KR20150113770A - Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same - Google Patents
Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same Download PDFInfo
- Publication number
- KR20150113770A KR20150113770A KR1020140038281A KR20140038281A KR20150113770A KR 20150113770 A KR20150113770 A KR 20150113770A KR 1020140038281 A KR1020140038281 A KR 1020140038281A KR 20140038281 A KR20140038281 A KR 20140038281A KR 20150113770 A KR20150113770 A KR 20150113770A
- Authority
- KR
- South Korea
- Prior art keywords
- secondary battery
- nonaqueous electrolyte
- electrolyte secondary
- negative electrode
- carbon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것으로서, 더욱 상세하게는 카본 나노 파이버 및 탄소를 포함하는 SiOAl복합체를 이용한 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것이다.
본 발명에 의한 비수전해질 이차 전지용 음극재는 음극활물질의 부피 변화를 억제하고, 음극 전극내음극활물질간의부착성 및 전기전도성을 향상시켜 주어 음극산화 규소의 높은 전지 용량을 유지하면서도 첫회충방전 효율이 높고, 사이클 특성이 뛰어난 효과를 나타낸다. The present invention relates to an anode material for a nonaqueous electrolyte secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery comprising the same. More particularly, the present invention relates to an anode material for a nonaqueous electrolyte secondary battery using a carbonaceous nanofiber and a carbon- And a nonaqueous electrolyte secondary battery comprising the same.
The negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention can suppress the volume change of the negative electrode active material, improve the adhesion between the negative electrode active material in the negative electrode and the electric conductivity, maintain the high battery capacity of the negative electrode silicon oxide, , And exhibits an excellent cycle property.
Description
본 발명은 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것으로서, 더욱 상세하게는 카본 나노 파이버 및 탄소를 포함하는 SiOAl복합체를 이용한 비수전해질 이차전지용 음극재, 이의 제조 방법 및 이를 포함하는 비수전해질 이차전지에 관한 것이다.
The present invention relates to an anode material for a nonaqueous electrolyte secondary battery, a method for producing the same, and a nonaqueous electrolyte secondary battery comprising the same. More particularly, the present invention relates to an anode material for a nonaqueous electrolyte secondary battery using a carbonaceous nanofiber and a carbon- And a nonaqueous electrolyte secondary battery comprising the same.
최근, 휴대형의 전자기기, 통신 기기 등의 현저한 발전에 수반하여, 경제성과 기기의 소형화 및 경량화의 관점에서, 고에너지 밀도의 이차 전지의 개발이 강하게 요망되고 있다. 현재, 고에너지 밀도의 이차 전지로서, 니켈카드뮴 전지, 니켈수소 전지, 리튬 이온 이차 전지 및 폴리머 전지 등이 있다. 이 중, 리튬 이온 이차 전지는, 니켈카드뮴 전지나 니켈수소 전지에 비해 현격히 고수명이며 또한 고용량이기 때문에, 그 수요는 전원 시장에 있어서 높은 성장을 나타내고 있다.2. Description of the Related Art In recent years, development of a secondary battery having a high energy density has been strongly demanded from the viewpoints of economical efficiency, miniaturization of a device, and reduction in weight, along with remarkable development of portable electronic devices and communication devices. At present, secondary batteries of high energy density include nickel cadmium batteries, nickel hydrogen batteries, lithium ion secondary batteries and polymer batteries. Of these, the lithium ion secondary battery is remarkably long-life and high-capacity compared to the nickel-cadmium battery and the nickel-metal hydride battery.
종래, 리튬 이온 이차 전지의 음극 활물질로서는, 카본계 재료가 이용되고 있다. 종래의 것보다 리튬 이온 이차 전지를 고용량으로 하는 신규 음극 활물질로서, 리튬과 붕소의 복합 산화물, 리튬과 천이 금속(V, Fe, Cr, Mo, Ni 등)의 복합 산화물, Si, Ge 또는 Sn과 N 및 O를 포함하는 화합물, 화학 증착에 의해 표면을 탄소층으로 피복한 Si입자 등이 제안되어 있다.Conventionally, as a negative electrode active material of a lithium ion secondary battery, a carbon-based material has been used. A composite oxide of lithium and boron, a complex oxide of lithium and a transition metal (V, Fe, Cr, Mo, Ni and the like), a composite oxide of Si, Ge or Sn and a lithium- N and O, and Si particles whose surface is covered with a carbon layer by chemical vapor deposition.
그러나 이들 음극 활물질은 모두, 충방전 용량을 향상시켜, 에너지 밀도를 높일 수 있지만, 리튬 이온의 흡장, 방출 시의 팽창이나 수축이 커진다. 그 때문에, 이들 음극 활물질을 이용한 리튬 이온 이차 전지는, 충방전의 반복에 의한 방전 용량의 유지성(이하, 「사이클 특성」이라고 한다)이 불충분하다.However, all of these negative electrode active materials can improve the charge / discharge capacity and increase the energy density, but the expansion and shrinkage of lithium ion storage and release are increased. Therefore, the lithium ion secondary battery using these negative electrode active materials has insufficient retention of discharge capacity (hereinafter referred to as " cycle characteristics ") due to repetition of charging and discharging.
