커지는 경우에는 이러한 두께 증가에 비례하는 성능 향상의 효과가 없으므로 불필요한 체적 증가가 발생하는 결과를 초래한다. 이러한 표층의 두께는 XPS(X-ray photoelectron spectroscopy)로 확인할 수 있다.In the cathode active material, the surface layer may have a thickness of greater than 5 nm and less than 100 nm, and the above-described advantages can be expected only if the thickness is within the above range. When the thickness of the surface layer is as thin as 5 nm or less, it is difficult to expect the effect of the transition metal M2. When the thickness of the surface layer is larger than 100 nm, there is no effect of improving the performance proportional to the thickness increase. . The thickness of the surface layer can be confirmed by X-ray photoelectron spectroscopy (XPS).

상기 양극 활물질의 구조는 약산성 용해액을 사용하여 확인할 수 있으며, 보다 상세한 분석 방법에 대해서는 KR 2012-0122975A를 참조한다.
The structure of the cathode active material can be confirmed by using a weakly acidic dissolving solution. For more detailed analysis method, refer to KR 2012-0122975A.

상기 양극 활물질은 1차 입자 혹은 1차 입자가 응집되어 형성된 2차 입자의 형태일 수 있다. 1차 입자 혹은 1차 입자가 응집되어 형성된 2차 입자는 구형의 형상을 가질 수 있다. 본원 명세서에서 '구형'이라 함은 완전한 구형뿐만 아니라, 구형과 유사한 형태 혹은 장방 타원형을 포함하는 개념으로 이해한다. The cathode active material may be in the form of primary particles or secondary particles formed by aggregation of primary particles. The secondary particles formed by coagulation of primary particles or primary particles may have a spherical shape. In the present specification, the term 'spherical' is understood not only as a complete spherical shape but also as a concept including a spherical-like shape or a rectangular elliptical shape.

상기 양극 활물질이 1차 입자만으로 이루어진 경우, 양극 활물질의 평균 입경(D50)은 3 내지 30 ㎛ 범위일 수 있다.When the cathode active material comprises only primary particles, the average particle diameter (D50) of the cathode active material may range from 3 to 30 mu m.

상기 양극 활물질이 1차 입자가 응집되어 형성된 2차 입자 형태인 경우, 상기 1차 입자는 0보다 크고 3 ㎛ 이하의 평균 입경(D50)을 가질 수 있으며, 2차 입자는 5 내지 30 ㎛의 평균 입경(D50) 또는 8 내지 25 ㎛의 평균 입경(D50)을 가질 수 있다. When the cathode active material is in the form of secondary particles formed by agglomeration of primary particles, the primary particles may have an average particle size (D50) of greater than 0 and less than 3 탆, and the secondary particles may have an average of 5 to 30 탆 (D50) or an average particle diameter (D50) of 8 to 25 mu m.

양극 활물질 입자가 30 ㎛ 보다 큰 평균 입경(D50)을 갖는 경우에는 충방전 용량의 급격한 저하를 가져오게 되고 전극 공정성이 급격히 저하되며, 3 ㎛보다 작은 경우에는 전이금속 용출이 급격히 증가하여 고온 특성이 저하되게 된다.When the cathode active material particles have an average particle diameter (D50) larger than 30 占 퐉, the charge / discharge capacity is drastically lowered and the electrode processability is drastically lowered. When the cathode active material particle is smaller than 3 占 퐉, the transition metal elution is rapidly increased, .

상기 양극 활물질을 제조하는 방법은 본 발명의 취지에 부합하는 한 특별히 제한되지 않으나, 바람직하게는 니켈 공급원, 망간 공급원, 전이 금속 M1 공급원을 일정한 조성으로 혼합하고, 열처리하여 화학식 1의 입자를 수득하는 단계, 화학식 1의 입자에 전이 금속 M2 공급원을 혼합하고, 열처리하는 단계, 및 열처리된 물질을 어닐링하는 단계를 포함하고, 상기 열처리 공정 각각이 독립적으로 800 내지 950℃의 온도에서 수행되고, 상기 어닐링 공정이 700 내지 1000 ℃에서 수행되는 고상법에 의해 제조될 수 있으며, 이에 대해서는 하기를 참조한다.
The method of preparing the cathode active material is not particularly limited as long as it is in accordance with the object of the present invention, but it is preferable to mix the nickel source, the manganese source and the transition metal M 1 source in a predetermined composition and heat- Mixing the transition metal M2 source with a grain of Formula 1, heat treating, and annealing the annealed material, wherein each of the annealing processes is performed independently at a temperature of 800 to 950 < 0 > C, The process may be prepared by a solid phase process carried out at 700-1000 占 폚, see below.

