[go: up one dir, main page]

KR20160056319A - Positive active material for sodium rechargeable batteries and method of manufacturing the same - Google Patents

Positive active material for sodium rechargeable batteries and method of manufacturing the same Download PDF

Info

Publication number
KR20160056319A
KR20160056319A KR1020160055651A KR20160055651A KR20160056319A KR 20160056319 A KR20160056319 A KR 20160056319A KR 1020160055651 A KR1020160055651 A KR 1020160055651A KR 20160055651 A KR20160055651 A KR 20160055651A KR 20160056319 A KR20160056319 A KR 20160056319A
Authority
KR
South Korea
Prior art keywords
sodium
active material
secondary battery
sodium secondary
cathode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020160055651A
Other languages
Korean (ko)
Other versions
KR101762540B1 (en
Inventor
선양국
오승민
장민우
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of KR20160056319A publication Critical patent/KR20160056319A/en
Application granted granted Critical
Publication of KR101762540B1 publication Critical patent/KR101762540B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D1/00Oxides or hydroxides of sodium, potassium or alkali metals in general
    • C01D1/02Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • Y02E60/12

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a positive electrode active material for a sodium secondary battery, and a producing method thereof and, more specifically, to a positive electrode active material for a sodium secondary battery, having a novel O_3 structure, and a producing method thereof. The positive electrode active material for a sodium secondary battery according to the present invention has an O_3 structure and thus is structurally stable, unlike a conventional positive electrode active material, so a sodium battery comprising the positive electrode active material for a sodium secondary battery according to the present invention exhibits excellent lifespan characteristics.

Description

나트륨 이차전지용 양극활물질 및 이의 제조 방법{POSITIVE ACTIVE MATERIAL FOR SODIUM RECHARGEABLE BATTERIES AND METHOD OF MANUFACTURING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cathode active material for a sodium secondary battery and a cathode active material for a sodium secondary battery,

본 발명은 나트륨 이차전지용 양극활물질 및 이의 제조방법에 관한 것으로서, 더욱 상세하게는 새로운 O3 구조의 나트륨 이차전지용 양극활물질 및 이의 제조 방법에 관한 것이다. The present invention relates to a cathode active material for a sodium secondary battery and a method of manufacturing the same, and more particularly, to a cathode active material for a sodium secondary battery having a novel O 3 structure and a method for manufacturing the same.

현재, 고에너지 밀도의 이차전지로서, 전해질염을 비수용매에 용해시킨 비수 전해액을 사용하고, 리튬 이온을 양극과 음극 사이에서 이동시켜 충방전이 이루어지도록 한 리튬 이온 이차전지가 많이 이용되고 있다. 양극 재료로서는 리튬 전이금속 산화물을 사용하여 리튬 이온의 중간 삽입반응을 이용한 리튬 이온 전지가 상용화되고 있다. 그러나, 리튬 이온 전지에 포함되는 리튬은 가격이 비싸므로 보다 값이 싸고 높은 용량을 가지는 전지가 필요한 실정이다. Currently, a lithium ion secondary battery in which a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent is used as a secondary battery of high energy density, and charge / discharge is performed by moving lithium ions between an anode and a cathode is widely used. As a cathode material, a lithium ion battery using an intermediate insertion reaction of lithium ions using a lithium transition metal oxide has been commercialized. However, since lithium contained in a lithium ion battery is expensive, a battery having a lower cost and a higher capacity is required.

최근에는 리튬 이온 대신에 나트륨 이온을 이용한 나트륨 이온 이차전지의 연구가 시작되고 있다. 나트륨은 자원 매장량이 풍부하기 때문에 리튬 이온 대신에 나트륨 이온을 이용한 이차전지를 제작할 수 있다면 이차전지를 낮은 비용으로 제조할 수 있게 된다. Recently, research on a sodium ion secondary battery using sodium ion instead of lithium ion has been started. Since sodium is abundant in resource reserves, it is possible to manufacture a secondary battery at low cost if a secondary battery using sodium ion can be manufactured instead of lithium ion.

일본 특허 공개 제2007-287661호 공보에는 Na, Mn 및 Co의 조성비(Na:Mn:Co)가 0.7:0.5:0.5인 원료를 소성하여 얻어지는 복합 금속 산화물을 이용한 정극과 나트륨 금속으로 이루어지는 부극을 가지는 이차 전지가 구체적으로 기재되어 있다. 또한, 일본 특허 공개 제2005-317511호 공보에는 합 금속 산화물로서 육방정(층상 암염형) 결정 구조를 갖는 α-NaFeO2가 구체적으로 개시되어 있고, Na2O2와 Fe3O4를 혼합하여 공기 중에 600 내지 700 ℃에서 소성시킴으로써 이 복합 금속 산화물을 얻었다. 그러나, 종래의 나트륨 이차 전지는, 수명 특성, 즉 충방전을 반복했을 때의 방전 용량 유지율은 충분하다고는 할 수 없었다. Japanese Patent Application Laid-Open No. 2007-287661 discloses a positive electrode using a composite metal oxide obtained by firing a raw material having a composition ratio of Na, Mn and Co (Na: Mn: Co) of 0.7: 0.5: 0.5 and a negative electrode made of a sodium metal A secondary battery is specifically described. Japanese Patent Application Laid-Open No. 2005-317511 discloses α-NaFeO 2 having a hexagonal (layered salt salt) crystal structure as a metal oxide, and Na 2 O 2 and Fe 3 O 4 are mixed And then calcined in air at 600 to 700 ° C to obtain the composite metal oxide. However, the conventional sodium secondary battery can not be said to have a sufficient lifetime characteristic, that is, the discharge capacity retention rate when charging / discharging is repeated.

일본 특허 공개 제 2007-287661 호Japanese Patent Application Laid-Open No. 2007-287661 일본 특허 공개 제 2005-317511 호Japanese Patent Application Laid-Open No. 2005-317511

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 수명 특성이 개선된 새로운 조성의 나트륨 이차전지용 양극활물질 및 이의 제조 방법을 제공하는 것을 목적으로 한다. Disclosure of Invention Technical Problem [8] Accordingly, the present invention has been made keeping in mind the above problems occurring in the prior art, and an object of the present invention is to provide a cathode active material for a sodium secondary battery having improved life characteristics and a method for manufacturing the same.

본 발명은 상기와 같은 과제를 해결하기 위하여 Nax[NiyFezMn1-y-z]O2 (0.8≤x≤1.2, 0.05≤y≤0.3, 0.05≤z≤0.9, 0.05≤1-y-z≤0.9)로 표시되고, O3 결정 구조인 나트륨 이차전지용 양극활물질을 제공한다.The invention Na x [Ni y Fe 1-yz Mn z] O 2 in order to solve the problems as described above (0? X? 1.2, 0.05? Y? 0.3, 0.05? Z? 0.9, and 0.05? 1-yz? 0.9) and having an O 3 crystal structure.