이에 반해, 음극 활물질로서, SiO 등, SiOx(0<x≤2)로 표시되는 산화규소의 분말을 이용하는 것이, 종래부터 시도되고 있다.On the other hand, it has been attempted to use, as the negative electrode active material, a powder of silicon oxide represented by SiOx (0 < x? 2) such as
산화규소는 SiOx (단, x는 O/Si의 mole비, 이론치의 1보다 조금 크다)라고 표기할 수 있지만, 투과전자현미경에 의한 분석에서는 비정질에서부터 수십 nm까지의결정질규소가 규소 산화물 안에 미분산 하고 있는 구조를 나타낸다. 이 때문에, 전지 용량은 규소와 비교해 작지만 탄소와 비교하면 5~6배로 높고, 또 체적 팽창도 작고, 음극활물질로서 사용하기 쉽다고 생각되고 있었다. 그렇지만, 산화규소는 비가역용량이 크고, 초기 효율이 70%정도로 매우 낮기 때문에 실제로 전지를 제작한 경우에서는 양극의 전지 용량을 과잉으로 필요로 하고, 활물질당 5~6배의 용량 증가분에 알맞을 만한 전지 용량의 증가를 기대할 수 없다는 문제점이 있다.The silicon oxide can be expressed as SiOx (where x is a mole ratio of O / Si, which is slightly larger than 1 of the theoretical value). However, analysis by transmission electron microscopy shows that the crystalline silicon from amorphous to several tens of nm is finely dispersed in the silicon oxide Lt; / RTI > Therefore, the battery capacity is smaller than that of silicon but is 5 to 6 times higher than that of carbon, and the volume expansion is also small, and it is thought that it is easy to use as a negative electrode active material. However, since silicon oxide has a large irreversible capacity and a very low initial efficiency of about 70%, it is necessary to increase the capacity of the anode in excess of the capacity of the anode in the case of actually fabricating the battery, There is a problem that an increase in capacity can not be expected.
특허 문헌 1에서는 음극재인 SiOx와 비정질 알루미늄 산화물(Al2O3)의 복합체에 대한 효과가 규소의 부피팽창을 억제하여 이차전지 수명특성을 향상시킨다고 기재 되었으나, 본 발명자들이 알고 있는 한 아직 이차전지의 수명특성 향상을 위해서는 개선의 여지가 있다.In Patent Document 1, it has been described that the effect of the composite of SiOx and amorphous aluminum oxide (Al 2 O 3 ), which is an anode material, suppresses the volume expansion of silicon to improve secondary battery life characteristics. However, There is room for improvement in improving lifetime characteristics.
특허 문헌 2에서는 산화 규소 입자 표면에 금속 산화물을 코팅하여 이차전지에 사용할 경우, 충전 용량 및 방전 용량은 거의 감소 없이 전해액의 분해로 인한 가스 발생량을 적게 할 수 있었으나 구체적인 사이클 특성 개선효과가 기재되지 않았다.In
특허 문헌 3에서는 산화 규소와 Si 입자의 복합입자 중에서 탄소 나노튜브, 탄소 나노 섬유 또는 탄소 섬유로 코팅 된 Si 입자로만 한정하고 있다.
In Patent Document 3, only silicon particles coated with carbon nanotubes, carbon nanofibers or carbon fibers among the composite particles of silicon oxide and Si particles are limited.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 규소, 규소산화물, 알루미늄 산화물, 카본 나노 파이버 및 탄소를 포함하는 SiOAl 복합체 및 이의 제조 방법을 제공하는 것을 목적으로 한다.SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a SiO.sub.2 composite containing silicon, silicon oxide, aluminum oxide, carbon nanofibers, and carbon, and a method of manufacturing the same.
본 발명은 또한, 본 발명에 의한 산화 규소 알루미늄 복합체를 이용한 비수전해질 이차전지용 음극 및 비수전해질 이차전지를 제공하는 것을 목적으로 한다.
The present invention also provides a negative electrode and a nonaqueous electrolyte secondary battery for a nonaqueous electrolyte secondary battery using the aluminum oxide silicon composite according to the present invention.
본 발명은 상기와 같은 과제를 해결하기 위하여 규소, 규소산화물, 알루미늄 산화물, 카본 나노 파이버 및 탄소를 포함하는 SiOAl 복합체인 비수전해질 이차전지용 음극재를 제공한다.The present invention provides an anode material for a non-aqueous electrolyte secondary battery, which is a
본 발명에 의한 비수전해질 이차전지용 음극재는 Si 함량이 30 내지 60 질량%, 산소 함량이 20 내지 40 질량%, Al 함량은 0.1 내지 20 질량%, 카본 나노 파이버 및 탄소 함량이 1 내지 20 질량%인 것을 특징으로 한다. The negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention has an Si content of 30 to 60 mass%, an oxygen content of 20 to 40 mass%, an Al content of 0.1 to 20 mass%, a carbon nanofiber and a carbon content of 1 to 20 mass% .
본 발명에 의한 비수전해질 이차전지용 음극재는 평균 입경이 0.1 내지 30 ㎛이고 BET 비표면적이 0.5 내지 50 m2/g 인 것을 특징으로 한다. The negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention has an average particle diameter of 0.1 to 30 탆 and a BET specific surface area of 0.5 to 50 m 2 / g.
본 발명에 의한 비수전해질 이차전지용 음극재에 있어서, 상기 카본 나노 파이버의 평균 직경이 10nm 내지 100 nm 이고, 길이가 0.1 내지 10 μm인 것을 특징으로 한다.In the negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention, the average diameter of the carbon nanofibers is 10 nm to 100 nm and the length is 0.1 to 10 μm.