[화학식 1로 표시되는 입자의 제조][Preparation of particles represented by Chemical Formula 1]

니켈 공급원, 망간 공급원, 리튬 공급원, 전이 금속 M1의 공급원을 혼합한다.A nickel source, a manganese source, a lithium source, and a source of transition metal M1 are mixed.

이 때, 니켈 공급원, 망간 공급원, 리튬 공급원은 당업계에서 통상적으로 사용되는 화합물일 수 있으며, 예컨대, 니켈 공급원으로는 NiO 또는 Ni(OH)2를 들 수 있고, 망간 공급원으로는 Mn3O4를 들 수 있으며, 리튬 공급원으로는 Li2CO3 또는 LiOH를 들 수 있으나, 이에 한정되는 것은 아니다. 또한, 전이 금속 M1의 공급원으로는, M1 단체, 산화물, 수산화물, 탄산염, 황산염, 할로겐화물, 질산염 등을 이용할 수 있다. In this case, the nickel source, the manganese source, and the lithium source may be compounds commonly used in the art. For example, NiO or Ni (OH) 2 may be used as the nickel source, Mn 3 O 4 And examples of the lithium source include Li 2 CO 3 and LiOH, but the present invention is not limited thereto. As the source of the transition metal M1, M1 group, oxides, hydroxides, carbonates, sulfates, halides, nitrates and the like can be used.

상기 니켈, 망간, 리튬 공급원과 전이금속 M1 공급원을 혼합하고, 열처리하여 화학식 1로 표시되는 입자를 수득한다. 이 때의 열처리는 후술되는 어닐링과는 구별되는 단순 열처리로 이해한다.The nickel, manganese, lithium source and transition metal source are mixed and heat-treated to obtain particles represented by the formula (1). The heat treatment at this time is understood as a simple heat treatment distinguished from the annealing described later.

열처리의 분위기는 특별히 한정되지 않고, 산화성 분위기, 환원성 분위기, 진공, 불활성 분위기 등 임의로 선택 가능하다. 공정의 편의성을 위해 대기 중에서 열처리를 실시할 수 있다. 약 500℃ 내지 약 1200℃ 범위의 온도 또는 약 800 내지 950℃ 범위에서 열처리가 수행될 수 있다.
The atmosphere of the heat treatment is not particularly limited and may be arbitrarily selected from an oxidizing atmosphere, a reducing atmosphere, a vacuum, and an inert atmosphere. For convenience of the process, heat treatment can be performed in the atmosphere. Heat treatment may be performed at a temperature in the range of about 500 ° C to about 1200 ° C, or in the range of about 800 ° C to 950 ° C.

[전이금속 M2 공급원의 첨가][Addition of transition metal M2 source]

상기에서 수득된 화학식 1의 입자와 전이금속 M2 공급원을 혼합하고 교반하에 열처리한다. The particles of the formula 1 obtained above and the transition metal M2 source are mixed and heat-treated under stirring.

상기 전이금속 M2 공급원은 V, Cr, Nb, Mo, Ta 및 W로 이루어진 군에서 선택되는 1종 또는 2종 이상 금속의 산화물일 수 있다. The transition metal M2 source may be an oxide of one or more metals selected from the group consisting of V, Cr, Nb, Mo, Ta and W.

또한, 상기 열처리 온도는 전이금속 M2가 화학식 1의 입자에 고용되는 정도를 고려하여 결정할 수 있다. 예컨대, 약 500℃ 내지 약 1200℃ 범위의 온도 또는 약 800 내지 950℃ 범위에서 열처리가 수행될 수 있다.
The heat treatment temperature can be determined in consideration of the extent to which the transition metal M2 is dissolved in the particles of the formula (1). For example, a heat treatment may be performed at a temperature in the range of about 500 ° C to about 1200 ° C, or in the range of about 800 to 950 ° C.

[어닐링] [Annealing]

이어서, 어닐링 공정을 수행한다. 어닐링 공정이 실시되지 않으면 양극 활물질의 표층에 전이금속 M2가 분포되지 않게 된다. 어닐링 온도는 치환되는 전이금속 M2의 종류 및 열처리 온도를 고려하여 결정될 수 있는데, 예컨대, 열처리가 800 내지 950℃의 온도에서 실시되는 경우에 어닐링은 700 내지 1000 ℃ 범위의 온도에서 실시될 수 있다.
Then, an annealing process is performed. If the annealing process is not performed, the transition metal M2 is not distributed to the surface layer of the cathode active material. The annealing temperature may be determined in consideration of the kind of the transition metal M2 to be substituted and the heat treatment temperature. For example, when the heat treatment is performed at a temperature of 800 to 950 占 폚, the annealing may be performed at a temperature in the range of 700 to 1000 占 폚.