본 발명에 의한 나트륨 이차전지용 양극활물질은 입자 크기가 5 내지 15㎛의 구형 입자이고, 입자 크기 분포가 단분산형인 것을 특징으로 한다. The cathode active material for a sodium secondary battery according to the present invention is spherical particles having a particle size of 5 to 15 탆, and the particle size distribution is monodisperse.

본 발명에 의한 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30°내지 40°범위에서 3개의 피크를 나타내는 것을 특징으로 한다. The cathode active material for a sodium secondary battery according to the present invention is characterized in that XRD exhibits three peaks in 2 [theta] range from 30 [deg.] To 40 [deg.].

본 발명에 의한 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 40°내지 45°범위에서 주피크인 (104) 피크가 나타나는 것을 특징으로 한다. The positive electrode active material for a sodium secondary battery according to the present invention is characterized in that XRD shows a (104) peak having a main peak in the range of 2 [theta] of 40 [deg.] To 45 [deg.].

본 발명에 의한 나트륨 이차전지용 양극활물질은 탭밀도가 1.0 내지 2.4 g/cc 인 것을 특징으로 한다. The cathode active material for a sodium secondary battery according to the present invention has a tap density of 1.0 to 2.4 g / cc.

본 발명은 또한, The present invention also relates to

나트륨 이차전지용 양극활물질 전구체와 나트륨 화합물을 혼합하는 단계; 및Mixing a sodium compound with a cathode active material precursor for a sodium secondary battery; And

열처리 단계;를 포함하는 본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법을 제공한다.The present invention also provides a method for producing a cathode active material for a sodium secondary battery, comprising the steps of:

본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 나트륨 이차전지용 양극활물질 전구체는 다음의 화학식 1 내지 3 중 어느 하나로 표시되는 것을 특징으로 한다. In the method for producing a cathode active material for a sodium secondary battery according to the present invention, the cathode active material precursor for a sodium secondary battery is represented by any one of the following formulas (1) to (3).

[화학식 1] Nix'Fey'Mn1 -x'- y'(OH)2 , ???????? Ni x ' Fe y' Mn 1 -x'- y ' (OH) 2 ,

[화학식 2] Nix'Fey'Mn1 -x'- y'C2O4 , ???????? Ni x ' Fe y' Mn 1 -x'- y ' C 2 O 4 ,

[화학식 3] [Nix'Fey'Mn1 -x'-y']3O4 [Formula 3] [Ni x ' Fe y' Mn 1 -x'-y ' ] 3 O 4

(상기 화학식 1 내지 3에서 0.05≤x'≤0.3, 0.1≤y'≤0.9, 0.05≤1-x'-y'≤0.9) (In the above Chemical Formulas 1 to 3 0.05≤x'≤0.3, 0.1≤y'≤0.9, 0.05≤1-x' -y'≤0.9)

상기 나트륨 이차전지용 양극활물질 전구체는 2012년 11월 19일에 출원된 본 발명자들의 출원번호 10-2012-0130824 와 같이 공침법에 의하여 제조되는 것이 바람직하다. The positive electrode active material precursor for the sodium secondary battery is preferably prepared by coprecipitation, such as Applicants' number 10-2012-0130824, filed November 19,

즉, 상기 나트륨 이차전지용 양극활물질 전구체는That is, the cathode active material precursor for the sodium secondary battery comprises

(a) 공침 반응기에 증류수와 제 1 pH 조절제를 넣고, 공기 또는 질소 기체를 공급하여 교반하면서 반응기 내부의 pH를 6.5 내지 7.5 로 유지하는 단계; (a) adding distilled water and a first pH adjusting agent to a coprecipitation reactor, supplying air or a nitrogen gas and maintaining the pH of the inside of the reactor at 6.5 to 7.5 while stirring;

(b) 상기 반응기 내로 제 2 pH 조절제를 연속적으로 투입한 후 혼합하여 반응기 내의 pH를 6.5 내지 11 로 조절하는 단계; 및(b) continuously introducing a second pH adjusting agent into the reactor and then mixing to adjust the pH in the reactor to 6.5 to 11; And

(c) 니켈염, 철염, 및 망간염을 당량비로 포함하는 전이금속 화합물 수용액, 착화제를 투입하여 나트륨 이차전지용 양극활물질 전구체 입자를 형성하는 단계;로 구성된다. (c) an aqueous solution of a transition metal compound containing a nickel salt, an iron salt, and a manganese salt in an equivalent ratio, and a complexing agent to form precursor particles of a cathode active material for a sodium secondary battery.

상기 나트륨 이차전지용 양극활물질 전구체의 제조 방법에 있어서, 상기 (b) 단계에서의 상기 제 2 pH 조절제는 암모늄 옥살레이트, NaOH 및 KOH 으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In the method for preparing the positive electrode active material precursor for a sodium secondary battery, the second pH adjusting agent in step (b) is selected from the group consisting of ammonium oxalate, NaOH, and KOH.

본 발명의 양극활물질 전구체 제조 방법에 있어서, 상기 (b) 단계에서 상기 제 2 pH 조절제로 KOH 또는 NaOH 를 투입하는 경우 반응기 내의 pH를 9 내지 11로 조절하고, 상기 제 2 pH 조절제로 암모늄 옥살레이트를 투입하는 경우 반응기 내의 pH를 6.5 내지 11 으로 조절하는 것을 특징으로 한다. In the method for preparing a cathode active material precursor according to the present invention, when KOH or NaOH is added as the second pH adjuster in the step (b), the pH in the reactor is adjusted to 9 to 11, and as the second pH adjuster, The pH in the reactor is adjusted to 6.5 to 11.

본 발명의 나트륨 이차전지용 양극활물질 전구체 제조 방법에 있어서, 상기 (c) 단계에서의 상기 니켈염은 황산니켈, 질산니켈, 염화니켈, 및 불화니켈으로 이루어진 그룹 중에서 선택되고, 상기 철염은 황산철, 질산철, 염화철, 불화철 중에서 선택되고, 상기 망간염은 황산망간, 질산망간, 염화망간, 불화망간 중에서 선택되는 것을 특징으로 한다. In the method for producing a precursor of a cathode active material for a sodium secondary battery according to the present invention, the nickel salt in the step (c) is selected from the group consisting of nickel sulfate, nickel nitrate, nickel chloride and nickel fluoride, Iron nitrate, iron chloride, iron fluoride, and the manganese salt is characterized by being selected from manganese sulfate, manganese nitrate, manganese chloride and manganese fluoride.