본 발명은 또한, The present invention also relates to
산화규소 및 규소의 미립자가 규소계 화합물에 분산한 SiOx로 표시되는 화합물을 준비하는 제 1 단계; A first step of preparing a compound represented by SiOx in which fine particles of silicon oxide and silicon are dispersed in a silicon-based compound;
상기 SiOx로 표시되는 화합물과 알루미늄 분말을 혼합하는 제 2 단계; A second step of mixing the compound represented by SiOx with aluminum powder;
상기 혼합물을 600 내지 1100℃ 에서 열처리하는 제 3 단계; 및A third step of heat-treating the mixture at 600 to 1100 占 폚; And
600 내지 1100 ℃ 에서 CVD 에 의해 표면을 카본 나노파이버 및 탄소로 코팅하는 제 4 단계; 를 포함하는 본 발명에 의한 비수전해질 이차전지 음극재의 제조 방법을 제공한다.
A fourth step of coating the surface with carbon nanofibers and carbon by CVD at 600 to 1100 占 폚; The present invention also provides a method of manufacturing an anode material for a nonaqueous electrolyte secondary battery according to the present invention.
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, SiOAl복합체는 산화 규소와 알루미늄(aluminium)을 반응시키는 것에 의해서 얻을 수 있다. 여기에서 산화 규소는 보통, 이산화규소(SiO2)와 규소와의 혼합물을 감압조건 하에서 1,300~1500 ℃의 범위에서 가열해 산화 규소 가스를 생성시키고 500 내지 900℃정도에서 냉각하여 석출해 얻어진 비정질규소 산화물이다. 산화 규소는 일반식SiOx로 나타내지며 석출물의 x의 범위는 N/O 분석(Nitrogen/Oxygen analysis)에 의해서 0.9<x<1.5인 것이 바람직하고 1.0≤x≤1.1인 것이 더욱 바람직하다. 이산화규소와 규소의 몰비는 대체로 1:1이다.In the method for producing an anode material for a nonaqueous electrolyte secondary cell according to the present invention, the SiOAl composite can be obtained by reacting silicon oxide with aluminum. Here, the silicon oxide is usually produced by heating a mixture of silicon dioxide (SiO 2 ) and silicon under a reduced pressure condition at a temperature in the range of 1,300 to 1,500 ° C to produce a silicon oxide gas and cooling the silicon oxide gas at about 500 to 900 ° C to obtain amorphous silicon Oxide. The silicon oxide is represented by the general formula SiOx. The range of x of the precipitate is preferably 0.9 <x <1.5 and more preferably 1.0 x 1.1 by N / O analysis (Nitrogen / Oxygen analysis). The molar ratio of silicon dioxide to silicon is generally 1: 1.
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 상기의 산화 규소는 알루미늄(aluminium)과의 환원 반응(reductive reaction)에 의해 하기 반응식에 같이, 규소와 알루미늄(aluminium) 산화물을 생성한다. In the method for manufacturing an anode material for a nonaqueous electrolyte secondary cell according to the present invention, the silicon oxide generates silicon and aluminum oxide by a reductive reaction with aluminum according to the following reaction formula.
3 SiO + 2 Al → 3Si + Al2O3
3 SiO + 2 Al - > 3Si + Al 2 O 3
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 상기 제 2 단계의 산화 규소의 평균 입경은 0.1 내지 30 ㎛ 이고, 알루미늄 분말의 입경은 1 내지 20 ㎛인 것을 특징으로 한다. In the method for manufacturing an anode material for a nonaqueous electrolyte secondary battery according to the present invention, the average particle diameter of the silicon oxide in the second step is 0.1 to 30 탆, and the particle diameter of the aluminum powder is 1 to 20 탆.
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 산화 규소의 입경이 상기 범위보다 작은 경우 비표면적이 커져서 이차전지의 전극용 슬러리제조시 균일한 혼합이 어렵고 바인더 양의소모가 많아져서 음극 제조시 어려운 점이 있다.In the method for producing an anode material for a nonaqueous electrolyte secondary battery according to the present invention, when the particle size of silicon oxide is smaller than the above range, the specific surface area becomes large, so that uniform mixing is difficult during the production of the electrode slurry of the secondary battery and consumption of the amount of the binder is increased, There are difficulties in manufacturing.
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 알루미늄 분말이 1㎛이하이면 규소, 규소산화물과의 혼합과정에서 대기 중알루미늄 분말의 급격한 산화로 인한 산소 함량이 급격히 증가될 수 있으며 또한 분말취급에도 어려움이 있을 수 있다. 알루미늄 분말이 20 ㎛이상이면 산화규소와의 반응에 의해 생성물인 산화알루미늄의 분포가 불균질하게 될 수 있어, 음극재의 품질을 떨어드릴 수 있다.In the method of manufacturing an anode material for a nonaqueous electrolyte secondary cell according to the present invention, when the aluminum powder is 1 μm or less, the oxygen content due to the rapid oxidation of the aluminum powder in the atmosphere during the mixing with silicon or silicon oxide can be rapidly increased, There may be difficulties in handling. If the aluminum powder is 20 mu m or more, the distribution of aluminum oxide, which is a product, may be uneven due to the reaction with silicon oxide, and the quality of the anode material may be deteriorated.