본 발명의 일 양태에 따른 양극 활물질은, 상기한 양극 활물질 이외에, 기타 리튬 함유 전이금속 산화물과 혼합될 수 있다.The cathode active material according to an embodiment of the present invention may be mixed with other lithium-containing transition metal oxides in addition to the above-mentioned cathode active material.

상기 기타 리튬 함유 전이금속 산화물의 예로는, 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물, 화학식 Li1 + yMn2 - yO4 (여기서, y 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물, 리튬 동 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물, 화학식 LiNi1 -yMyO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, y = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물, 화학식 LiMn2 - yMyO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, y = 0.01 ~ 0.1 임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물, 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4, 디설파이드 화합물 Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
Examples of the other lithium-containing transition metal oxide include a layered compound such as lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (LiNiO 2 ), a compound represented by the formula Li 1 + y Mn 2 - y O 4 (where y is 0 to 0.33 , Lithium manganese oxides such as LiMnO 3 , LiMn 2 O 3 and LiMnO 2 , lithium copper oxide (Li 2 CuO 2 ); A vanadium oxide such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 and Cu 2 V 2 O 7 , a vanadium oxide represented by the formula LiNi 1 -y M y O 2 (where M = Co, Mn, Al, Mg, B or Ga and y = 0.01 to 0.3), LiMn 2 - y M y O 2 (M = Co, Ni, Fe, Cr, Zn, or Ta , y = 0.01 to 0.1) or Li 2 Mn 3 MO 8 (where M is Fe, Co, Ni, Cu or Zn), Li manganese complex oxide represented by the formula: Li moiety is substituted with an alkaline earth metal ion LiMn 2 O 4 , a disulfide compound Fe 2 (MoO 4 ) 3 , and the like, but the present invention is not limited thereto.

양극은, 상기한 양극 활물질을 포함하는 양극 합제를 N-메틸 피롤리돈(NMP) 등의 용매에 혼합하여 만들어진 슬러리를 양극 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.The anode may be prepared by applying a slurry prepared by mixing a cathode mixture containing the cathode active material with a solvent such as N-methylpyrrolidone (NMP), applying the slurry on the cathode collector, followed by drying and rolling.

상기 양극 합제는 상기 양극 활물질 이외에 선택적으로 도전재, 바인더, 충진제 등이 포함될 수 있다.In addition to the cathode active material, the cathode mixture may optionally include a conductive material, a binder, a filler, and the like.

상기 양극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 이러한 양극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 양극 집전체는, 표면에 미세한 요철을 형성하여 양극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The cathode current collector generally has a thickness of 3 to 500 mu m. Such a positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, and examples thereof include copper, stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used. The positive electrode current collector may be formed into various shapes such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven fabric, or the like by forming fine irregularities on the surface to enhance the bonding force of the positive electrode active material.

상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙 탄소 섬유나 금속 섬유 등의 도전성 섬유 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말 산화아연, 티탄산 칼륨 등의 도전성 위스키 산화 티탄 등의 도전성 금속산화물 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of the mixture including the cathode active material. Such a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery. For example, graphite carbon black such as natural graphite or artificial graphite, acetylene black, ketjen black, channel black, , Lamp black, summer black, etc. Carbon fiber fluorinated carbon such as carbon fiber or metal fiber, metal powder such as aluminum and nickel powder Conductive metal oxide such as zinc oxide and conductive whiskey titanium oxide such as potassium titanate Polyphenylene derivative And the like can be used.

상기 바인더는 활물질과 도전제 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌 브티렌 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is added to the binder in an amount of 1 to 30% by weight, based on the total weight of the mixture containing the cathode active material, as a component that assists in bonding between the active material and the conductive agent and bonding to the current collector. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene , Polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene butylene rubber, fluorine rubber, various copolymers and the like.

상기 충진제는 양극의 팽창을 억제하는 성분으로서 선택적으로 사용되며, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합제 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.The filler is not particularly limited as long as it is a fibrous material without causing any chemical change in the battery and is optionally used as a component for suppressing the expansion of the anode. For example, an olefin-based polymer glass such as polyethylene or polypropylene Fibrous materials such as fibers and carbon fibers are used.

상기 분산액으로는 대표적으로 이소프로필 알코올, N-메틸피롤리돈(NMP), 아세톤 등이 사용될 수 있다.Typical examples of the dispersion include isopropyl alcohol, N-methyl pyrrolidone (NMP), and acetone.