본 발명의 나트륨 이차전지용 양극활물질 전구체 제조 방법에 있어서, 상기 (c) 단계에서의 상기 착화제는 암모니아 수용액(NH4OH), 황산암모늄((NH4)2SO4), 질산암모늄(NH4NO3) 및 제1 인산암모늄((NH4)2HPO4)으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. In a sodium secondary battery, the positive electrode active material precursor production process of the present invention, the (c) the complexing agent in step is an aqueous ammonia solution (NH 4 OH), ammonium sulfate ((NH 4) 2 SO 4 ), ammonium nitrate (NH 4 NO 3 ) and ammonium monophosphate ((NH 4 ) 2 HPO 4 ).

본 발명의 나트륨 이차전지용 양극활물질 전구체 제조 방법에 있어서, 상기 (c) 단계에서의 상기 착화제의 농도와 상기 전이금속화합물 수용액의 농도의 비는 0.8 내지 1.2 인 것을 특징으로 한다. In the method for producing a precursor of a cathode active material for a sodium secondary battery according to the present invention, the ratio of the concentration of the complexing agent to the concentration of the aqueous solution of the transition metal compound in the step (c) is 0.8 to 1.2.

본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 나트륨 화합물은 소듐카보네이트, 소듐나이트레이트, 소듐아세테이트, 수산화소듐, 수산화소듐수화물, 소듐옥사이드 또는 이들의 조합 중 하나인 것을 특징으로 한다. In the method for producing a cathode active material for a sodium secondary battery according to the present invention, the sodium compound is one of sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a combination thereof.

본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 나트륨 이차전지용 양극활물질 전구체와 나트륨 화합물을 혼합하는 단계에서는 상기 나트륨 이차전지용 양극활물질 전구체 1 몰당 상기 나트륨 화합물은 1.0 내지 1.5 몰의 비율로 혼합되는 것을 특징으로 한다. In the method of preparing a cathode active material for a sodium secondary battery according to the present invention, in the step of mixing a sodium compound with a cathode active material precursor for a sodium secondary battery, the sodium compound is mixed at a ratio of 1.0 to 1.5 mol per 1 mole of the cathode active material precursor for the sodium secondary battery .

본 발명에 의한 나트륨 이차전지용 양극활물질의 제조 방법에 있어서, 상기 열처리 단계에서는 800 ℃ 내지 1000 ℃에서 열처리하는 것을 특징으로 한다. In the method of manufacturing a cathode active material for a sodium secondary battery according to the present invention, the heat treatment is performed at 800 ° C to 1000 ° C.

본 발명에 의한 나트륨 이차 전지 양극활물질은 종래와 달리 O3 구조로 구조 안정적이고, 이에 따라 본 발명에 의한 나트륨 이차 전지 양극활물질을 포함하는 나트륨 전지는 우수한 수명 특성을 나타낸다. The sodium secondary battery cathode active material according to the present invention is structurally stable with an O 3 structure unlike the prior art, and thus the sodium battery including the sodium secondary battery cathode active material according to the present invention exhibits excellent lifetime characteristics.

도 1 내지 도 4는 본 발명의 실시예에서 제조된 전구체의 SEM 사진을 나타낸다.
도 5 내지 도 8은 본 발명의 실시예에서 제조된 전구체의 입도 분포를 측정한 결과를 나타낸다.
도 9는 본 발명의 실시예에서 제조된 전구체의 XRD 를 측정한 결과를 나타낸다.
도 10은 본 발명의 실시예에서 제조된 전구체의 입도 분포를 측정한 결과를 나타낸다.
도 11, 12는 본 발명의 실시예에서 제조된 전구체의 SEM 사진을 나타낸다.
도 13, 14는 본 발명의 실시예에서 제조된 전구체의 입도 분포를 측정한 결과를 나타낸다.
도 15 내지 도 22는 본 발명의 실시예에서 제조된 양극활물질에 대하여 XRD 를 측정한 결과를 나타내었다.
도 23 내지 도 33은 본 발명의 실시예에서 제조된 양극활물질을 포함하는 나트륨 이차 전지의 수명 특성 또는 충방전 특성을 측정한 결과를 나타내었다.
FIGS. 1 to 4 show SEM photographs of the precursors prepared in the examples of the present invention.
5 to 8 show the results of measuring the particle size distribution of the precursor produced in the examples of the present invention.
Figure 9 shows the results of XRD measurements of the precursors prepared in the examples of the present invention.
10 shows the results of measuring the particle size distribution of the precursor prepared in the examples of the present invention.
FIGS. 11 and 12 show SEM photographs of the precursors prepared in the examples of the present invention.
13 and 14 show the results of measuring the particle size distribution of the precursor produced in the examples of the present invention.
15 to 22 show the results of XRD measurements of the cathode active material prepared in the examples of the present invention.
FIGS. 23 to 33 show results of measurement of lifetime characteristics or charge / discharge characteristics of a sodium secondary battery including a cathode active material manufactured in an embodiment of the present invention.

이하, 본 발명을 실시예에 의해 더욱 상세히 설명하지만, 본 발명이 이들에 의해서 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited thereto.

<< 실시예Example 1 내지 4> 1 to 4>

반응기에 4ℓ의 증류수를 채우고, 암모니아를 첨가하면서 1000 rpm 으로 교반하여 반응기 내부 pH를 7 로, 내부 온도를 50 ℃ 로 유지하였다. 제 2 pH 조절제로서 4M NaOH 용액을 투입하여 반응기 내부 pH 를 10.2 로 맞추고 30분간 유지시켰다. The reactor was charged with 4 L of distilled water and stirred at 1000 rpm while adding ammonia to maintain the internal pH of the reactor at 7 and the internal temperature at 50 ° C. 4M NaOH solution was added as a second pH adjusting agent to adjust the internal pH of the reactor to 10.2 and maintained for 30 minutes.

전이금속 화합물 수용액으로 NiSO4ㆍ6H2O , FeSO4ㆍ7H2O , MnSO4ㆍ5H2O 를 당량비로 혼합하고, 착화제로서 NH4OH 와 함께 반응기 내로 투입하여 아래 표 1에서 보는 바와 같은 전구체를 제조하였다. NiSO 4 .6H 2 O, FeSO 4 .7H 2 O and MnSO 4 .5H 2 O were mixed in an equivalent ratio to an aqueous solution of a transition metal compound and introduced into the reactor together with NH 4 OH as a complexing agent, Precursor.