또한, 상기 Al 분말 취급에 있어서 발화의 위험성이 있으므로 산화규소와의 혼합시 건식 혼합보다는 액상 혼합이 바람직하다. In addition, since there is a risk of ignition in the handling of the Al powder, liquid mixing is preferred rather than dry mixing in the case of mixing with silicon oxide.
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 상기 혼합물을 600 내지 1100℃ 에서 열처리하는 것이 바람직하다. 열처리 온도가 600℃이하이면 알루미늄의 녹는점보다 낮아 알루미늄과 규소산화물과의 반응이 일어나기 어렵고 이에 따라 미반응의 알루미늄(aluminium) 입자가 잔존할 우려가 있으며, 1100℃ 이상이면 상기 산화규소와 Al분말의 반응에 의해 알루미나(Al2O3) 생성은 잘 이루어지나 산화규소의 불균일화가 심화되어 상분리된 Si의 입자의 결정성이 증대되어 음극재의 수명특성이 저하될 수 있다. In the method for manufacturing an anode material for a nonaqueous electrolyte secondary cell according to the present invention, it is preferable that the mixture is heat-treated at 600 to 1100 ° C. If the heat treatment temperature is 600 ° C or lower, the reaction between aluminum and silicon oxide is less likely to occur due to the lower melting point of aluminum, and unreacted aluminum particles may remain. If the temperature is higher than 1100 ° C, Alumina (Al 2 O 3 ) generation is performed well by the reaction of the silicon oxide, but the non-uniformity of the silicon oxide is intensified and the crystallinity of the particles of the phase-separated Si is increased, and the lifetime characteristics of the anode material may be deteriorated.
열처리 시간은 적당히 선정되어 반응기의 형상과 반응물의 질량에 따라 다양하지만, 대체로 1~10시간이 바람직하고, 2~7시간이 보다 바람직하다. The heat treatment time is appropriately selected and varies depending on the shape of the reactor and the mass of the reactant, but is preferably 1 to 10 hours, more preferably 2 to 7 hours.
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 알루미늄 분말의 함량이 0.1% 이하이면 알루미늄의 첨가에 의한 효과가 발생하지 않고 알루미늄 분말의 함량이 20%이상이면 SiOAl 음극재의 전기전도성을 저하시켜 음극재 개선효과가 떨어질 수 있다.In the method for manufacturing an anode material for a non-aqueous electrolyte secondary cell according to the present invention, if the content of aluminum powder is 0.1% or less, the effect of addition of aluminum is not generated, and if the content of aluminum powder is 20% The effect of improving the negative electrode material may be deteriorated.
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 열처리 후의 산화규소와 Al의 반응 생성물을 탄화수소(hydrocarbon)계 가스 또는 증기를 소정의 온도범위에서 화학 증착(chemical vapor deposition) 처리 또는 기계적인 혼합에 의해 카본 나노파이버 및 카본으로 표면 처리된 SiOAl복합체를 얻는 것이 바람직하고, 화학 증착 처리에 의해 SiOAl 복합체를 얻는 것이 보다 바람직하다.상기와 같이 SiOAl복합체에 표면 처리된 카본 물질은 카본 나노 파이버 및 카본으로 국한된 것이 아니라, 탄화 수소류의 종류, 열처리 온도 및 화학 증착 방법 등에 따라카본 나노튜브 등도 포함될 수 있다.In the method for producing an anode material for a nonaqueous electrolyte secondary battery according to the present invention, a reaction product of silicon oxide and Al after heat treatment is subjected to a chemical vapor deposition (CVD) treatment or a mechanical It is preferable to obtain a
본 발명에 의한 비수전해질 이차 전지용 음극재의 제조 방법에 있어서, 카본의 표면처리 방법으로서 SiO와 Al의 생성물을 탄화수소(hydrocarbon)계 화합물 가스 또는 증기를 상압 또는 감압하에서 600~1,100℃로 하는 것이 바람직하고, 더욱 바람직하게는 700~1,000℃로 열화학증착 처리 등을 실시하는 것으로 입자 표면에 카본 나노 파이버를 포함하는 카본 피막을 형성할 수 있다. 또한, 처리 시간(disposition time)은 목적으로 하는 카본 피복량, 처리 온도 유기물 가스 농도(유속)나 도입 양 등에 의해서 적당히 선정되지만, 보통, 1~10시간, 특히 2~7시간 정도가 경제적으로도 효율적이다.In the method for producing an anode material for a non-aqueous electrolyte secondary cell according to the present invention, it is preferable that the product of SiO and Al be treated with a hydrocarbon compound gas or vapor at 600 to 1,100 DEG C under normal pressure or reduced pressure , More preferably 700 to 1,000 占 폚, to form a carbon coating film containing carbon nanofibers on the surface of the particles. The disposition time is appropriately selected according to the target amount of carbon coating, the treatment temperature organic gas concentration (flow rate), the amount of introduction, and the like, but usually 1 to 10 hours, especially 2 to 7 hours, It is efficient.
본 발명은 또한, 본 발명의 비수전해질 이차전지용 음극재를 포함하는 비수전해질 이차전지용 음극 및 이를 포함하는 비수전해질 이차전지를 제공한다.