전극 재료의 페이스트를 금속 재료에 고르게 도포하는 방법은 재료의 특성 등을 감안하여 공지 방법 중에서 선택하거나 새로운 적절한 방법으로 행할 수 있다. 예를 들어, 페이스트를 집전체 위에 분배시킨 후 닥터 블레이드(doctor blade) 등을 사용하여 균일하게 분산시킬 수 있다. 경우에 따라서는, 분배와 분산 과정을 하나의 공정으로 실행하는 방법을 사용할 수도 있다. 이 밖에도, 다이 캐스팅(die casting), 콤마 코팅(comma coating), 스크린 프린팅(screen printing) 등의 방법을 택할 수도 있으며, 또는 별도의 기재(substrate) 위에 성형한 후 프레싱 또는 라미네이션 방법에 의해 집전체와 접합시킬 수도 있다.The method of applying the paste of the electrode material to the metal material in a uniform manner can be selected from known methods in consideration of the characteristics of the material and the like or can be carried out by a new suitable method. For example, the paste can be uniformly dispersed by using a doctor blade or the like after being distributed on the current collector. In some cases, a method of performing the distribution and dispersion processes in a single process may be used. In addition, a die casting method, a comma coating method, a screen printing method, or the like may be used. Alternatively, the resin may be formed on a separate substrate, and then pressed or laminated by a pressing or laminating method. .

금속판 위에 도포된 페이스트의 건조는 50 내지 200℃의 진공오븐에서 1 일이내로 건조시키는 것이 바람직하다.It is preferable that the paste applied on the metal plate is dried in a vacuum oven at 50 to 200 DEG C within one day.

리튬 이차전지에 사용되는 음극은, 예를 들어, 음극 집전체 상에 음극 활물질을 도포, 건조하여 제작되며, 필요에 따라, 앞서 설명한 바와 같은 도전제, 바인더 및 충진제 등의 성분들이 선택적으로 더 포함될 수도 있다.The negative electrode to be used in the lithium secondary battery is manufactured, for example, by coating and drying an anode active material on the negative electrode collector, and if necessary, further includes components such as the conductive agent, the binder and the filler as described above It is possible.

상기 음극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만들어진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode collector is generally made to have a thickness of 3 to 500 mu m. Such an anode current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and may be formed of a material such as copper, stainless steel, aluminum, nickel, titanium, fired carbon, surface of copper or stainless steel A surface treated with carbon, nickel, titanium, silver or the like, an aluminum-cadmium alloy, or the like can be used. In addition, like the positive electrode collector, fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.

상기 음극 활물질은, 예를 들어, 난흑연화 탄소, 흑연계 탄소 등의 탄소 LixFe2O3 (0≤x≤1), LixWO2 (0≤x≤1), SnxMe1 - xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐 0<x≤1; 1≤y ≤3; 1≤z≤8) 등의 금속 복합 산화물 리튬 금속 리튬 합금 규소계 합금 주석계 합금 SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, Bi2O5 등의 금속 산화물 폴리아세틸렌 등의 도전성 고분자 Li-Co-Ni 계 재료 등을 더 포함할 수 있다.Examples of the negative electrode active material include carbon such as Li x Fe 2 O 3 (0? X? 1), Li x WO 2 (0? X? 1), Sn x Me 1 - x Me ' y O z (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, Group 1, Group 2 and Group 3 elements of the periodic table, y? 3, 1? z? 8) lithium metal lithium alloy silicon-based alloy tin-based alloy SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , A metal oxide such as Sb 2 O 4 , Sb 2 O 5 , GeO 2 , GeO 2 , Bi 2 O 3 , Bi 2 O 4 and Bi 2 O 5 , and other conductive polymer Li-Co-Ni materials can do.

리튬 이차전지에서 양극과 음극 사이에 개재되어 전기적 단락을 방지시키는 세퍼레이터로는 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용된다. 세퍼레이터의 기공 직경은 일반적으로 0.01 ~ 10 ㎛이고, 두께는 일반적으로 5 ~ 300 ㎛이다. 이러한 세퍼레이터로는, 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 크라프트지 등이 사용된다. 현재 시판중인 대표적인 예로는 셀가드 계열 세퍼레이터(Celgard R 2400, 2300(Hoechest Celanese Corp. 제품)), 폴리프로필렌 세퍼레이터(Ube Industries Ltd. 제품 또는 Pall RAI사 제품), 폴리에틸렌 계열 세퍼레이터(Tonen 또는 Entek) 등이 있다.As a separator interposed between an anode and a cathode in a lithium secondary battery to prevent an electrical short, an insulating thin film having high ion permeability and mechanical strength is used. The pore diameter of the separator is generally 0.01 to 10 mu m and the thickness is generally 5 to 300 mu m. As such a separator, for example, a sheet made of olefin-based polymer glass fiber or polyethylene, such as polypropylene having chemical resistance and hydrophobic property, nonwoven kraft paper, or the like is used. Representative examples currently on the market include Celgard R 2400, 2300 (Hoechest Celanese Corp.), polypropylene separator (Ube Industries Ltd. or Pall RAI), polyethylene series separator (Tonen or Entek) .