상기 실시예 1에서 전이금속 화합물 수용액의 혼합비를 조절하는 것을 제외하고는 상기 실시예 1과 동일하게 하여 아래 표 1에 나타난 바와 같이각각 Ni0.25Fe0.35Mn0.4(OH)2 , Ni0 . 25Fe0 . 5Mn0 .25(OH)2 및 Ni0 . 15Fe0 . 35Mn0 . 5(OH)2 로 표시되는 실시예 2 내지 4의 전구체를 제조하였다. As shown in the following Table 1, except that the mixing ratio of the aqueous solution of the transition metal compound in Example 1 was controlled, Ni 0.25 Fe 0.35 Mn 0.4 (OH) 2 , Ni 0 . 25 Fe 0 . 5 Mn 0 .25 (OH) 2 and Ni 0 . 15 Fe 0 . 35 Mn 0 . 5 (OH) 2. &Lt; / RTI &gt;

구분division 전구체 조성Precursor composition 실시예 1Example 1 Ni0 . 25Fe 0.25Mn0 .5(OH)2 Ni 0 . 25 Fe 0.25 Mn 0 .5 (OH ) 2 실시예 2Example 2 Ni0 . 25Fe0 . 35Mn0 .4(OH)2 , Ni 0 . 25 Fe 0 . 35 Mn 0 .4 (OH) 2 , 실시예 3Example 3 Ni0 . 25Fe0 . 5Mn0 .25(OH)2 Ni 0 . 25 Fe 0 . 5 Mn 0 .25 (OH) 2 실시예 4Example 4 Ni0.15Fe0.35Mn0.5(OH)2 Ni 0.15 Fe 0.35 Mn 0.5 (OH) 2 실시예 5Example 5 Ni0.25Fe0.5Mn0.25C2O4 Ni 0.25 Fe 0.5 Mn 0.25 C 2 O 4 실시예 6Example 6 Ni0 . 2Fe0 . 6Mn0 . 2C2O4 Ni 0 . 2 Fe 0 . 6 Mn 0 . 2 C 2 O 4 실시예 7Example 7 Ni0.17Fe0.66Mn0.17C2O4 Ni 0.17 Fe 0.66 Mn 0.17 C 2 O 4 실시예 8Example 8 Ni0.2Fe0.55Mn0.25C2O4 Ni 0.2 Fe 0.55 Mn 0.25 C 2 O 4 실시예 9Example 9 Ni0.3Fe0.45Mn0.25C2O4 Ni 0.3 Fe 0.45 Mn 0.25 C 2 O 4 실시예 10Example 10 Ni0.35Fe0.4Mn0.25C2O4 Ni 0.35 Fe 0.4 Mn 0.25 C 2 O 4 실시예 11Example 11 (Ni0.25Fe0.5Mn0.25)3O4 (Ni 0.25 Fe 0.5 Mn 0.25 ) 3 O 4 실시예 12Example 12 (Ni0.25Fe0.25Mn0.5)3O4 (Ni 0.25 Fe 0.25 Mn 0.5 ) 3 O 4

<< 실험예Experimental Example 1>  1> SEMSEM 사진 측정 Photo measurement

상기 실시예 1 내지 4에서 제조된 전구체의 SEM 사진을 측정하고 도 1 내지 도 4에 나타내었다. SEM photographs of the precursors prepared in Examples 1 to 4 were measured and shown in Figs. 1 to 4. Fig.

<< 실험예Experimental Example 2> 입도 분포 측정 2> Measurement of particle size distribution

상기 실시예 1 내지 4 에서 제조된 전구체의 입도 분포를 측정하고 도 5 내지 도 8에 나타내었다. 도 5 내지 도 8 에서 전구체 입자의 입도가 단분산형인 것을 알 수 있다. The particle size distributions of the precursors prepared in Examples 1 to 4 were measured and shown in FIGS. 5 to 8. FIG. In FIGS. 5 to 8, it can be seen that the particle sizes of the precursor particles are monodisperse.

<< 실시예Example 5 내지 10>  5 to 10> NiNi x'x ' FeFe y'y ' MnMn 1One -x'--x'- y'y ' CC 22 OO 44 전구체 제조 Precursor manufacture

제 1 pH 조절제로서 암모니아를 사용하여 반응기 내부 pH를 7 로 맞추고, 제 2 pH 조절제로서 0.5M 암모늄 옥살레이트 수용액을 사용하여 반응기 내부 pH 를 7 로 맞추는 것을 제외하고는 상기 실시예 1 과 동일하게 하여 상기 표 1에서 보는 바와 같은 조성의 실시예 5 내지 10의 전구체를 제조하였다.The same procedure as in Example 1 was carried out except that ammonia was used as the first pH adjusting agent and the internal pH of the reactor was adjusted to 7 and the internal pH of the reactor was adjusted to 7 using 0.5 M ammonium oxalate aqueous solution as the second pH adjusting agent The precursors of Examples 5 to 10 having compositions as shown in Table 1 were prepared.

<< 실험예Experimental Example 3>  3> XRDXRD 측정 Measure

상기 실시예 5 내지 7에서 제조된 전구체의 XRD 를 측정하고 도 9 에 나타내었다. The XRD of the precursors prepared in Examples 5 to 7 was measured and shown in FIG.

<< 실험예Experimental Example 4> 입도 분포 측정 4> Measurement of particle size distribution

상기 실시예 5 내지 7 에서 제조된 전구체의 입도 분포를 측정하고 도 10 에 나타내었다. The particle size distributions of the precursors prepared in Examples 5 to 7 were measured and shown in FIG.

<< 실시예Example 11, 12> 11, 12>

제 1 pH 조절제로서 암모니아를 사용하여 반응기 내부 pH를 7 로 맞추고, 제 2 pH 조절제로서 4 M의 NaOH 를 첨가하여 반응기 내부 pH 를 9.2 로 맞추는 것을 제외하고는 상기 실시예 1 과 동일하게 하여 (Ni0 . 25Fe0 . 5Mn0 . 25)3O4, (Ni0.25Fe0.25Mn0.5)3O4 로 표시되는 실시예 11, 실시예 12의 전구체를 제조하였다. The procedure of Example 1 was repeated except that ammonia was used as the first pH adjusting agent and the internal pH of the reactor was adjusted to 7 and 4 M NaOH was added as the second pH adjusting agent to adjust the internal pH of the reactor to 9.2 0. 25 Fe 0. 5 Mn 0. 25) 3 O 4, (Ni 0.25 Fe 0.25 Mn 0.5) was prepared in a precursor of the example 11, example 12 represented by the 3 O 4.

<< 실험예Experimental Example 5>  5> SEMSEM 사진 측정 Photo measurement

상기 실시예 11, 12 에서 제조된 전구체의 SEM 사진을 측정하고 도 11, 도 12에 나타내었다. SEM photographs of the precursors prepared in Examples 11 and 12 were measured and shown in FIGS. 11 and 12. FIG.

<< 실험예Experimental Example 6> 입도 분포 측정 6> Measurement of particle size distribution

상기 실시예 11, 12 에서 제조된 전구체의 입도 분포를 측정하고 도 13, 도 14에 나타내었다. 도 13, 도 14에서 입도 분포가 단분산형태임을 알 수 있다. The particle size distributions of the precursors prepared in Examples 11 and 12 were measured and shown in Figs. 13 and 14. Fig. 13 and 14, it can be seen that the particle size distribution is monodispersed.