The present invention also provides a negative electrode for a nonaqueous electrolyte secondary battery comprising the negative electrode material for a nonaqueous electrolyte secondary battery of the present invention and a nonaqueous electrolyte secondary battery comprising the same.
본 발명에 의한 비수전해질 이차 전지용 음극재는 음극활물질의 부피 변화를 억제하고, 음극 전극내 음극활물질간의 부착성 및 전기전도성을 향상시켜 주어 산화규소 음극의 높은 전지 용량을 유지하면서도 첫회 충방전 효율이 높고, 사이클 특성이 뛰어난 효과를 나타낸다.
The negative electrode material for a nonaqueous electrolyte secondary battery according to the present invention suppresses the volume change of the negative electrode active material, improves the adhesion between the negative electrode active materials in the negative electrode and the electrical conductivity, maintains a high battery capacity of the silicon oxide negative electrode, , And exhibits an excellent cycle property.
도 1은 본 발명의 일 실시예에 의하여 제조된 시료 3에 대한 SiOAl 복합체 음극활물질의 SEM (Scanning Electron Microscope)사진을 측정한 결과를 나타내고 도 2는 시료3에 대한 SiOAl복합체 음극활물질의 TEM(Transmission Electron Microscope, JEM2100F/JEOL사)사진을 측정한 결과를 나타낸다.
도 3은 산화규소와 알루미늄 분말을 질량 9:1 비율로 혼합 후 750℃에서 3시간 열처리한 시료 3의 XRD 측정 결과를 나타내고, 도 4는 산화규소와 알루미늄분말을 질량 9:1 비율로 혼합하여 750℃에서 3시간 열처리한 후 분말을 1000℃, 2시간의 조건에서 아르곤(Ar)과 메탄(CH4) 혼합가스 하에서 CVD 처리를 하여 얻은 시료 3인SiOAl복합체의 XRD 측정 결과를 나타낸다.FIG. 1 shows SEM (Scanning Electron Microscope) photographs of a SiOA composite anode active material prepared according to an embodiment of the present invention. FIG. 2 shows TEM (Transmission Electron Microscope, JEM2100F / JEOL).
FIG. 3 shows the results of XRD measurement of Sample 3 in which silicon oxide and aluminum powder were mixed at a mass ratio of 9: 1 and then heat-treated at 750 ° C for 3 hours, and FIG. 4 shows a result of mixing XRD and aluminum powder at a mass ratio of 9: XRD measurement results of a
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.
<< 실시예Example 1> 1> SiOAlSiOAl 음극활물질의Negative active material 제작 making
산화 규소 분말(BET 비표면적 10.5m2/g)과 알루미늄 분말 (평균 입자지름 D 50 =3.6μm)을 산화 규소/알루미늄(aluminium)=99.5/0.5, 95/5, 90/10의 조성으로 각각 혼합해 건조하여 시료 1, 2, 3 을 제조한 후 튜브로를 이용하여 아르곤(Ar) 가스하에서 750℃, 3시간의 조건에서 열처리를 실시하고, 이후 냉각해 흑갈색 분말을 회수했다. 회수 후의 혼합 분말은 응집이 거의 없었다.
(BET specific surface area 10.5 m 2 / g) and an aluminum powder (average
또, ICP 원소 분석의 결과 알루미늄(aluminium)의 함유량은 그대로 각각 0.5, 5, 10 질량%이었다.
As a result of the ICP elemental analysis, the content of aluminum was 0.5, 5 and 10 mass%, respectively.
<< 실시예Example 2> 2> 카본나노Carbon nano 파이버코팅 Fiber coating SiOAlSiOAl 음극활물질의Negative active material 제작 making
상기 실시예 1 에서 열처리 후 얻어진 시료 1 내지 3 을 튜브로에 넣고 1000℃, 2시간의 조건에서 아르곤(Ar)과 메탄(CH4) 혼합가스하에서 CVD 처리를 하여 카본 나노 파이버 및 카본으로 코팅된 SiOAl 복합체를 얻을 수 있었다. 시료 1 내지 3의 각각 카본 함량 3%, 4%. 3.3% 이었으며 BET 비표면적은 다음과 같았다. Samples 1 to 3 obtained after the heat treatment in Example 1 were placed in a tube furnace and subjected to a CVD treatment under a mixed gas of argon (Ar) and methane (CH 4 ) at 1000 ° C for 2 hours to obtain carbon nanofibers and carbon- SiOA complex was obtained. Each of the samples 1 to 3 had a carbon content of 3% and 4%. 3.3% and the BET specific surface area was as follows.
<< 실험예Experimental Example > > SEMSEM 사진 측정 Photo measurement
상기 실시예 2에서 얻어진 시료 3의 표면 코팅된 카본 나노파이버의 SEM 사진과 TEM 사진을 측정하고 각각 도 1 및 도 2에 나타내었다.
SEM photographs and TEM photographs of the surface-coated carbon nanofibers of the sample 3 obtained in Example 2 were measured and shown in Figs. 1 and 2, respectively.