경우에 따라서, 상기 세퍼레이터 위에는 전지의 안정성을 높이기 위하여 겔 폴리머 전해질이 코팅될 수 있다. 이러한 겔 폴리머의 대표적인 예로는 폴리에틸렌옥사이드, 폴리비닐리덴플루오라이드, 폴리아크릴로나이트릴 등을 들 수 있다.In some cases, a gel polymer electrolyte may be coated on the separator to improve the stability of the battery. Representative examples of such a gel polymer include polyethylene oxide, polyvinylidene fluoride, and polyacrylonitrile.

전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 세퍼레이터를 겸할 수도 있다.When a solid electrolyte such as a polymer is used as the electrolyte, the solid electrolyte may also serve as a separator.

상기 리튬염 함유 비수계 전해질은, 비수 전해질과 리튬염으로 이루어져 있다. 비수 전해질로는 비수 전해액, 유기 고체 전해질, 무기 고체 전해질 등이 사용된다.The lithium salt-containing non-aqueous electrolyte is composed of a non-aqueous electrolyte and a lithium salt. As the non-aqueous electrolyte, a non-aqueous electrolyte, an organic solid electrolyte, an inorganic solid electrolyte and the like are used.

상기 비수 전해액으로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 에틸메틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the nonaqueous electrolyte include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate , Gamma -butyrolactone, 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydroxyfuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, Diethyl ether, formamide, dimethyl formamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane A non-protonic organic solvent such as an ether, a methyl pyrophosphate, or an ethyl propionate is used as the solvent, a sulfone, a methyl sulfolane, a 1,3-dimethyl-2-imidazolidinone, a propylene carbonate derivative, a tetrahydrofuran derivative, .

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include a polymer electrolyte such as a polyethylene derivative, a polyethylene oxide derivative, a polypropylene oxide derivative, a phosphate ester polymer, an agitation lysine, a polyester sulfide, a polyvinyl alcohol, a polyvinylidene fluoride, Polymers containing ionic dissociation groups, and the like can be used.

상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4 -LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides and sulfates of Li such as Li 4 SiO 4 -LiI-LiOH and Li 3 PO 4 -Li 2 S-SiS 2 can be used.

상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, LiSCN, LiC(CF3SO2)3, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4, LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, LiSCN, LiC (CF 3 SO 2) 3, (CF 3 SO 2) 2 NLi, chloroborane lithium, lower aliphatic carboxylic acid lithium, 4-phenylborate, imide, and the like can be used.

또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(fluoro-ethylene carbonate), PRS(propene sultone), FPC(fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.For the purpose of improving the charge / discharge characteristics and the flame retardancy, the electrolytic solution is preferably mixed with an organic solvent such as pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylenediamine, glyme, Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrrole, 2-methoxyethanol, . In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further added to impart nonflammability. In order to improve the high-temperature storage characteristics, carbon dioxide gas may be further added. FEC (fluoro-ethylene carbonate, PRS (propene sultone), FPC (fluoro-propylene carbonate), and the like.

본 발명에 따른 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다.The secondary battery according to the present invention can be used not only in a battery cell used as a power source for a small device but also as a unit cell in a middle or large battery module including a plurality of battery cells.

또한, 본 발명은 상기 전지모듈을 중대형 디바이스의 전원으로 포함하는 전지팩을 제공하고, 상기 중대형 디바이스는 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV) 등을 포함하는 전기차 및 전력 저장장치 등을 들 수 있으나, 이에 한정되는 것은 아니다.
Also, the present invention provides a battery pack including the battery module as a power source of a middle- or large-sized device, wherein the middle- or large-sized device is an electric vehicle (EV), a hybrid electric vehicle (HEV) An electric vehicle including a plug-in hybrid electric vehicle (PHEV), a power storage device, and the like, but the present invention is not limited thereto.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되어서는 안된다. 본 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. Embodiments of the invention are provided to more fully describe the present invention to those skilled in the art.

실시예Example 1 One

LiNi0 .5Mn1 .46Ti0 .04O4에 20 내지 50 nm 직경의 몰리브덴 산화물을 0.5중량%로 혼합한 후, 교반기(호소카와마이크론사 NoblitaTM) 내에 투입하고, 1000 rpm의 회전수로 1시간 혼합한 후, 대기 분위기에서 500 ℃의 온도로 5시간동안 혼합물을 열처리하여, 몰리브덴으로 표면 개질된 LiNi0 .5Mn1 .46Ti0 .04O4을 양극 활물질로 제조하였다.LiNi 0 .5 Mn 1 .46 Ti .04 O 0 to 4 in 20 to 50 nm in diameter and then the molybdenum oxide is mixed with 0.5% by weight, a stirrer (Hosokawa Micron Corporation Noblita TM) the number of revolutions of the input and, in the 1000 rpm After mixing for 1 hour, the mixture was heat-treated at 500 ° C. for 5 hours in an air atmosphere to prepare LiNi 0 .5 Mn 1 .46 Ti 0 .04 O 4 that was surface modified with molybdenum as a cathode active material.