<< 실시예Example 13 내지 24>  13 to 24> 양극활물질의Cathode active material 제조 Produce

상기 표 1에서 실시예 1 내지 12에서 제조된 전구체와 나트륨 화합물로서 소듐카보네이트를 혼합하고 교반한 후, 열처리하여 실시예 13 내지 24 의 양극활물질을 제조하였다. In Table 1, the precursor prepared in Examples 1 to 12 and sodium carbonate as sodium compounds were mixed and stirred and then heat-treated to prepare cathode active materials of Examples 13 to 24.

<< 실험예Experimental Example > > XRDXRD 측정 Measure

상기 실시예 13 내지 16의 양극활물질에 대하여 XRD 를 측정한 결과를 도 15 내지 도 18에 나타내고, 상기 실시예 17 내지 19의 양극활물질에 대하여 XRD 를 측정한 결과를 도 19에 나타내고, 상기 실시예 20 내지 22의 양극활물질에 대하여 XRD 를 측정한 결과를 도 20에 나타내고, 상기 실시예 23, 24의 양극활물질에 대하여 XRD 를 측정한 결과를 도 21, 22에 나타내었다. The results of XRD measurements of the cathode active materials of Examples 13 to 16 are shown in FIGS. 15 to 18, and the results of XRD measurements of the cathode active materials of Examples 17 to 19 are shown in FIG. 19, FIG. 20 shows the results of XRD measurements of the cathode active materials 20 to 22, and FIG. 21 and FIG. 22 show the results of XRD measurements of the cathode active materials of Examples 23 and 24.

도 15 내지 도 22에서 본 발명의 실시예에서 제조된 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30°내지 40°의 범위에서 3개의 피크를 나타내고, 2θ가 40 °내지 45 °의 범위에서 O3 결정 구조의 특징인 (104) 주피크가 나타나는 것을 확인할 수 있다. 15 to conduct a sodium secondary battery, the positive electrode active material produced in Example of the present invention in FIG. 22 is a 2θ in XRD shows the three peaks in the range of 30 ° to 40 °, 2θ is O 3 in the range of 40 ° to 45 ° (104) main peak characteristic of the crystal structure appears.

<< 제조예Manufacturing example > 전지의 제조> Manufacture of batteries

복합 금속 산화물 E1, 도전재로서의 아세틸렌 블랙(덴키가가꾸 고교 가부시끼가이샤 제조) 및 결합제로서의 PVDF(가부시끼가이샤쿠레하 제조, 폴리비닐리덴디플루오라이드폴리플론(PolyVinylidene DiFluoride Polyflon))를 복합 금속 산화물 E1:도전재:결합제=85:10:5(중량비)의 조성이 되도록 각각 칭량하였다. (Polyvinylidene difluoride polyfluoron) manufactured by Kureha Kabushiki Kaisha) as a binder were mixed with a mixed metal oxide E1, a mixed metal oxide E1, an acetylene black as a conductive material (manufactured by Denki Kagaku Kagaku Co., Ltd.) : Conductive material: binder = 85: 10: 5 (weight ratio).

그 후, 우선 복합 금속 산화물과 아세틸렌 블랙을 아게이트 모르타르(agate mortar)로 충분히 혼합하고, 이 혼합물에 N-메틸-2-피롤리돈(NMP: 도쿄 가세이 고교 가부시끼가이샤 제조)을 적량 가하고, 추가로 PVDF를 가하여 계속해서 균일하게 되도록 혼합하여 슬러리화하였다. 얻어진 슬러리를 집전체인 두께 40㎛의 알루미늄박 상에 어플리케이터를 이용하여 100 ㎛의 두께로 도포하고, 이를 건조기에 넣고, NMP를 제거시키면서 충분히 건조함으로써 정극 시트를 얻었다. 이 정극 시트를 전극 펀칭기로 직경 1.5 cm 로 펀칭한 후, 핸드 프레스로 충분히 압착하여, 양극을 제조하였다. Thereafter, the composite metal oxide and the acetylene black were thoroughly mixed with an agate mortar, and a proper amount of N-methyl-2-pyrrolidone (NMP: manufactured by Tokyo Kasei Kogyo K.K.) was added to the mixture, PVDF was added thereto, followed by mixing so as to be homogeneous and slurried. The slurry thus obtained was applied on an aluminum foil having a thickness of 40 mu m as a current collector to a thickness of 100 mu m using an applicator, and this was placed in a drier and sufficiently dried while removing NMP to obtain a positive electrode sheet. The positive electrode sheet was punched with a diameter of 1.5 cm by an electrode punching machine, and sufficiently pressed with a hand press to produce a positive electrode.

코인셀(호센 가부시끼가이샤 제조)의 하측 파트의 오목부에 알루미늄박을 아래로 향하여 제조된 양극을 놓고, 이어서 비수 전해액으로서 1 M의 NaClO4/프로필렌카르보네이트+ 2 vol% 플루오로에틸렌카보네이트(FEC, Fluoro Ethylene Carbonate), 세퍼레이터로서의 폴리프로필렌 다공질막(두께 20 ㎛) 및 음극으로서 나트륨 금속을 조합하여 나트륨 이차 전지를 제작하였다.A positive electrode prepared with an aluminum foil downward was placed in a concave portion of a lower part of a coin cell (manufactured by Hosenkobe Chemical Co., Ltd.), and then 1 M of NaClO 4 / propylene carbonate + 2 vol% fluoroethylene carbonate (FEC, Fluoro Ethylene Carbonate), a polypropylene porous film (thickness: 20 占 퐉) as a separator, and sodium metal as a cathode were combined to prepare a sodium secondary battery.

<< 실험예Experimental Example > > 충방전Charging and discharging 특성 측정 Characterization

상기 실시예 1 내지 7 및 11의 전구체로 만들어진 실시예 13 내지 19 및 23의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정하고 그 결과를 아래 표 2에 나타내었다. The charge and discharge characteristics of the sodium secondary battery including the active materials of Examples 13 to 19 and 23 made of the precursors of Examples 1 to 7 and 11 were measured and the results are shown in Table 2 below.