<< 실험예Experimental Example > > XRDXRD 측정 Measure
상기 시료 3에 대해 750℃ 3시간 열처리 후산화규소와 알루미늄(aluminium)이 완전히 반응하고 있는지 여부와 1000℃, 2 시간의 조건으로 화학증착한 후 얻은 SiOAl 복합체의 XRD 측정을 실시하여 각각 도 3과 도 4에 나타내었다. The sample 3 was heat-treated at 750 ° C for 3 hours to determine whether or not silicon oxide and aluminum were completely reacted with each other. The
도 3 및 도 4에서 보는 바와 같이 열처리 후에 알루미늄(aluminium)에 대응하는 피크가 확연히 나타나 있지만, 화학증착 후에는 알루미늄 피크가 거의 사라지고 산화알루미늄(Al2O3)의 피크가 약하게 나타났고 결정성 규소의 증가도 확인되었다.
As shown in FIG. 3 and FIG. 4, after the heat treatment, the peak corresponding to aluminum was clearly observed, but after the chemical vapor deposition, the aluminum peak almost disappeared and the peak of aluminum oxide (Al 2 O 3 ) .
<< 비교예Comparative Example > > 음극활물질Anode active material 제작 making
비교예로서, 알루미늄을 포함하지 않는 산화규소 분말(BET 비표면적 1.6m2/g)을 튜브로를 이용하여 1000℃, 2시간의 조건으로 아르곤(Ar)과 메탄(CH4) 혼합가스하에서 CVD 처리를 하여 3% 카본 함량을 가진 SiO 분말을 얻었고, BET 비표면적은 2.7 m2/g이었다.
As a comparative example, oxide which does not contain an aluminum silicon powder (BET specific surface area of 1.6m 2 / g) to 1000 ℃ by using a tube, CVD under an argon (Ar) and methane (CH 4) gas mixture for 2 hours to To obtain a SiO powder having a 3% carbon content. The BET specific surface area was 2.7 m 2 / g.
<< 제조예Manufacturing example >> 코인셀Coin cell 제작 making
상기 실시예 2 및 비교예에서 제조된 음극 활물질과, 도전재로써 Super-P black(Timcal사), 바인더로써 PAA(Poly Acrylic acid, Aldrich사)를 질량비가 80:10:10이 되도록 N-메틸피롤리돈과 혼합하여, 슬러리 상태 조성물을 조제하였다. The anode active material prepared in Example 2 and Comparative Example was mixed with Super-P black (Timcal) as a conductive material and PAA (Poly Acrylic acid, Aldrich) as a binder with a weight ratio of 80:10:10 to N-methyl Pyrrolidone to prepare a slurry-state composition.
이 조성물을 두께 18 ㎛의 동박에 도포해서 건조시킴으로써, 그 동박의 편면에 두께 30μm의 활물질층을 형성하였다. 다음으로 직경 14Φ의 원형으로 펀칭해서 시험용 전극을 제작하였다. 반대극으로는 두께 0.3mm의 금속 리튬박을 사용하였다. 분리막으로는 두께 0.1mm의 다공질 폴리에틸렌 시트를 사용하였다. 전해액으로는 에틸렌 카보네이트(EC)와 디에틸카보네이트(DEC)의 체적비 1:1의 혼합 용매에, 리튬염으로써 LiPF6를 약 1몰/L의 농도로 용해시킨 것을 사용하였다. 이들 구성 요소를 스테인리스제 용기에 내장하고, 두께 2mm, 직경 32mm(소위 2032형)의 일반적 형상의 평가용 코인 셀을 구축하였다.
This composition was applied to a copper foil having a thickness of 18 mu m and dried to form an active material layer having a thickness of 30 mu m on one side of the copper foil. Next, a test electrode was prepared by punching in a circle having a diameter of 14Φ. As the opposite electrode, a metal lithium foil having a thickness of 0.3 mm was used. As the separation membrane, a porous polyethylene sheet having a thickness of 0.1 mm was used. As the electrolytic solution, LiPF 6 was dissolved in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1 at a concentration of about 1 mol / L as a lithium salt. These components were placed in a container made of stainless steel, and a coin cell for evaluation having a general shape of 2 mm in thickness and 32 mm in diameter (so-called 2032 type) was built.
<< 제조예Manufacturing example > 전지 특성 평가 > Evaluation of battery characteristics
상기 샘플마다 제작한 코인 셀을 0.05C의 정전류로 전압이 0.01V가 될 때까지 충전하고 0.05C의 정전류로 전압이 1.5V가 될 때까지 방전하여 방전 용량 및 초기 효율을 구하였으며, 이후 사이클 특성은 0.2C의 정전류로 위와 동일한 전압범위에서 실시하여 용량유지율 시험을 진행하고 그 결과를 표 2에 나타내었다. The coin cell prepared for each sample was charged at a constant current of 0.05 C until the voltage became 0.01 V and discharged until the voltage became 1.5 V at a constant current of 0.05 C to obtain the discharge capacity and the initial efficiency. Was conducted at a constant current of 0.2 C in the same voltage range as above, and the capacity retention rate test was carried out. The results are shown in Table 2.
아래 표 2에서 보는 바와 같이 본 발명의 실시예에 의한 시료 2와 시료3 음극활물질의 경우 초기효율이 향상되고 용량유지율이 비교예에 비하여 30% 이상 개선되는 것을 확인할 수 있다.As shown in Table 2 below, it can be seen that the initial efficiency and the capacity retention rate of the
(방전용량/충전용량)Initial efficiency (%)
(Discharge capacity / charge capacity)
(mAh/g)Discharge capacity
(mAh / g)
(20 cycle)Capacity retention rate (%)
(20 cycles)
Claims (8)
An anode material for a nonaqueous electrolyte secondary battery, which is a SiOAl composite containing silicon, silicon oxide, aluminum oxide, carbon nanofibers, and carbon.