상기의 표면 개질된 LiNi0 .5Mn1 .46Ti0 .04O4 : 도전재 : 바인더의 양이 95 : 2.5 : 2.5가 되도록 계량한 후 2-메틸 피롤리돈(NMP)에 넣고 믹싱(mixing)하여 양극 합제를 제조하고, 20 ㎛ 두께의 알루미늄 호일에 상기 양극 합제를 코팅한 후 압연 및 건조하여 양극을 제조하였다.The amount of the binder is 95: wherein the surface-modified LiNi 0 .5 Mn 1 .46 Ti 0 .04 O 4: conductive material 2.5: after weighing such that the 2.5 into a 2-methyl-pyrrolidone (NMP) mixing ( The cathode mixture was coated on the aluminum foil having a thickness of 20 μm, rolled and dried to prepare a cathode.

상기에서 제조된 리튬 이차전지용 양극과 함께, 음극으로서 리튬 금속 호일을 사용하고, 세퍼레이터로 폴리 에틸렌막(Celgard, 두께: 20 ㎛)을 사용하며, 비수 전해액으로 에틸렌 카보네이트, 디메틸렌 카보네이트, 디에틸 카보네이트가 1: 2: 1로 혼합된 용매에 LiPF6가 1M로 녹아 있는 비수 전해액을 사용하여, 2016 코인 전지를 제조하였다.
A lithium metal foil was used as a cathode, a polyethylene film (Celgard, thickness: 20 占 퐉) was used as a separator, and a non-aqueous electrolyte was prepared using ethylene carbonate, dimethyl carbonate, diethyl carbonate is 1: 2: using the non-aqueous electrolyte in a mixed solvent of a 1 LiPF 6 is dissolved in 1M, was prepared in 2016 coin cell.

실시예Example 2 2

몰리브덴 산화물 0.5 중량% 대신에 직경 20 내지 70 nm을 갖는 탄탈륨 산화물을 0.5 중량%의 양으로 사용하는 것을 제외하고 실시예 1과 동일한 방법으로 전지를 제조하였다.
A battery was prepared in the same manner as in Example 1, except that tantalum oxide having a diameter of 20 to 70 nm was used in an amount of 0.5 wt% instead of 0.5 wt% of molybdenum oxide.

비교예Comparative Example 1 One

별도의 표면 개질 처리를 하지 않은 LiNi0 .5Mn1 .46Ti0 .04O4을 양극 활물질로 하였다.
LiNi 0 .5 Mn 1 .46 Ti 0 .04 O 4 , which had not undergone any surface modification treatment, was used as a cathode active material.

망간 용출량 측정Manganese flow rate measurement

실시예 1 내지 2 및 비교예 1에서 각각 제조된 코인 전지들에 대해, 0.1C 전류로 3.5 ~ 4.9V의 전압 범위에서 1회 충방전을 진행한 후 0.1C의 전류로 4.9V까지 충전하여 코인 전지를 분해하였다. 분해한 코인 전지에서 얻어진 양극을 전해액 15 mL가 담긴 용기에 담근 후 80℃ 항온조에서 2주간 보관 후 전해액에 용출된 망간의 함량을 ICP(PerkinElmer사 7100모델)로 분석하고 그 결과를 하기 표 1에 기재하였다.Coin batteries manufactured in Examples 1 and 2 and Comparative Example 1 were charged and discharged once at a voltage range of 3.5 to 4.9 V at a current of 0.1 C and then charged to 4.9 V at a current of 0.1 C, The battery was disassembled. The anode obtained in the disassembled coin battery was immersed in a container containing 15 mL of the electrolytic solution and then stored in a thermostatic bath at 80 ° C for 2 weeks. The content of manganese dissolved in the electrolytic solution was analyzed by ICP (PerkinElmer 7100 model) .

ICP 결과ICP results Mn 용출Mn elution MoMo TaTa ppmppm PpmPpm ppmppm 실시예 1Example 1 62006200 N/DN / D 190190 실시예 2Example 2 N/DN / D 71307130 214214 비교예 1Comparative Example 1 N/DN / D N/DN / D 675675

Claims (8)

하기 화학식 1로 표시되고, 단, 표층은 하기 화학식 2로 표시되는 리튬 이차전지용 양극 활물질:
[화학식 1]
Li1 + aNibM1cMn2 -(b+c)O4 -z-dA n
상기 식에서,
M1은, Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 1종 또는 2종 이상이고;
A는 -1가 또는 -2가의 음이온이고,
-0.1≤a≤0.1, 0.3≤b≤0.7, 0≤c≤0.1, 0.001≤d≤0.02, 0 ≤ z ≤ 0.1, 0 ≤ n ≤ 0.1 이다.