구분division 소결조건및충방전조건Sintering condition and charge / discharge condition 0.2C0.2C 1 One stst 1One stst EfficiencyEfficiency 실시예 1
실시예 13
Example 1
Example 13
Ni0 . 25Fe0 . 25Mn0 . 5(OH)2전구체
Na 95%, 970℃/24h 소결, 4.3V
Ni 0 . 25 Fe 0 . 25 Mn 0 . 5 (OH) 2 precursor
Na 95%, 970 ° C / 24h sintering, 4.3V
155.5 mAh/g 155.5 mAh / g 94.1 % 94.1%
실시예 2
실시예 14
Example 2
Example 14
Ni0 . 25Fe0 . 35Mn0 . 4(OH)2전구체
, Na 98%, 900℃/24h 소결, 4.3V
Ni 0 . 25 Fe 0 . 35 Mn 0 . 4 (OH) 2 precursor
, Na 98%, 900 DEG C / 24h sintering, 4.3V
180.1 mAh/g 180.1 mAh / g 101.2 % 101.2%
Ni0 . 25Fe0 . 35Mn0 . 4(OH)2전구체
Na 98%, 930℃/24h소결, 4.3V
Ni 0 . 25 Fe 0 . 35 Mn 0 . 4 (OH) 2 precursor
Na 98%, 930 ° C / 24h sintering, 4.3V
176.3 mAh/g 176.3 mAh / g 100.9 %  100.9%
Ni0 . 25Fe0 . 35Mn0 . 4(OH)2전구체
Na 98%, 970℃/24h소결, 4.3V
Ni 0 . 25 Fe 0 . 35 Mn 0 . 4 (OH) 2 precursor
Na 98%, 970 ° C / 24h sintering, 4.3V
166.2 mAh/g 166.2 mAh / g 95.4 % 95.4%
실시예 3
실시예 15
Example 3
Example 15
Ni0 . 25Fe0 . 5Mn0 . 25(OH)2전구체
Na 98%, 970℃/24h소결, 3.9V
Ni 0 . 25 Fe 0 . 5 Mn 0 . 25 (OH) 2 precursor
Na 98%, 970 ° C / 24h sintering, 3.9V
130.7 mAh/g 130.7 mAh / g 91.6 % 91.6%
실시예 4
실시예 16
Example 4
Example 16
Ni0 . 15Fe0 . 35Mn0 .5(OH)2 전구체
Na 98%, 970℃/24h소결, 4.3V
Ni 0 . 15 Fe 0 . 35 Mn 0 .5 (OH) 2 precursor
Na 98%, 970 ° C / 24h sintering, 4.3V
141.3 mAh/g 141.3 mAh / g 104 % 104%
실시예 5
실시예 17
Example 5
Example 17
Ni0 . 25Fe0 . 5Mn0 . 25C2O4 전구체
Na 98%, 950℃/24h소결, 3.9V
Ni 0 . 25 Fe 0 . 5 Mn 0 . 25 C 2 O 4 Precursor
Na 98%, 950 ° C / 24h sintering, 3.9V
135.7 mAh/g 135.7 mAh / g 93.4 % 93.4%
실시예 6
실시예 18
Example 6
Example 18
Ni0 . 2Fe0 . 6Mn0 . 2C2O4전구체
Na 98%, 950℃/24h 소결, 3.8V
Ni 0 . 2 Fe 0 . 6 Mn 0 . 2 C 2 O 4 precursor
Na 98%, 950 ° C / 24h sintering, 3.8V
123.0 mAh/g 123.0 mAh / g 93.6 % 93.6%
실시예 7
실시예 19
Example 7
Example 19
Ni0 . 17Fe0 . 66Mn0 . 17C2O4,전구체
Na 98%, 950℃/24h 소결, 3.7V
Ni 0 . 17 Fe 0 . 66 Mn 0 . 17 C 2 O 4 , precursor
Na 98%, 950 ° C / 24h sintering, 3.7V
116.8 mAh/g 116.8 mAh / g 91.8 % 91.8%
실시예 11
실시예 23
Example 11
Example 23
(Ni0 . 25Fe0 . 5Mn0 . 25)3O4 전구체
Na 98%, 970℃/24h 소결, 3.9V
(Ni 0. 25 Fe 0. 5 Mn 0. 25) 3 O 4 precursor
Na 98%, 970 ° C / 24h sintering, 3.9V
124.3 mAh/g 124.3 mAh / g 92.1 % 92.1%

상기 표 2에서 본 발명에 의하여 제조된 O3 결정 구조의 나트륨 전지 양극활물질을 포함하는 전지의 경우 초기 충방전 효율이 90% 이상으로 나타남을 알수 있다. In Table 2, it can be seen that the initial charge-discharge efficiency of the battery including the cathode active material of the O 3 crystal structure manufactured by the present invention is more than 90%.

<< 실험예Experimental Example > 수명 특성 측정> Life characteristics measurement

상기 실시예 1 내지 4, 및 실시예 11의 전구체로 만들어진 실시예 13 내지 16 및 실시예 23의 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정한 결과를 아래 표 3에 나타내고, 상기 실시예 5 내지 7의 전구체로 만들어진 실시예 17 내지 19의 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정한 결과를 도 27에 나타내었다. The charge / discharge characteristics of the sodium secondary battery including the active material of the O 3 crystal structure of Examples 13 to 16 and Example 23 made of the precursors of Examples 1 to 4 and Example 11 were measured and the results are shown in Table 3 below And the charge / discharge characteristics of the sodium secondary battery including the active material of the O 3 crystal structure of Examples 17 to 19 made of the precursors of Examples 5 to 7 were measured, and the results are shown in FIG.

구분division 0.2C0.2C 1 One stst 0.2C0.2C 20 20 thth 0.2C retention0.2C retention 0.5C0.5 C 1 One stst 0.5C0.5 C 20 20 thth 0.5C0.5 C
retention retention
실시예 1
실시예13
Example 1
Example 13
155.5 mAh/g 155.5 mAh / g 130.2 mAh/g 130.2 mAh / g 83.7 % 83.7% 106.9 mAh/g 106.9 mAh / g 96.0 mAh/g 96.0 mAh / g 89.8 % 89.8%
실시예 2
실시예14
Example 2
Example 14
180.1 mAh/g 180.1 mAh / g 141.3 mAh/g 141.3 mAh / g 78.5 % 78.5% 125.6 mAh/g 125.6 mAh / g 117.5 mAh/g 117.5 mAh / g 93.6 % 93.6%
176.3 mAh/g 176.3 mAh / g 140.5 mAh/g 140.5 mAh / g 76.7 % 76.7% 125.9 mAh/g 125.9 mAh / g 117.8 mAh/g 117.8 mAh / g 93.6 % 93.6% 166.2 mAh/g 166.2 mAh / g 124.6 mAh/g 124.6 mAh / g 75.0 % 75.0% 107.7 mAh/g 107.7 mAh / g 95.1 mAh/g 95.1 mAh / g 88.3 % 88.3% 실시예 3
실시예15
Example 3
Example 15
130.7 mAh/g 130.7 mAh / g 122.0 mAh/g 122.0 mAh / g 93.3 % 93.3% 114.3 mAh/g 114.3 mAh / g 105.4 mAh/g 105.4 mAh / g 92.2 % 92.2%
실시예 4
실시예 16
Example 4
Example 16
141.3 mAh/g 141.3 mAh / g 119.9 mAh/g 119.9 mAh / g 84.9 % 84.9% 90.7 mAh/g 90.7 mAh / g 81.7 mAh/g 81.7 mAh / g 90.1 % 90.1%
실시예 11
실시예 23
Example 11
Example 23
124.3 mAh/g 124.3 mAh / g 114.7 mAh/g 114.7 mAh / g 92.3 % 92.3% 106.5 mAh/g 106.5 mAh / g 100.7 mAh/g 100.7 mAh / g 94.6 % 94.6%

상기 표 2 및 도 27에서 본 발명에 의한 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 경우 20 사이클까지의 충방전 효율이 90% 정도로 매우 높은 수명 특성을 나타내는 것을 알 수 있다. In Table 2 and FIG. 27, it can be seen that the sodium secondary battery including the active material having the O 3 crystal structure according to the present invention exhibits a very high lifespan characteristic of about 90% up to 20 cycles.