상기 음극재는 Si 함량이 30 내지 60 질량%, 산소 함량이 20 내지 40 질량%, Al 함량은 0.1 내지 20 질량%, 카본 나노 파이버 및 탄소 함량이 1 내지 20 질량%인 것을 특징으로 하는 비수전해질 이차전지 음극재
The method according to claim 1,
Wherein the negative electrode material has an Si content of 30 to 60 mass%, an oxygen content of 20 to 40 mass%, an Al content of 0.1 to 20 mass%, a carbon nanofiber and a carbon content of 1 to 20 mass% Battery anode material
상기 음극재는 평균 입경이 0.1 내지 30 ㎛이고 BET 비표면적이 0.5 내지 50m2/g 인 것을 특징으로 하는 비수전해질 이차전지 음극재
The method according to claim 1,
Wherein the negative electrode material has an average particle diameter of 0.1 to 30 占 퐉 and a BET specific surface area of 0.5 to 50 m 2 / g. The nonaqueous electrolyte secondary battery anode material
상기 카본 나노 파이버는 평균 직경이 10nm 내지 100nm이고, 길이는 0.1㎛ 내지 10㎛ 인 것을 특징으로 하는 비수전해질 이차전지 음극재
The method according to claim 1,
Wherein the carbon nanofibers have an average diameter of 10 nm to 100 nm and a length of 0.1 to 10 μm. The nonaqueous electrolyte secondary battery anode material
상기 SiOx로 표시되는 화합물과 알루미늄 분말을 혼합하는 제 2 단계;
상기 혼합물을 600 내지 1100℃ 에서 열처리하는 제 3 단계; 및
600 내지 1100 ℃ 에서 CVD 에 의해 표면을 카본 나노 파이버 및 탄소로 코팅하는 제 4 단계; 를 포함하는 제 1 항에 의한 비수전해질 이차전지 음극재의 제조 방법
A first step of preparing a compound represented by SiOx in which fine particles of silicon oxide and silicon are dispersed in a silicon-based compound;
A second step of mixing the compound represented by SiOx with aluminum powder;
A third step of heat-treating the mixture at 600 to 1100 占 폚; And
A fourth step of coating the surface with carbon nanofibers and carbon by CVD at 600 to 1100 占 폚; A method for manufacturing an anode material for a non-aqueous electrolyte secondary battery according to claim 1, comprising
상기 제 2 단계의 알루미늄 분말의 입경은 1 내지 20μm인 것을 특징으로 하는 비수전해질 이차 전지용 음극재의 제조 방법.
6. The method of claim 5,
Wherein the aluminum powder in the second step has a particle diameter of 1 to 20 占 퐉.
A negative electrode for a nonaqueous electrolyte secondary battery comprising an anode material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 4
A nonaqueous electrolyte secondary battery comprising a negative electrode for a nonaqueous electrolyte secondary battery according to claim 7
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140038281A KR102318864B1 (en) | 2014-03-31 | 2014-03-31 | Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140038281A KR102318864B1 (en) | 2014-03-31 | 2014-03-31 | Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same |
Publications (3)
Publication Number | Publication Date |
---|---|
KR20150113770A true KR20150113770A (en) | 2015-10-08 |
KR102318864B1 KR102318864B1 (en) | 2021-10-29 |
KR102318864B9 KR102318864B9 (en) | 2022-03-15 |
Family
ID=54346640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020140038281A Active KR102318864B1 (en) | 2014-03-31 | 2014-03-31 | Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102318864B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220067595A (en) | 2020-11-16 | 2022-05-25 | 대주전자재료 주식회사 | Porous silicon based composite, preparation method thereof, and negative electrode active material comprising same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070088534A (en) * | 2004-12-22 | 2007-08-29 | 마쯔시다덴기산교 가부시키가이샤 | Composite Cathode Active Material, Manufacturing Method and Nonaqueous Electrolyte Secondary Battery |
KR20070096933A (en) * | 2006-03-27 | 2007-10-02 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon-silicon oxide-lithium-based composite, method for producing same, and negative electrode material for nonaqueous electrolyte secondary battery |
JP2009070825A (en) * | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery and method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery |
KR20100055775A (en) | 2008-11-18 | 2010-05-27 | 세메스 주식회사 | Substrate treating apparatus and method for treating substrate using the same |
JP2010170943A (en) * | 2009-01-26 | 2010-08-05 | Asahi Glass Co Ltd | Negative electrode material for secondary battery, and its manufacturing method |
JP2011096455A (en) | 2009-10-28 | 2011-05-12 | Shin-Etsu Chemical Co Ltd | Negative electrode material for non-aqueous electrolyte secondary battery, method of manufacturing the same, and lithium-ion secondary battery |
JP2012099341A (en) | 2010-11-02 | 2012-05-24 | Shin Etsu Chem Co Ltd | Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same, lithium ion secondary battery, and electrochemical capacitor |
KR20130074826A (en) * | 2011-12-23 | 2013-07-05 | 국립대학법인 울산과학기술대학교 산학협력단 | Silicon based anode active material for lithium rechargeable battery, preparation method thereof and lithium secondary battery comprising the same |
-
2014
- 2014-03-31 KR KR1020140038281A patent/KR102318864B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20070088534A (en) * | 2004-12-22 | 2007-08-29 | 마쯔시다덴기산교 가부시키가이샤 | Composite Cathode Active Material, Manufacturing Method and Nonaqueous Electrolyte Secondary Battery |
KR20070096933A (en) * | 2006-03-27 | 2007-10-02 | 신에쓰 가가꾸 고교 가부시끼가이샤 | Silicon-silicon oxide-lithium-based composite, method for producing same, and negative electrode material for nonaqueous electrolyte secondary battery |
JP2009070825A (en) * | 2007-09-17 | 2009-04-02 | Samsung Sdi Co Ltd | Negative electrode active material for lithium secondary battery and method for producing the same, negative electrode for lithium secondary battery, and lithium secondary battery |
KR20100055775A (en) | 2008-11-18 | 2010-05-27 | 세메스 주식회사 | Substrate treating apparatus and method for treating substrate using the same |
JP2010170943A (en) * | 2009-01-26 | 2010-08-05 | Asahi Glass Co Ltd | Negative electrode material for secondary battery, and its manufacturing method |