[화학식 2]
Li1 + aNibM1cM2dMn2 -(b+c+d)O4 -z-dA n
상기 식에서,
M1은, Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn 및 2주기 전이금속들로 이루어진 군에서 선택되는 1종 또는 2종 이상이고;
M2는 V, Cr, Nb, Mo, Ta 및 W로 이루어진 군에서 선택되는 1종 또는 2종 이상이며;
A는 -1가 또는 -2가의 음이온이며;
-0.1≤a≤0.1, 0.3≤b≤0.7, 0≤c≤0.1, 0.001≤d≤0.02, 0 ≤ z ≤ 0.1, 0 ≤ n ≤ 0.1 이다.
1. A cathode active material for a lithium secondary battery represented by the following formula (1), wherein the surface layer is represented by the following formula (2)
[Chemical Formula 1]
Li 1 + a Ni b M1 c Mn 2 - (b + c) O 4 -zda n
In this formula,
M1 is at least one element selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;
A is an anion of -1 or -2,
0.1? 0.3? B? 0.7, 0? C? 0.1, 0.001? D? 0.02, 0? Z? 0.1, 0? N? 0.1.

(2)
Li 1 + a Ni b M1 c M2 d Mn 2 - (b + c + d) O 4 -zda n
In this formula,
M1 is at least one element selected from the group consisting of Ni, Ti, Co, Al, Cu, Fe, Mg, B, Cr, Zr, Zn and two period transition metals;
M2 is one or more selected from the group consisting of V, Cr, Nb, Mo, Ta and W;
A is an anion of -1 or -2;
0.1? 0.3? B? 0.7, 0? C? 0.1, 0.001? D? 0.02, 0? Z? 0.1, 0? N? 0.1.
제1항에 있어서,
상기 양극 활물질의 총 중량에 대한 전이금속 M2의 중량비가 0.05 중량% 내지 5.0 중량%인 것을 특징으로 하는 양극 활물질.
The method according to claim 1,
Wherein the weight ratio of the transition metal M2 to the total weight of the cathode active material is 0.05 wt% to 5.0 wt%.
제1항에 있어서,
상기 양극 활물질이 5 내지 30 ㎛의 평균 입경(D50)을 갖는 1차 입자인 것을 특징으로 하는 양극 활물질.
The method according to claim 1,
Wherein the cathode active material is a primary particle having an average particle diameter (D50) of 5 to 30 占 퐉.
제1항에 있어서,
상기 양극 활물질이 5 내지 30 ㎛의 평균 입경(D50)을 갖는 2차 입자 형태인 것을 특징으로 하는 양극 활물질.
The method according to claim 1,
Wherein the cathode active material is in the form of a secondary particle having an average particle diameter (D50) of 5 to 30 占 퐉.
제1항에 있어서,
상기 표층은 5 nm 보다 크고 100 nm 이하의 두께를 가지는 것을 특징으로 하는 양극 활물질.
The method according to claim 1,
Wherein the surface layer has a thickness of more than 5 nm and a thickness of 100 nm or less.
양극, 음극 및 전해질을 포함하는 리튬 이차전지에 있어서,
상기 양극이 제1항 내지 제5항중 어느 한 항에 기재된 양극 활물질을 포함하는 리튬 이차전지.
1. A lithium secondary battery comprising a positive electrode, a negative electrode and an electrolyte,
Wherein the positive electrode comprises the positive electrode active material according to any one of claims 1 to 5.
제6항에 있어서,
상기 리튬 이차전지가 5V 전압용인 것을 특징으로 하는 리튬 이차전지.
The method according to claim 6,
Wherein the lithium secondary battery is for 5V voltage.
니켈 공급원, 망간 공급원, 전이 금속 M1 공급원을 일정한 조성으로 혼합하고, 열처리하여 화학식 1의 입자를 수득하는 단계,
화학식 1의 입자에 전이 금속 M2 공급원을 혼합하고, 열처리하는 단계, 및
열처리된 물질을 어닐링하는 단계를 포함하고,
상기 열처리 공정 각각이 독립적으로 500 내지 1250℃의 온도에서 수행되고,
상기 어닐링 공정이 700 내지 1000 ℃에서 수행되는 것을 특징으로 하는
제1항에 기재된 양극 활물질의 제조방법.

Mixing a nickel source, a manganese source, and a transition metal M 1 source in a constant composition and heat treating to obtain a particle of Formula 1;
Mixing the particles of formula (I) with a source of transition metal M2 and heat treating,
Annealing the heat treated material,
Each of the heat treatment processes is independently performed at a temperature of 500 to 1250 DEG C,
Characterized in that the annealing step is carried out at 700 to 1000 &lt; RTI ID = 0.0 &gt;
A method for producing the positive electrode active material according to claim 1.