<< 실험예Experimental Example > > 충방전Charging and discharging 특성 및 수명 특성 측정 Measurement of characteristics and life characteristics

상기 실시예 13 내지 16에서 만들어진 활물질을 포함하는 나트륨 이차 전지의 충방전 특성을 측정한 결과를 도 23 내지 26에, 상기 실시예 17 내지 19의 나트륨 이차 전지의 충방전 특성 및 수명 특성을 측정한 결과를 도 27, 및 도 28에 나타내고, 상기 실시예 17 및 20 내지 22에서 만들어진 활물질을 포함하는 나트륨 이차 전지의 충방전 특성 및 수명 특성을 측정한 결과를 도 29 내지 31에 나타내고, 상기 실시예 23, 및 24에서 만들어진 O3 결정 구조의 활물질을 포함하는 나트륨 이차 전지의 충방전 특성 및 수명 특성을 측정한 결과를 도 32, 33에 나타내었다.The results of measuring the charge / discharge characteristics of the sodium secondary battery including the active material of Examples 13 to 16 are shown in FIGS. 23 to 26, and the charge / discharge characteristics and life characteristics of the sodium secondary batteries of Examples 17 to 19 were measured The results are shown in FIG. 27 and FIG. 28, and the results of measurement of charge / discharge characteristics and lifetime characteristics of a sodium secondary battery including the active material prepared in Examples 17 and 20 to 22 are shown in FIGS. 29 to 31, 23, and 24, the results of measurement of charge / discharge characteristics and lifetime characteristics of a sodium secondary battery including an active material of an O 3 crystal structure are shown in FIGS. 32 and 33.

Claims (6)

Nax[NiyFezMn1-y-z]O2 (0.8≤x≤1.2, 0.05≤y≤0.3, 0.05≤z≤0.9, 0.05≤1-y-z≤0.9)로 표시되고, O3 결정 구조이고, 입자 크기가 5 내지 15 ㎛의 구형 입자이고, 입자 크기 분포가 단분산형인 탭밀도가 1.0 내지 2.4 g/cc 인 것을 특징으로 하는 나트륨 이차전지용 양극활물질.Na x [Ni y Fe z Mn 1- y z ] O 2 (0? X? 1.2, 0.05? Y? 0.3, 0.05? Z? 0.9 and 0.05? 1-yz? 0.9) and is an O 3 crystal structure and a spherical particle having a particle size of 5 to 15 μm, And a tap density of 1.0 to 2.4 g / cc in which the size distribution is a monodisperse type. 제 1 항에 있어서,
상기 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 30°내지 40°범위에서 3개의 피크를 나타내는 것을 특징으로 하는 나트륨 이차전지용 양극활물질.
The method according to claim 1,
Wherein the positive electrode active material for a sodium secondary battery exhibits three peaks in 2 [theta] range from 30 [deg.] To 40 [deg.] In XRD.
제 2 항에 있어서,
상기 나트륨 이차전지용 양극활물질은 XRD 에서 2θ가 40°내지 45°범위에서 주피크인 (104) 피크가 나타나는 것을 특징으로 하는 나트륨 이차전지용 양극활물질.
3. The method of claim 2,
Wherein the cathode active material for a sodium secondary battery exhibits a (104) peak in XRD with a main peak in the range of 2 [theta] of 40 [deg.] To 45 [deg.].
다음의 화학식 1 내지 3 중 어느 하나로 표시되는 나트륨 이차전지용 양극활물질 전구체와 나트륨 화합물을 상기 나트륨 이차전지용 양극활물질 전구체 1몰당 상기 나트륨 화합물은 1.0 내지 1.5몰의 비율로 혼합하는 단계; 및
[화학식 1] Nix'Fey'Mn1 -x'- y'(OH)2 ,
[화학식 2] Nix'Fey'Mn1 -x'- y'C2O4 ,
[화학식 3] [Nix'Fey'Mn1 -x'-y']3O4
(상기 화학식 1 내지 3에서 0.05≤x'≤0.3, 0.1≤y'≤0.9, 0.05≤1-x'-y'≤0.9)
열처리 단계;를 포함하는
제 1 항에 의한 나트륨 이차전지용 양극활물질의 제조 방법.
Mixing a precursor of a cathode active material for a sodium secondary battery represented by any one of Chemical Formulas 1 to 3 and a sodium compound in a ratio of 1.0 to 1.5 moles of the sodium compound per 1 mole of the precursor of the cathode active material for the sodium secondary battery; And
???????? Ni x ' Fe y' Mn 1 -x'- y ' (OH) 2 ,
???????? Ni x ' Fe y' Mn 1 -x'- y ' C 2 O 4 ,
[Formula 3] [Ni x ' Fe y' Mn 1 -x'-y ' ] 3 O 4
(In the above Chemical Formulas 1 to 3 0.05≤x'≤0.3, 0.1≤y'≤0.9, 0.05≤1-x' -y'≤0.9)
A heat treatment step
A method for producing a cathode active material for a sodium secondary battery according to claim 1.
제 4 항에 있어서,
상기 나트륨 화합물은 소듐카보네이트, 소듐나이트레이트, 소듐아세테이트, 수산화소듐, 수산화소듐수화물, 소듐옥사이드 또는 이들의 조합 중 하나인 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.
5. The method of claim 4,
Wherein the sodium compound is one of sodium carbonate, sodium nitrate, sodium acetate, sodium hydroxide, sodium hydroxide hydrate, sodium oxide or a combination thereof.
제 4 항에 있어서,
상기 열처리 단계에서는 800 ℃ 내지 1000 ℃에서 열처리 하는 것을 특징으로 하는 나트륨 이차전지용 양극활물질의 제조 방법.
5. The method of claim 4,
Wherein the heat treatment is performed at a temperature of 800 ° C to 1000 ° C in the step of heat-treating the positive electrode active material for a sodium secondary battery.
KR1020160055651A 2012-11-19 2016-05-04 Positive active material for sodium rechargeable batteries and method of manufacturing the same Active KR101762540B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120131027 2012-11-19
KR20120131027 2012-11-19