JP2011096455A (en) | 2009-10-28 | 2011-05-12 | Shin-Etsu Chemical Co Ltd | Negative electrode material for non-aqueous electrolyte secondary battery, method of manufacturing the same, and lithium-ion secondary battery |
JP2012099341A (en) | 2010-11-02 | 2012-05-24 | Shin Etsu Chem Co Ltd | Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same, lithium ion secondary battery, and electrochemical capacitor |
KR20130074826A (en) * | 2011-12-23 | 2013-07-05 | 국립대학법인 울산과학기술대학교 산학협력단 | Silicon based anode active material for lithium rechargeable battery, preparation method thereof and lithium secondary battery comprising the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220067595A (en) | 2020-11-16 | 2022-05-25 | 대주전자재료 주식회사 | Porous silicon based composite, preparation method thereof, and negative electrode active material comprising same |
Also Published As
Publication number | Publication date |
---|---|
KR102318864B9 (en) | 2022-03-15 |
KR102318864B1 (en) | 2021-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210184204A1 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery comprising silicon oxide composite and manufacturing method thereof | |
KR101586816B1 (en) | Negative active material for non-aqueous electrolyte rechargeable battery, the preparation method thereof, and rechargeable battery including the same | |
US20200295352A1 (en) | Negative electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof | |
KR101746187B1 (en) | Positive electrode active material for rechargable lithium battery, and rechargable lithium battery including the same | |
EP2863455B1 (en) | Porous silicon-based negative electrode active material, method for preparing same, and lithium secondary battery comprising same | |
US20160156031A1 (en) | Anode active material for lithium secondary battery and lithium secondary battery including the anode active material | |
US12107261B2 (en) | Negative electrode active material for lithium secondary battery and method for preparing the same | |
CN112514116A (en) | Silicon-based composite material, negative electrode comprising same, and lithium secondary battery | |
KR102682363B1 (en) | Anode active material for lithium secondary batteries and Lithium secondary batteries comprising the same | |
EP2765636B1 (en) | Cathode material for lithium secondary battery, method for manufacturing same and lithium secondary battery comprising same | |
KR20100107396A (en) | Negative electrode material for nonaqueous electrolyte secondary battery, making method and lithium ion secondary battery | |
KR102183396B1 (en) | Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same | |
CN106169574B (en) | Electrode active material, preparation method thereof, electrode and energy storage device | |
KR102287983B1 (en) | Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same | |
KR102308691B1 (en) | Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same | |
US10084183B2 (en) | Silicon oxide-carbon composite and method of manufacturing the same | |
KR20220087143A (en) | Negative electrode material for lithium ion secondary battery, preparation method thereof, and lithium ion secondary battery comprising same | |
US20240204184A1 (en) | Secondary battery comprising low efficiency positive electrode | |
KR20210077487A (en) | Negative electrode and secondary battery comprising the negative electrode | |
KR20140076497A (en) | Negative electrode active material for nonaqueous electrolytic secondary battery and method for producing the same | |
KR20220167037A (en) | Composition for cathode of lithium secondary battery and lithium secondary battery manufactured using the same | |
JP7560150B2 (en) | Secondary battery and manufacturing method therefor | |
KR102318864B1 (en) | Negative electrode active material for nonaqueous electrolyte rechargeable battery and rechargeable battery including the same | |
KR20130055668A (en) | Powder for negative electrode material of lithium-ion secondary battery, as well as negative electrode of lithium-ion secondary battery, negative electrode of capacitor, lithium-ion secondary battery, and capacltor using same | |
KR102837219B1 (en) | Secondary battery and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20140331 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20190201 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20140331 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200529 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20201123 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20200529 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
X091 | Application refused [patent] | ||
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20201123 Comment text: Decision to Refuse Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20210223 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
PX0701 | Decision of registration after re-examination |
Patent event date: 20210802 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20210423 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20210125 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20201123 Comment text: Decision to Refuse Application Patent event code: PX07011S01I |
|
X701 | Decision to grant (after re-examination) | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20211022 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20211025 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
PG1701 | Publication of correction |
Patent event code: PG17011E01I Patent event date: 20220311 Comment text: Request for Publication of Correction Publication date: 20220315 |
|
PR1001 | Payment of annual fee |
Payment date: 20240425 Start annual number: 4 End annual number: 4 |