KR1020150039039A 2015-03-20 2015-03-20 Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same Ceased KR20160112766A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020150039039A KR20160112766A (en) 2015-03-20 2015-03-20 Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same
PCT/KR2016/002817 WO2016153239A1 (en) 2015-03-20 2016-03-21 Positive electrode active material for high-voltage lithium secondary battery and lithium secondary battery comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150039039A KR20160112766A (en) 2015-03-20 2015-03-20 Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same

Publications (1)

Publication Number Publication Date
KR20160112766A true KR20160112766A (en) 2016-09-28

Family

ID=56978892

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150039039A Ceased KR20160112766A (en) 2015-03-20 2015-03-20 Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same

Country Status (2)

Country Link
KR (1) KR20160112766A (en)
WO (1) WO2016153239A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030108790A1 (en) * 2001-12-05 2003-06-12 Arumugam Manthiram Surface/chemically modified oxide cathodes for lithium-ion batteries
KR101492175B1 (en) * 2011-05-03 2015-02-10 주식회사 엘지화학 Treatment method of surface of cathode active particle and cathode active particle formed therefrom
WO2014010854A1 (en) * 2012-07-09 2014-01-16 주식회사 엘지화학 High voltage anode active material and lithium secondary battery including same
CN105264695B (en) * 2013-07-31 2018-10-02 株式会社Lg 化学 The method for preparing cathode active material for lithium secondary battery
PL3041071T3 (en) * 2013-08-29 2019-06-28 Lg Chem, Ltd. Lithium transition metal composite particles, method for preparing same, and positive active materials comprising same

Also Published As

Publication number Publication date
WO2016153239A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
EP3633768B1 (en) Lithium secondary battery
KR102500085B1 (en) Positive Electrode Active Material Comprising Lithium Rich Lithium Manganese-based Oxide with Coating layer Comprising Lithium-Deficiency Transition Metal Oxide and Positive Electrode Comprising the Same
KR101336070B1 (en) Lithium Secondary Battery of High Energy with Improved energy Property
KR101653299B1 (en) High voltage positive active material and lithium secondary battery comprising the same
KR101510079B1 (en) Electrode Active Material Comprising Polydopamine and Lithium Secondary Battery Comprising The Same
KR101629489B1 (en) Surface Treated Positive Active Material For Lithium Secondary Battery With Fluoropolymer and Method For Manufacturing The Same
KR20190001556A (en) Lithium secondary battery
KR20180002055A (en) Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same
KR102120271B1 (en) Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same
KR20190038314A (en) Positive Electrode Active Material Comprising Lithium Rich Lithium Manganese-based Oxide and Lithium Tungsten Compound, or Additionally Tungsten Compound and Positive Electrode for Lithium Secondary Battery Comprising the Same
KR20180072567A (en) Metal Doped-Positive Active Material for High Voltage
KR20180009911A (en) Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide for Lithium Secondary Battery and Method of Manufacturing the Same
KR101511022B1 (en) Moisture-Limited Electrode Active Material, Moisture-Limited Electrode and Lithium Secondary Battery Comprising The Same
KR101572074B1 (en) Anode Active Material Having High Capacity and Lithium Secondary Battery Comprising The Same
KR101796344B1 (en) Positive electrode material for lithium secondary battery, preparation thereof, and lithium secondary battery comprising the same
CN104364943B (en) High-voltage cathode active material and preparation method thereof
KR20180089059A (en) Positive Electrode Active Material for Lithium Secondary Battery Comprising Lithium Cobalt Oxide with Core-Shell Structure and Method of Manufacturing the Same
KR101762480B1 (en) Positive electrode material for lithium secondary battery and method for manufacturing the same
EP2835848B1 (en) Cathode material for secondary battery having improved lifetime characteristics and preparation method therefor
KR20130117715A (en) Electrode comprising polyolefin binder and lithium secondary battery comprising the same
KR20130141772A (en) Lithium secondary battery improved storage characteristic and method for manufacturing cathode active material comprised the same
KR20130117716A (en) Electrode active material of high rate capability and lithium secondary battery comprising the same
US20240186501A1 (en) Pre-Dispersion for Positive Electrode and Positive Electrode Slurry for Lithium Secondary Battery Containing the Same
KR20160112766A (en) Cathode active material for lithium secondary battery with high voltage and Lithium secondary battery comprising the same
US20230268499A1 (en) Positive Electrode Slurry and Positive Electrode for Lithium Secondary Battery Using the Same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20150320

A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20160610

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20150320

Comment text: Patent Application

PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20171030

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20180118

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20171030

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I