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130140911A Division KR20140064681A (en) 2012-11-19 2013-11-19 Positive active material for sodium rechargeable batteries and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20160056319A true KR20160056319A (en) 2016-05-19
KR101762540B1 KR101762540B1 (en) 2017-07-31

Family

ID=50892002

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130140911A Ceased KR20140064681A (en) 2012-11-19 2013-11-19 Positive active material for sodium rechargeable batteries and method of manufacturing the same
KR1020160055651A Active KR101762540B1 (en) 2012-11-19 2016-05-04 Positive active material for sodium rechargeable batteries and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020130140911A Ceased KR20140064681A (en) 2012-11-19 2013-11-19 Positive active material for sodium rechargeable batteries and method of manufacturing the same

Country Status (2)

Country Link
KR (2) KR20140064681A (en)
CN (1) CN104904047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059902A1 (en) * 2018-09-19 2020-03-26 전자부품연구원 Cathode material having silicon oxide coating layer formed thereon, cathode comprising same, sodium ion battery, and manufacturing method therefor
WO2022182313A3 (en) * 2021-02-24 2023-07-13 T.C. Erciyes Universitesi Development of new air-stable o3-naxmo2 type layered metal oxides for sodium ion batteries

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711440A (en) * 2017-01-20 2017-05-24 东莞市迈科新能源有限公司 A kind of nano sheet sodium ion battery cathode material and preparation method thereof
WO2019039639A1 (en) * 2017-08-23 2019-02-28 전자부품연구원 Positive electrode active material for sodium ion battery and manufacturing method therefor
CN109830679B (en) * 2019-02-01 2021-04-06 中国科学院过程工程研究所 A kind of positive electrode material precursor, its preparation method and use
CN109873153A (en) * 2019-04-04 2019-06-11 中南大学 A kind of O3 type sodium ion battery positive electrode material and preparation method thereof
CN110350187A (en) * 2019-06-25 2019-10-18 浙江工业大学 A kind of stratiform ternary sodium-ion battery method for preparing anode material
CN115498154A (en) * 2022-09-22 2022-12-20 深圳市贝特瑞新能源技术研究院有限公司 Positive electrode material and preparation method thereof, sodium ion battery
CN117012949B (en) * 2023-10-07 2024-01-26 有研(广东)新材料技术研究院 Low-nickel layered sodium ion battery positive electrode material and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100119760A (en) * 2008-02-04 2010-11-10 스미또모 가가꾸 가부시키가이샤 Composite metal oxide and sodium rechargeable battery
WO2009099061A1 (en) * 2008-02-04 2009-08-13 Sumitomo Chemical Company, Limited Composite metal oxide and sodium rechargeable battery
CN101908615B (en) * 2010-07-27 2013-08-07 中信国安盟固利电源技术有限公司 Ferro-manganese nickel anode material and preparation method thereof
JP5870930B2 (en) 2010-11-05 2016-03-01 学校法人東京理科大学 Composite metal oxide, method for producing composite metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery
US9972842B2 (en) * 2011-02-15 2018-05-15 Sumitomo Chemical Company, Limited Sodium secondary battery electrode and sodium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059902A1 (en) * 2018-09-19 2020-03-26 전자부품연구원 Cathode material having silicon oxide coating layer formed thereon, cathode comprising same, sodium ion battery, and manufacturing method therefor
WO2022182313A3 (en) * 2021-02-24 2023-07-13 T.C. Erciyes Universitesi Development of new air-stable o3-naxmo2 type layered metal oxides for sodium ion batteries

Also Published As

Publication number Publication date
KR20140064681A (en) 2014-05-28
KR101762540B1 (en) 2017-07-31
CN104904047A (en) 2015-09-09

Similar Documents

Publication Publication Date Title
KR101762540B1 (en) Positive active material for sodium rechargeable batteries and method of manufacturing the same
KR101746187B1 (en) Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same
EP2741349B1 (en) Method for preparing a cathode active material for lithium secondary batteries.
KR101313575B1 (en) Manufacturing method of positive active material precursor and lithium metal composite oxides for lithium secondary battery
US10781110B2 (en) Manufacturing method of positive active material precursor for sodium rechargeable batteries, positive active material precursor for sodium rechargeable batteries made by the same, and manufacturing method of positive active material for sodium rechargeable batteries, positive active material for sodium rechargeable batteries made by the same
KR101970201B1 (en) Manufacturing method of cathod active material for lithium rechargeable battery and cathod active material made by the same
KR20140119621A (en) Precusor for lithium rich active material and lithium rich active material made by the same
KR101689457B1 (en) Cathode active material for sodium rechargeable batteries and manufacturing method thereof
KR101570125B1 (en) Manufacturing method of positive active material precursor for sodium rechargeable batteries, and positive active material precursor for sodium rechargeable batteries made by the same
KR20040044170A (en) Active material for positive electrode of lithium secondary battery
KR101497190B1 (en) Lithium metal oxide composite for lithium secondary battery, method for preparing thereof, and lithium secondary battery including the same
KR20150050459A (en) Manufacturing method of precursor for cathode active material, and cathode active materials and lithium secondary battery using the same
CN107342416A (en) Composite transition metal oxide precursor, method for producing same, and anode active material
KR20150065979A (en) Manufacturing method of surface treated positive active material precusor for lithium rich rechargeable batteries, and positive active material precusor, positive active material made by the same
KR20190077160A (en) Positive electrode active material for rechargable lithium battery and manufacturing method of the same, rechargable lithium battery
KR20180015046A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
KR20150078672A (en) Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same
KR20140039651A (en) Method for preparing nickel-manganese complex hydroxides for cathode materials in lithium batteries, nickel-manganese complex hydroxides prepared by the method and cathode materials in lithium batteries comprising the same
JP5109423B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2019131417A (en) Nickel composite hydroxide, method for producing the same, and method for producing positive electrode active material
KR102273771B1 (en) Cathode active materials for lithium secondary batteries and lithium secondary batteries comprising the same
KR20140066051A (en) Cathode active material, method for preparing the same, and lithium secondary batteries comprising the same
KR101632887B1 (en) Cathode active material precursor for lithium rechargeable battery and preparation method thereof, cathode active material for lithium rechargeable battery and lithium rechargeable battery comprising the same
US8889297B2 (en) Nanocomposite cathode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries comprising the same
KR101568257B1 (en) Method for preparing lithium nickel oxide-over lithiatied manganese oxide composite and lithium nickel oxide-over lithiatied manganese oxide composite using the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20160504

Patent event code: PA01071R01D

Filing date: 20131119

Application number text: 1020130140911

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20170123

Comment text: Request for Examination of Application

Patent event code: PA02011R04I

Patent event date: 20160504

Comment text: Divisional Application of Patent

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20170217

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20170707

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20170721

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20170721

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20200713

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20210712

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20220802

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20230628

Start annual number: 7

End annual number: 7